
Logic and Logical Philosophy
Volume 30 (2021), 139–183

DOI: 10.12775/LLP.2020.018

Eugenio Orlandelli

Sequent Calculi and Interpolation for
Non-Normal Modal and Deontic Logics

Abstract. G3-style sequent calculi for the logics in the cube of non-normal
modal logics and for their deontic extensions are studied. For each calculus
we prove that weakening and contraction are height-preserving admissible,
and we give a syntactic proof of the admissibility of cut. This implies that
the subformula property holds and that derivability can be decided by a
terminating proof search whose complexity is in Pspace. These calculi
are shown to be equivalent to the axiomatic ones and, therefore, they are
sound and complete with respect to neighbourhood semantics. Finally, a
Maehara-style proof of Craig’s interpolation theorem for most of the logics
considered is given.
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1. Introduction

For many interpretations of the modal operators  e.g., for deontic, epis-
temic, game-theoretic, and high-probability interpretations  it is neces-
sary to adopt logics that are weaker than the normal ones. For example,
deontic paradoxes are one of the main motivations for adopting a non-
normal deontic logic [see 13, 16]. Non-normal logics (see [4] for naming
conventions) are quite well understood from a semantic point of view by
means of neighbourhood semantics [15, 33]. Nevertheless, until recent
years their proof theory has been rather limited since it was mostly
confined to Hilbert-style axiomatic systems. This situation seems to be
rather unsatisfactory since it is difficult to find derivations in axiomatic
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systems. When the aim is to find derivations and to analyse their struc-
tural properties, sequent calculi are to be preferred to axiomatic systems.
Recently different kinds of sequent calculi for non-normal logics have
been proposed: Gentzen-style calculi [19, 20, 21, 31]; labelled [11, 32]
and display [5] calculi based on translations into normal modal logics;
labelled calculi based on the internalisation of neighbourhood [26, 28] and
bi-neighbourhood [6] semantics; and, finally, linear nested sequents [22].

This paper, which extends the results presented in [31], concen-
trates on Gentzen-style calculi since they are better suited than la-
belled calculi, display calculi, and nested sequents to give decision pro-
cedures (computationally well-behaved) and constructive proofs of in-
terpolation theorems. We consider cut- and contraction-free G3-style
sequent calculi for all the logics in the cube of non-normal modalities
and for their extensions with the deontic axioms D♦ := �A ⊃ ♦A and
D⊥ := ¬�⊥. The calculi we present have the subformula property and
allow for a straightforward decision procedure by a terminating loop-free
proof search. Moreover, with the exception of the calculi for EC(N) and
its deontic extensions, they are standard [12]  i.e., each operator is han-
dled by a finite number of rules with a finite number of premisses  and
they admit of a Maehara-style constructive proof of Craig’s interpolation
theorem.

This work improves on previous ones on Gentzen-style calculi for non-
normal logics in that we prove cut admissibility for non-normal modal
and deontic logics, and not only for the modal ones [19, 20, 21]. More-
over, we prove height-preserving admissibility of weakening and contrac-
tion, whereas neither weakening nor contraction is admissible in [19, 21]
and weakening but not contraction is admissible in [20]. The admissi-
bility of contraction is a major improvement since, as it is well known,
contraction can be as bad as cut for proof search: we may continue
to duplicate some formula forever and, therefore, we need a (compu-
tationally expensive) loop-checker to ensure termination. Proof search
procedures based on contraction-free calculi terminate because the height
of derivations is bounded by a number depending on the complexity of
the end-sequent and, therefore, we avoid the need of loop-checkers. To
illustrate, the introduction of contraction-free calculi has allowed us to
give computationally optimal decision procedures for propositional in-
tuitionistic logic (ILp) [17] and for the normal modal logics K and T
[1, 18]. The existence of a loop-free terminating decision procedure has
also allowed us to give a constructive proof of uniform interpolation for
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ILp [36] as well as for K and T [2]. The cut- and contraction-free calculi
for non-normal logics considered here are such that the height of each
derivation is bounded by the weight of its end-sequent and, therefore,
we easily obtain a polynomial space upper complexity bound for proof
search. This upper bound is optimal the logics having C as theorem (if
the conjecture made in [41] of Pspace-hardness is correct. The satisfia-
bility problem for logics without C, instead, is in NP [41] and a coNP

decision procedure based on hypersequents is presented in [7].
Moreover, the introduction of well-behaved calculi for non-normal

deontic logics is interesting since proof analysis can be applied to the
deontic paradoxes [16] that are one of the central topics of deontic reason-
ing. We illustrate this in Section 4.3 by considering Forrester’s Paradox
[9] and by showing that proof analysis cast doubts on the widespread
opinion [16, 33, 38] that Forrester’s argument provides evidence against
rule RM (see Figure 1). If Forrester’s argument is formalized as in
[16] then it does not compel us to adopt a deontic logic weaker than
KD. If, instead, it is formalised as in [38] then it forces the adoption of
a logic where RM fails, but the formal derivation differs substantially
from Forrester’s informal argument.

We give here a constructive proof of interpolation for all logics hav-
ing a standard calculus. To our knowledge in the literature there is no
other constructive study of interpolation in non-normal logics. In [8,
Chap(s). 3.8 and 6.6] a constructive proof of Craig’s (and Lyndon’s) in-
terpolation theorem is given for the modal logics K and R, and for some
of their extensions, including the deontic ones, but the proof makes use
of model-theoretic notions. A proof of interpolation by the Maehara-
technique for KD is given in [40]. For a thorough study of interpolation
in modal logics we refer the reader to [10]. A model-theoretic proof of
interpolation for E is given in [15], and a coalgebraic proof of (uniform)
interpolation for all the logics considered here, as well as all other rank-1
modal logics (see below), is given in [34]. As it is explained in Exam-
ple 5.5, we have not been able to prove interpolation for calculi containing
the non-standard rule LR-C (see Figure 6) and, as far as we know, it is
still an open problem whether it is possible to give a constructive proof
of interpolation for these logics.

Related Work. The modal rules of inference presented in Figure 6 are
obtained from the rules presented in [21] by adding weakening contexts to
the conclusion of the rules. This minor modification, used also in [20, 34,
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35] for several modal rules, allows us to shift from set-based sequents to
multiset-based ones and to prove not only that cut is admissible, as it is
done in [19, 20, 21], but also that weakening and contraction are height-
preserving admissible. Given that implicit contraction is not eliminable
from set-based sequents, the decision procedure for non-normal logics
given in [21] is based on a model-theoretic inversion technique so that it
is possible to define a procedure that outputs a derivation for all valid
sequents and a finite countermodel for all invalid ones. One weakness
of this decision procedure is that it does not respect the subformula
property for logics without rule RM (the procedure adds instances of
the excluded middle).

The paper [19] considers multiset-based calculi for the non-normal
logic E(N) and for its extensions with axioms D♦, T , 4, 5, and B. Nev-
ertheless, neither weakening nor contraction is eliminable because there
are no weakening contexts in the conclusion of the modal rules. In [20]
multiset-based sequent calculi for the non-normal logic E(N) and for its
extensions with axioms D♦, T , 4, 5, and B are given. The rules LR-E
and R-N are as in Figure 6, but the deontic axiom D♦ is expressed by
the following rule:

A, B =⇒ (=⇒ A, B)

�A,�B, Γ =⇒ ∆
D-2

where the right premiss is present when we are working over LR-E but
has to be omitted when we work over LR-M . In the calculi in [19, 20]
weakening and contraction are taken as primitive rules and not as ad-
missible ones as in the present approach. Even if it is easy to show
that weakening is eliminable from the calculi in [20], contraction cannot
be eliminated because rule D-2 has exactly two principal formulas and,
therefore, it is not possible to permute contraction up with respect to in-
stances of rule D-2 (see Theorem 3.5). The presence of a non-eliminable
rule of contraction makes the elimination of cut more problematic: in
most cases we cannot eliminate the cut directly, but we have to consider
the rule known as multicut [29, p. 88]. Moreover, cut is not eliminable
from the calculus given in [20] for the deontic logic END. The formula
D⊥ := ¬�⊥ is a theorem of this logic, but it can be derived only with a
non-eliminable instance of cut as in:
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=⇒ ⊤
=⇒ �⊤

R-N

⊥, ⊤ =⇒ =⇒ ⊥, ⊤

�⊤,�⊥ =⇒
D-2

�⊥ =⇒
Cut

=⇒ ¬�⊥
R¬

Finally, it is worth noticing that all the non-normal logics we consider
here are rank-1 logics in the sense of [34, 35, 37]  i.e., logics whose
modal axioms are propositional combinations of formulas of the form
�φ, where φ is purely propositional  and the calculi we give for the
modal logics E, M, K and KD are explicitly considered in [34, 37]. Thus,
they are part of the family of modal coalgebraic logics [34, 35, 37] and
most of the results in this paper can be seen as instances of general
results that hold for rank-1 (coalgebraic) logics. If, in particular, we
consider cut-elimination for coalgebraic logics [35] then all our calculi
absorb congruence and Theorem 3.5 and case 3 of Theorem 3.6 show
that they absorb contraction and cut. Hence, [35, Thm. 5.7] entails
that cut and contraction are admissible in these calculi; moreover, [35,
Props. 5.8 and 5.11] entail that they are one-step cut free complete w.r.t.
coalgebraic semantics. This latter result gives a semantic proof of cut
admissibility in the calculi considered here. Analogously, if we consider
decidability, the polynomial space upper bound we find in Section 4.1
coincides with that found in [37] for rank-1 modal logics.

Synopsis. Section 2 summarizes the basic notions of axiomatic systems
and of neighbourhood semantics for non-normal logics. Sect. 3 presents
G3-style sequent calculi for these logics and then shows that weakening
and contraction are height-preserving admissible and that cut is (syn-
tactically) admissible. Section 4 describes a terminating proof-search
decision procedure for all calculi, it shows that each calculus is equiva-
lent to the corresponding axiomatic system, and it applies proof search
to Forrester’s paradox. Finally, Section 5 gives a Maehara-style con-
structive proof of Craig’s interpolation theorem for the logics having a
standard calculus.
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A ↔ B
�A ↔ �B

RE
A ⊃ B

�A ⊃ �B
RM

(A1 ∧ · · · ∧ An) ⊃ B

(�A1 ∧ · · · ∧ �An) ⊃ �B
RR, n≥1

(A1 ∧ · · · ∧ An) ⊃ B

(�A1 ∧ · · · ∧ �An) ⊃ �B
RK , n≥0

Figure 1. Rules of inference

M) �(A ∧ B) ⊃ (�A ∧ �B) C) (�A ∧ �B) ⊃ �(A ∧ B)

N) �⊤ D⊥) ¬�⊥

D♦) �A ⊃ ♦A

Figure 2. Axioms

2. Non-normal Logics

2.1. Axiomatic Systems

We introduce, following [4], the basic notions of non-normal logics. Given
a countable set of propositional variables {pn | n ∈ N}, the formulas of
the modal language L are generated by:

A ::= pn | ⊥ | A ∧ A | A ∨ A | A ⊃ A | �A

We remark that ⊥ is a 0-ary logical symbol. This will be extremely
important in the proof of Craig’s interpolation theorem. As usual ¬A is
a shorthand for A ⊃ ⊥, ⊤ for ⊥ ⊃ ⊥, A ↔ B for (A ⊃ B) ∧ (B ⊃ A),
and ♦A for ¬�¬A. We follow the usual conventions for parentheses.

