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Abstract 

Small few-layer graphene (sFLG), a novel small-sized graphene-related material 

(GRM), can be considered as an intermediate degradation product of graphene. GRMs 

have a promising present and future in the field of biomedicine. However, safety issues 

must be carefully addressed to facilitate their implementation. In the work described 

here, the effect of sub-lethal doses of sFLG on the biology of human HaCaT 

keratinocytes was examined. A one-week treatment of HaCaTs with sub-lethal doses of 

sFLG resulted in metabolome remodeling, dampening of the mitochondrial function and 

a shift in the redox state to pro-oxidant conditions. sFLG raises reactive oxygen species 

and calcium from 24 hours to one week after the treatment and this involves the 

activation of NADPH oxidase 1. Likewise, sFLG seems to induce a shift from oxidative 

phosphorylation to glycolysis and promotes the use of glutamine as an alternative 

source of energy. When sub-toxic sFLG exposure was sustained for 30 days, an increase 

in cell proliferation and mitochondrial damage were observed. Further research is 

required to unveil the safety of GRMs and degradation-derived products before their use 

in the workplace and in practical applications. 
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Introduction 

GRMs (graphene-related materials) have appeared as promising elements in different 

fields from composites to electronics applications 1. In biomedicine, GRMs have been 

employed in imaging 2, drug delivery 3,4, diagnosis 5 and many others areas 6-12. 

Nonetheless, there is currently a lack of data concerning the effect of GRMs on human 

health, especially when these materials interact with highly sensitive barriers such as 

skin. The toxic effects of GRMs are determined by characteristics such as size, surface 

functionalization and dispersion method 13-19. In consequence, it is critical to carry out 

biological studies in which these materials are carefully characterized with the aim of 

understanding the physicochemical characteristics that govern biological responses 10.  

Additionally, not only primary GRMs should be considered, but special attention should 

be paid to their degradation sub-products as there is already some evidence that these 

materials degrade in the environment. The results of several studies have proven that 

GRMs can be degraded by a photo-Fenton reaction 20. The photooxidation of graphene 

oxide (GO) produces intermediate products with reduced sizes, low molecular weight 

and small amounts of oxygen functionality 21,22. For example, AFM images of GO 

samples degraded in sunlight 21 show that the degradation of this GRM gives rise to 

small flakes of around 40 nm and XPS results revealed a notable decrease in the oxygen 

content with respect to initial GO samples. 

We previously demonstrated that few layer graphene (FLG) and GO are toxic to human 

HaCaT skin cells cultured in vitro 23. High and moderate concentrations of each GRM 

damage cells mainly by physical interaction with the membranes, which results in cell 

necrosis 23. Moreover, these actions are correlated with significant metabolic changes 23. 

Herein we report the effect of small FLG (sFLG), a GRM similar to FLG but with 

graphene flakes smaller than 100 nm and a lateral size distribution with a major 
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component of around 40 nm. This fact, along with the low oxygen content, means that 

this material can be considered as a sub-product of a GRM degradative process. sFLG is 

produced by a green preparation approach using glucose as the exfoliating agent 24.  

Our results indicate that sFLG clearly differs from FLG in its effects related to toxicity. 

This smaller material does not have any toxicity at concentrations where FLG does, 

with its effects not being translated into any observable phenotype assayed with 

toxicity. However, a more detailed analysis, including various cellular and metabolic 

approaches, revealed profound changes triggered by sub-toxic doses of sFLG, which 

induce mild early mitochondrial alterations that are sustained for up to seven days. 

These changes are initiated by alterations in the homeostasis of cytosolic Ca2+, H2O2 or 

NADPH-oxidase 1 (NOX1) enzyme levels, which denotes mitochondrial overload. This 

overload is evidenced by a profound change in the metabolome and bioenergetics 

pathways. With the assistance of nuclear magnetic resonance (NMR)-based 

metabolomics and SeaHorse XFp (Agilent) equipment, we dissected many alterations 

that are not evident with other techniques, such as an imbalance between oxidative 

phosphorylation and glycolysis, and the preferential usage of energy from other carbon 

sources such as glutamine. This use of glycolysis, which is known as the Warburg 

effect, has been observed in the initial steps of carcinogenesis 25,26, although it could 

also be observed in non-transformed cells27. The mild mitochondrial damage, in 

conjunction with the remodeling of metabolism and sustained reactive oxygen species 

