
Arg-tuProlog:
A tuProlog-based Argumentation Framework ? ??

Giuseppe Pisano1[0000−0003−0230−8212], Roberta Calegari1[0000−0003−3794−2942],
Andrea Omicini2[0000−0002−6655−3869], and Giovanni

Sartor1[0000−0003−2210−0398]

1 ALMA–AI Interdepartmental Center of Human Centered AI, Alma Mater
Studiorum–Università di Bologna, Italy

2 Dipartimento di Informatica – Scienza e Ingegneria (DISI), Alma Mater
Studiorum–Università di Bologna, Italy

Abstract. Over the last decades, argumentation has become increas-
ingly central as a frontier research within artificial intelligence (AI), es-
pecially around the notions of interpretability and explainability, which
are more and more required within AI applications. In this paper we
present the first prototype of Arg-tuProlog, a logic-based argumentation
tool built on top of the tuProlog system. In particular, Arg-tuProlog en-
ables defeasible reasoning and argumentation, and deals with priorities
over rules. It also includes a formal method for dealing with burden of
proof (burden of persuasion). Being lightweight and compliant to the
requirements for micro-intelligence, Arg-tuProlog is perfectly suited for
injecting argumentation into distributed pervasive systems.

Keywords: Argumentation · logic-based argumentation · burden of per-
suasion · tuProlog · micro-intelligence · symbolic intelligence.

1 Introduction

In recent years we are witnessing a renewed interest in logical models for symbolic
automated reasoning—mostly related to their interpretability and explainability
features, more and more required by artificial intelligence (AI) technologies [7].
In a landscape where an ever-growing number of computational agents situated
in real-life contexts take autonomous decisions, acting on behalf of people, ar-
gumentation theories and technologies play a key role: they may contribute to
rational decision-making, facilitate agreements, contribute to the resolutions of

? G. Pisano has been supported by the European Union’s Justice Project “InterLex:
Advisory and Training System for Internet-related private International Law” (G.A.
800839). R. Calegari and G. Sartor have been supported by the H2020 ERC Project
“CompuLaw” (G.A. 833647). A. Omicini has been supported by the H2020 Project
“AI4EU” (G.A. 825619).

?? Copyright © 2020 for this paper by its authors. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Alma Mater Studiorum Università di Bologna

https://core.ac.uk/display/351907168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Pisano et al.

disputes and provide explanations [6]. Logical argumentation is indeed a well-
known and established paradigm, mainly used for achieving effective communi-
cation and coordination between agents [16].

As intelligent systems need to communicate, reason, and act in accordance
with the law, computable models of legal argumentation are particularly signif-
icant for the development of robust and law compliant intelligent systems [16,
2]. Unfortunately, a mature environment for argumentation-based approaches –
fruitfully integrated with MAS and legal models – still does not exist [8]. This
preliminary work aims to contribute to filling this void by presenting a light-
weight argumentation tool especially designed for the above-mentioned context.
In particular, the tool is designed according to the definition ofmicro-intelligence
in [19, 5], whose key features are (i) customisation of the inference methods –
as deduction, abduction, argumentation, just to name a few – to be exploited
opportunistically in an integrated and easily-interchangeable way, ii) situated-
ness – i.e., the awareness and reactiveness to the surrounding environment, such
as the normative institution – and, iii) ability to act at the micro-level of the
system, so as to be easily injectable in disparate contexts and architectures.

Accordingly, this work presents the Arg-tuProlog tool—a lightweight tuProlog-
based implementation for structured argumentation [3] in compliance with the
micro-intelligence definition. The model adopts an ASPIC+-like syntax [20] and
has been extended to capture the burden of persuasion issues according to [9].
Also, deontic extensions [21] – i.e., explicit representation of obligations and
permissions – are included.

The work is structured as follows. In Section 2, we provide a global overview
of the framework discussing the formal foundations and the argumentation lan-
guage for the operational use of the tool. Then, Section 3 discusses the archi-
tecture and the engine interface, whereas Section 4 presents the directives intro-
duced by the Arg-tuProlog framework. Section 5 discusses a working example of
the system. Finally, in Section 6 we overview similar systems already proposed
in the literature. Section 7 provides for the final remarks.

2 Framework Model & Language

2.1 Formal model

Arg-tuProlog is a modular rule-based argumentation system to represent, reason,
and argument upon conditional norms featuring obligations, prohibitions, and
(strong or weak) permissions also according to burden of persuasion constraints.