Let L be the logic containing all L-instances of propositional tautolo-
gies as axioms, and modus ponens (MP) as inference rule. The minimal
non-normal modal logic E is the logic L plus the rule RE of Figure 1.
We will consider all the logics that are obtained by extending E with
some set of axioms from Figure 2. We will denote the logics according
to the axioms that define them, e.g., EC is the logic E ⊕ C, and EMD⊥

is E ⊕ M ⊕ D⊥. By X we denote any of these logics and we write X ⊢ A

whenever A is a theorem of X. We will call modal the logics containing
neither D⊥ nor D♦, and deontic those containing at least one of them.
We have followed the usual naming conventions for the modal axioms,
but we have introduced new conventions for the deontic ones: D⊥ is
usually called either CON or P and D♦ is usually called D [cf. 3, 13, 16].
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It is also possible to give an equivalent rule-based axiomatization of
some of these logics. In particular, the logic EM, also called M, can be
axiomatixed as L plus the rule RM of Figure 1. The logic EMC, also
called R, can be axiomatized as L plus the rule RR of Figure 1. Finally,
the logic EMCN, i.e. the smallest normal modal logic K, can be axioma-
tized as L plus the rule RK of Figure 1. These rule-based axiomatizations
will be useful later on since they simplify the proof of the equivalence
between axiomatic systems and sequent calculi (Theorem 4.5).

The following proposition states the well-known relations between the
theorems of non-normal modal logics. For a proof the reader is referred
to [4].

Proposition 2.1. For any formula A ∈ L we have that E ⊢ A implies
M ⊢ A; M ⊢ A implies R ⊢ A; R ⊢ A implies K ⊢ A. Analogously for
the logics containing axiom N and/or axiom C.

Axiom D⊥ is K-equivalent to D♦, but the correctness of D♦ has been
a big issue in the literature on deontic logic. This fact urges the study
of logics weaker than KD, where D⊥ and D♦ are no more equivalent
[4]. The deontic formulas D⊥ and D♦ have the following relations in the
logics we are considering.

Proposition 2.2. D⊥ and D♦ are independent in E; D⊥ is derivable
from D♦ in non-normal logics containing at least one of the axioms
M and N ; D♦ is derivable from D⊥ in non-normal logics containing
axiom C.

In Figure 3 the reader will find the lattice of non-normal modal logics
[see 4, p. 237] and in Figure 4 the lattice of non-normal deontic logics.

2.2. Semantics

The most widely known semantics for non-normal logics is neighbour-
hood semantics. We sketch its main tenets following [4], where neigh-
bourhood models are called minimal models.

Definition 2.3. A neighbourhood model is a triple M := 〈W, N, P 〉,

where W is a non-empty set of possible worlds; N : W −→ 22W

is a
neighbourhood function that associates to each possible world w a set
N(w) of subsets of W ; and P gives a truth value to each propositional
variable at each world.
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EM=M

E

EC EN

EMC=R

EMCN=K

EMN ECN

Figure 3. Lattice of non-normal modal logics

ED⊥ ED♦

ED⊥D♦=
ED

ECD♦

ECD⊥=
ECD

END⊥

END♦= END

RD⊥= RD♦= RD

KD⊥= KD♦= KD

MD⊥

MD♦= MD

MND⊥

MND♦= MND ECND⊥ = ECND♦= ECND

Figure 4. Lattice of non-normal deontic logics

The definition of truth of a formula A at a world w of a neighbour-
hood model M  |=M

w A  is the standard one for the classical connec-
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tives with the addition of

|=M
w �A iff ||A||M ∈ N(w)

where ||A||M is the truth set of A  i.e., ||A||M = {w | |=M
w A}. We say

that a formula A is valid in a class C of neighbourhood models iff it is
true in every world of every M ∈ C.

In order to give soundness and completeness results for non-normal
modal and deontic logics with respect to (classes of) neighbourhood mod-
els, we introduce the following definition.

Definition 2.4. Let M = 〈W, N, P 〉 be a neighbourhood model,
X, Y ∈ 2W , and w ∈ W , we say that:

• M is supplemented if X ∩ Y ∈ N(w) imples X ∈ N(w) and Y ∈
N(w);

• M is closed under finite intersection if X ∈ N(w) and Y ∈ N(w)
imply X ∩ Y ∈ N(w);

• M contains the unit if W ∈ N(w);
• M is non-blind if X ∈ N(w) implies X 6= ∅;
• M is complement-free if X ∈ N(w) implies W − X 6∈ N(w).

Proposition 2.5. We have the following correspondence results between
L-formulas and the properties of the neighbourhood function defined
above:

• Axiom M corresponds to supplementation;
• Axiom C corresponds to closure under finite intersection;
• Axiom N corresponds to containment of the unit;
• Axiom D⊥ corresponds to non-blindness;
• Axiom D♦ corresponds to complement-freeness.

Theorem 2.6. E is sound and complete with respect to the class of all
neighbourhood models. Any logic X which is obtained by extending E
with some axioms from Figure 2 is sound and complete with respect to
the class of all neighbourhood models which satisfies all the properties
corresponding to the axioms of X.

See [4] for the proof of Proposition 2.5 and of Theorem 2.6.

3. Sequent Calculi

We introduce sequent calculi for non-normal logics that extend the multi-
set-based sequent calculus G3cp [29, 30, 39] for classical propositional
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logic  see Figure 5  by adding some modal and deontic rules from Fig-
ure 6. In particular, we consider the modal sequent calculi given in
Table 1, which will be shown to capture the modal logics of Figure 3,
and their deontic extensions given in Table 2, which will be shown to
capture all deontic logics of Figure 4. We adopt the following notational
conventions: we use G3X to denote a generic calculus from either Tables
1 or 2, and we use G3Y(Z) to denote both G3Y and GRYZ. All the rules
in Figures 5 and 6 but LR-C and L-D♦C are standard rules in the sense
of [12]: each of them is a single rule with a fixed number of premisses;
LR-C and L-D♦C , instead, stand for a recursively enumerable set of
rules with a variable number of premisses.

For an introduction to G3cp and the relevant notions, the reader
is referred to [29, Chapter 3]. We sketch here the main notions that
will be used in this paper. A sequent is an expression Γ =⇒ ∆, where
Γ and ∆ are finite, possibly empty, multisets of formulas. If Π is the
(possibly empty) multiset A1, . . . , Am then �Π is the (possibly empty)
multiset �A1, . . . ,�Am. A derivation of a sequent Γ =⇒ ∆ in G3X
is an upward growing tree of sequents having Γ =⇒ ∆ as root, initial
sequents or instances of rule L⊥ as leaves, and such that each non-initial
node is the conclusion of an instance of one rule of G3X whose premisses
are its children. In the rules in Figures 5 and 6, the multisets Γ and
∆ are called contexts, the other formulas occurring in the conclusion
(premiss(es), resp.) are called principal (active). In a sequent the an-
tecedent (succedent) is the multiset occurring to the left (right) of the
sequent arrow =⇒. As for G3cp, a sequent Γ =⇒ ∆ has the following
denotational interpretation: the conjunction of the formulas in Γ implies
the disjunction of the formulas in ∆.

As measures for inductive proofs we use the weight of a formula
and the height of a derivation. The weight of a formula A, w(A), is
defined inductively as follows: w(⊥) = w(pi) = 0; w(�A) = w(A) + 1;
w(A ◦ B) = w(A) + w(B) + 1 (where ◦ is one of the binary connectives
∧, ∨, ⊃). The weight of a sequent is the sum of the weight of the formulas
occurring in that sequent. The height of a derivation is the length of its
longest branch minus one. A rule of inference is said to be (height-
preserving) admissible in G3X if, whenever its premisses are derivable
in G3X, then also its conclusion is derivable (with at most the same
derivation height) in G3X. The modal depth of a formula (sequent) is the
maximal number of nested modal operators occurring in it(s members).
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Initial sequents: pn, Γ =⇒ ∆, pn pn propositional variable

Propositional rules:

A, B, Γ =⇒ ∆

A ∧ B, Γ =⇒ ∆
L∧

Γ =⇒ ∆, A Γ =⇒ ∆, B

Γ =⇒ ∆, A ∧ B
R∧

⊥, Γ =⇒ ∆
L⊥

A, Γ =⇒ ∆ B, Γ =⇒ ∆

A ∨ B, Γ =⇒ ∆
L∨

Γ =⇒ ∆, A, B

Γ =⇒ ∆, A ∨ B
R∨

Γ =⇒ ∆, A B, Γ =⇒ ∆

A ⊃ B, Γ =⇒ ∆
L⊃

A, Γ =⇒ ∆, B

Γ =⇒ ∆, A ⊃ B
R⊃

Figure 5. The sequent calculus G3cp

A =⇒ B B =⇒ A
�A, Γ =⇒ ∆,�B

LR-E
A =⇒ B

�A, Γ =⇒ ∆,�B
LR-M

A1, . . . , An =⇒ B B =⇒ A1
... B =⇒ An

�A1, . . . ,�An, Γ =⇒ ∆,�B
LR-C

=⇒ B
Γ =⇒ ∆,�B

R-N

A, Π =⇒ B

�A,�Π, Γ =⇒ ∆,�B
LR-R

Π =⇒ B
�Π, Γ =⇒ ∆,�B

LR-K

A =⇒
�A, Γ =⇒ ∆

L-D
⊥

Π =⇒ =⇒ Π
�Π, Γ =⇒ ∆

L-D
♦E , |Π|¬2

Π =⇒
�Π, Γ =⇒ ∆

L-D
♦M , |Π|¬2

Π, Σ =⇒ {=⇒ A, B| A ∈ Π, B ∈ Σ}

�Π,�Σ, Γ =⇒ ∆
L-D

♦C
Π =⇒

�Π, Γ =⇒ ∆
L-D

∗

Figure 6. Modal and deontic rules

3.1. Structural rules of inference

We are now going to prove that the calculi G3X have the same good
structural properties of G3cp: weakening and contraction are height-
preserving admissible and cut is admissible. All proofs are extension
of those for G3cp, see [29, Chapter 3]; in most cases, the modal rules
have to be treated differently from the propositional ones because of the
presence of empty contexts in the premiss(es) of the modal ones. We
adopt the following notational convention: given a derivation tree Dk,
the derivation tree of the n-th leftmost premiss of its last step is denoted
by Dkn. We begin by showing that the restriction to atomic initial
sequents, which is needed to have the propositional rules invertible, is
not limitative in that initial sequents with arbitrary principal formula
are derivable in G3X.

Proposition 3.1. Every instance of A, Γ =⇒ ∆, A is derivable in G3X.

