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Abstract

We study generalized heat kernel coefficients, which appear in the trace of the heat kernel with an in-
sertion of a first-order differential operator, by using a path integral representation. These coefficients may 
be used to study gravitational anomalies, i.e. anomalies in the conservation of the stress tensor. We use 
the path integral method to compute the coefficients related to the gravitational anomalies of theories in 
a non-abelian gauge background and flat space of dimensions 2, 4, and 6. In 4 dimensions one does not 
expect to have genuine gravitational anomalies. However, they may be induced at intermediate stages by 
regularization schemes that fail to preserve the corresponding symmetry. A case of interest has recently 
appeared in the study of the trace anomalies of Weyl fermions.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Heat kernel methods provide a useful tool for investigating QFTs. They were introduced by 
Schwinger for studying QED processes [1] and extended to curved spaces and non-abelian gauge 
fields by DeWitt [2]. There are many reviews and books dedicated to them, as [3–5].

One application of the heat kernel finds its place in the study of anomalies. The connection 
is most easily seen by recalling Fujikawa’s method [6], which identifies the anomalies as arising 
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from the non-invariance of the path integral measure under the symmetry transformations. In that 
approach the anomalies are cast as regulated infinitesimal jacobians, limβ→0 TrJ e−βR, where J
is the generator of the anomalous symmetry and R a regulator, usually a second-order differential 
operator. Once Wick-rotated to euclidean space the regulator R becomes an elliptic operator and 
e−βR defines the associated heat kernel. Often the operator J depends only on the spacetime 
coordinates, and it does not contain any differential operator. This is the case of the usual chiral 
and trace anomalies.

Our interest in this paper is in traces that contain a first-order differential operator. This sit-
uation arises when one considers gravitational anomalies [7]. The latter are anomalies in the 
conservation of the stress tensor, and the corresponding symmetry is the arbitrary change of coor-
dinates (diffeomorphisms). Diffeomorphisms are generated by the Lie derivative of the quantum 
fields, and on scalars and Dirac spinors the Lie derivative Lξ takes the simple form

Lξ = ξμ(x)∂μ (1)

where ξμ(x) is the vector field due to an infinitesimal change of coordinates (xμ → x′μ =
xμ − ξμ(x)). The corresponding anomaly is then related to the regularization of an infinitesi-
mal Fujikawa jacobian of the form

J =
[
ξμ(x)∂μ + σ(x)

]
δD(x − y) (2)

where σ(x) is a function that depends on the regularization scheme adopted (often one takes 
σ(x) = 1

2∂μξμ(x) as a convenient choice, see [8,9]). An application of this type of traces has 
recently appeared in [10].

In this paper, we shall study traces of the heat kernel with an insertion of a first-order dif-
ferential operator of the form given in (2) by using a quantum mechanical path integral. After 
making explicit the relationship between the heat kernel traces and their path integral represen-
tation, we use the latter to evaluate the first three heat kernel coefficients for an elliptic operator 
R containing a non-abelian gauge field Aμ(x) and an arbitrary matrix-valued scalar potential 
V (x). These coefficients are a generalization of the standard heat kernel coefficients, also known 
as Seeley-DeWitt coefficients, as they contain the insertion of a first-order differential operator. 
We shall call them generalized heat kernel coefficients, for simplicity. Some of these coefficients 
have been computed before in [11] and [12]. Here we shall reproduce some of those results with 
the path integral method, and compute an additional one.

Our motivation for investigating these coefficients stems from a desire of addressing the 
anomalies of a Weyl fermion in four dimensions by using a regularization scheme that induces 
gravitational anomalies as well. This situation appeared in [13], where the trace anomaly of a 
Weyl fermion in an abelian gauge background was computed to verify the absence of a parity 
violating term, conjectured in [14] to be a possibility for CP violating theories. The use of a 
Pauli-Villars (PV) regularization with a Majorana mass showed the absence of such a term, as 
the PV Majorana mass preserves CP and diffeomorphism invariance. On the other hand, the ver-
ification of the same result with a PV Dirac mass could not be completed, as the latter induces 
gravitational anomalies, which can be computed by using a generalized heat kernel coefficient in 
the background of a non-abelian gauge field and flat spacetime. This justifies the use of flat space 
that we consider in our analysis. The non-abelian background is however needed as the regula-
tor R contains gamma matrices, making the connection contained in R effectively non-abelian, 
even for the simple case of a Weyl fermion coupled to a U(1) gauge field.

Thus, the problem we face in this paper is to study the path integral method to compute 
generalized heat kernel coefficients, verifying the ones previously known and producing a new 
2



F. Bastianelli and F. Comberiati Nuclear Physics B 960 (2020) 115183
one. In section 2 we review the path integral representation of the heat kernel and its traces. 
We start by considering a simple elliptic operator R, interpreted as the quantum hamiltonian of 
a non-relativistic particle in a scalar potential, and study how to insert an arbitrary function of 
the particle coordinates inside the heat kernel trace. We discuss the role played by the propa-
gators defined either by the Dirichlet boundary conditions (DBC) or by the string inspired (SI) 
method, which can be used equivalently for generating the perturbative expansion of the path 
integral. Section 3 extends the previous set-up to include the insertion of a first-order differential 
operator inside the heat kernel trace, and uses a more general hamiltonian R with a non-abelian 
gauge potential Aμ and a matrix-valued scalar potential V . The corresponding particle action is 
also matrix-valued, and the path integral contains a time ordering prescription to maintain gauge 
covariance. In section 4 we present the first three generalized heat kernel coefficients, and in sec-
tion 5 we describe the calculation of the simplest one with the path integral method, reproducing 
the result of [11]. Having verified the consistency of the method, in section 6 we proceed with 
the calculation of two more heat kernel coefficients. The first one is the flat space limit of a more 
general result originally obtained in [12], which is relevant for the gravitational anomalies in a 
flat four-dimensional space. The last coefficient is new, and may be useful for the gravitational 
anomalies of gauge theories in a flat six-dimensional space. After our conclusions, we report in 
appendix A the worldline propagators defined by the Dirichlet boundary conditions and by the 
string inspired method, in appendix B we use them for computing some simple Seeley-DeWitt 
coefficients as a simple review of the path integral method, and in appendix C we report further 
calculational details.