The approach is based on common constructs in computational models of
argument that lay their root in Dung’s abstract argumentation [14] and struc-
tured argumentation [3]: rule-based arguments, argumentation graphs, argument
labelling semantics and statement labelling semantics. Arguments are formed by
chaining applications of inference rules into inference trees or graphs—i.e., ar-
guments are constructed using deductive inference rules that licence deductive
inferences from premises to conclusions. As in ASPIC+, arguments are defined



Arg-tuProlog: A tuProlog-based argumentation framework 3

relatively to an argumentation theory AT by chaining applications of the infer-
ence rules starting with elements from the knowledge base. All the formulas in
the knowledge base are called premises and are used to build the arguments; the
reached supported argument is denoted as its conclusion; the last inference rule
used in the argument is called top rule.

Given an argumentation graph, the sets of arguments that are accepted or
rejected – that is, those arguments that will survive or not to possible attacks
– are computed using some semantics. For our purposes, we resort to labelling
semantics as reviewed in [1]. Accordingly, we endorse {IN, OUT, UND}-labellings
where each argument is associated with one label which is either IN, OUT, or
UND, respectively meaning that the argument is accepted, rejected, or unde-
cided. Arguments and attack relations can be then captured in Dung’s abstract
argumentation graphs, originally called abstract argumentation frameworks in
[14]. Formal accounts of the adopted deontic extensions are discussed in detail
in [21], while the implemented burden of persuasion model can be found in [9].
With respect to the latter, Arg-tuProlog presents a first technology reification
for the burden models.

2.2 Language

The language to encode knowledge in the argumentation framework is of primary
concern. In fact, we aim at providing users with an interface as plain as possible
in terms of interpretability and human readability.

Arg-tuProlog adopts an ASPIC+-like syntax – introduced in [20, 17] – made
of two main elements: defeasible rules and preferences over rules. With respect
to the original notation, the Arg-tuProlog language has been extended with a
specific notation for dealing with burden of persuasion and deontic operators.

Defeasible rules, facts, and deontic expressions. This element of the lan-
guage allows facts and rules to be encoded. Statements take the form

ruleName : premise1 , . . . , premisen => conclusion.

Unconditioned statement (facts) can be expressed with the notation:

factName : [] => conclusion.

Premises and conclusions can take any form accepted in Prolog: i.e., all Prolog
terms – e.g. atoms, variables, lists, compound terms – are allowed, with the
addition of three further notations

• p(term) to indicate permission;
• o(term) to indicate obligation.
• −term, to indicate a strong negation, as opposed to the negation as failure

implemented within the tuProlog engine.



4 Pisano et al.

The formalism includes permissions, prohibitions, and obligations; the corre-
sponding logic is captured by defeasible rule schemata, modelling basic deontic
inference [21].

In general, strong negations cannot be nested. The only exception to this
rule is in the use of deontic operators, in particular to manage prohibitions—a
lack of prohibition can be defined exploiting two strong negations: −o(−term).

Finally, inside premises, weak negation (negation as failure) can be expressed
as ∼ (term). As above, this operator can not be nested. This notation is useful
to express exceptions to the applicability of a rule or make assumption: it defines
an undercut attack.

Superiority relation. Many non-monotonic reasoning and argumentation tools
– ABA+ [12], Defeasible Logic [18], ASPIC+ [17] – offer the possibility to specify
superiority between rules. Preferences over rules – possibly regarding the relia-
bility of the statements – are a fundamental element in AI scenarios in which
conflicting and inaccurate knowledge is the normal state of affair.

Arg-tuProlog makes it possible to denote preferences by using the following
notation: sup(ruleName1 , ruleName2 ) This proposition states that the rule with
identifier equal to ruleName1 is superior to the one with identifier ruleName2 .
The superiority relation between ruleName1 and ruleName2 makes it possi-
ble to solve the conflict between arguments in favour of arguments built from
ruleName1 . The preference relation over arguments can be defined in various
ways based on the preference over rules. We adopt a simple last-link ordering,
according to which an argument A is preferred over another argument B if and
only if the top rule of A is superior to the rule top rule of B.

Burden of persuasion. The burden of persuasion, born in the legal field but
then extended also to philosophy, allows a response on the acceptability of an
argument to be obtained even in situations that would normally be uncertain.
Generally speaking, the burden of persuasion specifies which party has to prove
a statement to a specified degree (the standard of proof) on the penalty of losing
on the issue. Whether this burden is met is determined in the final stage of a
proceeding, after all evidences are provided. The burden of persuasion for a claim
can be defined – under a logical perspective – as the task of ensuring that in
the final stage of the proceeding there exists a justified argument for the claim.
Generally speaking, we can say that if there is a burden of persuasion for a
conclusion φ, then argument for φ will be rejected unless they strictly prevail
against all counterarguments (that are not rejected on other grounds). As a
consequence, the collision between arguments for φ and arguments for φ̄ will be
decided in favour of the latter, in the absence of a priority for the first.