Proof. By induction on the weight of A. If w(A) = 0  i.e., A is atomic
or ⊥  then we have an instance of an initial sequent or of a conclusion
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G3E G3EN G3M G3MN G3C G3CN G3R G3K

LR-E X X ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

LR-M − − X X − − ⋆ ⋆

LR-C − − − − X X ⋆ ⋆

LR-R − − − − − − X ⋆

LR-K − − − − − − − X

R-N − X − X − X − ⋆

Table 1. Modal calculi (X= rule of the calculus,
⋆ = admissible rule, − = neither)

G3E(N)D⊥ G3ED♦ G3E(N)D G3M(N)D⊥ G3M(N)D G3CD♦ G3C(N)D G3RD G3KD

L-D⊥ X − X X ⋆ − ⋆ ⋆ ⋆

L-D♦E − X X − ⋆ ⋆ ⋆ ⋆ ⋆

L-D♦M − − − − X ⋆ ⋆ ⋆ ⋆

L-D♦C − − − − − X ⋆ ⋆ ⋆

L-D∗ − − − − − − X X X

Table 2. Deontic calculi (X= rule of the calculus,
⋆ = admissible rule, − = neither)

of L⊥ and there is nothing to prove. If w(A) ≥ 1, we argue by cases
according to the construction of A. In each case we apply, root-first,
the appropriate rule(s) in order to obtain sequents where some proper
subformula of A occurs both in the antecedent and in the succedent.
The claim then holds by the inductive hypothesis (IH). To illustrate, if
A ≡ �B and we are in G3M(ND), we have:

B =⇒ B
IH

�B, Γ =⇒ ∆,�B
LR-M

⊣

Theorem 3.2. The rules of left and right weakning are height-preserving
admissible (hp-admissible, for short) in G3X

Γ =⇒ ∆
A, Γ =⇒ ∆

LW
Γ =⇒ ∆

Γ =⇒ ∆, A
RW
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Proof. The proof is a straightforward induction on the height of the
derivation D of Γ =⇒ ∆. If the last step of D is by a propositional rule,
we have to apply the same rule to the weakened premiss(es), which are
derivable by IH, see [29, Thm. 2.3.4]. If it is by a modal or deontic rule,
we proceed by adding A to the appropriate weakening context of the
conclusion of that rule instance. To illustrate, if the last rule is LR-E,
we transform

... D1

B =⇒ C

... D2

C =⇒ B
�B, Γ =⇒ ∆,�C

LR-E
into

... D1

B =⇒ C

... D2

C =⇒ B
�B, A, Γ =⇒ ∆,�C

LR-E
⊣

Before considering contraction, we recall some facts that will be useful
later on.

Lemma 3.3. In G3X the rules

Γ =⇒ ∆, A

¬A, Γ =⇒ ∆
L¬

A, Γ =⇒ ∆

Γ =⇒ ∆, ¬A
R¬

are admissible.

Proof. We have the following derivations (the step by RW is admissible
thanks to Theorem 3.2):

Γ =⇒ ∆, A ⊥, Γ =⇒ ∆
L⊥

A ⊃ ⊥, Γ =⇒ ∆
L⊃

A, Γ =⇒ ∆

A, Γ =⇒ ∆, ⊥
RW

Γ =⇒ ∆, A ⊃ ⊥
R⊃

⊣

Lemma 3.4. All propositional rules are height-preserving invertible in
G3X, that is the derivability of (a possible instance of ) a conclusion
of a propositional rule entails the derivability, with at most the same
derivation height, of its premiss(es).

Proof. We have only to extend the proof for G3cp [see 29, Thm. 3.1.1]
with new cases for the modal and deontic rules. If A ◦ B occurs in the
antecedent (succedent) of the conclusion of an instance of a modal or
deontic rule then it must be a member of the weakening context Γ (∆)
of this rule instance, and we have only to change the weakening context
according to the rule we are inverting. ⊣

Theorem 3.5. The left and right rules of contraction are hp-admissible
in G3X

A, A, Γ =⇒ ∆

A, Γ =⇒ ∆
LC

Γ =⇒ ∆, A, A

Γ =⇒ ∆, A
RC
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Proof. The proof is by simultaneous induction on the height of the
derivation D of the premiss for left and right contraction. The base case
is straightforward. For the inductive steps, we have different strategies
according to whether the last step in D is by a propositional rule or not.
If the last step in D is by a propositional rule, we have two subcases:
if the contraction formula is not principal in that step, we apply the
inductive hypothesis and then the rule. Else we start by using the height-
preserving invertibility  Lemma 3.4  of that rule, and then we apply
the inductive hypothesis and the rule [see 29, Thm. 3.2.2 for details].

If the last step in D is by a modal or deontic rule, we have two
subcases: either the last step is by one of LR-C, LR-R, LR-K, L-D♦E ,
L-D♦M , L-D♦C , and L-D∗ and both occurrences of the contraction for-
mula A of LC are principal in the last step or some instance of the
contraction formula is introduced in the appropriate weakening context
of the conclusion. In the first subcase, we apply the inductive hypothesis
to the premiss and then the rule. An interesting example is when the
last step in D is by L-D♦E . We transform

... D1
B, B =⇒

... D2
=⇒ B, B

�B,�B, Γ =⇒ ∆
L-D

♦

�B, Γ =⇒ ∆
LC

into

... IH(D1)
B =⇒

... IH(D2)
=⇒ B

�B, Γ =⇒ ∆
L-D

♦

where IH(D1) is obtained by applying the inductive hypothesis for the
left rule of contraction to D1 and IH(D2) is obtained by applying the
inductive hypothesis for the right rule of contraction to D2.

In the second subcase, we apply an instance of the same modal or
deontic rule which introduces one less occurrence of A in the appropriate
context of the conclusion. Let us consider RC. If the last step is by LR-
M and no instance of A is principal in the last rule, we transform

... D1

B =⇒ C

�B, Γ ′ =⇒ ∆′, A, A,�C
LR-M

�B, Γ ′ =⇒ ∆′, A,�C
RC

into

... D1
B =⇒ C

�B, Γ ′ =⇒ ∆′, A,�C
LR-M

⊣

Theorem 3.6. The rule of cut is admissible in G3X

... D1
Γ =⇒ ∆, D

... D2
D, Π =⇒ Σ

Γ, Π =⇒ ∆, Σ
Cut
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Proof. We consider an uppermost application of Cut and we show that
either it is eliminable, or it can be permuted upward in the derivation
until we reach sequents where it is eliminable. The proofs, one for each
calculus, are by induction on the weight of the cut formula D with a
sub-induction on the sum of the heights of the derivations of the two
premisses (cut-height for shortness). The proof can be organized in 3
exhaustive cases:

1. At least one of the premisses of cut is an initial sequent or a conclusion
of L⊥;

2. The cut formula in not principal in the last step of at least one of
the two premisses;

3. The cut formula is principal in both premisses.

• Case (1). Same as for G3cp [see 29, Thm. 3.2.3 for the details].

• Case (2). We have many subcases according to the last rule applied
in the derivation (D⋆) of the premiss where the cut formula is not princi-
pal. For the propositional rules, we refer the reader to [29, Thm. 3.2.3],
in which is given a procedure that allows to reduce the cut-height. If the
last rule applied in D⋆ is a modal or deontic one, we can transform the
derivation into a cut-free one because the conclusion of Cut is derivable
by replacing the last step of D⋆ with the appropriate instance of the same
modal or deontic rule. We present explicitly only the cases where the
last step of the left premiss is by LR-E and L-D⊥ and the cut formula
is not principal in it, all other transformations being similar.

LR-E: If the left premiss is by rule LR-E (and Γ ≡ �A, Γ ′ and ∆ ≡
∆′,�B), we transform

... D11
A =⇒ B

... D12
B =⇒ A

�A, Γ ′ =⇒ ∆′,�B, D
LR-E

... D2
D, Π =⇒ Σ

�A, Γ ′, Π =⇒ ∆′,�B, Σ
Cut

into
... D11

A =⇒ B

... D12

B =⇒ A

�A, Γ ′, Π =⇒ ∆′,�B, Σ
LR-E
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L-D⊥ : If the left premiss is by rule L-D⊥, we transform

... D11

A =⇒
�A, Γ ′ =⇒ ∆, D

L-D
⊥

... D2

D, Π =⇒ Σ

�A, Γ ′, Π =⇒ ∆, Σ
Cut

into

... D11

A =⇒
�A, Γ ′, Π =⇒ ∆, Σ

L-D
⊥

• Case (3). If the cut formula D is principal in both premisses, we
have cases according to the principal operator of D. In each case we
have a procedure that allows to reduce the weight of the cut formula,
possibly increasing the cut-height. For the propositional cases, which
are the same for all the logics considered here [see 29, Thm. 3.2.3].

If D ≡ �C, we consider the different logics one by one, without
repeating the common cases.

• G3E(ND). Both premisses are by rule LR-E, we have

... D11

A =⇒ C

... D12

C =⇒ A

�A, Γ ′ =⇒ ∆,�C
LR-E

... D21

C =⇒ B

... D22

B =⇒ C

�C, Π =⇒ Σ′,�B
LR-E

�A, Γ ′, Π =⇒ ∆, Σ′,�B
Cut

and we transform it into the following derivation that has two cuts with
cut formulas of lesser weight, which are admissible by IH.

... D11

A =⇒ C

... D21

C =⇒ B
A =⇒ B

Cut

... D22

B =⇒ C

... D12

C =⇒ A
B =⇒ A

Cut

�A, Γ ′, Π =⇒ ∆, Σ′,�B
LR-E

• G3EN(D). Left premiss by R-N and right one by LR-E. We trans-
form

... D11

=⇒ C
Γ =⇒ ∆,�C

R-N

... D21

C =⇒ A

... D22

A =⇒ C

�C, Π =⇒ Σ′,�A
LR-E

Γ, Π =⇒ ∆, Σ′,�A
Cut

into

... D11

=⇒ C

... D21

C =⇒ A
=⇒ A

Cut

Γ, Π =⇒ ∆, Σ′,�A
R-N

• G3E(N)D⊥. Left premiss is by LR-E, and right one by L-D⊥. We
transform

... D11

A =⇒ C

... D12

C =⇒ A

�A, Γ ′ =⇒ ∆,�C
LR-E

... D21

C =⇒
�C, Π =⇒ Σ

L-D
⊥

�A, Γ ′, Π =⇒ ∆, Σ
Cut

into

... D11

A =⇒ C

... D21

C =⇒
A =⇒

Cut

�A, Γ ′, Π =⇒ ∆, Σ
L-D

⊥
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• G3E(N)D♦. Left premiss is by LR-E, and right one by L-D♦E .
We transform (|Ξ| ¬ 1)

... D11
A =⇒ C

... D12
C =⇒ A

�A, Γ ′ =⇒ ∆,�C
LR-E

... D21

C, Ξ =⇒

... D22

=⇒ C, Ξ

�C,�Ξ, Π ′ =⇒ Σ
L-D

♦E

�A, Γ ′,�Ξ, Π ′ =⇒ ∆, Σ
Cut

into
... D22

=⇒ Ξ, C

... D12
C =⇒ A

=⇒ Ξ, A
Cut

... D11
A =⇒ C

... D21
C, Ξ =⇒

A, Ξ =⇒
Cut

�A, Γ ′,�Ξ, Π ′ =⇒ ∆, Σ
L-D

♦E

• G3E(N)D. Left premiss by LR-E and right one by L-D⊥ or L-D♦E .
Same as above.

