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Abstract. In the present paper, we consider spacelike translation surfaces in 4-dimensio-
nal Minkowski space. We characterize such surfaces in terms of their Gaussian curvature
and mean curvature functions. We classify flat and minimal spacelike translation sur-
faces in E4

1.
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1. Introduction

A surface’s geometry consists of some properties like area, distance, angle and
curvature. The most important of these is curvature, which reveals the structural
differences between surfaces. Flat and minimal surfaces with zero Gaussian and zero
mean curvature have major significance in geometry. Especially, a minimal surface
is a surface that locally minimizes its area. In addition to the planes, catenoids
and helicoids, the appearance of minimal surfaces can also be observed in nature:
in the structures that animals build, in various plants and animal anatomies, etc.
In history, some mathematicians such as Riemann, Schwarz, Scherk, Weierstrass
and Enneper made major advances on minimal surfaces (see, [18]). During 1960s,
the pioneering work of Osserman influenced the majority of modern theories of
minimal surfaces in three dimensional spaces [17]. Minimal surfaces have also been
the subject of today’s work (see, [16]).

A special surface: Translation surface which is known as double curved in dif-
ferential geometry are base for roofing structures. The construction and design
of freeform glass roofing structures are generally created with the help of curved
(formed) glass panes or planar triangular glass facets. Especially, double curved sur-
face are made up of quadrilateral, that is four sided, facets. They lead to economic
advantages compared to triangular glass facets. Because of these advantages, trans-
lation surfaces are used to construct free form glass roofing structures [11]. Also,
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due to geometric property of these surfaces, they are used for Teichmüller theory
in physics (see, [9]).

Translation surfaces can be parameterized locally as φ(u, v) = (u, v, f(u)+g(v)).
In [4], Baikoussis and Verstraelen (1992) investigated the Gauss map of translation
surfaces with in 3−space. Particularly, in [19], H. Scherk introduced the special
translation surface named Scherk surface which is the only non flat minimal. Then,
these type of surfaces have been studied in Euclidean spaces by many geometers
with different perspectives (see, [1, 2, 7, 20]). Also, in [3], the authors characterized
the translation surfaces in the 3−dimensional Lorentz-Minkowski space.

In the present study, we consider a spacelike translation surface in Minkowski
4-space. We define the surface which locally can be written as a monge patch

φ(u, v) = (u, v, f1(u) + g1(v), f2(u) + g2(v)),

for some differentiable functions, fi(u), gi(v), i = 1, 2. We characterize such surfaces
in terms of their Gaussian curvature and mean curvature functions and give the
conditions for such surfaces to become flat and minimal.

2. Basic Concepts

The Minkowski 4−space denoted by E4
1 is the space given by the Lorentzian inner

product
〈x, y〉 = −x0y0 + x1y1 + x2y2 + x3y3.

Let S : φ = φ(u, v) : (u, v) ∈ D ( D ⊂ E2) be a spacelike surface in E4
1, then 〈, 〉

induces a Riemannian metric on S. Thus, at each point p of a spacelike surface S,
the following decomposition is available:

E4
1 = T⊥p S ⊕ TpS,

where the restriction of the metric 〈, 〉 onto the normal space T⊥p S and TpS have
the signatures (1,1) and (2,0), respectively.

∼
∇ and ∇ indicate the Levi-Civita connections on E4

1 and S. Suppose X and
Y be vector fields tangent to M and ξ be a normal vector field. The formulas of

Weingarten and Gauss decompose the vector fields
∼
∇Xξ and

∼
∇XY into normal and

tangent components:

∼
∇Xξ = −AξX +DXξ,
∼
∇XY = ∇XY + h(X,Y ),

where h, D, and Aξ are the second fundamental form, the normal connection and
the shape operator, respectively [6].