2. Path integral representation of heat kernel traces

The path integral representation was used to study the trace anomalies in [15] and [16], where 
the object of interest was represented by a heat kernel trace of the form

Tr
[
σ(x) e−βR

]
(3)

with σ(x) an arbitrary function and R an elliptic differential operator. In this section we take as 
guiding example the operator

R= −1

2
∂2 + V (x) = 1

2
p2 + V (x) (4)

where ∂2 = ∂μ∂μ is the laplacian and pμ = −i∂μ the momentum operator in the coordinate 
representation of quantum mechanics. R is directly interpreted as the hamiltonian of a non-
relativistic particle of unit mass in D dimensions, and the functional trace is understood as a 
trace on the Hilbert space of the particle

Tr
[
σ(x) e−βR

]
=

∫
dDx σ(x)〈x|e−βR|x〉 =

∫
dDx

(2πβ)
D
2

σ(x)

∞∑
n=0

an(x)βn (5)

where 〈x|e−βR|x〉 is the transition amplitude for an euclidean time β with coinciding initial and 
final points, i.e. the heat kernel at coinciding points. The evaluation of the latter for an arbitrary 
potential V (x) is not known in closed form, but often one needs only its perturbative expansion 
for small values of β , which gives rise to the Seeley-DeWitt coefficients an(x). The first few ones 
are
3
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a0(x) = 1

a1(x) = −V

a2(x) = 1

2
V 2 − 1

12
∂2V

a3(x) = −1

6
V 3 + 1

12
V ∂2V + 1

24
∂μV ∂μV − 1

240
∂4V .

(6)

A way of computing them is to use the path integral representation of the transition amplitude 
for the quantum mechanical model with hamiltonian R and euclidean action

S[x(t)] =
β∫

0

dt

(
1

2
ẋμẋμ + V (x)

)
. (7)

Then, using the equivalence of path integrals with canonical quantization, one may write

Tr
[
σ(x) e−βR

]
=

∫
dDx0 σ(x0)〈x0|e−βR|x0〉

=
∫

dDx0 σ(x0)

x(β)=x0∫
x(0)=x0

Dx(t) e−S[x(t)] =
∫

PBC

Dx(t) σ (x(0)) e−S[x(t)]

(8)

where in the second line we have used the path integral representation of the transition ampli-
tude at coinciding points, and recognized that the additional integration over the point x0, which 
creates the trace, implements periodic boundary conditions (PBC). Thus one finds a path integral 
on all loops with an insertion of the function σ(x(t)). The argument xμ(t) of the function σ is 
evaluated at t = 0, which corresponds to the base point xμ(0) = x

μ
0 of the parametrized loop, 

but it could be anywhere on the loop described by the function xμ(t) as a consequence of time 
translational invariance. Now, given the relation (8), one can use the perturbative expansion of the 
path integral in the euclidean time β to evaluate the heat kernel coefficients in (5) with worldline 
propagators and Feynman diagrams.

This set-up was discussed in [15,16], where it was extended to curved space and non-abelian 
gauge fields and used to rederive the trace anomalies of many field theories. Actually, the precise 
observable available (the trace anomalies) could be used as a benchmark to construct well-defined 
path integrals for particles in curved spaces, stressing the necessity of using precise regularization 
schemes on the worldline, which must include well-defined but scheme dependent counterterms 
[15–18,9]. A list of counterterms needed for sigma models with N supersymmetries in various 
regularization schemes is given in [19], with the N = 4 case that has been applied in the recent 
construction of the path integral for the graviton in first quantization [20–22].

A direct extension of the above construction to the case of an insertion of a first-order differ-
ential operator in the trace of the heat kernel may not seem immediate. A simple way of obtaining 
the insertion is to exponentiate the corresponding operator, and view it as a source added to the 
action. Then a derivative creates the required insertion. Let us check the formulae we get this 
way for a scalar insertion and compare them with the set-up described above.

To start with, let us consider

Tr
[
σ(x) e−βR

]
= ∂

Tr
[
e−βR+λσ(x)

] ∣∣∣ (9)

∂λ λ=0

4
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Fig. 1. Loop with Dirichlet boundary conditions (DBC) at x0.

where the trace guarantees that the insertion arising by acting with a derivative can be placed on 
the left of the exponential. The exponentiation can be viewed as a deformation of the hamiltonian, 
which in turns generates a modified euclidean action with V (x) → V (x) − λ

β
σ (x), so that

S[x] → Sλ[x] =
β∫

0

dt

(
1

2
ẋμẋμ + V (x) − λ

β
σ(x)

)
. (10)

Using the path integral representation one finds

Tr
[
σ(x) e−βR

]
=

∫
PBC

Dx

⎛
⎝ 1

β

β∫
0

dt σ (x(t))

⎞
⎠ e−S[x] . (11)

This formula is equivalent to the one obtained earlier in (8). The equivalence between the two 
expressions is understood by invoking the time translational invariance of the one-point function 
of the operator σ(x(t)), which may be substituted by its time average.

As a side result, this reformulation makes it clear how to use different worldline propagators 
for obtaining the same heat kernel coefficients. In the set-up described by eq. (8), it is natural to 
parametrize the quantum integration variables by

x(t) = x0 + q(t) (12)

with q(0) = q(β) = 0, thus defining Dirichlet boundary conditions (DBC) on the quantum fluc-
tuations q(t). They parametrize loops with a fixed base point x0. The final integration over x0
produces all possible loops in target space, thus implementing the full periodic boundary con-
dition (PBC) prescription, see Fig. 1. The emerging quantum integration variables q(t) have a
perturbatively well-defined propagator, as fixed by Dirichlet boundary conditions. This was the 
approach used in [15,16].

Alternatively, one may find it useful to employ the so-called “string-inspired” (SI) propagator 
[23], obtained by setting again

x(t) = x0 + q(t) (13)

but now with the condition

x0 = 1

β

β∫
0

dt x(t) ⇒
β∫

0

dt q(t) = 0 (14)

where the zero mode x0 is the average position of the loop, see Fig. 2. The non-local constraint 
on q(t) defines the SI propagator. Again, the final integration over x0 creates all loops in target 
space.

As a preparation for our worldline calculations, we collect these propagators in appendix A, 
and use them in appendix B for obtaining the Seeley-DeWitt coefficients of eq. (6) with a simple 
perturbative path integral calculation.
5
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Fig. 2. Loop with average position x0 (SI).

The previous set-up is easily generalized by coupling the model to curved space and to non-
abelian gauge fields. For the latter, the simplest strategy requires the use of a time ordering 
prescription to exponentiate the action with the matrix-valued gauge field, a method already 
employed in [11]. More elaborate methods that avoid the time ordering are also available [24], 
and could be used as well. More general ways of factorizing the zero mode x0 of the periodic 
functions x(t) can be found in [25] and [26].

3. Insertion of a first-order operator

In this section, we consider the insertion of a first-order differential operator inside the trace 
of the heat kernel and construct a path integral representation for it.