(ROS) production, could indicate the initiation of a tumorigenesis process 28. In order to 

study this potential effect in depth the long term effects were analyzed. It was found that 

a small metabolic disturbance is maintained and that this is coupled with an increase in 

cell proliferation.  
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Although genotoxicity assays are still required, the results of this work show the 

relevance of refining our roadmap for interpreting data for a better understanding of the 

interactions between different GRMs and human barriers, with particular attention paid 

to metabolism and mitochondria even when an evident phenotype is not noticeable. 

These studies are also important because some GRMs have already been proposed for 

use in contact with skin, for example in textiles 29 or wearable electronics 30,31. Special 

care must be taken to study the degradation and release of these materials during service 

life. 

Results 

Characterization of sFLG  

A typical image of sFLG is shown in Figure 1A with graphene flakes smaller than 100 

nm and a size distribution with a major component of around 40 nm (Figure 1B). 

Raman spectroscopy was used to determine better the properties of these flakes. A 

representative Raman spectrum is shown in Figure 1C, with characteristic graphene 

bands D, G, D' and 2D observed (1350, 1580, 1600, and 2700 cm–1, respectively). The 

main band, the G band, exists for all sp2 carbon systems, the 2D band originates from 

the in-plane breathing-like mode of the carbon rings, and the D band is a disorder-

induced band 32. Meanwhile, D' appears as a shoulder on the G band and, like the D 

band, this also requires defects, although if the amount of disorder increases the G and 

D' bands can merge, as in the case of graphene oxide 33,34. The relation between the 

intensities of the 2D (I2D) and G (IG) bands, and its full width at half maximum 

(FWHM), were used to determine the number of layers (NG) in sFLG 35-37. The 

observed value I2D/IG = 0.543 and the FWHM of 64 cm–1 are consistent with the 

presence of FLG 38. Moreover, the information obtained from the 2D position and the 

equation described by Paton et al. 39 allows an average number of three layers to be 
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calculated. The intensity ratio between the D and G bands (ID/IG) (ID/IG = 1.4) was used 

to quantify the density of defects in graphene 40,41, but this value also correlates with the 

presence of small flakes. Meanwhile, XPS (Figure 1E) was used to evaluate the 

functional groups in the sample. From the C1s spectra, it is possible to observe the 

presence of sp2 carbon bonds at 284.5 eV, C–O–C bonds at 286.4 eV, C=O bonds at 

287.8 eV and C(O)O bonds at 289.3 eV, with a C/O ratio of 6.47. Thermogravimetric 

analysis (Figure 1D) of sFLG performed under a nitrogen atmosphere is consistent with 

the XPS results, with a weight loss of 33% at 600 ºC due to the loss of residual oxygen-

containing groups at the edges of the graphene sheets. Moreover, elemental analysis of 

sFLG gave average values of C (90.16 wt%), H (0.69 wt%), N (0.08 wt%), S (0.07 

wt%) and O (9.00 wt%) (Figure 1F). Finally, in order to determine possible metal 

traces, total reflection X-ray fluorescence (TXRF) was employed (Supplementary 

Figure S1) and this confirmed the absence of metal contamination. 

 

Effects of sFLG on cell viability  

We previously reported that FLG and GO induce cytotoxicity in HaCaT cells in a time- 

and concentration-dependent manner, with necrosis induced and apoptosis initiated even 

at low concentrations (5 µg/mL) of each GRM 23. Thus, as sFLG can be considered as a 

sub-product of FLG degradation, it was necessary to characterize its possible 

cytotoxic/cytostatic effects. The results presented herein show that incubation of human 

skin HaCaT cells with sFLG induces a dose- and time-dependent increase in necrosis 

and that this is higher at seven days incubation than at 24 hours. However, this effect is 

only significant at high doses between 50 and 100 μg/mL, with values of 7% and 10% 

obtained, respectively (Figure 2A). Similar results were obtained for apoptosis. A 24 

hour treatment with 50 and 100 μg/mL sFLG triggered apoptosis in 2% and 3.7% of 
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cells, respectively, which increased slightly up to 5.5% with the highest dose after a 

seven day treatment (Figure 2B). Therefore, 5 µg/mL was considered as a sub-toxic 

dose of sFLG since it does not increase apoptosis or necrosis. It was of great interest to 

evaluate the underlying cellular damage that sub-lethal doses can induce, since these 

will be the doses used in the different applications of GRMs. 