In our model, the burden of persuasion may be captured in a second stage
concerning argument labellings, only after the base labelling has been computed.
It only concerns the arguments labelled UND. So, a burden of persuasion labelling
addresses UND arguments, and assigns OUT and IN labels depending on the allo-
cation of the burden of persuasion.



Arg-tuProlog: A tuProlog-based argumentation framework 5

Formally, the burden of persuasion on a proposition can be expressed as
follows:

bp(term1 , . . . , termn).

The structure of terms reflects the one seen for standard rules: compound terms,
variables and strong negations are therefore allowed.

3 Engine Design & Architecture

The Arg-tuProlog framework3 aims at providing a comprehensive and innova-
tive tool for spreading intelligence and argumentation capabilities in nowadays
challenging AI context. It tries to address the issues arising in the actual tech-
nological landscape of intelligent systems—with particular attention to the legal
and explainability issues.

The interoperability and portability requirements of intelligent systems drive
us to the choice of tuProlog [13] as the main technological foundation. The Kotlin-
based engine – devoted to heavy-interconnected and pervasive contexts – enables
the system to run in the more disparate environments.

The main and distinguishing aspect of the Arg-tuProlog engine is represented
by its design, which aims at providing two distinct ways of use:

a) the graph-based mode providing as output the entire argumentation graph
according to the specified semantics—i.e., the labellings of the entire set of
facts and rules given as input;

b) the query-based mode providing as output the evaluation of a single query
given as input and according to a given semantics—i.e., enabling defeasible
reasoning on arguments starting from certain premises.

While the former mode can be considered as the traditional approach of argu-
mentation tools, the latter makes the Arg-tuProlog framework a fit choice for
the aforementioned AI pervasive scenarios.

In the context of multi-agent systems (MAS), Arg-tuProlog enables agents to
correctly deal with incomplete or missing knowledge, encouraging argumentation
and dialogue among them in order to reach an agreement or influence a decision.
In our vision, the agent intelligent behaviour is likely to be associated with the
capability of debating about the current context, by reaching a consensus on
what is happening around and what is needed, and by triggering and directing
proper conversations to decide how to collectively act in order to reach the future
desirable state of the affairs. Knowledge is shared and decentralised, and the Arg-
tuProlog engine provides both the agents and the environment abstraction of
MAS with reasoning and argumentation capabilities, making it possible to reach
a social consensus on what is better to do. For these reasons, it fits perfectly
with the AI scenarios recalled in Section 1.

3 https://pika-lab.gitlab.io/argumentation/arg2p/



6 Pisano et al.

Fig. 1: The system modules diagram.

3.1 Architecture & API

The framework leverages on the underlying tuProlog engine. All the required
components exploit the tuProlog feature to allow external libraries to be included
during the evaluation process. Consequently, the entire framework is a collection
of tuProlog compatible libraries.

Fig. 1 shows the modules composing the system. It is designed in a fully-
modular way. Every function inside the framework – e.g., graph building, or
argument labelling – is sealed in the corresponding module. Modularity highly
improves upgradability and flexibility – in terms of adding of new features or
requirements modification – of the entire system. For example, one may consider
the Grounded Labeller, responsible for computing the grounded labelling of the
argumentation graph. In order to add a different labelling semantics, it would
only require to create an ad-hoc module, without impacting the rest of the
system. In the following, we describe each component in detail.

Engine interface. The Engine Interface module hides all the complexity of the
framework. It exposes only the two usage predicates—namely, answerQuery/2
and buildLabelSets/0 transparently orchestrating the basic modules.

The predicate answerQuery(+Goal, -Yes, -No, -Und) requests the evalu-
ation of the given Goal. The output corresponds to the set of facts matching the
goal, distributed in the three sets—namely, IN, OUT, and UND. The IN set includes
facts classified as acceptable, the OUT is for the rejected ones and the UND is for
those of which it was not possible to classify due to lack of information. For
instance, assume to query the system about doctors’ liability (for instance, in
case of medical malpractice, according to the applicable law to which doctors
are liable for the harm suffered by a patient if they were negligent in treating



Arg-tuProlog: A tuProlog-based argumentation framework 7

the patient) in a case where Dr. Murphy should be considered liable, while Dr.
House not. The predicate usage would be answerQuery(liable(Doctor), Yes,
No, Und), and the result would be composed by the three sets containing the
solutions IN=[liable(drMurphy)], OUT=[liable(drHouse)] and UND=[].

The predicate buildLabelSets builds and prints (in the output interface)
the argument and the statement labellings according to the provided theory
based on the construction and evaluation of the arguments. All arguments and
statements are therefore evaluated.