• G3END⊥. Left premiss by R-N and right one by L-D⊥. We trans-
form

... D11

=⇒ C
Γ =⇒ ∆,�C

R-N

... D21

C =⇒
�C, Π =⇒ Σ

L-D
⊥

Γ, Π =⇒ ∆, Σ
Cut

into

... D11

=⇒ C

... D21

C =⇒
=⇒

Cut

Γ, Π =⇒ ∆, Σ
LWs and RWs

• G3END. Left premiss by R-N and right one by L-D♦E . We trans-
form (|Ξ| ¬ 1)

... D11

=⇒ C
Γ =⇒ ∆,�C

R-N

... D21
C, Ξ =⇒ =⇒

... D22
C, Ξ

�C,�Ξ, Π ′ =⇒ Σ
L-D

♦

�Ξ, Γ, Π ′ =⇒ ∆, Σ
Cut

into

... D11

=⇒ C

... D21

C, Ξ =⇒

Ξ =⇒
Cut

�Ξ, Γ, Π ′ =⇒ ∆, Σ
(⋆)

where (⋆) is an instance of L-D⊥ if |Ξ| = 1, else (|Ξ| = 0 and) it stands
for some instances of LW and RW .
• G3M(ND). Both premisses are by rule LR-M , we transform

... D11

A =⇒ C

�A, Γ ′ =⇒ ∆,�C
LR-M

... D21

C =⇒ B

�C, Π =⇒ Σ′,�B
LR-M

�A, Γ ′, Π =⇒ ∆, Σ′,�B
Cut
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into
... D11

A =⇒ C

... D21

C =⇒ B
A =⇒ B

Cut

�A, Γ ′, Π =⇒ ∆, Σ′,�B
LR-M

• G3MN(D). Left premiss by R-N and right one by LR-M . Similar
to the case with left premiss by R-N and right one by LR-E.

• G3M(N)D⊥ and G3M(N)D. Left premiss is by LR-M , and right
one by L-D⊥ or L-D♦M . Similar to the case with left premiss by LR-E
and right by L-D⊥ or L-D♦E , respectively.

• G3MND⊥ and G3MND. The cases with left premiss by R-N and
right one by a deontic rule are like the analogous ones we have already
considered.

• G3C(ND). Both premisses are by rule LR-C. Let us agree to use Λ

to denote the non-empty multiset A1, . . . , An, and Ξ for the (possibly
empty) multiset B2, . . . Bm. The derivation

... D11

Λ =⇒ C

... DA1

C =⇒ A1
...

... DAn

C =⇒ An

�Λ, Γ ′ =⇒ ∆,�C
LR-C

... D21

C, Ξ =⇒ E

... DC

E =⇒ C ...

... DBm

E =⇒ Bm

�C,�Ξ, Π ′ =⇒ Σ′,�E
LR-C

�Λ, Γ ′,�Ξ, Π ′ =⇒ ∆, Σ′,�E
Cut

is transformed into the following derivation having n+1 cuts on formulas
of lesser weight

... D11
Λ =⇒ C

... D21
C, Ξ =⇒ E

Λ, Ξ =⇒ E
Cut

... DC

E =⇒ C

... DAn

C =⇒ A1

E =⇒ A1
Cut ...

... DC

E =⇒ C

... DAn

C =⇒ An

E =⇒ An
Cut

... DB1

E =⇒ B1
...

... DBm

E =⇒ Bm

�Λ, Γ ′,�Ξ, Π ′ =⇒ ∆, Σ′,�E
LR-C

• G3CN(D). Left premiss by R-N and right premiss by LR-C. We
have

... D11
=⇒ C

Γ =⇒ ∆,�C
R-N

... D21

C, A1, . . . , An =⇒ B

... DC

B =⇒ C ...

... DAn

B =⇒ An

�C,�A1, . . . ,�An, Π ′ =⇒ Σ′,�B
LR-C

Γ,�A1, . . . ,�An, Π ′ =⇒ ∆, Σ′,�B
Cut
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where A1, . . . , An (and thus also �A1, . . . ,�An) may or may not be the
empty multiset. If A1, . . . , An is not empty, we transform it into the
following derivation having one cut with a cut formula of lesser weight

... D11

=⇒ C

... D21

C, A1, . . . , An =⇒ B

A1, . . . , An =⇒ B
Cut

... DA1

B =⇒ A1
...

... DAn

B =⇒ An

Γ,�A1, . . .�An, Π ′ =⇒ ∆, Σ′,�B
LR-C

If, instead, A1, . . . , An is empty, we transform it into

... D11

=⇒ C

... D21

C =⇒ B
=⇒ B

Cut

Γ, Π ′ =⇒ ∆, Σ′,�B
R-N

• G3CD♦. Left premiss by LR-C and right premiss by L-D♦C . We
transform (we assume Ξ = A1, . . . Ak, Θ = C, B2, . . . , Bm and Λ =
D1, . . . , Dn)

... D11

Ξ =⇒ C

... D1Ai

{C =⇒ Ai | Ai ∈ Ξ}

�Ξ, Γ ′ =⇒ ∆,�C
LR-C

... D21

Θ, Λ =⇒

... DΘiΛj

{=⇒ E, Dj | E ∈ Θ and Dj ∈ Λ}

�C,�B2, . . . ,�Bm,�Λ, Π ′ =⇒ Σ
L-D

♦C

�Ξ,�B1, . . . ,�Bm,�Λ, Γ ′, Π ′ =⇒ ∆, Σ
Cut

into the following derivation having 1+(k ×n) cuts on formulas of lesser
weight

... D11

Ξ =⇒ C

... D21

C, B2, . . . , Bm, Λ =⇒

Ξ, B2, . . . , Bm, Λ =⇒
Cut

... DΘ1,Λj

=⇒ Dj, C

... D1Ai

C =⇒ Ai

{=⇒ Ai, Dj|Ai ∈ Ξ, Dj ∈ Λ}
Cut

... DΘiΛj

{=⇒ Bi, Dj|Bi ∈ Θ − C, Dj ∈ Λ}

�Ξ,�B1, . . . ,�Bm,�Λ, Γ ′, Π ′ =⇒ ∆, Σ
L-D

♦C

• G3C(N)D. Left premiss by LR-C and right one by L-D∗. It is
straightforward to transform the derivation into another one having one
cut with a cut formula of lesser weight.

• G3R(D). Both premisses are by rule LR-R, we transform

... D11

A, Ξ =⇒ C

�A,�Ξ, Γ ′ =⇒ ∆,�C
LR-R

... D21

C, Ψ =⇒ B

�C,�Ψ, Π ′ =⇒ Σ′,�B
LR-R

�A,�Ξ, Γ ′,�Ψ, Π ′ =⇒ ∆, Σ′,�B
Cut
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into
... D11

A, Ξ =⇒ C

... D21
C, Ψ =⇒ B

A, Ξ, Ψ =⇒ B
Cut

�A,�Ξ, Γ ′,�Ψ, Π ′ =⇒ ∆, Σ′,�B
LR-R

• G3RD⋆. Left premiss is by LR-R, and right one by L-D⋆, we trans-
form

... D11

A, Ξ =⇒ C

�A,�Ξ, Γ ′ =⇒ ∆,�C
LR-R

... D21

C, Ψ =⇒

�C,�Ψ, Π ′ =⇒ Σ
L-D

∗

�A,�Ξ, Γ ′,�Ψ, Π ′ =⇒ ∆, Σ
Cut

into
... D11

A, Ξ =⇒ C

... D21

C, Ψ =⇒

A, Ξ, Ψ =⇒
Cut

�A,�Ξ, Γ ′,�Ψ, Π ′ =⇒ ∆, Σ
L-D

∗

• G3K(D). The new cases with respect to G3R(D) are those with
left premiss by an instance of LR-K that has no principal formula in the
antecedent. These cases can be treated like cases with the left premiss
by R-N . ⊣

4. Decidability and syntactic completeness

4.1. Decision procedure for G3X

Each calculus G3X has the strong subformula property since all active
formulas of each rule in Figures 5 and 6 are proper subformulas of the
principal formulas and no formula disappears in moving from premiss(es)
to conclusion. As usual, this gives us a syntactic proof of consistency.

Proposition 4.1. 1. Each premiss of each rule of G3X has lesser weight
than its conclusion.

2. Each premiss of each modal or deontic rule of G3X has lesser modal
depth than its conclusion.
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3. The calculus G3X has the subformula property: a G3X-derivation of
a sequent S contains only sequents composed of subformulas of S.

4. The empty sequent is not G3X-derivable.

We also have an effective method to decide the derivability of a
sequent in G3X: we start from the desired sequent Γ =⇒ ∆ and we
construct all possible G3X-derivation trees until either we find a tree
where each leaf is an initial sequent or a conclusion of L⊥  meaning
that we have found a G3X-derivation of Γ =⇒ ∆  or we have checked
all possible G3X-derivations and we have found none  meaning that
Γ =⇒ ∆ is not G3X-derivable.

In more detail, we present a depth-first procedure that tests G3X-
derivability in polynomial space. As it is usual in decision procedures in-
volving non-invertible rules, we have trees involving two kinds of branch-
ing. Application of a rule with more than one premiss produce an AND-
branching point, where all branches have to be derivable to obtain a
derivation. Application of a non-invertible rule to a sequent that can
be the conclusion of different instances of non-invertible rules produces
an OR-branching point, where only one branch need be derivable to
obtain a derivation. In the procedure below we will assume that, given
a calculus G3X and given a sequent �Π, Γ p =⇒ ∆p,�Σ (where Γ p

and ∆p are multisets of propositional variables), there is some fixed
way of ordering the finite (see below) set of instances of modal and
deontic rules of G3X (X-instances, for shortness) having that sequent
as conclusion. Moreover, we will represent the root of branches above
an OR-branching point by nodes of shape �i, where �i is the name of
the i-th X-instance applied (in the order of all X-instances having that
conclusion). To illustrate, if we are in G3EN and we have to consider
�A,�B, Γ p =⇒ ∆p,�C then we obtain (fixing one way of ordering the
three X-instances having that sequent as conclusion):

A =⇒ C C =⇒ A
LR-E

B =⇒ C C =⇒ B
LR-E

=⇒ C
R-N

�A,�B, Γ p =⇒ ∆p,�C

where the lowermost sequent is an OR-branching point and the two
nodes LR-E1 and LR-E2 are AND-branching points. Finally, given an
AND(OR)-branching point

S1 . . . Sn

S
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we say that the branch above Si is an unexplored AND(OR)-branch if
none of its nodes has already been active.

Definition 4.2 (G3X-decision procedure).
Stage 1. We write the one node tree Γ =⇒ ∆ and we label Γ =⇒ ∆ as

active.
Stage n+1. Let Tn be the tree constructed at stage n, let S ≡ Π =⇒ Σ

be its active sequent, and let B be the branch going from the root of
Tn to S.
Closed. If S is such that p ∈ Π ∩ Σ (for some propositional variable

p) or ⊥ ∈ Π, then we label S as closed and
Derivable. If B contains no unexplored AND-branch, the proce-

dure ends and Γ =⇒ ∆ is G3X-derivable;
AND-backtrack. If, instead, B contains unexplored AND-branches

then we choose the topmost one and we label as active its
leftmost unexplored leaf. Else

Propositional. if S can be the conclusion of some instances ◦1, . . . , ◦m

of the invertible propositional rules, we extend B by applying one
of such instances:

S1 (S2)

S
◦i 1¬i¬m

where, if S2, if present, S is an AND-branching point. Else
Modal. If S can be the conclusion of the following canonically or-

dered list of X-instances:

S1
1 . . . S1

k

S
�1 . . .