 

Effects of sFLG on metabolism  

Metabolomics is a powerful tool to evaluate the effects of nanomaterials on human cells 

42-44 as it allows the detection of metabolic changes that cannot be quantified by other 

techniques. An NMR-based metabolomics approach was previously used to 

demonstrate that low concentrations of GO and FLG (5 µg/mL) induce metabolic 

changes in HaCaT cells 23. Following the same approach, we evaluated the effect of a 

low (5 µg/mL) sFLG concentration on human skin cells treated for up to seven days. 

Interestingly, although cell death was not observed under these conditions, 

metabolomics revealed a profound change in the metabolic profile of HaCaT cells. 

Specifically, increased levels of glucose, lactate, myoinositol and succinate by 0.37, 

0.61, 0.76 and 0.34-fold vs. control were observed, respectively (Figure 3A). 

Furthermore, glutamine, choline, glutamate and glutathione (GSH) levels were 

diminished by –0.72, –0.92, –0.80 and –0.39-fold vs. control, respectively (Figure 3A). 

Enrichment analysis revealed an alteration in different metabolic pathways including 

those related to pyruvate metabolism, butanoate metabolism, glycerophospholipids 

metabolism, tricarboxylic acid (TCA) cycle and glycolysis (Figure 3B, C). All of these 

pathways are critical for central metabolism and their alteration can affect directly or 

indirectly redox homeostasis, cell viability, motility and the whole cell bioenergetic 

status (Figure 3B, C).  
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Effect of sFLG on Ca2+ homeostasis  
 
Ca2+ acts as a pleiotropic second messenger that triggers numerous and diverse 

physiological processes related to cell proliferation, vesicle transport, general 

homeostasis, oxidative stress and differentiation, amongst others 45. In a previous work 

we observed that Ca2+ homeostasis in keratinocytes is disrupted upon treatment with 

GO and FLG, with the level of this second messenger increased after a 24 hour 

treatment with 5 µg/mL of the GRMs, and this led to cell death 23. The same approach 

was used to evaluate the effect of sFLG on Ca2+ levels in HaCaTs. sFLG raised the level 

of free cytosolic Ca2+ by more than 50% after treatment for 24 hours, with 5 µg/mL 

being the lowest effective concentration (Figure 4A). Higher sFLG doses increased the 

levels of free cytosolic Ca2+ to a greater degree and this was maintained up to seven 

days (Figure 4A). In an effort to gain more insights into Ca2+ kinetics in response to 

sFLG, a real time experiment was carried out in which the variation in Ca2+ was 

monitored from the addition of 5 μg/mL of the GRM, i.e., the lowest effective 

concentration. This approach revealed that the disruption of Ca2+ homeostasis began 

very soon after sFLG addition, with a significant difference observed after only five 

hours of exposure (Figure 4B).  

The effect of sFLG on mitochondrial Ca2+ was monitored upon exposing HaCaTs to 5 

μg/mL for 24 hours and seven days. The samples were then stained with calcein-AM 

and CoCl2 to quench the fluorescence outside of the mitochondria by following a 

previously reported methodology 46. This methodology indicated that mitochondrial 

Ca2+ levels were almost doubled 24 hours after treatment and this increase was 

maintained after incubation for seven days (Figure 4C). In order to confirm these data, 

the collocation between Ca2+ levels (Fluo-4) and the Mitotracker-Red signal was 

analyzed. It was observed that the percentage of collocation was doubled in cells 
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exposed to sFLG for seven days (Figure 4D), thus corroborating by indirect and direct 

methods the alteration of the homeostasis of mitochondrial calcium by sFLG sub-toxic 

exposure.  