The user interface also provides two flags, which can be set in the application
as facts of the Prolog theory, for setting useful options in the resolution process.
Both flags deals with the management of the burden of persuasion. The first flag
is demonstration: if activated, the output prints the labelling resolution process
step by step, pointing out the specific part of the definition presented in [9] led
to the resulting label for each argument. The second flag that the user can set
is disableBPcompletition, which makes it possible to get a label conforming
to the definition with no completion of the labelling—i.e., which may not be
complete.

The intuition behind incompleteness is the following: when we accept a con-
clusion φ since the burden of persuasion is on φ̄, we may still remain uncertain
on the premises for that conclusion. For instance, we may accept that the doc-
tor was negligent since he failed to provide a convincing argument about why
he was not negligent, and still be uncertain whether the doctor did or did not
comply with the guidelines. The opposite approach is also possible: if we accept
an argument based on the burden of persuasion, we are also bound to accept all
of its sub-arguments. This approach leads to the concepts of a complete and a
grounded burden of persuasion labelling [9].

Language parser. The Language Parser module is aimed at converting the
rules in the defined argumentation language (Section 2) into a correct Prolog
theory. In fact, in this first prototype, Arg-tuProlog acts as a meta-interpreter.
The meta-interpreter accepts theories in a well-defined argumentation language,
translates them in Prolog – exploiting this module – and, finally, completes the
computation providing the requested solutions.

Algorithmic modules. The rest of the modules are mainly linked to algorith-
mic responsibilities, in particular:

• Graph Builder builds the argumentation graph
• Grounded Labeller, in charge of computing grounded labelling of the argu-

mentation graph, according to the Dung’s notions of grounded semantics
• BP Labeller builds the second stage burden of persuasion labelling starting

from the grounded labelling
• Statement Labeller carries out the statements labelling according to the two

previous steps.

Details about these modules are provided in Section 4.



8 Pisano et al.

4 Operational Interface

In Section 3 we present the two user predicates provided by the Arg-tuProlog
framework—namely, answerQuery/4 and buildLabelSets/0. Their semantics lever-
ages on a common resolution process exploited to build the argumentation graph
and evaluate the arguments. In particular, the resolution process can be split into
three distinct steps:

1. the argumentation graph construction;
2. the arguments labelling according to the different labelling semantics—namely,

grounded, burden of persuasion (BP), and BP complete;
3. the statements labelling according to the arguments labelling.

The predicate buildLabelSets/0 performs all the three steps and provide the ar-
gumentation graph and its labelling as solutions. The predicate answerQuery/4,
once built the argumentation graph and its labelling, searches for the specific
solution (input Goal) in the labelling sets. In the following, further details of
each step are discussed.

4.1 Argumentation graph construction

As in any logic-based argumentation framework, an argument is not a generic
entity: instead, it is a pair, whose first part is a coherent minimum set of formulas
sufficient to prove the formula contained in its second part. Relationships of sup-
port – in the case an argument sustains the same conclusion of another one – or
attack – in the case an argument conclusion is in contrast with another argument
claim – connect the arguments between them. Construction of arguments, and
of their relationships, is ascribed to the predicate buildArgumentationGraph/1.
Formally, arguments have three properties (c.f. [17]):

a) a unique identifier, given by the set of identifiers (ruleName, RN in the
following) of the rules applied for its creation;

b) the identifier of the last applied rule—i.e., its top rule (TopRN );
c) the conclusion supported by this argument (Conc).

They are added to the theory in the form:

argument([[RN1 , . . . ,RNn ],Top RN ,Conc]).

Arguments are built searching all the distinct and coherent subsets of facts and
rules sharing the same conclusion contained by the input theory. The support
relationship between arguments is expressed as follows:

support(supporter_argument , supported_argument).

Through the predicate support/2, it is possible to reconstruct the entire tree
that led to the creation of an argument.

The attack relations between the arguments – rebut or undercut – are instead
defined in the form:

attack(attacker_argument , attacked_argument).



Arg-tuProlog: A tuProlog-based argumentation framework 9

4.2 Argument labelling

Once the argumentation framework is built, it can be evaluated, and labels can
be associated with each argument according to a specified semantics. Labels are
a way of expressing acceptance/rejection of the arguments.

In Arg-tuProlog, labelling is built in two stages. The first stage is aimed
at computing the equivalent of Dung’s grounded extension [14]. Intuitively, this
unique extension requires an argument to be accepted in all the existent complete
extensions and the number of IN labels to be minimised. The operator used for
this purpose is argumentLabelling/2. This operator requires as input the set of
arguments, supports and attacks – built in the previous step – and returns the
three label sets IN, OUT, and UND as output.