Sm
1 . . . Sm

l

S
�m

then we extend B as follows:

S1
1 . . . S1

k

�1
. . .

Sm
1 . . . Sm

l

�m

S

where, if m ≥ 2, S is OR-branching and, if �i is a rule with more
than one premiss, �i is AND-branching. Moreover, we label S1

1

as active. Else
Open. No rule of G3x can be applied to S, then we label S as open

and
Underivable. If B contains no unexplored OR-branch, the proce-

dure ends and Γ =⇒ ∆ is not G3X-derivable;
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OR-backtrack. If, instead, B contains unexplored OR-branches,
we choose the topmost one and we label as active its leftmost
unexplored leaf.

Termination can be shown as follows. Proposition 4.1.1 entails that
the height of each branch of the tree T constructed in a G3X-decision
procedure for a sequent Γ =⇒ ∆ is bounded by the weight of Γ =⇒ ∆ (in
particular, given Proposition 4.1.2, the number of OR-branching points
occurring in a branch is bounded by the modal depth of Γ =⇒ ∆).
Moreover, T is finitary branching since all rules of G3X are finitary
branching rules, and since each sequent can be the conclusion of a finite
number k of X-instances (for each G3X k is bounded by a function of
|Γ | and |∆|). Hence, after a finite number of stages we are either in case
Derivable or in case Underivable and, in both cases, the procedure ends.
In the first case we can easily extract a G3X-derivation of Γ =⇒ ∆

from T (we just have to delete all unexplored branches as well as all
underivable sub-trees above an OR-branching point). In the latter case,
thanks to Proposition 4.1.3, we know that (modulo the order of the
invertible propositional rules) we have explored the whole search space
for a G3X-derivation of Γ =⇒ ∆ and we have found none.

We prove that it is possible to test G3X-derivability in polynomial
space by showing how it is possible to store only the active node together
with a stack containing information sufficient to reconstruct unexplored
branches. For the propositional part of the calculi, we proceed as in
[1, 17, 18]: each entry of the stack is a triple containing the name of the
rule applied, an index recording which of its premisses is active, and its
principal formula. For the X-instances two complications arise: we need
to record which OR-branches are unexplored yet, and we have to keep
track of the weakening contexts of the conclusion in the premisses of X-
instances. The first problem has already been solved by having assumed
that the X-instances applicable to a given sequent have a fixed canonical
order. The second problem is solved by adding a numerical superscript
to the formulas occurring in a sequent and by imposing that:

– All formulas in the end-sequent have 1 as superscript;
– The superscript k of the principal formulas of rules and of initial se-

quents are maximal in that sequent;
– Active formulas of X-instances (propositional rules) have k + 2 (k,

respectively) as superscript;
– Contexts are copied in the premisses of each rule.
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By doing so, the contexts of the conclusion are copied in the premisses
in each rule of G3X, but they cannot be principal in the trees above the
premisses of the X-instances because their superscript is never maximal
therein. It is immediately evident that the superscripts occurring in a
derivation are bounded by (twice) the modal depth of the end-sequent.

Instances of all modal and deontic rules in Figure 6 but LR-C and
L-D♦C are such that there is no need to record their principal formulas
in the stack entry: they are the boxed version of the formulas having
maximal superscript in the active premiss; moreover, the name of the
rule and the number of the premiss allow us to reconstruct the position
of the principal formulas (for the right premiss of LR-E and L-D♦E ,
we have to switch the two formulas). In instances of rules LR-C and
L-D♦C instead, this doesn’t hold since in all premisses but the leftmost
one there is no subformula of some principal formulas. We can overcome
this problem by copying in each premiss all principal formulas having no
active subformula in that premiss and by adding one to their superscript.
We also keep fixed the position of all formulas (modulo the swapping of
the two active formulas). To illustrate, one such instance is:

Ak+2
1 , Ak+2

2 , Γ =⇒ ∆, Bk+2 Bk+2,�Ak+1
2 , Γ =⇒ ∆, Ak+2

1 Bk+2,�Ak+1
1 , Γ =⇒ ∆, Ak+2

2

�Ak
1 ,�Ak

2, Γ =⇒ ∆,�Bk
LR-C

In this way, given the name of the modal or deontic rule applied, any
premiss of this rule instance, and its position among the premisses of this
rule, we can reconstruct both the conclusion of this rule instance and its
position in the fixed order of X-instances concluding that sequent (thus
we know which OR-branches are unexplored yet). In doing so, we use the
hp-admissibility of contraction to ensure that no formula has more than
one occurrence in the antecedent or in the succedent of the conclusion of
X-instances (otherwise we might be unable to reconstruct which of two
identical X-instances we are considering). Hence, for X-instances each
stack entry records the name of the rule applied and an index recording
which premiss we are considering.

The decision procedure is like in Definition 4.2. The only novelty
is that at each stage, instead of storing the full tree constructed so far,
we store only the active node and the stack, we push an entry in the
stack and, if we are in a backtracking case, we pop stack entries (and
we use them to reconstruct the corresponding active sequent) until we
reach an entry recording unexplored branches of the appropriate kind, if
any occurs.
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Theorem 4.3. G3X-derivability is decidable in O(n log n)-space, where
n is the weight of the end-sequent.

Proof. We have already argued that proof search terminates. As in
[1, 17, 18], Proposition 4.1.1 entails that the stack depth is bounded
by O(n) and, by storing the principal formulas of propositional rules as
indexes into the end-sequent, each entry requires O(log n) space. Hence
we have an O(n log n) space bound for the stack. Moreover, the active
sequent contains at most O(n) subformulas of the end-sequent and their
numerical superscripts. Each such subformula requires O(log n) space
since it can be recorded as an index into the end-sequent; its numerical
superscript requires O(log n) too since there are at most O(n) super-
scripts. Hence also the active sequent requires O(n log n) space. ⊣

4.2. Equivalence with the axiomatic systems

It is now time to show that the sequent calculi introduced are equivalent
to the non-normal logics of Section 2. We write G3X ⊢ Γ =⇒ ∆ if the
sequent Γ =⇒ ∆ is derivable in G3X, and we say that A is derivable in
G3X whenever G3X ⊢ =⇒ A. We begin by proving the following

Lemma 4.4. All the axioms of the axiomatic system X are derivable in
G3X.

Proof. A straightforward application of the rules of the appropriate
sequent calculus, possibly using Proposition 3.1. As an example, we
show that the deontic axiom D⊥ is derivable by means of rule L-D⊥ and
that axiom C is derivable by means of LR-C.

⊥ =⇒
L⊥

�⊥ =⇒
L-D

⊥

=⇒ ¬�⊥
R¬

A, B =⇒ A
3.1

A, B =⇒ B
3.1

A, B =⇒ A ∧ B
R∧

A, B =⇒ A
3.1

A ∧ B =⇒ A
L∧

A, B =⇒ B
3.1

A ∧ B =⇒ B
L∧

�A,�B =⇒ �(A ∧ B)
LR-C

�A ∧ �B =⇒ �(A ∧ B)
L∧

=⇒ �A ∧ �B ⊃ �(A ∧ B)
R⊃

⊣

Next we prove the equivalence of the sequent calculi for non-normal
logics with the corresponding axiomatic systems in the sense that a se-
quent Γ =⇒ ∆ is derivable in G3X if and only if its characteristic formula
∧

Γ ⊃
∨

∆ is derivable in X (where the empty antecedent stands for ⊤
and the empty succedent for ⊥). As a consequence each calculus is sound
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and complete with respect to the appropriate class of neighbourhood
models (see Section 2.2).

Theorem 4.5. Derivability in the sequent system G3X and in the ax-
iomatic system X are equivalent, i.e.,

G3X ⊢ Γ =⇒ ∆ iff X ⊢
∧

Γ ⊃
∨

∆.

Proof. To prove the right-to-left implication, we argue by induction
on the height of the axiomatic derivation in X. The base case is covered
by Lemma 4.4. For the inductive steps, the case of MP follows by the
admissibility of Cut and the invertibility of rule R ⊃. If the last step is
by RE, then Γ = ∅ and ∆ is �C ↔ �D. We know that (in X) we have
derived �C ↔ �D from C ↔ D. Remember that C ↔ D is defined
as (C ⊃ D) ∧ (D ⊃ C). Thus we assume, by inductive hypothesis (IH),
that G3ED ⊢ =⇒ C ⊃ D ∧ D ⊃ C. From this, by invertibility of R∧
and R ⊃ (Lemma 3.4), we obtain that G3ED ⊢ C =⇒ D and G3ED
⊢ D =⇒ C. We can thus proceed as follows

C =⇒ D
IH + 3.4

D =⇒ C
IH + 3.4

�C =⇒ �D
LR-E

=⇒ �C ⊃ �D
R⊃

D =⇒ C
IH + 3.4

C =⇒ D
IH + 3.4

�D =⇒ �C
LR-E

=⇒ �D ⊃ �C
R⊃

=⇒ (�C ⊃ �D) ∧ (�D ⊃ �C)
R∧

For the converse implication, we assume G3X ⊢ Γ =⇒ ∆, and show,
by induction on the height of the derivation in the sequent calculus,
that X ⊢

∧
Γ ⊃

∨
∆. If the derivation has height 0, we have an ini-

tial sequent  so Γ ∩ ∆ 6= ∅  or an instance on L⊥  thus ⊥ ∈ Γ . In
both cases the claim holds. If the height is n + 1, we consider the last
rule applied in the derivation. If it is a propositional one, the proof is
straightforward. If it is a modal rule, we argue by cases.

If the last step of a derivation in G3E(ND) is by LR-E, we have
derived �C, Γ ′ =⇒ ∆′,�D from C =⇒ D and D =⇒ C. By IH and
propositional reasoning, ED ⊢ C ↔ D, thus ED ⊢ �C ⊃ �D. By some
propositional steps we conclude ED ⊢ (�C ∧

∧
Γ ′) ⊃ (

∨
∆′ ∨ �D). The

cases of LR-M , LR-R, and LR-K can be treated in a similar manner
(thanks, respectively, to the rule RM, RR, and RK from Figure 1).

If we are in G3C(ND), suppose the last step is the following instance
of LR-C:

C1, . . . Ck =⇒ D D =⇒ C1 . . . D =⇒ Ck

�C1, . . . ,�Ck, Γ ′ =⇒ ∆′,�D
LR-C
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By IH, we have that C(ND) ⊢ D ⊃ Ci for all i ¬ k, and, by propositional
reasoning, we have that C(ND) ⊢ D ⊃ C1 ∧ · · · ∧ Ck. We also know,
by IH, that C(ND) ⊢ C1 ∧ · · · ∧ Ck ⊃ D. By applying RE to these two
theorems we get that

C(ND) ⊢ �(C1 ∧ · · · ∧ Ck) ⊃ �D (1)

By using axiom C and propositional reasoning, we know that

C(ND) ⊢ �C1 ∧ · · · ∧ �Ck ⊃ �(C1 ∧ · · · ∧ Ck) (2)

By applying transitivity to (2) and (1) and some propositional steps, we
conclude that

C(ND) ⊢ (�C1 ∧ · · · ∧ �Ck ∧
∧

Γ ′) ⊃ (
∨

∆′ ∨ �D)

Let us now consider rule L-D⊥. Suppose we are in G3XD⊥ and
we have derived �C, Γ ′ =⇒ ∆ from C =⇒. By IH, XD⊥ ⊢ C ⊃ ⊥,
and we know that xD⊥ ⊢ ⊥ ⊃ C. Thus by RE (or RM ), we get XD⊥

⊢ �C ⊃ �⊥. By contraposing it and then applying a MP with the
axiom D⊥, we get that XD⊥ ⊢ ¬�C. By some easy propositional steps
we conclude XD⊥ ⊢ (�C ∧

∧
Γ ′) ⊃

∨
∆. The case R-N is similar.