 
 
ROS homeostasis alteration by sFLG  

ROS and Ca2+ are essential and interconnected signaling molecules in 

homeostatic/normal cell conditions 47. However, increased levels of Ca2+ and 

overproduction of ROS are linked to diverse cellular processes, from metabolic 

alterations to cell death 48,49. The effect of sFLG on ROS (H2O2 and mitochondrial O2.–) 

production was evaluated in HaCaT cells treated for 24 hours and seven days with 

increasing concentrations of sFLG. The results indicate that sFLG raised the level of 

H2O2 at 24 hours in a concentration-dependent manner, with a significant increase from 

5 μg/mL (Figure 5A, left) that was sustained to seven days (Figure 5A, right). The 

results were similar for mitochondrial O2.– (Figure 5C), although the lowest 

concentration of sFLG (5 μg/mL) only increased O2.– after seven days of incubation.    

To gain further insights into the ROS kinetics in response to sFLG, a real time 

experiment was carried out to monitor the variation of H2O2 and mitochondrial O2.– 

from the addition of 5 μg/mL of the GRM. The results show a significant increase in 

H2O2 at 210 minutes from the addition of sFLG, with this increase maintained up to the 

end of the experiment, i.e., eight hours (Figure 5B). In contrast, and supporting previous 

results at 24 hours and seven days, a change in the mitochondrial O2.– was not observed 

(Figure 5D). This shows that sFLG had a biphasic effect by acting first on the 

membrane and cytosol, thus increasing the level of Ca2+ and H2O2, and secondly by 

exerting mild damage to mitochondria, which is translated into metabolic alteration at 

longer incubation times.  
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sFLG effect on the oxidative balance  

The results showed that the treatment of HaCaT with sFLG for 24 hours downregulated 

the level of GSH and increased the level of H2O2, with the level of mitochondrial O2.– 

remaining unaffected.  

The above evidence allowed us to evaluate the possible modulation of NOX1 by sFLG, 

a key component of the redox homeostasis system 50. To that end, HaCaTs were 

exposed to 5 μg/mL of the GRM for 24 hours and seven days. The results showed a 

20% increase in the level of NOX1 after a 24 hour treatment and this was almost fully 

maintained up to seven days (Figure 5E). This increase in NOX1 could be a protective 

cell mechanism to an external injury, as NOX activation has been described in the 

degradation of carbon nanotubes 51.  

All of the above data suggest that sFLG is altering the oxidative balance. In an effort to 

clarify this point, the effect of the GRM on the total antioxidant capacity (TAC) of the 

cells was evaluated. A significant reduction in TAC levels was observed after 24 hours 

and this was maintained up to seven days (Figure 5F).  

 
 
Impact of sFLG on mitochondrial respiration 

In order to gain further insights into the changes in the mitochondria and the overall 

effect on bioenergetics, oxidative respiration assays were performed on HaCaT cells, 

exposed to 5 μg/mL, using a Seahorse XFp extracellular flux analyzer and a Cell Mito 

Stress test kit (Agilent) (Figure 6A, B) according to previously reported protocols 52. As 

a first approach we evaluated the effect of sFLG at very short term, i.e., six hours, but 

did not observe a difference in any of the parameters analyzed (Supplementary Figure 

2). However, a 24 hour treatment increased the oxygen consumption ratio (OCR) due to 



 

10 
 

an increase in basal respiration and maximal respiration, which were accompanied by a 

parallel increase in proton leak without affecting ATP production (Figure 6A).  

Similar results were obtained after incubation for seven days (Figure 6B). Although it 

was not probable, it was possible that sFLG would affect the total number of 

mitochondria. In an effort to clarify this possibility, HaCaT cells treated for seven days 

with 5 μg/mL sFLG were stained with MitoTracker green to analyze the mitochondrial 

cell area and the signal intensity of the probe. Neither of the parameters were affected 

(Figure 6C) and this indicates that the number of mitochondria per cell remained 

unaffected. Confocal microscopy with a 63× objective was employed to carry out a z-

stack acquisition of whole cells treated for seven days with 5 μg/mL sFLG and control 

cells (Supplementary Figure 3). Colocalization was found between graphene aggregates 

(black dots; Figure 6D and Supplementary Figure 2) and mitochondria (Mitotracker 

Green, Figure 6D and Supplementary Figure 3). 