The second stage of labelling takes into account the possible burden of per-
suasion (BP) on propositions. First, the BP specifications are pre-processed by
grounding the contained variables if present (taking into account only evaluable
arguments). The new set of grounded BP terms is then added to the theory in
the form:

reifiedBp([[grounded_term1 ], . . . , [grounded_termn ]]).

Then, the argumentBPLabelling/2 predicate is called to perform the labelling
according to the semantics specified in [9]. Both BP-labelling and completion
of BP-labelling – in according to the formal model – can be performed by
the argumentBPLabelling/2 predicate. The option to differentiate the opera-
tion modality is provided by a flag that can be set by the user as a fact in the
theory—namely, disableBPcompletition.

4.3 Statement labelling

The predicate statementLabelling/2 labels all the statements in a set of con-
clusions of an argument according to the label of the argument. Therefore, the
conclusions of IN arguments are labelled as IN, and the same for OUT and UND.

5 Example

To ground the discussion, and show the Arg-tuProlog framework effectiveness,
in the following we discuss a running example from [9].

Let us consider a case in civil law where the allocation of the burden of
persuasion act as follows. We assume that a doctor is liable for the harm suffered
by a patient. However, there is an exception: the doctor can avoid liability if he
shows he was not negligent. We also assume that a doctor is considered to be
not negligent if he followed the medical guidelines that govern the case. Finally,
we assume that it is uncertain whether the doctor has followed the guidelines
in the case at hand. Let us first model the case without taking the burden into
account. Accordingly, let us suppose the following premises and rules:



10 Pisano et al.

f1 : ⇒ ¬guidelines f2 : ⇒ guidelines
f3 : ⇒ harm
r1 : ¬guidelines ⇒ negligent r2 : guidelines ⇒ ¬negligent
r3 : ¬negligent ⇒ ¬liable r4 : harm ⇒ liable

with r3 � r4 . The theory can be expressed in the Arg-tuProlog argumentation
language as follows:

f1 : [] => -guidelines.
f2 : [] => guidelines.
f3 : [] => harm.
r1 : -guidelines => negligent.
r2 : guidelines => -negligent.
r3 : -negligent => -liable.
r4 : harm => liable.
sup(r4, r3).

According to the knowledge base, we can then build the following arguments:

Af1 : ⇒ ¬guidelines Bf2 : ⇒ guidelines Cf3 : ⇒ harm
Ar1,f1 : Af1 ⇒ negligent Br2,f2 : Bf2 ⇒ ¬negligent Cr4,f3 : Cf3 ⇒ liable

Br3,r2,f1 : Br2,f2 ⇒ ¬liable

The argumentation graph and its grounded {IN, OUT, UND}-labelling are depicted
in Fig. 2a, in which all arguments are UND, except argument Cf3. The green nodes
are the ones labelled as IN, the red ones as OUT, the grey as UND. Fig. 2b depicts
the same situation but a difference operation mode of the Arg-tuProlog engine.
In particular, the system is asked to prove the liable goal, and as show in the
solution tab, liable has been labelled as UND, since in the current situation no
reasoning about the doctor liability can be done.

The result is not satisfactory according to the law, since it does not take
into account the applicable burdens of persuasion. The doctor should have lost
the case – i.e., be declared liable – since he failed to discharge his burden of
proving he was not negligent—namely, he didn’t satisfy his burden of persuasion
for his non-negligence. The doctor’s failure results from the fact that it remains
uncertain whether he followed the guidelines. In order to capture this aspect of
the argument, we need to provide an indication for the burden of persuasion.

Now we assume – according to the Italian Law – to have bp(harm) and
bp(¬negligent), i.e., the doctor has to persuade the judge that he was not neg-
ligent, and the patient has to persuade the judge that he was harmed. We also
assume it remains uncertain whether the doctor was diligent since it is uncertain
whether he followed the guidelines, while the patient succeeded in proving harm
(as the claim that there is harm was unchallenged). Then, since the doctor failed
to meet his burden of proof, the doctor is considered to be liable.

The grounded BP-labelling is depicted in Fig. 3. In particular, Fig. 3a shows
the argumentation graph, Fig. 3b the corresponding arguments labelling, and
Fig. 3c the labelling resolution process step by step.

In contrast with the grounded {IN, OUT, UND}-labelling where every argument
is labelled UND, arguments Ar1,f1 and Cr4,f3 are now labelled IN, while Br2,f2 and



Arg-tuProlog: A tuProlog-based argumentation framework 11

(a) Grounded argumentation graph (b) Query-based mode

Fig. 2: The Arg-tuProlog IDE with no burden of persuasion: grounded argumen-
tation graph (a) and example of query-based mode usage (b).