To start with, let us consider a more general hamiltonian R, with a non-abelian connection 
Aμ and a matrix-valued scalar potential V

R= −1

2
∇2 + V, ∇μ = ∂μ + Aμ . (15)

The corresponding matrix-valued euclidean action for the point particle of coordinates xμ(t)

reads

S[x] =
β∫

0

dt

(
1

2
ẋμẋμ + ẋμAμ(x) + V (x)

)
(16)

and its exponential appears in the path integral with a time ordering. The latter guarantees gauge 
covariance as in the standard construction of Wilson lines. The heat kernel is thus computed by 
the path integral on the particle coordinates xμ(t) as

e−βR =
∫

Dx(t)T e−S[x(t)] (17)

where T denotes the time ordering along the worldline parametrized by t : upon the expansion 
of the exponential one should place the matrices associated with earlier times on the right of 
those associated with later times. The trace of the heat kernel is computed by periodic boundary 
conditions with period β , xμ(β) = xμ(0), and further implementing a finite dimensional trace 
(denoted by “tr”) on the vector space where the matrix-valued potentials Aμ and V act upon

Tr
[
e−βR

]
= tr

∫
PBC

Dx(t)T e−S[x(t)] . (18)

Next, we would like to insert on the left-hand side an operator of the form

J =
[
ξμ(x)∂μ + σ(x)

]
(19)

where ξμ(x) is an arbitrary vector field (we have in mind applications to diffeomorphism anoma-
lies) and σ(x) a matrix-valued function that we will choose appropriately to simplify the relation 
6
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with the path integral and keep gauge invariance manifest. The last contribution can be modi-
fied at will by adding a standard heat kernel trace with the insertion of a matrix-valued scalar 
function.

As in the previous section, we modify the action and the hamiltonian by adding a source so 
that a derivative on its coupling constant creates an insertion. The source term in the action must 
have a coupling to ξμ(x), which can be considered as an abelian gauge field, so we deform the 
action as

S[x] → Sλ[x] =
β∫

0

dt

(
1

2
ẋμẋμ + ẋμAμ(x) + V (x) + λẋμξμ(x)

)
(20)

where λ is a coupling constant. By going through the canonical formalism, one finds that the 
hamiltonian corresponding to the previous euclidean action is given by

H = 1

2
π2 + V (x) (21)

where the covariant momentum

πμ = pμ − iAμ(x) − iλξμ(x) (22)

becomes a covariant derivative ∇μ upon quantization

πμ → −i∇μ = −i(∂μ + Aμ(x) + λξμ(x)) . (23)

Fixing the ordering ambiguities to maintain gauge covariance, one finds a corresponding quan-
tum hamiltonian

Rλ = −1

2
∇2 + V = R− λ

(
ξμ(x)∇μ + 1

2
(∂μξμ(x))

)
− λ2

2
ξ2(x) (24)

and a deformed version of (18) may be written down

Tr
[
e−βRλ

]
= tr

∫
PBC

Dx T e−Sλ[x] . (25)

Taking a λ-derivative on both sides, and setting λ = 0, one finds on the left-hand side the insertion 
of the operator

ξμ∇μ + 1

2
(∂μξμ) (26)

and on the right-hand side its path integral realization

Tr

[(
ξμ∇μ + 1

2
(∂μξμ)

)
e−βR

]
= tr

∫
PBC

Dx

⎛
⎝− 1

β

β∫
0

dt ẋμξμ(x)

⎞
⎠T e−S[x] (27)

which is the formula we were looking for.
The insertion on the path integral side may be simplified by using time translation invariance 

on the worldline, and one may substitute

− 1

β

β∫
dt

dxμ(t)

dt
ξμ(x(t)) → −dxμ(0)

dt
ξμ(x(0)) (28)
0

7
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with the insertion evaluated at a point of the loop, chosen here as the initial point. In the DBC 
method for evaluating the path integral one can use xμ(0) = x

μ
0 , see Fig. 1. In the SI method one 

will have to set xμ(0) = x
μ
0 + qμ(0) instead, see Fig. 2.

To summarize, we have found that computing with the path integral the expectation value of

− 1

β

β∫
0

dt ẋμξμ(x) or − dxμ(0)

dt
ξμ(x(0)) (29)

creates an insertion of the operator (19) with the matrix-valued function σ(x) fixed to be

σ(x) = ξμAμ + 1

2
(∂μξμ) . (30)

We will study generalized heat kernel coefficients corresponding to this particular insertion. 
Other forms of σ(x) can be easily worked out.

4. Generalized heat kernel coefficients

Having found a path integral representation of the trace of the heat kernel with the insertion of 
a first-order differential operator, we evaluate the corresponding heat kernel coefficients by using 
the perturbative expansion in β of the path integral. It takes the form

Tr

[(
ξμ∇μ + 1

2
(∂μξμ)

)
e−βR

]
=

∫
dDx

(2πβ)
D
2

∞∑
n=0

bn(x)βn (31)

where the bn(x) are the generalized heat kernel coefficients which include at the linear order the 
abelian vector field ξμ. For the operator R in (15) we use the action in (16) and compute up to 
order β3 to find

b0 = 0

b1 = 1

24
trGμνFμν

b2 = 1

480
tr

[
∂2GμνFμν − 20GμνFμνV

]
(32)

b3 = 1

1440
tr

[ 3

28
∂4GμνFμν + 5

4
GμνFμνF

2 + GμνFνρFρλFλμ + 30GμνFμνV
2

−
(

6Gμν∇2Fμν +6∂2GμνFμν +8∂λGμν∇λFμν +2∂μGμν∇λFλν +6GμνFμλF
λ
ν

)
V
]

where Gμν = ∂μξν − ∂νξμ is the abelian field strength, Fμν = ∂μAν − ∂νAμ +[Aμ, Aν] the non-
abelian field strength, and ∇μ the covariant derivative of Aμ. Of course, Gμν could be taken out 
of the color trace “tr”. These coefficients are up to total derivatives, and we have freed V from 
derivatives.

The coefficient b1 was given in [11] and b2 in [12], both including their coupling to gravity. 
The coefficient b3 is new, as far as we know. In the next sections, we describe their explicit 
evaluation through the perturbative expansion of the path integral.

We have used an abelian vector field ξμ, which allows for simplifications in the above formu-
lae. For example, in b1 the term Gμν can be taken out of the color trace so that only the abelian 
part of Fμν survives the trace. Similarly, one may simplify the other coefficients, or write them in 
8
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equivalent ways. These coefficients may also be generalized by considering a non-abelian vector 
field ξμ, as in [12], but we have chosen to keep it abelian for a direct application to the anomalies 
in the conservation of the stress tensor.