The mean curvature vector field H of S can be calculated by H = 1
2 trh, i.e. given

a local orthonormal frame {X,Y } of the tangent bundle, H = 1
2 ((h(X,X) + h (Y, Y )) .
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Let S : φ = φ(u, v) : (u, v) ∈ D ( D ⊂ E2) be a local parametrization on a
spacelike surface in E4

1. The tangent space at an arbitrary point p = φ(u, v) of S is
TpS = span {φu, φv} , where 〈φu, φu〉 > 0, 〈φv, φv〉 > 0. The standard indications
E = 〈φu, φu〉 , F = 〈φu, φv〉 , G = 〈φv, φv〉 are used for the coefficients of the first
fundamental form

(2.1) I (λ, µ) = Eλ2 + 2Fλµ+Gµ2, λ, µ ∈ IR.

[12] Since I (λ, µ) is positive definite, we set W =
√
EG− F 2. We choose a nor-

mal frame field {ξ1, ξ2} such that 〈ξ1, ξ1〉 = −1, 〈ξ2, ξ2〉 = 1, and the quadruple
{φu,φv, ξ1, ξ2} is positively oriented in E4

1. Then we have the following derivative
formulas:

∼
∇φuφu = φuu = Γ1

11φu + Γ2
11φv − c111ξ1 + c211ξ2,

∼
∇φuφv = φuv = Γ1

12φu + Γ2
12φv − c112ξ1 + c212ξ2,(2.2)

∼
∇φvφv = φvv = Γ1

22φu + Γ2
22φv − c122ξ1 + c222ξ2,

where Γkij and ckij , (i, j, k = 1, 2) denote Cristoffel symbols and coefficients of second
fundamental form, respectively. Then, these coefficients are given by

c111 = 〈φuu, ξ1〉 , c112 = 〈φuv, ξ1〉 , c122 = 〈φvv, ξ1〉 ,
c211 = 〈φuu, ξ2〉 , c212 = 〈φuv, ξ2〉 , c122 = 〈φvv, ξ2〉 .(2.3)

[13] h represents the second fundamental tensor of the surface S, then

h(φu, φu) = −c111ξ1 + c211ξ2,

h(φu, φv) = −c112ξ1 + c212ξ2,(2.4)

h(φv, φv) = −c122ξ1 + c222ξ2.

The second fundamental tensor can be written as

(2.5) h(X,Y ) = −〈Aξ1 (X) , Y 〉 ξ1 + 〈Aξ2 (X) , Y 〉 ξ2.

[15] The component of H along a given normal connection Nk, denoted by Hk, is

called the expansion along ξk, i.e., Hk = 〈H, ξk〉 =
tr(Aξk )

2 and we obtain

(2.6) Hk =
ck11G− 2ck12F + ck22E

2(EG− F 2)
.

With regard to the normal basis the mean curvature vector field H becomes

(2.7) H = −H1ξ1 +H2ξ2.

The norm of the mean curvature vector

∥∥∥∥→H∥∥∥∥ is called the mean curvature of S. If

mean curvature vector of a surface is zero, then it is called minimal.
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Gaussian curvature of a regular patch φ(u, v) can be expressed in terms of the
coefficients of the first and second fundamental forms as

(2.8) K =
−det(Aξ1) + det(Aξ2)

W 2
=
−c111c122 + c211c

2
22 +

(
c112
)2 − (c212)2

EG− F 2
.

A surface S is said to be flat if its Gauss curvature vanishes. [5].

3. Spacelike Translation Surface in E3
1

The translation surface S determined by curves α, β : (a, b)→ E3
1 is the patch

(3.1) S : φ(u, v) = α(u) + β(v).

It is the surface formed by moving α parallel to itself in such a way that a point of
the curve moves along β [8].

A surface that can be generated from two space curves by translating either one
of them parallel to itself in such a way that each of its points describes a curve that
is a translation of the other curve. For the spacelike surface S, both of the generator
curves α(u), β(v) are spacelike. These curves are defined by the parameterizations

α(u) = (u, 0, f(u)) ,

β(v) = (0, v, g(v)) ,

where f(u) and g(v) are smooth functions. Thus, the representation of the surface
is

(3.2) φ(u, v) = (u, v, f(u) + g(v)).