Br3,r2,f1 are labelled OUT. It is still uncertain whether the doctor followed the
guidelines (the corresponding arguments Af1 and Bf2 are UND).

A different result can be obtained by enabling the completion of the BP-
labelling. Consequently, as depicted in Fig. 3d, argument Af1 for ¬guidelines is
IN and argument Bf2 for guidelines is OUT.

6 Related works

Many argumentation tools have been proposed along the last decades and, in this
work, we do not mean to give an exhaustive survey. In order to strengthen the
motivation for this work, in the following we recall the related research panorama,
highlighting differences and similarities. We restrict our scope to argumentation
technologies only, that is, those coming with downloadable and usable tools—as
in the case of Arg-tuProlog.

Three main approaches can be distinguished in the available tools: the area of
the rule-based abstract argumentation – where ASPIC+ [17] is the most known –,
the area of assumption-based argumentation – where ABA+ [10] can be classified
as the reference formalism – and DeLP [15], based on the use of defeasible
logic. Although there is a strong convergence of different systems for defeasible
reasoning, some distinctions may be relevant to different application domains.

The possibility of using open (non-ground) rules in knowledge, and of using
different instances of the same predicates in different rules, could be a key ad-



12 Pisano et al.

(a) BP argumentation graph (b) BP argument labelling

(c) BP labelling resolution process (d) BP-labelling graph completation

Fig. 3: The Arg-tuProlog IDE with burden of persuasion: the picture depicts the
IDE usage in case of burden of persuasion highlighting the use of the user flags.



Arg-tuProlog: A tuProlog-based argumentation framework 13

vantage, especially when the same rule has to be applied to different instances
within a single argument. This is usually not allowed in ABA-based tools, and
we consider this a key feature in the design of Arg-tuProlog.

When a system has to deal with a high number of uncertain conflicts, the
ability to rely not only on sceptical, but also on credulous reasoning, and in
general on different semantics, may be important. Argumentation approaches
have this ability natively while the one based on defeasible logic usually not,
though also ambiguity propagation in defeasible logic can lead to similar results.
The Arg-tuProlog prototype currently implements only the grounded semantics.

When a system has to address complex issues of legal reasoning, and full
explainability is required, the ability to provide a picture of existing arguments
and of the relations between them – with an an explanation on which arguments
should or could be finally endorsed – may become a critical feature. This is a
feature we could find in structured argumentation tools, like Arg-tuProlog, but
not in defeasible logic tools.

A very similar approach to our work that deserves to be mentioned is Ar-
gue tuProlog [4]. Very similar in terms of purposes and architecture, the Argue
tuProlog prototype is not practically usable, since it is no longer maintained
and based on old versions of tuProlog. Furthermore, Argue tuProlog vision is
not tailored to pervasive intelligent systems: its main goal, unlike Arg-tuProlog
is not to act as a distributor of symbolic intelligence, suitably integrated with
sub-symbolic techniques. On the other hand, in the same way as Arg-tuProlog,
Argue tuProlog can perform query-based reasoning. In Arg-tuProlog solving the
acceptance of a given statement implies the construction of the whole argumen-
tation graph—one of the main shortcomings of the prototype. Conversely, in
Argue tuProlog the acceptance of a single statement is computed using an ad
hoc dialogical procedure similar to the dispute derivation algorithm available in
ABA systems [22, 11]. In a nutshell, two actors – namely the proponent and the
opponent – discuss sharing arguments and counterarguments relatively to the
claim to be evaluated and try to contradict each other—for instance, finding a
valid counterargument or undercutting some premises.

From a technological perspective, many improvements are required in order
to make existing tools usable and effective in a distributed environment, as well
as easily downloadable/deployable and well documented. Indeed, almost all the
available systems can be classified as early prototypes, lacking in most cases of
any support or documentation.

Finally, all the above reflections have to be combined with considerations
about the effectiveness and ease in the use of the argumentation tools provided.

7 Discussion & Conclusions

The work shows the effectiveness of Arg-tuProlog to: (i) deal with inconsistent in-
formation—thus enabling defeasible reasoning; (ii) integrate legal aspects—e.g.
the possibility to explicit the burden of persuasion over terms; (iii) provide an
easy and straightforward way to manipulate and interact with the engine.



14 Pisano et al.

One of the greatest strengths of the tool lies in its architecture: both modu-
larity and complete integration with logic programming systems – being Prolog
based – make it highly suitable for the target pervasive contexts of intelligent
systems. In such contexts, in fact, it is preferable to be able to hook/unhook
functions – i.e., libraries – according to the requirements. Moreover, the intrinsic
integration with logic programming also makes it easier to respond to require-
ments such as interpretability, understandability and explainability. However,
the prototype presented in this work is the starting point of the desiderata, vari-
ous enhancements should be considered both in terms of research and efficiency.