5. Perturbative expansion

We now study the perturbative expansion of the path integral with PBC, i.e. considering world-
lines with the topology of a circle. Since the kinetic operator cannot be inverted on the circle, one 
has to factor out a zero mode xμ

0 and split the path integration variable as

xμ(t) = x
μ
0 + qμ(t) . (33)

This can be done using either the DBC method or the SI one, as explained earlier.
To start with we rescale the time t → τ = t

β
, so that τ ∈ [0, 1], and we find the following path 

integral representation of the trace

Tr

[(
ξμ∇μ + 1

2
(∂μξμ)

)
e−βR

]

=
∫

dDx0 tr
∫

DBC

Dq

⎛
⎝− 1

β

1∫
0

dτ q̇μξμ(x0 + q)

⎞
⎠T e−S[x0+q]

=
∫

dDx0

(2πβ)
D
2

tr

〈⎛
⎝− 1

β

1∫
0

dτ q̇μξμ(x0 + q)

⎞
⎠T e−Sint [x0+q]

〉
(34)

where dots indicate derivative with respect to τ , and angle brackets denote normalized averages 
with the free action, 〈1〉 = 1. The expectation values are to be computed by Wick contracting 
with the propagators in appendix A, and with the interaction vertex taking the form

Sint [x0 + q] =
1∫

0

dτ
(
q̇μAμ(x0 + q) + βV (x0 + q)

)
. (35)

We now start computing at order β to get b1. There are two contributions. The first one comes 
from Taylor expanding ξμ and Aμ to first order in qμ, and gives for the right-hand side of (34)

∫
dDx0

(2πβ)
D
2

tr

〈⎛
⎝− 1

β
∂νξμ(x0)

1∫
0

dτ qν(τ )q̇μ(τ )

⎞
⎠

⎛
⎝−∂βAα(x0)

1∫
0

dτ ′ qβ(τ ′)q̇α(τ ′)

⎞
⎠〉

.

(36)

Time ordering is not needed and the disconnected Wick contractions vanish

F1 = =
1∫

0

dτ •(τ, τ ) = 0 . (37)

The remaining connected correlation function gives
9
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〈qν(τ )q̇μ(τ )qβ(τ ′)q̇α(τ ′)〉c =β2
(
δνβδμα (τ, τ ′) ••(τ, τ ′)+ δναδμβ •(τ, τ ′) •(τ, τ ′)

)
(38)

where the first term corresponds to a worldline Feynman diagram of the form

F2 = =
1∫

0

dτ

1∫
0

dτ ′ (τ, τ ′) ••(τ, τ ′) = 1

12
(39)

and the second one to a diagram of the form

F3 = =
1∫

0

dτ

1∫
0

dτ ′ •(τ, τ ′) •(τ, τ ′) = − 1

12
. (40)

In drawing Feynman diagram we denote vertices by black dots and derivatives by white circles 
on the legs. Integration by parts relates the two integrals, F2 = −F3, hinting at gauge invariance. 
The above values are obtained using equivalently the DBC or the SI propagators. In the latter 
case one may use translational invariance to eliminate one integration. Thus, the trace inside (36)
reduces to

β tr ∂νξμ(x0)
(
∂νAμ(x0)F2 + ∂μAν(x0)F3

)
= β

12
tr ∂νξμ(x0)

(
∂νAμ(x0) − ∂μAν(x0)

)
.

(41)

A second term of the same order in β arises from considering two interaction vertices and 
has the effect of completing the non-abelian gauge invariance. Keeping the leading term of the 
Taylor expansion of the non-abelian potential inside 1

2S2
int [x0 + q] one finds

1

2
T

1∫
0

dτ1q̇
α(τ1)Aα(x0)

1∫
0

dτ2 q̇β(τ2)Aβ(x0) . (42)

The time ordering is implemented explicitly as

1

2
Aα(x0)Aβ(x0)

1∫
0

dτ1

τ1∫
0

dτ2 q̇α(τ1)q̇
β(τ2)+ 1

2
Aβ(x0)Aα(x0)

1∫
0

dτ1

1∫
τ1

dτ2 q̇α(τ1)q̇
β(τ2)

(43)

and simplified using a Heaviside step function (and renaming integration variables)

Aα(x0)Aβ(x0)

1∫
0

dτ1

1∫
0

dτ2 q̇α(τ1)q̇
β(τ2)θ(τ1 − τ2) . (44)

Inserted into the right-hand side of (34) it leads to

(−1)

β
tr ∂νξμ(x0)Aα(x0)Aβ(x0)

1∫
0

dτ

1∫
0

dτ1

1∫
0

dτ2 〈q̇μ(τ )qν(τ )q̇α(τ1)q̇
β(τ2)〉 θ(τ1 − τ2)

(45)
10
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with nonvanishing contractions that produce the following integrals

1∫
0

dτ

1∫
0

dτ1

1∫
0

dτ2
••(τ, τ1)

•(τ, τ2)θ(τ1 − τ2) = 1

12

1∫
0

dτ

1∫
0

dτ1

1∫
0

dτ2
••(τ, τ2)

•(τ, τ1)θ(τ1 − τ2) = − 1

12

(46)

independently of the propagator used. At the end one finds a commutator term

β

12
tr ∂νξμ(x0)[Aν(x0),Aμ(x0)] . (47)

These are all the terms of order β . Summing (41) and (47) one finds for (34)∫
dDx0

(2πβ)
D
2

tr
β

12
∂νξμ(x0)Fνμ(x0) =

∫
dDx0

(2πβ)
D
2

tr
β

24
Gμν(x0)Fμν(x0) (48)

which delivers the coefficient b1 of eq. (32). Gμν is the abelian field strength of ξμ and can be 
taken out of the trace, showing that only the abelian part of Fμν contributes. The time ordered 
diagram that leads to the commutator in (47) does not survive the trace, but we have presented it 
to exemplify the role of the time ordering prescription.

As noted, the SI propagators are explicitly translational invariant and in the perturbative ex-
pansion one may eliminate an integration of the Feynman diagrams, fixing for example the 
insertion at τ = 0. In the DBC method, translational invariance on the circle can be used as 
well. However, the calculation proceeds somewhat differently. One uses translational invariance 
to fix the insertion at τ = 0 and identifies xμ(0) = x

μ
0 (since qμ(0) = 0 by DBC). Then, eq. (34)

simplifies to

Tr

[(
ξμ∇μ + 1

2
(∂μξμ)

)
e−βR

]
=

∫
dDx0

(2πβ)
D
2

ξμ(x0)
(−1)

β
tr

〈
q̇μ(0)T e−Sint [x0+q]〉

DBC

(49)

which delivers the result with the vector field ξμ(x0) explicitly factored out. To evaluate the 
same coefficient b1 in this set-up, one needs to expand Aμ to higher orders. The calculation is 
simplified by using the Fock-Schwinger gauge (more on this later)