The natural frame {φu, φv} is given by

φu = (1, 0, f ′(u)) ,

φv = (0, 1, g′(v)).

Then it follows that the unit normal vector ξ is given by

ξ =
1√

1− f ′2 + g′2
(f ′,−g′, 1) .

The curvatures of the surface in Minkowski 3−space are given by

K = − f ′′g′′

(f ′2 + g′2 − 1)
2

and

H =

(
1− f ′2

)
g′′ +

(
1− g′2

)
f ′′

2 (f ′2 + g′2 − 1)
3
2

.
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Theorem 3.1. [10] A translation surface parameterized by (3.2) in Minkowski
3−space has constant Gaussian curvature if and only if it is (a part) of a plane or
a generalized cylinder and thus, is a flat surface.

Theorem 3.2. [10] A spacelike translation surface in Minkowski 3−space param-
eterized by (3.2) has mean curvature zero if and only if it is (a part of) either a
spacelike plane or the surface of Scherk of the first kind which is parameterized by

φ(u, v) =

(
u, v,

1

a
ln

∣∣∣∣cosh(av)

sinh(au)

∣∣∣∣) with tanh2(au) + tanh2(av) < 1 and a ∈ R0.

4. Spacelike Translation Surface in E4
1

Definition 4.1. A surface can be determined by the curves α, β : (a, b) → E4
1 is

the patch

φ : E2 → E4
1

φ(u, v) = α(u) + β(v).

If the generating curves α(u) and β(v) are space curves has the parameterizations

α(u) = (u, 0, f1(u), f2(u)),

β(v) = (0, v, g1(v), g2(v)),

then this surface is still called translation surface in E4
1. Thus, the translation surface

is defined by the patch

(4.1) φ(u, v) = (u, v, f1(u) + g1(v), f2(u) + g2(v)).

Let the surface S be spacelike, then both of the generator curves α(u), β(v) are
spacelike. The first partial derivatives of φ(u, v) are given by

φu = (1, 0, f
′

1(u), f
′

2(u)),(4.2)

φv = (0, 1, g
′

1(v), g
′

2(v)).

Hence, the coefficients of the first fundamental form of the surface as we can
find

E = 〈φu, φu〉 = −1 + (f
′

1)2 + (f
′

2)2,

F = 〈φu, φv〉 = f
′

1g
′

1 + f
′

2g
′

2,(4.3)

G = 〈φv, φv〉 = 1 + (g
′

1)2 + (g
′

2)2,
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where 〈 , 〉 is Lorentzian inner product in E4
1. Since the first fundamental form

is positive definite, we set W =
√
EG− F 2.

The second partial derivatives of φ(u, v) are expressed as

φuu = (0, 0, f ′′1 (u), f ′′2 (u)),

φuv = (0, 0, 0, 0),(4.4)

φvv = (0, 0, g′′1 (v), g′′2 (v)).

It follows that chosen normal frame field {ξ1, ξ2}

ξ1 =
1√
|A|

(f
′

1(u),−g
′

1(v), 1, 0),(4.5)

ξ2 =
1√
AD

(Af
′

1(u)−Bf
′

2(u), Bg
′

1(v)−Ag
′

2(v),−B,A),

where

A = 1− (f
′

1)2 + (g
′

1)2,

B = −f
′

1f
′

2 + g
′

1g
′

2,

C = 1− (f
′

3)2 + (g
′

3)2,

D = AC −B2,

and by the use of (4.4) and (4.5), the functions ckij , (i, j, k = 1, 2) are given by

c111 =
f

′′

1√
|A|

, c122 =
g

′′

1√
|A|

,

c112 = c212 = 0,

c211 =
Af

′′

2 −Bf
′′

1√
AD

,(4.6)

c222 =
Ag

′′

2 −Bg
′′

1√
AD

.