Efficiency issues. The main limit of the prototype is related to the query-based
mode. In fact, to answer a single query – on a single statement – the argumenta-
tion graph on the whole theory has to be performed. As discussed in Section 6,
different techniques have already been developed allowing for efficient single ar-
gument evaluation. We mean to exploit these algorithms in theArg-tuProlog
framework. The second issue concerns the mechanism for building the argumen-
tation graph. To derive the argumentation trees from facts and rules, an exhaus-
tive search on the knowledge base is performed—i.e., the computational cost is
roughly quadratic for the number of rules of the theory. Also, the labelling algo-
rithm based on the burden of persuasion is extremely expensive—quadratic with
respect to the number of arguments. Consequently, the most expensive operators
should be implemented more efficiently—for example leveraging the tuProlog ca-
pabilities of integrating rules written directly in Java/Kotlin and, implementing
an interpreter instead of the meta-interpreter proposed in the prototype.

Research challenge and issues. From the point of view of the research, Arg-
tuProlog represents, in our vision, the fundamental brick for distributing sym-
bolic intelligence in intelligent systems in compliance with the concept of micro-
intelligence. The enabling of argumentation capabilities should give system ac-
tors properties like understandability and explainability – since the actors can
argument over their decisions – but also normative enforcement—since actors
can act in compliance with the law and violations can be timely observed. Un-
der this perspective, many challenges open up. For example, an open point is
how to manage the resolution of conflicts among agents. A single “arbitrator” to
manage the whole argumentation process and force the other agents’ behaviour
would certainly be impractical in distributed contexts, since it would soon be-
come a bottleneck. One could perhaps think about “area arbitrator” responsible
for a certain space and for a certain period of time – also considering the dy-
namism of knowledge and its change over time – but the best solution still has
to be designed and tested. Furthermore, in modern pervasive contexts, symbolic
techniques need to be suitably integrated with sub-symbolic algorithms in order
to exploit synergies and benefits of each approach in a fruitful way. The high
interoperability of Arg-tuProlog and its modular architecture make us think that
it could be a useful technology for these purposes, yet many open points still
deserve attention.



Arg-tuProlog: A tuProlog-based argumentation framework 15

References

1. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumenta-
tion semantics. The Knowledge Engineering Review 26(4), 365–410 (2011).
https://doi.org/10.1017/S0269888911000166

2. Bench-Capon, T.J.M., Prakken, H., Sartor, G.: Argumentation in legal reasoning.
In: Simari, G.R., Rahwan, I. (eds.) Argumentation in Artificial Intelligence, pp.
363–382. Springer (2009). https://doi.org/10.1007/978-0-387-98197-0_18

3. Besnard, P., García, A.J., Hunter, A., Modgil, S., Prakken, H., Simari, G.R., Toni,
F.: Introduction to structured argumentation. Argument & Computation 5(1), 1–4
(2014). https://doi.org/10.1080/19462166.2013.869764

4. Bryant, D., Krause, P.J., Vreeswijk, G.: Argue tuProlog: A lightweight argumen-
tation engine for agent applications. In: Dunne, P.E., Bench-Capon, T.J.M. (eds.)
Computational Models of Argument: Proceedings of COMMA 2006, September
11–12, 2006, Liverpool, UK. Frontiers in Artificial Intelligence and Applications,
vol. 144, pp. 27–32. IOS Press (2006), http://ebooks.iospress.nl/publication/2929

5. Calegari, R.: Micro-Intelligence for the IoT: Logic-based Models and Technologies.
Ph.D. thesis, Alma Mater Studiorum—Università di Bologna, Bologna, Italy
(Apr 2018), http://amsdottorato.unibo.it/8521/

6. Calegari, R., Ciatto, G., Denti, E., Omicini, A.: Logic-based technologies for in-
telligent systems: State of the art and perspectives. Information 11(3), 1–29 (Mar
2020). https://doi.org/10.3390/info11030167

7. Calegari, R., Ciatto, G., Omicini, A.: On the integration of symbolic and sub-
symbolic techniques for XAI: A survey. Intelligenza Artificiale 14(1), 7–32 (2020).
https://doi.org/10.3233/IA-190036