Aν(x0 + q) = Aν(x0) + 1

2
qρFρν(x0) + 1

3
qρqσ ∇σ Fρν(x0) + ... (50)

to find

(−1)

β

〈
q̇μ(0)T e−Sint [x0+q]〉

DBC

= 1

β

〈
q̇μ(0)Sint [x0 + q] + · · · 〉

DBC

= 1

3β
∇σ Fρν(x0)

1∫
0

dτ 〈q̇μ(0)q̇ν(τ )qρ(τ )qσ (τ )〉
DBC

= β

3
∇νF

νμ(x0)(G1 − G2) = − β

12
∇νF

νμ(x0)

(51)

where the integrals with the DBC propagators give
11
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G1 = X =
1∫

0

dτ ••(0, τ )(τ, τ ) = −1

6

G2 = X =
1∫

0

dτ •(0, τ )•(τ, τ ) = 1

12

(52)

(the cross in the vertex singles out the vertex without integration). Considering the color trace in 
(49) one may substitute the covariant derivative with the standard derivative and notice that only 
the abelian part of Fμν survives the trace, so that by setting b1 = b1μ ξμ one finds

b1μ = − 1

12
tr ∂νFνμ (53)

that indeed reproduces b1 after integrating by part inside (49).
The coefficient b1 was known from ref. [11], where it was obtained by computing the heat 

kernel trace with plane waves, but presented in a form that did not show manifest gauge invari-
ance. The previous calculation verifies the consistency of the path integral method, and one may 
proceed with confidence to evaluate higher order coefficients.

6. Higher order coefficients

To get additional coefficients one needs to push the perturbative expansion in β to higher 
orders. To proceed faster, we use gauge invariance and select the Fock-Schwinger (FS) gauge

qμ(τ)Aμ(x0 + q(τ)) = 0 (54)

which allows to expand the gauge potential in terms of its curvature (and derivatives thereof) 
evaluated at x0 (see for example [27])

Aμ(x0 +q) = Aμ(x0)+ 1

2
qνFνμ(x0)+ 1

3
qνqρ∇ρFνμ(x0)+ 1

8
qνqρqσ ∇σ ∇ρFνμ(x0)+ ... .

(55)

A similar gauge holds also for ξμ(x)

ξμ(x0 + q) = ξμ(x0) + 1

2
qνGνμ(x0) + 1

3
qνqρ∂ρGνμ(x0) + 1

8
qνqρqσ ∂σ ∂ρGνμ(x0) + ... .

(56)

Next, we give some details on the calculation of the higher order coefficients b2 and b3.
To identify b2 we need terms with one vertex (from Sint ) and two vertices (from S2

int ). Substi-
tuting the potentials in the FS gauge, both in the insertion and in the vertices, we get the following 
contribution of order β2 to eq. (34)∫

dDx0

(2πβ)
D
2

tr
(
A1(x0) + A2(x0) + A3(x0) + A4(x0)

)
(57)

where the single vertex produces1

1 We now use a compact notation, indicating q0 ≡ q(τ0), 
∫ ≡ ∫ 1

dτ0
∫ 1

dτ1, etc.
01 0 0

12
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A1(x0) = 1

16β

∫
01

〈q̇μ
0 qν

0 q̇α
1 q

β
1 q

γ

1 qδ
1〉Gνμ(x0)∇δ∇γ Fβα(x0) (58)

A2(x0) = 1

9β

∫
01

〈q̇μ
0 qν

0 q
ρ
0 q̇α

1 q
β
1 q

γ

1 〉∂ρGνμ(x0)∇γ Fβα(x0) (59)

A3(x0) = 1

16β

∫
01

〈q̇μ
0 qν

0 q
ρ
0 qσ

0 q̇α
1 q

β
1 〉∂σ ∂ρGνμ(x0)Fβα(x0) (60)

while the two interaction vertices contribute with

A4(x0) = −1

4

∫
01

〈q̇μ
0 qν

0 q̇α
1 q

β
1 〉Gνμ(x0)Fβα(x0)V (x0) . (61)

In this last term we have used cyclicity of the trace in (57) to eliminate the time ordering. Then, 
it describes a disconnected contribution that embeds b1, so it is immediately evaluated to

A4 = −β2

24
GμνFμνV . (62)

As for the remaining terms, since they enter eq. (57), we simplify them with integration by parts 
(covariant derivatives acting on Fμν become usual derivatives acting on Gμν). Then, renaming 
the time variables we get

A1 + A3 = 1

16β

∫
01

〈q̇μ
0 qν

0 q̇α
1 q

β
1 q

γ

1 qδ
1〉

(
∂γ ∂δGνμFβα + ∂γ ∂δGβαFνμ

)
(63)

and performing the Wick contractions (and also integrating by parts on the worldline to get rid 
of ••

01 in the Feynman diagrams) we get

A1 + A3 = β2

4
H1(∂

2GμνFμν + 2∂α∂βGβνFαν) = β2

2
H1 ∂2GμνFμν (64)

where H1 is the Feynman diagram

H1 = =
∫
01

•01
•
0111 =

{
1
60 DBC

1
144 SI .

(65)

We proceed similarly with A2 to get

A2 = − 1

9β

∫
01

〈q̇μ
0 qν

0 q
ρ
0 q̇α

1 q
β
1 q

γ

1 〉∂γ ∂ρGνμFβα

= β2

9
∂2GμνFμν

(
− 9

2
H2 + 1

2
H3 − 1

4
H4 + 2H5

) (66)

where
13
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H2 = =
∫
01

•0101
•
01 =

{
1

90 DBC

1
360 SI

H3 = =
∫
01

00
••

0111 =
{

− 1
180 DBC

0 SI

H4 = =
∫
01

00
•01

•
11 =

{
1

360 DBC

0 SI

H5 = =
∫
01

•0001
•
11 =

{
− 1

720 DBC

0 SI .

(67)

Adding all terms up we get

A1 + A2 + A3 = β2∂2GμνFμν

(1

2
H1 − 1

2
H2 + 1

18
H3 − 1

36
H4 + 2

9
H5

)
= β2

480
∂2GμνFμν

independently of the worldline propagators used. Including A4 we obtain the generalized coeffi-
cient b2

b2 = 1

480
tr

[
∂2GμνFμν − 20GμνFμνV

]
(68)

which correctly reproduces the one reported in [12] (with abelian ξμ and in flat space).
Finally, we wish to compute the coefficient b3, which did not appear in the literature so far. It 

is more laborious, so we just present the calculation of a single term, i.e. the first one inside b3
of eq. (32), dumping details on the calculation of the remaining part into appendix C. This term 
receives contributions from the Fμν dependence of a single Sint vertex insertion, which read