Let us consider rules L-D♦E . Suppose we are in G3ED♦ and we have
derived �A,�B, Γ ′ =⇒ ∆ from the premisses A, B =⇒ and =⇒ A, B.
By induction we get that ED♦⊢ A ∧ B ⊃ ⊥ and ED♦⊢ A ∨ B. Hence,
ED♦⊢ B ⊃ ¬A and ED♦⊢ ¬A ⊃ B. By applying RE we get that

ED♦ ⊢ �B ⊃ �¬A

which, thanks to axiom D♦, entails that

ED♦ ⊢ �B ⊃ ¬�A

By some propositional steps we conclude

ED♦ ⊢ (�A ∧ �B ∧
∧

Γ ′) ⊃
∨

∆

Notice that, thanks to Proposition 4.1.4 and Theorem 3.6, we can assume
that instances of rule L-D♦ always have two principal formulas. Other-
wise the calculus would prove the empty sequent (we will also assume
that neither Π nor Σ is empty in instances of rule L-D♦C ).
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The case of L-D♦M is analogous to that of L-D⊥ for instances with
one principal formula and to that of L-D♦E for instances with two prin-
cipal formulas.

Let us consider rule L-D♦C . Suppose we have a G3CD♦-derivation
whose last step is:

Π, Σ =⇒ {=⇒ A, B| A ∈ Π and B ∈ Σ}

�Π,�Σ, Γ ′ =⇒ ∆′

By induction and by some easy propositional steps we know that ECD♦

⊢
∧

Π ↔ ¬
∧

Σ. By rule RE we derive ECD♦ ⊢ �
∧

Π ⊃ �¬
∧

Σ,
which, thanks to axiom D♦, entails that ECD♦ ⊢ �

∧
Π ⊃ ¬�

∧
Σ. By

transitivity with two (generalized) instances of axiom C we obtain ECD♦

⊢
∧
�Π ⊃ ¬

∧
�Σ. By some easy propositional steps we conclude that

ECD♦ ⊢ (
∧
�Π ∧

∧
�Σ ∧

∧
Γ ′) ⊃

∨
∆.

The admissibility of L-D∗ in EC(N)D, RD, and KD is similar to that
of LR-C: in (1) we replace �D with �⊥ and then we use theorem D⊥

to transform it into ⊥. ⊣

By combining this and Theorem 2.6 we have the following result.

Corollary 4.6. The calculus G3X is sound and complete with respect
to the class of all neighbourhood models for X.

4.3. Forrester’s Paradox

As an application of our decision procedure, we use it to analyse two for-
mal reconstructions of Forrester’s paradox [9], which is one of the many
paradoxes that endanger the normal deontic logic KD [16]. Forrester’s
informal argument goes as follows:

Consider the following three statements:
1. Jones murders Smith.
2. Jones ought not murder Smith.
3. If Jones murders Smith, then Jones ought to murder Smith gently.

Intuitively, these sentences appear to be consistent. However 1 and 3
together imply that
4. Jones ought to murder Smith gently.

Also we accept the following conditional:
5. If Jones murders Smith gently, then Jones murders Smith.

Of course, this is not a logical validity but, rather, a fact about the
world we live in. Now, if we assume that the monotonicity rule is valid,
then statement 5 entails
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6. If Jones ought to murder Smith gently, then Jones ought to murder
Smith.

And so, statements 4 and 6 together imply
7. Jones ought to murder Smith.

But [given the validity of D♦] this contradicts statement 2. The above
argument suggests that classical deontic logic should not validate the
monotonicity rule [RM ]. [33, p. 16]

We show that Forrester’s paradox is not a valid argument in deontic
logics by presenting, in Figure 7, a failed G3KD-proof search of the
sequent that expresses it:

g ⊃ m, m ⊃ �g,�¬m, m =⇒ (3)

where m stands for ’John murders Smith’ and g for ‘John murders Smith
gently’ [16, pp. 87–91]. Note that, by Theorem 4.5, if Forrester’s paradox
is not G3KD-derivable, then it is not valid in all the weaker deontic logics
we have considered.

To make our failed proof search into a derivation of Forrester’s para-
dox, we would have to add (to G3MD♦ or stronger calculi) a non-logical
axiom =⇒ g ⊃ m, and to have cut as a primitive  and ineliminable 
rule of inference. An Hilbert-style axiomatization of Forrester’s argu-
ment  e.g., [16, p. 88]  hides this cut with a non-logical axiom in the
step where �g ⊃ �m is derived from g ⊃ m, by one of RM, RR or RK.
This step  i.e., the step from 5 to 6 in the informal argument above  is
not acceptable because none of these rules allows to infer its conclusion
when the premiss is an assumption and not a theorem.1 We have here
an instance of the same problem that has led many authors to conclude
that the deduction theorem fails in modal logics, a conclusion that has
been shown to be wrong in [27].

An alternative formulation of Forrester’s argument is given in [38],
where the sentence ‘John murders Smith gently’ is expressed by the com-
plex formula g ∧ m instead of by the atomic g. In this case Forrester’s

1 A reviewer pointed out that Forrester’s (5) should be taken as a global as-
sumption instead of as a local one as we did in (3). Semantically this corresponds
to taking g ⊃ m as being true in all worlds of the model instead of in the actual
world only. Proof-theoretically we don’t know how to handle global assumptions: see
[23] for a calculus with global assumption for normal modalities. We only observe
that adding A as a global assumption is weaker than having =⇒ A as a non-logical
axiom. Nonetheless, in logics where axiom N holds, the global assumption A might
be approximated by having A,�A in the antecedent of the end-sequent. If in (3) we
replace g ⊃ m with g ⊃ m,�(g ⊃ m) then Forrester’s paradox becomes derivable.
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closed
m,�¬m =⇒ g, m

open
g =⇒ m

g, ¬m =⇒ L¬

L-D⋆

open
g =⇒

L-D⋆

open
=⇒ m

¬m =⇒ L¬

L-D⋆

�g,�¬m, m =⇒ g

m ⊃ �g,�¬m, m =⇒ g
L⊃

...
m, m ⊃ �g,�¬m, m =⇒

g ⊃ m, m ⊃ �g,�¬m, m =⇒
L⊃

Figure 7. Failed G3KD-proof search of Forrester’s paradox [16]

closed
�¬m, m =⇒ m

closed
g, m =⇒ m

g, m, ¬m =⇒ L¬

g ∧ m, ¬m =⇒
L∧

L-D⋆

g ∧ m =⇒

L-D⋆
¬m =⇒
L-D⋆

�(g ∧ m),�¬m, m =⇒

m ⊃ �(m ∧ g),�¬m, m =⇒
L⊃

Figure 8. Successful G3MD-proof search for the alternative version of For-
rester’s paradox [38]

argument becomes valid whenever the monotonicity rule is valid as it
shown in Figure 8. Nevertheless, whereas it was an essential ingredi-
ent of the informal version, under this formalization premiss 5 becomes
dispensable. Hence it is disputable that this is an acceptable way of
formalising Forrester’s argument.

This is not the place to discuss at length the correctness of the formal
representations of Forrester’s argument and their implications for deontic
logics. We just wanted to illustrate how the calculi G3XD can be used
to analyse formal representations of the deontic paradoxes. If Forrester’s
argument is formalised as in [16] then it does not force to adopt a deontic
logic weaker than KD. If, instead, it is formalised as in [38] then it forces
the adoption of a logic where RM fails, but the formal derivation differs
substantially from Forrester’s informal argument [9].

5. Craig’s Interpolation Theorem

In this section we use Maehara’s [24, 25] technique to prove Craig’s
interpolation theorem for each modal or deontic logic X which has C as
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theorem only if it has also M (Example 5.5 illustrates the problem with
the non-standard rule LR-C).

Theorem 5.1 (Craig’s interpolation theorem). Let A ⊃ B be a theorem
of a logic X that differs from EC(N) and its deontic extensions EC(N)D
and ECD♦, then there is a formula I, which contains propositional vari-
ables common to A and B only, such that both A ⊃ I and I ⊃ B are
theorems of X.

In order to prove this theorem, we use the following notions.

Definition 5.2. A partition of a sequent Γ =⇒ ∆ is any pair of sequents
〈Γ1 =⇒ ∆1 || Γ2 =⇒ ∆2〉 such that Γ1, Γ2 = Γ and ∆1, ∆2 = ∆.
A G3X-interpolant of a partition 〈Γ1 =⇒ ∆1 || Γ2 =⇒ ∆2〉 is any
formula I such that:

1. All propositional variables in I are in (Γ1 ∪ ∆1) ∩ (Γ2 ∪ ∆2);
2. G3X ⊢ Γ1 =⇒ ∆1, I and G3X ⊢ I, Γ2 =⇒ ∆2.

If I is a G3X-interpolant of the partition 〈Γ1 =⇒ ∆1 || Γ2 =⇒ ∆2〉,
we write

(G3X ⊢) 〈Γ1 =⇒ ∆1

I

|| Γ2 =⇒ ∆2〉

where one or more of the multisets Γ1, Γ2, ∆1, ∆2 may be empty. When
the set of propositional variables in (Γ1 ∪ ∆1) ∩ (Γ2 ∪ ∆2) is empty,
the X-interpolant has to be constructed from ⊥ (and ⊤). The proof
of Theorem 5.1 is by the following lemma, originally due to Maehara
[24, 25] for (an extension of) classical logic.

Lemma 5.3 (Maehara’s lemma). If G3X ⊢ Γ =⇒ ∆ and LR-C (and
L-D♦C ) is not a rule of G3X (see Tables 1 and 2), every partition of
Γ =⇒ ∆ has a G3X-interpolant.

Proof. The proof is by induction on the height of the derivation D of
Γ =⇒ ∆. We have to show that each partition of an initial sequent (or
of a conclusion of a 0-premiss rule) has a G3X-interpolant and that for
each rule of G3X (but LR-C and L-D♦C ) we have an effective procedure
that outputs a G3X-interpolant for any partition of its conclusion from
the interpolant(s) of suitable partition(s) of its premiss(es). The proof
is modular and hence we can consider the modal rules without having
to reconsider them in the different calculi.