8. Calegari, R., Contissa, G., Lagioia, F., Omicini, A., Sartor, G.: Defeasible
systems in legal reasoning: A comparative assessment. In: Araszkiewicz, M.,
Rodríguez-Doncel, V. (eds.) Legal Knowledge and Information Systems. JU-
RIX 2019: The Thirty-second Annual Conference, Frontiers in Artificial Intel-
ligence and Applications, vol. 322, pp. 169–174. IOS Press (11-13 Dec 2019).
https://doi.org/10.3233/FAIA190320

9. Calegari, R., Sartor, G.: Burden of persuasion in argumentation. In: Ricca, F.,
Russo, A., Greco, S., Leone, N., Artikis, A., Friedrich, G., Fodor, P., Kimmig, A.,
Lisi, F., Maratea, M., Mileo, A., Riguzzi, F. (eds.) Proceedings 36th International
Conference on Logic Programming (Technical Communications). Electronic Pro-
ceedings in Theoretical Computer Science, vol. 325, pp. 151–163. Open Publishing
Association (18–24 Sep 2020). https://doi.org/10.4204/EPTCS.325.21

10. Craven, R., Toni, F.: Argument graphs and assumption-based argumentation. Ar-
tificial Intelligence 233, 1–59 (2016). https://doi.org/10.1016/j.artint.2015.12.004

11. Craven, R., Toni, F., Williams, M.: Graph-based dispute derivations in assumption-
based argumentation. In: Black, E., Modgil, S., Oren, N. (eds.) Theory and Appli-
cations of Formal Argumentation - Second International Workshop, TAFA 2013,
Beijing, China, August 3-5, 2013, Revised Selected papers. LNCS, vol. 8306, pp.
46–62. Springer (2013). https://doi.org/10.1007/978-3-642-54373-9_4

12. Cyras, K., Toni, F.: ABA+: assumption-based argumentation with preferences.
In: Baral, C., Delgrande, J.P., Wolter, F. (eds.) Principles of Knowledge Repre-
sentation and Reasoning: Proceedings of the Fifteenth International Conference,
KR 2016, Cape Town, South Africa, April 25-29, 2016. pp. 553–556. AAAI Press
(2016), http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12877



16 Pisano et al.

13. Denti, E., Omicini, A., Ricci, A.: Multi-paradigm java-prolog integration
in tuprolog. Science of Computer Programming 57(2), 217–250 (2005).
https://doi.org/10.1016/j.scico.2005.02.001

14. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artificial Intelligence
77(2), 321–358 (1995). https://doi.org/10.1016/0004-3702(94)00041-X

15. García, A.J., Simari, G.R.: Defeasible logic programming: An argumentative
approach. Theory and Practice of Logic Programming 4(1–2), 95–138 (2004).
https://doi.org/10.1017/S1471068403001674

16. Maudet, N., Parsons, S., Rahwan, I.: Argumentation in multi-agent systems: Con-
text and recent developments. In: Maudet, N., Parsons, S., Rahwan, I. (eds.)
Argumentation in Multi-Agent Systems, Third International Workshop, ArgMAS
2006, Hakodate, Japan, May 8, 2006, Revised Selected and Invited Papers. LNCS,
vol. 4766, pp. 1–16. Springer (2006). https://doi.org/10.1007/978-3-540-75526-5_1

17. Modgil, S., Prakken, H.: The ASPIC+ framework for structured ar-
gumentation: a tutorial. Argument & Computation 5(1), 31–62 (2014).
https://doi.org/10.1080/19462166.2013.869766

18. Nute, D.: Defeasible logic. In: Proceedings of the 14th International Conference on
Applications of Prolog, INAP 2001, University of Tokyo, Tokyo, Japan, October
20-22, 2001. pp. 87–114. The Prolog Association of Japan (2001)

19. Omicini, A., Calegari, R.: Injecting (micro)intelligence in the IoT: Logic-based
approaches for (M)MAS. In: Lin, D., Ishida, T., Zambonelli, F., Noda, I. (eds.)
Massively Multi-Agent Systems II, LNCS, vol. 11422, chap. 2, pp. 21–35. Springer
(May 2019). https://doi.org/10.1007/978-3-030-20937-7_2

20. Prakken, H., Sartor, G.: Argument-based extended logic programming with de-
feasible priorities. Journal of Applied Non-Classical Logics 7(1), 25–75 (1997).
https://doi.org/10.1080/11663081.1997.10510900

21. Riveret, R., Rotolo, A., Sartor, G.: A deontic argumentation frame-
work towards doctrine reification. Journal of Applied Logics—IfCoLog
Journal of Logics and their Applications 6(5), 903–940 (2019),
https://collegepublications.co.uk/ifcolog/?00034

22. Toni, F.: A generalised framework for dispute derivations in assumption-
based argumentation. Artificial Intelligence 195, 1–43 (2013).
https://doi.org/10.1016/j.artint.2012.09.010