B1(x0) = 1

288β

∫
01

〈q̇μ
0 qν

0 q̇α
1 q

β
1 q

γ

1 qδ
1qε

1q
η
1 〉Gνμ∇η∇ε∇δ∇γ Fβα (69)

B2(x0) = 1

90β

∫
01

〈q̇μ
0 qν

0 q
ρ
0 q̇α

1 q
β
1 q

γ

1 qδ
1qε

1 〉 ∂ρGνμ∇ε∇δ∇γ Fβα (70)

B3(x0) = 1

64β

∫
01

〈q̇μ
0 qν

0 q
ρ
0 qσ

0 q̇α
1 q

β
1 q

γ

1 qδ
1〉 ∂σ ∂ρGνμ∇δ∇γ Fβα (71)

B4(x0) = 1

90β

∫
01

〈q̇μ
0 qν

0 q
ρ
0 qσ

0 qτ
0 q̇α

1 q
β
1 q

γ

1 〉 ∂τ ∂σ ∂ρGνμ∇γ Fβα (72)

B5(x0) = 1

288β

∫
01

〈q̇μ
0 qν

0 q
ρ
0 qσ

0 qτ
0 qλ

0 q̇α
1 q

β
1 〉 ∂λ∂τ ∂σ ∂ρGνμFβα . (73)

As they are integrated in spacetime, see eq. (34), we integrate by parts the covariant derivatives 
from Fβα to Gνμ, where they become standard derivatives. Then collecting identical Wick con-
tractions we get
14
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B1 + B5 = −β3

8
∂4GμνFμνI1

B2 + B4 = −β3

30
∂4GμνFμν (−15I2 − 3I3 + I4 − I5)

B3 = −β3

8
∂4GμνFμν (2I6 + I7 + 2I8)

(74)

where the integrals corresponding to the worldline Feynman diagrams are listed in appendix C. 
Adding these terms together we get the following contribution to b3

1

1440

∫
dDx

(2πβ)
D
2

tr
3

28
∂4GμνFμν . (75)

In appendix C we report details on the calculation of the other terms contributing to b3.

7. Conclusions

We have studied path integral methods to compute heat kernel traces with insertion of a first-
order differential operator. We have considered hamiltonians R with couplings to non-abelian 
gauge fields and matrix-valued potentials only. The coupling to a curved space metric is however 
straightforward, as path integrals on curved spaces are well-studied by now [9]. The insertion of 
a first-order differential operator into the trace of the heat kernel has been obtained by modifying 
the hamiltonian with a source coupled to the first-order operator, and then varying the source. 
This procedure translates then into the path integral representation of the desired trace, which 
we have used to calculate the first three generalized heat kernel coefficients. Alternatively, one 
could have applied the variational procedure directly to the standard heat kernel coefficients, as 
the source term is structurally similar to the gauge coupling already present in the hamiltonian. 
Indeed, this was the method followed in [12]. In the present case our results can be checked, and 
further extended to reach b4 and b5, by a gauge variation of the coefficients already calculated 
with worldline methods in [25]. We have verified the correctness of our calculation this way as 
well.

Our interest in these particular traces stems from a desire to compute the anomalies in the 
conservation of the stress tensor, which appear in four dimensions if one uses regularization 
schemes that are not symmetric enough. Such a situation emerged in the study of a Weyl fermion 
in a U(1) background once regulated with Pauli-Villars fields with Dirac mass [13]. The gravita-
tional anomaly emerging in this scheme was calculated using generalized heat kernel coefficients 
in [28]. The study of the anomaly structure of chiral fermions in four dimensions has become 
recently of renewed interest, in particular regarding the trace anomaly. The latter has been scruti-
nized from various perspectives [29,13,30–33] to verify the absence of the Pontryagin topological 
density (in curved space) or Chern-Pontryagin topological density (for couplings to gauge fields). 
The presence of these topological densities was conjectured to be a possibility in [14] (see also 
[34] for a supersymmetric extension of the conjecture), and the analyses of refs. [35–37] claimed 
their existence in the trace anomaly of a Weyl fermion in curved space. It seems useful to con-
sider these issues even within regularization schemes that induce anomalies in the conservation 
of the stress tensor.

The methods presented here may be considered as part of a general strategy of using worldline 
path integrals to obtain field theoretical results in flat [23] and curved space [38], a strategy often 
referred to as the worldline formalism. These methods are quite efficient from a calculational 
point of view, and it seems worthwhile to extend their development and applications.
15
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Appendix A. Worldline propagators

For perturbative computations in β we find it useful to rescale the time t → τ = t
β

, so that 
τ ∈ [0, 1]. Then, β appear explicitly as a perturbative parameter multiplying suitably the various 
terms of the action (7), which takes the form

S[x(τ)] =
1∫

0

dτ

(
1

2β
ẋμẋμ + βV (x)

)
(76)

where now ẋμ ≡ dxμ

dτ
. We consider periodic boundary conditions for xμ(τ), appropriate for cre-

ating a functional trace in the path integral. The kinetic term identifies the propagator, which then 
carries a power of β , while the potential term is treated perturbatively. Setting

xμ(τ) = x
μ
0 + qμ(τ) (77)

one finds a perturbative propagator for the quantum field qμ(τ) of the form

〈qμ(τ)qν(τ ′)〉 = −βδμν(τ, τ ′) (78)

where (τ, τ ′) is the Green function of the operator d2

dτ 2 that depends on the boundary condi-

tions and the way the zero mode xμ
0 is factored out (recall that the differential operator d2

dτ 2 is 
not invertible on the space of periodic functions, the constant function has zero eigenvalue and 
constitutes a zero mode of the operator).

Dirichlet boundary conditions
Using the Dirichlet boundary conditions (DBC), qμ(0) = qμ(1) = 0, one finds for (τ, τ ′)

D(τ, τ ′) = (τ − 1)τ ′ θ(τ − τ ′) + (τ ′ − 1)τ θ(τ ′ − τ)

= 1

2
|τ − τ ′| − 1

2
(τ + τ ′) + ττ ′ (79)

with the step function θ(τ ) defined such that θ(0) = 1
2 . It satisfies

d2

dτ 2 D(τ, τ ′) = δ(τ − τ ′) (80)

where the Dirac delta is the one appropriate for functions with vanishing boundary conditions. 
For later use it is convenient to list the derivatives of the worldline propagator in DBC, where a 
left/right dot indicates a derivative with respect to the first/second argument
16
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•D(τ, τ ′) = τ ′ − θ(τ ′ − τ)

•
D(τ, τ ′) = τ − θ(τ − τ ′)

••
D(τ, τ ′) = 1 − δ(τ − τ ′)

••D(τ, τ ′) = δ(τ − τ ′)

(81)

with coincident points limits

D(τ, τ ) = τ 2 − τ

•D(τ, τ ) = τ − 1

2
.