For the base case of initial sequents with p principal formula, we have
four possible partitions, whose interpolants are:
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(1) 〈p, Γ ′
1 =⇒ ∆′

1, p
⊥

|| Γ2 =⇒ ∆2〉 (2) 〈p, Γ ′
1 =⇒ ∆1

p

|| Γ2 =⇒ ∆′
2, p〉

(3) 〈Γ1 =⇒ ∆′
1, p

¬p

|| p, Γ ′
2 =⇒ ∆2〉 (4) 〈Γ1 =⇒ ∆1

⊤

|| p, Γ ′
2 =⇒ ∆′

2, p〉

and for the base case of rule L⊥, we have:

(1) 〈⊥, Γ ′
1 =⇒ ∆1

⊥

|| Γ2 =⇒ ∆2〉 (2) 〈Γ1 =⇒ ∆1

⊤

|| ⊥, Γ ′
2 =⇒ ∆2, 〉

For the proof of (some of) the propositional cases the reader is re-
ferred to [39, pp. 117–118]. Thus, we have only to prove that all the
modal and deontic rules of Figure 6 (modulo LR-C and L-D♦C ) behave
as desired.

• LR-E) If the last rule applied in D is

A =⇒ B B =⇒ A
�A, Γ =⇒ ∆,�B

LR-E

we have four kinds of partitions of the conclusion:

(1) 〈�A, Γ ′
1 =⇒ ∆′

1,�B || Γ2 =⇒ ∆2〉

(2) 〈�A, Γ ′
1 =⇒ ∆1 || Γ2 =⇒ ∆′

2,�B〉

(3) 〈Γ1 =⇒ ∆′
1,�B || �A, Γ ′

2 =⇒ ∆2〉

(4) 〈Γ1 =⇒ ∆1 || �A, Γ ′
2 =⇒ ∆′

2,�B〉

In each case we have to choose partitions of the premisses that permit
us to construct a G3E(ND)-interpolant for the partition under consider-
ation.

In case (1) we have

〈A =⇒ B
C

|| =⇒〉 〈B =⇒ A
D

|| =⇒〉

〈�A, Γ ′
1 =⇒ ∆′

1,�B
C

|| Γ2 =⇒ ∆2〉

LR-E

This can be shown as follows. By IH there is some C (D) that is a
G3E(ND)-interpolant of the given partition of the left (right) premiss.
Thus both C and D contains only propositional variables common to
A and B; and (i) ⊢ A =⇒ B, C (ii) ⊢ C =⇒ (iii) ⊢ B =⇒ A, D

and (iv) ⊢ D =⇒ . Since the common language of the partitions of the
premisses is empty, no propositional variable can occur in C nor in D.
Here is a proof that C is a G3E(ND)-interpolant of the partition under
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consideration (the sequents A =⇒ B and B =⇒ A are derivable since
they are the premisses of the instance of LR-E we are considering):

A =⇒ B B =⇒ A

�A, Γ ′
1 =⇒ ∆′

1,�B, C
LR-E

C =⇒
(ii)

C, Γ2 =⇒ ∆2
LWs+RWs

In case (2) we have

〈A =⇒
C

|| =⇒ B〉 〈B =⇒
D

|| =⇒ A〉

〈�A, Γ ′
1 =⇒ ∆1

�C

|| Γ2 =⇒ ∆′
2,�B〉

LR-E

By IH it holds that some C and D are G3E(ND)-interpolants of the
given partitions of the premisses. Thus, (i) ⊢ A =⇒ C (ii) ⊢ C =⇒ B

(iii) ⊢ B =⇒ D (iv) ⊢ D =⇒ A and (v) all propositional variables in
C ∪ D are in A ∩ B. Here is a proof that �C is a G3E(ND)-interpolant
of the given partition (the language condition is satisfied thanks to (v) ):

A =⇒ C
(i)

C =⇒ B
(ii)

B =⇒ D
(iii)

C =⇒ D
Cut

D =⇒ A
(iv)

C =⇒ A
Cut

�A, Γ ′
1 =⇒ ∆1,�C

LR-E

C =⇒ B
(ii)

B =⇒ D
(iii)

D =⇒ A
(iv)

A =⇒ C
(i)

D =⇒ C
Cut

B =⇒ C
Cut

�C, Γ2 =⇒ ∆′
2,�B

LR-E

In case (3) we have

〈=⇒ B
C

|| A =⇒〉 〈=⇒ A
D

|| B =⇒〉

〈Γ1 =⇒ ∆′
1,�B

♦C

|| �A, Γ ′
2 =⇒ ∆2〉

LR-E

By IH, there are C and D that are G3E(ND)-interpolants of the par-
titions of the premisses. Thus (i) ⊢=⇒ B, C (ii) ⊢ C, A =⇒ (iii)
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⊢=⇒ A, D and (iv) ⊢ D, B =⇒ . We prove that ♦C is a G3E(ND)-
interpolant of the (given partition of the) conclusion as follows:

=⇒ B, C
(i)

¬C =⇒ B
L¬

=⇒ D, A
(iii)

A, C =⇒
(ii)

C =⇒ D
Cut

D, B =⇒
(iv)

B, C =⇒
Cut

B =⇒ ¬C
R¬

�¬C, Γ1 =⇒ ∆′
1,�B

LR-E

Γ1 =⇒ ∆′
1,�B, ¬�¬C

R¬

C, A =⇒
(ii)

A =⇒ ¬C
R¬

=⇒ A, D
(iii)

=⇒ C, B
(ii)

B, D =⇒
(iv)

D =⇒ C
Cut

=⇒ A, C
Cut

¬C =⇒ A
L¬

�A, Γ ′
2 =⇒ ∆2,�¬C

LR-E

¬�¬C,�A, Γ ′
2 =⇒ ∆2

L¬

In case (4) we have

〈=⇒
C

|| A =⇒ B〉 〈=⇒
D

|| B =⇒ A〉

〈Γ1 =⇒ ∆1

C

|| �A, Γ ′
2 =⇒ ∆′

2,�B〉

LR−E

By IH, there are G3E(ND)-interpolants C and D of the partitions of
the premisses. Thus (i) ⊢=⇒ C (ii) ⊢ C, A =⇒ B (iii) ⊢=⇒ D

and (iv) ⊢ D, B =⇒ A . Since the common language of the partitions
of the premisses is empty, no propositional variable occurs in C nor in
D. We show that C is a G3E(ND)-interpolant of the partition under
consideration as follows (as in case (1), A =⇒ B and B =⇒ A, being the
premisses of the instance of LR-E under consideration, are derivable):

=⇒ C
(i)

Γ1 =⇒ ∆1, C
LWs+RWs

A =⇒ B B =⇒ A

C,�A, Γ ′
2 =⇒ ∆′

2,�B
LR-E

• LR-M) If the last rule applied in D is

A =⇒ B
�A, Γ =⇒ ∆,�B

LR-M
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we present directly the G3M(ND)-interpolants of the possible partitions
of the conclusion (and of the appropriate partition of the premiss). The
proofs are parallel to those for LR-E.

〈A =⇒ B
C

|| =⇒〉

〈�A, Γ ′
1 =⇒ ∆′

1,�B
C

|| Γ2 =⇒ ∆2〉

LR-M

〈A =⇒
C

|| =⇒ B〉

〈�A, Γ ′
1 =⇒ ∆1

�C

|| Γ2 =⇒ ∆′
2,�B〉

LR-M

〈=⇒ B
C

|| A =⇒〉

〈Γ1 =⇒ ∆′
1,�B

♦C

|| �A, Γ ′
2 =⇒ ∆2〉

LR-M

〈=⇒
C

|| A =⇒ B〉

〈Γ1 =⇒ ∆1

C

|| �A, Γ ′
2 =⇒ ∆′

2,�B〉

LR-M

• LR-R) If the last rule applied in D is

A, Π =⇒ B

�A,�Π, Γ =⇒ ∆,�B
LR-R

we have four kinds of partitions of the conclusion:

(1) 〈�A,�Π1, Γ ′
1 =⇒ ∆′

1,�B || �Π2, Γ ′
2 =⇒ ∆2〉

(2) 〈�A,�Π1, Γ ′
1 =⇒ ∆1 || �Π2, Γ ′

2 =⇒ ∆′
2,�B〉

(3) 〈�Π1, Γ ′
1 =⇒ ∆′

1,�B || �A,�Π2, Γ ′
2 =⇒ ∆2〉

(4) 〈�Π1, Γ ′
1 =⇒ ∆1 || �A,�Π2, Γ ′

2 =⇒ ∆′
2,�B〉

In case (1) we have two subcases according to whether Π2 is empty
or not. If it is not empty we have

〈A, Π1 =⇒ B
C

|| Π2 =⇒ 〉

〈�A,�Π1, Γ ′
1 =⇒ ∆′

1,�B
♦C

|| �Π2, Γ ′
2 =⇒ ∆2〉

LR-R
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By IH, there is a G3R(D⋆)-interpolant C of the chosen partition of the
premiss. Thus (i) ⊢ A, Π1 =⇒ B, C and (ii) ⊢ C, Π2 =⇒, and we have
the following derivations

A, Π1 =⇒ B, C
(i)

¬C, A, Π1 =⇒ B
L¬

�¬C,�A,�Π1, Γ ′
1 =⇒ ∆′

1,�B
LR-R

�A,�Π1, Γ ′
1 =⇒ ∆′

1,�B, ¬�¬C
R¬

C, Π2 =⇒
(ii)

Π2 =⇒ ¬C
R¬

�Π2, Γ ′
2 =⇒ ∆2,�¬C

LR-R

¬�¬C,�Π2, Γ ′
2 =⇒ ∆2

L¬

When Π2 (and �Π2) is empty we cannot proceed as above since we
cannot apply LR-R in the right derivation. But in this case, reasoning
like in case (1) for rule LR-E, we can show that

〈A, Π1 =⇒ B
C

|| =⇒ 〉

〈�A,�Π1, Γ ′
1 =⇒ ∆′

1,�B
C

|| Γ ′
2 =⇒ ∆2〉

LR-R

Cases (2) and (3) are similar to the corresponding cases for rule LR-E:

〈A, Π1 =⇒
C

|| Π2 =⇒ B〉

〈�A,�Π1, Γ ′
1 =⇒ ∆1

�C

|| �Π2, Γ ′
2 =⇒ ∆′

2,�B〉

LR-R

〈Π1 =⇒ B
C

|| A, Π2 =⇒ 〉

〈�Π1, Γ ′
1 =⇒ ∆′

1 �B
♦C

|| �A,�Π2, Γ ′
2 =⇒ ∆2〉

LR-R

In case (4) we have two subcases according to whether Π1 is empty
or not:

〈 =⇒
C

|| A, Π2 =⇒ B〉

〈Γ ′
1 =⇒ ∆1

C

|| �A,�Π2, Γ ′
2 =⇒ ∆′

2,�B〉

LR-R

〈Π1 =⇒
C

|| A, Π2 =⇒ B〉

〈�Π1, Γ ′
1 =⇒ ∆1

�C

|| �A,�Π2, Γ ′
2 =⇒ ∆′

2,�B〉

LR-R

The proofs are similar to those for case (1).
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• LR-K) If the last rule applied in D is

Π =⇒ B
�Π, Γ =⇒ ∆,�B

LR-K

we present directly the G3K(D)-interpolants of the two possible parti-
tions of the conclusion:

〈Π1 =⇒
C

|| Π2 =⇒ B〉

〈�Π1, Γ ′
1 =⇒ ∆1

�C

|| �Π2, Γ ′
2 =⇒ ∆′

2,�B〉

LR-K

〈Π1 =⇒ B
C

|| Π2 =⇒ 〉

〈�Π1, Γ ′
1 =⇒ ∆′

1,�B
♦C

|| �Π2, Γ ′
2 =⇒ ∆2〉

LR-K

The proofs are, respectively, parallel to those for cases (2) and (3) of
LR-E (when Π = ∅, we can proceed as for rule R-N and use C instead
of �C and of ♦C, respectively).
• L-D⊥) If the last rule applied in D is