Using Gram-Schmidt orthonormalization method for the spacelike vector fields
φu and φv, we get orthonormal tangent vectors

X =
φu√
E
,

Y =

√
E

W

(
φv −

F

E
φu

)
.(4.7)
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By the use of (2.3), (2.4), (2.5) and (4.7), the shape operator matrices can be written
as

Aξ1 =
1

E
√
|A|

 f
′′

1
−f

′′

1 F
W

−f
′′

1 F
W

g
′′

1 E
2+f ′′

1 F
2

W 2

 ,(4.8)

Aξ2 =
1

E
√
|AD|

 Af ′′

2 −Bf
′′

1

−(Af ′′
2 −Bf

′′
1 )F

W

−(Af ′′
2 −Bf

′′
1 )F

W

(
Ag

′′
2 −Bg

′′

1

)
E2+(Af ′′

2 −Bf
′′
1 )F 2

W 2

 .

Theorem 4.1. Let S be a spacelike translation surface in E4
1. Then Gaussian

curvature of S is given by

(4.9) K =
f

′′

1 g
′′

1C − (f
′′

1 g
′′

2 + g
′′

1 f
′′

2 )B + f
′′

2 g
′′

2A

W 2D
.

Proof. By the use of the equations (2.8) and (4.6), we get the result.

Theorem 4.2. Let S be a spacelike translation surface parameterized by (4.1).
Then S is a flat surface if and only if it is (a part) of a plane or a generalized
cylinder given by

(4.10) φ(u, v) = (u, 0, f1(u) + a1, f2(u) + a2) + v(0, 1, b1, b2)

or

(4.11) φ(u, v) = (0, v, g1(v) + c1, g2(v) + c2) + u(1, 0, d1, d2),

where ai,bi, ci, di (i = 1, 2) are real constants.

Proof. Let S be a spacelike translation surface parameterized by (4.1). If the Gaus-
sian curvature of the surface is zero, then we get f ′i = 0, g′i = 0, or f ′′i = 0, or g′′i = 0
(i = 1, 2). For the first case we obtain a plane. For the second and third case, we
get generalized cylinders with the parameterizations (4.10) and (4.11), respectively.
This completes the proof.

Theorem 4.3. Let S be a spacelike translation surface with the parametrization
(4.1) in E4

1. Then the mean curvature vector field is given by

(4.12)
→
H = −f

′′

1 G+ g
′′

1 E

2
√
|A|W 2

ξ1 +
G(f

′′

2 A− f
′′

1 B) + E(g
′′

2A− g
′′

1 B)

2
√
ADW 2

ξ2.

Proof. By the use of the equations (2.6), (2.7) and (4.6), we obtain the desired
result.
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Proposition 4.1. Let S be a spacelike translation surface with the parametrization
(4.1) in E4

1. Then S is a minimal surface if and only if

(4.13) −f
′′

i

E
=

g
′′

i

G
= ci , i = 1, 2

where ci, (i = 1, 2) are real constants.

Proof. Let S be a spacelike translation surface with the parametrization (4.1). If S
is minimal, then the mean curvature vector field is zero, namely the components of
→
H are zero. From the equation (4.12), we get the result.

Theorem 4.4. Let S be a spacelike translation surface in E4
1 with the parametriza-

tion (4.1). Then S is a minimal surface if and only if either S is a plane or the
functions fi(u), gi(v) are defined by

fi(u) =
ci

c21 + c22

(
ln
(

cos
√
du
)
− bu

)
+ kiu, d > 0 i = 1, 2

or
fi(u) = − ci

c21 + c22

(
ln
(

cosh
√
|d|u

)
+ bu

)
+ kiu, d < 0 i = 1, 2

and
gi(v) = − ci

c21 + c22

(
ln
(

cos
√
d′v
)

+ b′v
)

+ l2v, i = 1, 2

where d′ positive and b, b′, ci, d, ki, li are real constants.

Proof. Let S be a translation surface in E4
1 which satisfies the equation (4.13). Then

− f ′′i (u)

−1 + (f ′1(u))
2

+ (f ′2(u))
2 =

g′′i (v)

1 + (g′1(u))
2

+ (g′2(u))
2 = ci.