(82)

String inspired propagator
The “string inspired” (SI) propagator for the quantum fluctuations qμ(τ) satisfies periodic bound-
ary conditions but with the constraint 

∫ 1
0 dτ qμ(τ) = 0. Then, one finds for (τ, τ ′)

SI (τ, τ
′) = SI (τ − τ ′) = 1

2
|τ − τ ′| − 1

2
(τ − τ ′)2 − 1

12
(83)

which satisfies

d2

dτ 2 SI (τ − τ ′) = δ(τ − τ ′) − 1 . (84)

It has the useful property of being translational invariant. It is an even function of τ − τ ′, and its 
first derivative is odd which implies that its coincident points limit vanishes. Here is a list of its 
properties

•SI (τ − τ ′) = 1

2
sgn(τ − τ ′) − (τ − τ ′)

••SI (τ − τ ′) = δ(τ − τ ′) − 1

SI (0) = − 1

12
•SI (0) = 0

(85)

where by sgn(x) we denote the sign function. Of course •SI (τ, τ ′) = −•
SI (τ, τ

′).

Appendix B. Perturbative expansion and heat kernel coefficients

Here we compute the heat kernel coefficients given in (6) by evaluating the path integral in 
(11). We present it as a review of worldline methods and to exemplify the equivalence of the 
DBC and SI methods for treating the zero mode on the circle [25].

Let us first rewrite (11) by factoring out the zero mode integration, and set up the perturbative 
expansion

Tr
[
σ(x) e−βR

]
=

∫
PBC

Dx

⎛
⎝ 1

β

β∫
0

dt σ (x(t))

⎞
⎠ e−S[x]

=
∫

dDx0

∫
Dq

⎛
⎝ 1∫

dτ σ(x0 + q(τ))

⎞
⎠ e−S[x0+q] (86)
0

17
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=
∫

dDx0

(2πβ)
D
2

〈 1∫
0

dτ σ(x0 + q(τ)) e−Sint [x0+q]〉

where we have rescaled the time in the insertion and action, with the latter taking the form

S[x0 + q] = S0[q] + Sint [x0 + q] = 1

β

1∫
0

dτ
1

2
q̇2(τ ) + β

1∫
0

dτ V (x0 + q(τ)) . (87)

Normalized averages with the free path integral are denoted by angle brackets, 〈1〉 = 1, and we 
have extracted the overall normalization constant 

∫
Dq e−S0[q] = (2πβ)− D

2 .
The perturbative expansion is implemented by Taylor expanding about x0 the function σ(x)

and the potential V (x), and further expanding the exponential of the interaction term. Next one 
computes the correlation functions by Wick contractions. Keeping exponentiated the terms that 
generate disconnected diagrams, and recalling that the propagators carry a factor of β , we find at 
order β3

〈 1∫
0

dτ σ(x0 + q) e−Sint [x0+q]〉

= e−βV (x0)

[
σ(x0)

(
1 + β2

2
∂2V (x0)J1 − β3

8
∂4V (x0)J2 − β3

2
∂μV (x0)∂

μV (x0)J3

)

+ ∂μσ(x0)

(
β2∂μV (x0)J3 − β3

2
∂μ∂2V (x0)J4

)

+ ∂2σ(x0)

(
−β

2
J1

)(
1 + β2

2
∂2V (x0)J1

)

+ ∂μ∂νσ (x0)∂
μ∂νV (x0)

(
−β3

2
J5

)

+ ∂μ∂2σ(x0)∂
μV (x0)

(
−β3

2
J4

)

+ ∂4σ(x0)
β2

8
J2

]
+ O(β4)

(88)

where one should expand the exponential in front by keeping only the powers of β needed to 
match the chosen perturbative order. The J’s denote the worldline Feynman diagrams, where 
lines depict propagators and dots denote vertices which include an integration over the time 
τ ∈ [0, 1]. They are as follows

J1 = =
∫
0

00 =
{− 1

6 DBC

− 1
12 SI

J2 = =
∫

2
00 =

{
1

30 DBC
1

144 SI

0

18
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J3 = =
∫
01

01 =
{

− 1
12 DBC

0 SI
(89)

J4 = =
∫
01

0111 =
{

1
60 DBC

0 SI

J5 = =
∫
01

2
01 =

{
1
90 DBC

1
720 SI .

We have given their values both in DBC and SI. To verify explicitly the equivalence between 
DBC and SI, we first plug in (88) in (86), perform an integration by parts to free the function σ
from derivatives, and drop total derivative terms. Comparing with (5) we recognize the following 
Seeley-DeWitt coefficients

a0(x) = 1

a1(x) = −V

a2(x) = 1

2
V 2 + (J1 − J3)∂

2V

a3(x) = −1

6
V 3 + (J3 − J1)V ∂2V + 1

2
(J3 − J1)∂μV ∂μV − 1

4
(J2 + J2

1 − 4J4 + 2J5)∂
4V

(90)

which reproduce those quoted in (6), independently of the propagator used. Note that the manifest 
translational invariance of the SI method allows to get rid of one of the time integrations in 
Feynman diagrams. One may use it to fix τ = 0 in the insertion, thus relating (11) to (8).

Alternatively, one could compute eq. (8) directly with the DBC method. The answer is en-
coded in the second line of eq. (88) (the one proportional to σ(x0)), from which one extracts the 
expected answer.

Appendix C. Evaluation of b3

Here we give additional details on the evaluation of b3. First we list the diagrams needed for 
evaluating the leading term discussed in section 6. The worldline diagrams have been computed 
both in DBC and SI, which serves as a check on the final result

I1 =
∫
01

2
00

•01
•
01 =

{− 1
280 ,DBC

− 1
1728 , SI

I2 =
∫
01

•01
•
010111 =

{− 1
420 ,DBC

− 1
4320 , SI

I3 =
∫
01

•00
•
01

2
11 =

{
− 1

1260 ,DBC

0, SI

I4 =
∫

•0001
•1111 =

{
1

5040 ,DBC

0, SI

01
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I5 =
∫
01

00
•01

•1111 =
{

− 1
2520 ,DBC

0, SI
(91)

I6 =
∫
01

•00
•
011101 =

{
− 1

5040 ,DBC

0, SI

I7 =
∫
01

00
•01

•
0111 =

{− 17
5040 ,DBC

− 1
1728 , SI

I8 =
∫
01

•01
•
01

2
01 =

{− 1
560 ,DBC

− 11
60480 , SI .