A =⇒
�A, Γ =⇒ ∆

L-D
⊥

we have two kinds of partitions of the conclusion, whose G3XD⊥-inter-
polants are, respectively:

〈A =⇒
C

|| =⇒ 〉

〈�A, Γ ′
1 =⇒ ∆1

C

|| Γ2 =⇒ ∆2〉

L-D
⊥

〈 =⇒
C

|| A =⇒ 〉

〈Γ1 =⇒ ∆1

C

|| �A, Γ ′
2 =⇒ ∆2〉

L-D
⊥

• L-D♦) If the last rule applied in D is

A, B =⇒ =⇒ A, B

�A,�B, Γ =⇒ ∆
L-D

♦E

or

A, B =⇒

�A,�B, Γ =⇒ ∆
L-D

♦M

we have three kinds of partitions of the conclusion:

(1) 〈�A,�B, Γ ′
1 =⇒ ∆1 || Γ2 =⇒ ∆2〉

(2) 〈Γ1 =⇒ ∆1 || �A,�B, Γ ′
2 =⇒ ∆2〉

(3) 〈�A, Γ ′
1 =⇒ ∆1 || �B, Γ ′

2 =⇒ ∆2〉
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In cases (1) and (2) we have, respectively (omitting the right premiss
for L-D♦M ):

〈A, B =⇒
C

|| =⇒ 〉 〈=⇒ A, B
D

|| =⇒ 〉

〈�A,�B, Γ ′
1 =⇒ ∆1

C

|| Γ2 =⇒ ∆2〉

L-D
♦

〈 =⇒
C

|| A, B =⇒ 〉 〈=⇒
D

|| =⇒ A, B 〉

〈Γ1 =⇒ ∆1

C

|| �A,�B, Γ ′
2 =⇒ ∆2〉

L-D
♦

Finally, in case (3) we have:

〈A =⇒
C

|| B =⇒ 〉 〈=⇒ A
D

|| =⇒ B〉

〈�A, Γ ′
1 =⇒ ∆1

�C

|| �B, Γ ′
2 =⇒ ∆2〉

L-D
♦

By IH, we can assume that C is an interpolant of the partition of the
left premiss and D of the right one. We have the following G3YD♦-
derivations (Y ∈ { E,M}):

A =⇒ C
IH

=⇒ A, D
IH

D =⇒ B
IH

B, C =⇒
IH

D, C =⇒
Cut

C =⇒ A
Cut

�A, Γ ′
1 =⇒ ∆1,�C

LR-E

C, B =⇒
IH

=⇒ D, A
IH

A =⇒ C
IH

=⇒ C, D
Cut

D =⇒ B
IH

=⇒ C, B
Cut

�C,�B, Γ ′
2 =⇒ ∆2

L-D
♦E

It is also immediately evident that �C satisfies the language condition
for being a G3YD♦-interpolant of the conclusion since, by IH, we know
that each propositional variable occurring in C occurs in A ∩ B.
• L-D⋆) If the last rule applied in D is

Π =⇒
�Π, Γ =⇒ ∆

L-D
⋆

we have the following kind of partition:
〈�Π1, Γ ′

1 =⇒ ∆1 || �Π2, Γ ′
2 =⇒ ∆2〉.
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If Π1 is not empty we have:

〈Π1 =⇒
C

|| Π2 =⇒ 〉

〈�Π1, Γ ′
1 =⇒ ∆1

�C

|| �Π2, Γ ′
2 =⇒ ∆2〉

L-D
⋆

By IH, there is some C that is an interpolant of the premiss. It holds that
⊢ Π1 =⇒ C and ⊢ C, Π2 =⇒ . We show that �C is a G3YD-interpolant
(Y ∈ {R,K}) of the partition of the conclusion as follows:

Π1 =⇒ C
IH

�Π1, Γ ′
1 =⇒ ∆1,�C

LR-Y

C, Π2 =⇒
IH

�C,�Π2, Γ ′
2 =⇒ ∆2

L-D
∗

If, instead, Π1 is empty then Π2 cannot be empty and we have:

〈 =⇒
C

|| Π2 =⇒ 〉

〈Γ1 =⇒ ∆1

♦C

|| �Π2, Γ ′
2 =⇒ ∆2〉

L-D
⋆

By IH there is a formula C, containing no propositional variable, such
that ⊢ =⇒ C and ⊢ C, Π2 =⇒ . Thus, G3YD ⊢ Γ1 =⇒ ∆1,♦C (L-D∗

makes =⇒ ♦C derivable from =⇒ C) and G3YD ⊢ ♦⊤,�Π2, Γ ′
2 =⇒ ∆2

(LR-Y makes ♦C,�Π2 =⇒ derivable from C, Π2 =⇒ when Π2 6= ∅).

• R-N) If the last rule applied in D is

=⇒ A
Γ =⇒ ∆,�A

R-N

The interpolants for the two possible partitions are:

〈 =⇒ A
⊥

|| =⇒ 〉

〈Γ1 =⇒ ∆′
1,�A

⊥

|| Γ2 =⇒ ∆2〉

R-N

〈 =⇒
⊤

|| =⇒ A〉

〈Γ1 =⇒ ∆1

⊤

|| Γ2 =⇒ ∆′
2,�A〉

R-N

⊣
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〈 ⊤ =⇒
⊤

|| =⇒ ⊤ 〉 〈 ⊤ =⇒
⊤

|| =⇒ ⊤ 〉

〈 �⊤ =⇒
�⊤

|| =⇒ �⊤ 〉

LR-E

〈 ⊥ =⇒
⊥

|| =⇒ ⊥ 〉 〈 ⊥ =⇒
⊥

|| =⇒ ⊥ 〉

〈 �⊥ =⇒
�⊥

|| =⇒ �⊥ 〉

LR-E

Figure 9. Construction of an ED-interpolant for �⊤ ⊃ �⊤ and for �⊥ ⊃ �⊥

Proof of Theorem 5.1. Assume that A ⊃ B is a theorem of X. By
Theorem 4.5 and Lemma 3.4 we have that G3X ⊢ A =⇒ B. By Lemma
5.3 (taking A as Γ1 and B as ∆2 and Γ2, ∆1 empty) and Theorem 4.5
there exists a formula I that is an interpolant of A ⊃ B  i.e. I is such
such that all propositional variables occurring in I, if any, occur in both
A and B and such that A ⊃ I and I ⊃ B are theorems of X. ⊣

Observe that the proof is constructive in that Lemma 5.3 gives a
procedure to extract an interpolant for A ⊃ B from a given derivation
of A =⇒ B. Furthermore the proof is purely proof-theoretic in that it
makes no use of model-theoretic notions.

Craig’s theorem is often  e.g., in [25] for an extension of classical
logic  stated in the following stronger version:

If A ⊃ B is a theorem of logic X, then
1. If A and B share some propositional variable, there is a for-

mula I, which contains propositional variables common to A

and B only, such that both A ⊃ I and I ⊃ B are theorems
of X;

2. Else, either ¬A or B is a theorem of X.

But the second condition doesn’t hold for modal and deontic logics where
at least one of N := �⊤ and D⊥ := ♦⊤ is not a theorem. To illustrate,
it holds that �⊤ ⊃ �⊤ is a theorem of E and its interpolant is �⊥ (see
Figure 9), but neither ¬�⊤ nor �⊤ is a theorem of E. Analogously, we
have that �⊥ ⊃ �⊥ is a theorem of E and its interpolant is �⊥ (see
Figure 9), but neither ¬�⊥ nor �⊥ is a theorem of E. These counterex-
amples work in all extensions of E that don’t have both N and D⊥ as
theorems: to prove the stronger version of Craig’s theorem we need N

and D⊥, respectively.

Among the deontic logics considered here, the stronger version of
Craig’s theorem holds only for END⊥(♦), MND⊥(♦), and KD, as shown
by the following
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Corollary 5.4. Let XD be one of END⊥(♦), MND⊥(♦), and KD. If
A ⊃ B is a theorem of XD and A and B share no propositional variable,
then either ¬A or B is a theorem of XD.

Proof. Suppose that XD ⊢ A ⊃ B and that A and B share no propo-
sitional variable, then the interpolant I is constructed from ⊥ and ⊤
by means of classical and deontic operators. Whenever D⊥ and N are
theorems of XD, we have that ♦⊤ ↔ ⊤, �⊤ ↔ ⊤, ♦⊥ ↔ ⊥, and
�⊥ ↔ ⊥ are theorems of XD. Hence, the interpolant I is (equivalent
to) either ⊥ or ⊤. In the first case XD ⊢ ¬A and in the second one XD
⊢ B. ⊣

As noted in [8, p. 298], Corollary 5.4 is a Halldén-completeness result.
A logic X is Halldén-complete if, for every formulas A and B that share
no propositional variable, X ⊢ A ∨ B if and only if X ⊢ A or X ⊢ B. All
the modal and deontic logics considered here, being based on classical
logic, are such that A ⊃ B is equivalent to ¬A ∨ B. Thus the deontic
logics considered in Corollary 5.4 are Halldén-complete, whereas all other
non-normal logics for which we have proved interpolation are Halldén-
incomplete since they don’t satisfy Corollary 5.4.

Example 5.5 (Maehara’s lemma and rule LR-C). We have not been able
to prove Maehara’s Lemma 5.3 for rule LR-C because of the cases where
the principal formulas of the antecedent are split in the two elements
of the partition. In particular, if we have two principal formulas in
the antecedent, the problematic partitions are (omitting the weakening
contexts):

(1) 〈�A1 =⇒ || �A2 =⇒ �B〉 (2) 〈�A1 =⇒ �B || �A2 =⇒〉

To illustrate, an interpolant of the first partition would be a formula I

such that:

(i) ⊢ �A1 =⇒ I (ii) ⊢ I,�A2 =⇒ �B

(iii) p ∈ I only if p ∈ (A1) ∩ (A2, B)

But we have not been able to find partitions of the premisses allowing
us to find such I. More in details, for the first premiss it is natural to

consider the partition 〈A1 =⇒
C

|| A2 =⇒ B〉 in order to find an I that
satisfies (iii). But, for any combination of the partitions of the other two
premisses that is compatible with (iii), we can prove that (ii) is satisfied
(by �C) but we have not been able to prove that also (i) is satisfied.
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6. Conclusion

We presented cut- and contraction-free sequent calculi for non-normal
modal and deontic logics. We have proved that these calculi have good
structural properties in that the rules of weakening and contraction are
height-preserving admissible and cut is (syntactically) admissible. More-
over, we have shown that these calculi allow for a terminating decision
procedure whose complexity is in Pspace. Finally, we have given a con-
structive proof of Craig’s interpolation property for all the logics that do
not contain rule LR-C. As far as we know, it is still an open problem
whether it is possible to give a constructive proof of interpolation for
these logics. Another open question is whether the calculi given here
can be used to give a constructive proof of the uniform interpolation
property for non-normal logics as is done in [36] for ILp and in [2] for K
and T.
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