We know that the variables u and v are independent. Hence, left and right side of
the equation must be constant. Thus, we have

f ′′i (u) = −ci
(
−1 + (f ′1(u))

2
+ (f ′2(u))

2
)
,(4.14)

g′′i (v) = ci

(
1 + (g′1(u))

2
+ (g′2(u))

2
)
.

Suppose ci = 0, i = 1, 2, then we obtain fi(u) = aiu + bi and gi(v) = civ + di. As
a result of this, M is a plane in Minkowski 4−space. Furthermore, we assume that
c1 6= 0, by dividing the equations (4.14) by the same equations for i = 1, we get

f ′′i (u)

f ′′1 (u)
=
g′′i (v)

g′′1 (v)
=
ci
c1
, i = 1, 2.
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Therefore

f ′′i (u) =
ci
c1
f ′′1 (u),

g′′i (v) =
ci
c1
g′′1 (v),

and then

f ′i(u) =
ci
c1
f ′1(u) + ki(4.15)

g′i(v) =
ci
c1
g′1(v) + li

where ki and li are real constants for i = 1, 2 with k1 = l1 = 0. Consider the
equations (3.2) for i = 1 :

f ′′1 (u) = −c1
(
−1 + (f ′1(u))

2
+ (f ′2(u))

2
)
,

g′′1 (v) = c1

(
1 + (g′1(u))

2
+ (g′2(u))

2
)

and substitute (4.15) into these equations. We have

f ′′1 (u) = −c
2
1 + c22
c1

(f ′1)
2 − 2c2k2f

′
1 − c1

(
k22 − 1

)
,

g′′1 (v) =
c21 + c22
c1

(g′1)
2

+ 2c2l2g
′
1 + c1

(
l22 + 1

)
.

Then taking

f ′1(u) = p, g′1(v) = q, a =
c21 + c22
c1

, b = c2k2,

c = c1
(
k22 − 1

)
, b′ = c2l2, c′ = c1

(
l22 + 1

)
,

we obtain the differential equations

dp

du
= −(ap2 + 2bp+ c),

dq

dv
= (aq2 + 2b′q + c′),

or we can write

dp

du
= −1

a

[
(ap+ b)

2
+ ac− b2

]
,

dq

dv
=

1

a

[
(aq + b′)

2
+ ac′ − b′2

]
.

Put d = ac− b2 and d′ = ac′ − b′2, then

d = c21
(
k22 − 1

)
− c22,

d′ = c22
(
l22 + 1

)
+ c22,
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where d is constant and d′ is positive constant. Assume both of them are positive,
we get

p = f ′1(u) =
−b−

√
d tan

(√
du
)

a
,

q = g′1(v) =
−b′ +

√
d′ tan

(√
d′v
)

a
.

If d is negative, then

p = f ′1(u) =
−b+

√
|d| tanh

(√
|d|u

)
a

.

Using these result and equality (4.15), the other functions are

f ′2(u) = − c2
c21 + c22

(√
d tan

(√
du
)

+ b
)

+ k2u, d > 0,

g′2(v) =
c2

c21 + c22

(√
d′ tan

(√
d′v
)
− b′

)
+ l2v, d

′ > 0,

or
f ′2(u) =

c2
c21 + c22

(√
|d| tanh

(√
|d|u

)
− b
)

+ k2u, d < 0.

Consequently, we have all the solutions

fi(u) =
ci

c21 + c22

(
ln
(

cos
√
du
)
− bu

)
+ kiu, d > 0

or
fi(u) = − ci

c21 + c22

(
ln
(

cosh
√
|d|u

)
+ bu

)
+ kiu, d < 0

and
gi(v) = − ci

c21 + c22

(
ln
(

cos
√
d′v
)

+ b′v
)

+ l2v, d
′ > 0

for i = 1, 2

Example 4.1. The surface given by the parametrization

(4.16) φ(u, v) = (u, v,−3u+ 2v − ln (cosh 2u cos 3v) ,−2u+ v − 2 ln(cosh 2u cos 3v)

is minimal in Minkowski 4−space.
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Fig. 4.1: 3D model obtained by the projection of Spacelike Minimal Surface (4.16)
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