Let us now consider the other contributions. We made extensively use of the color trace and 
partial integration (both in spacetime and on the worldline), as they allow to collect identical 
Wick contractions. We start by considering the terms arising from the expansion of two vertices 
Sint coupling Fμν to V

C1(x0) = − 1

16

∫
01

〈q̇μ
0 qν

0 q̇α
1 q

β
1 q

γ

1 qδ
1〉Gνμ(x0)∇δ∇γ Fβα(x0)V (x0) (92)

C2(x0) = −1

8

∫
012

〈q̇μ
0 qν

0 q̇α
1 q

β
1 q

γ

2 qδ
2〉Gνμ(x0)Fβα(x0)∇δ∇γ V (x0) (93)

C3(x0) = −1

6

∫
012

〈q̇μ
0 qν

0 q̇α
1 q

β
1 q

γ

1 qδ
2〉Gνμ(x0)∇γ Fβα(x0)∇δV (x0) (94)

C4(x0) = −1

9

∫
01

〈q̇μ
0 qν

0 q
ρ
0 q̇α

1 q
β
1 q

γ

1 〉∂ρGνμ(x0)∇γ Fβα(x0)V (x0) (95)

C5(x0) = − 1

16

∫
01

〈q̇μ
0 qν

0 q
ρ
0 qσ

0 q̇α
1 q

β
1 〉∂ρ∂σ Gνμ(x0)Fβα(x0)V (x0) (96)

C6(x0) = −1

6

∫
012

〈q̇μ
0 qν

0 q
ρ
0 q̇α

1 q
β
1 q

γ

2 〉∂ρGνμ(x0)Fβα(x0)∇γ V (x0) (97)

where, strictly speaking, the derivatives in the Taylor expansion of the potential are standard 
derivative, but we have covariantized them anticipating the effect of the time ordering with inser-
tions of vertices with bare Aμ, as discussed in sec. 5 (see the example in (47)). In addition, we 
have the terms with three vertices and containing the scalar potential

C7(x0) = 1

8

∫
0123

〈q̇α
0 q

β
0 q̇

γ

1 qδ
1 q̇

μ
3 qν

3 〉g012 Gνμ(x0)Fβα(x0)Fδγ (x0)V (x0) (98)

C8(x0) = β

8

∫
01

〈q̇μ
0 qν

0 q̇α
1 q

β
1 〉Gνμ(x0)Fβα(x0)V

2(x0) (99)

where the function g012 contains step functions that take care of the time ordering
20
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g012 = θ01θ12 + θ12θ20 + θ20θ01 . (100)

In C8 the time ordering is not necessary, thanks to the color trace. It is then recognized as a 
disconnected diagram that is calculated straightforwardly from previous results. Moving on to 
the term with three non-abelian field strengths we find

C9(x0) = 1

16β

∫
0123

〈q̇μ
0 qν

0 q̇α
1 q

β
1 q̇

γ

2 qδ
2 q̇ε

3q
η
3 〉θ12θ23Gνμ(x0)Fβα(x0)Fδγ (x0)Fηε(x0) . (101)

Let us now evaluate these terms. For C1 we get

C1 = −β3

4
Gμν∇2FμνV H1 + β3

4
GμνFναFα

μV H1 (102)

For C2 we get

C2 = β3

2

(
− ∂2GμνFμν − Gμν∇2Fμν − ∂αGμν∇αFμν − 2∂αGαν∇μFμν

+ 2GανFνμFμ
α

)
V K1

− β3

4

(
2∂αGμν∇αFμν + ∂2GμνFμν + Gμν∇2Fμν

)
V F3 J1

(103)

with the new diagram

K1 =
∫

012

•01
•1202 =

{
1

360 ,DBC

1
720 , SI .

(104)

Next, C3 evaluates to

C3 = β3

2

(
Gμν∇2Fμν + ∂σ Gμν∇σ Fμν

)
V K2

+ β3

2

(
Gμν∇2Fμν + 2∂αGαμ∇σ Fσμ − 4GαμFμσ Fσ

α

)
V K3

(105)

with

K2 =
∫

012

•01
•
0112 =

{
1

120 ,DBC

0, SI

K3 =
∫

012

•01
•1102 =

{
1

720 ,DBC

0, SI

(106)

while (95) and (96) produce

C4 = −β3

2
∂νGνμ∇αFαμV H4 − β3

2
∂λGμν∇λFμνV H2

C5 = −β3

4
∂2GμνFμνV H1 .

(107)

For C6 we have
21
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C6(x0) = β3

2

(
∂2GμνFμν + ∂σ Gμν∇σ Fμν

)
V K2

+ β3

2

(
∂2GμνFμν + 2∂λG

λμ∇αFαμ

)
V K3 .

(108)

Finally, we consider C7 that mixes with the above terms

C7 = β3

4
GρνFνμFμ

ρV (K4 − K5 + K6 − K7) (109)

and contains the following integrals

K4 =
∫

0123

•03
•
01

•
13 g012 =

{
1

240 ,DBC

1
360 , SI

K5 =
∫

0123

••
13

•0301 g012 =
{

7
720 ,DBC

1
360 , SI

K6 =
∫

0123

••
01

•
0313 g012 =

{
1

720 ,DBC

1
720 , SI

K7 =
∫

0123

•01
•
03

•13 g012 =
{− 1

240 ,DBC

− 1
360 , SI .

(110)

Collecting all the terms from C1 to C7 we find that they sum up to the entire second line of b3 in 
(32), independently of the propagator used. We have performed integrations by parts to reduce 
to a set of independent terms (in particular, we have left V free from derivatives).

As for C8, since the time ordering can be neglected, we find that it is given by a disconnected 
correlation functions that embeds the first piece of b2 and produces

C8 = −β3

4
GμνFμνV

2 F3 = β3

48
GμνFμνV

2 (111)

which sits inside (32) as the last term of the first row of b3.
Finally, we consider (101), that contains three non-abelian field strengths Fμν . In (101) we 

kept the time ordering encoded in the step functions. However, one may note that the Wick 
contractions produce terms that have no ordering ambiguities under the trace, implying that the 
abelian limit contains precisely the same information. Thus, we are allowed to drop the step 
functions and consider the equivalent (under the color trace) form

C̃9(x0) = 1

96β

∫
0123

〈q̇μ
0 qν

0 q̇α
1 q

β
1 q̇

γ

2 qδ
2 q̇ε

3q
η
3 〉Gνμ(x0)Fβα(x0)Fδγ (x0)Fηε(x0) . (112)

We compute it as

C̃9 = β3

8
GμνFμνF

2 (F3)
2 + β3

2
GμνFνρFρλFλμ K8 (113)

where the first term arises from disconnected diagrams with F3 = − 1 already given in (40), and
12
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K8 =
∫

0123

•01
•12

•23
•30 = 1

720
(114)

valid in DBC and SI, thus producing the second and third term of b3 in (32).
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