 

Impact of sFLG on glycolysis 

In an effort to evaluate the complete roadmap of alterations induced by sFLG on HaCaT 

cells, the glycolytic function was analyzed by measuring the extracellular acidification 

rate (ECAR) using a saturating concentration of glucose (10 mM) to increase ECAR 

followed by oligomycin treatment to inhibit ATP synthase.  

The results of these experiments revealed that a 24 hour treatment of HaCaT cells with 

5 μg/mL sFLG doubled glycolysis, glycolytic capacity and cell glycolytic reserve 

without affecting non-glycolytic acidification (Figure 7A). These results were 

maintained up to seven days, the endpoint of the experiment (Figure 7B), thus 

indicating the triggering of glycolytic machinery. However, the question remained as to 
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whether the increase in OCR and ECAR rates would be maintained in an energy-

demand condition. 

The OCR and ECAR were then measured under baseline and stress conditions. In this 

scenario, OCR increased under baseline conditions upon sFLG treatment, but there was 

no significant alteration under stress conditions (Figure 7C and Supplementary Figure 

4). In contrast, ECAR increased both under basal and stress conditions, thus indicating a 

predominance of glycolysis vs. oxidative phosphorylation (Figure 7D and 

Supplementary Figure 4). This shift was mirrored by a similar decrease in the cell 

metabolic potential, which determines the ability of cells to meet an energy demand 

through respiration and glycolysis (Figure 7E). In addition, substrate-dependency assays 

revealed that this same treatment increased the cell dependency of glucose and, in 

particular, glutamine (Figure 7F).  

 

Effect of sub-chronic sFLG incubation  

As a first approach to ascertain the effect of long-term treatment with sFLG, a study was 

performed on the level of mitochondrial Ca2+, the energy status and some phenotypic 

characteristics in HaCaT cells treated for 30 days with 5 μg/mL sFLG. It was noticeable 

that there was no change in the free cytosolic Ca2+ level in cells exposed to 5 μg/mL for 

30 days (Figure 8A). However, mitochondrial Ca2+ had increased at this time by a 

similar magnitude to the change observed upon treatment for seven days (Figure 8B, C). 

Therefore, the mitochondrial alteration was maintained upon long-term sFLG exposure. 

To gain more insight into mitochondrial changes, the mitochondrial stress was 

evaluated by Seahorse XFp technology. This approach revealed that maximal 

respiration and spare capacity decreased upon treatment with sFLG (Figure 8D). There 
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is, therefore, a change in the mitochondrial condition observed in cells treated for 24 

hours and seven days. 

All of the alterations in the overall features of cellular and mitochondrial homeostasis 

discussed above could be translated into functional changes. In this sense, several 

parameters of particular interest were evaluated 53,54. Ki-67 is a widely used and 

approved cellular marker for proliferation 55. Ki-67 levels and the number of positive 

cells were evaluated, with a non-significant increase in both intensity level and number 

of positive cells observed (Figure 8E).  

The cell and nuclear size in sub-chronic exposed cells were subsequently analyzed and a 

marked difference in morphology was observed between control and sFLG-treated cells 

(Figure 8F). sFLG induced a slight increase in nuclear size (Supplementary Figure 5) 

but a much more pronounced increase in total cell size (Supplementary Figure 5). As a 

first approach to functional changes, the migration was studied but differences between 

control and sFLG-treated cells were not observed (Figure 8G). 

Discussion 

sFLG can be considered as a degradation product of GRMs due to its size and 

physicochemical characteristics. Graphene is a promising candidate for the preparation 

of novel materials for multiple applications, which makes it essential to understand and 

dissect the mechanisms that govern its toxic effects and to determine the exact toxicity 

range for each GRM. The results presented above clearly indicate that sFLG is less 

toxic than FLG and GO 23 and it can be considered ‘safe’ because in HaCaT cells it did 

not have a noticeable effect in terms of an increase in cell death detected by classical 

toxicological/microscopy techniques. Besides, these results confirm that the main 

cytotoxic damage of FLG and GO, at least to epithelial cells, is due to physical 
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disruption of the plasma membrane, as published in earlier works 23,56,57. However, 

special attention should be paid to the effects that sFLG has on metabolism. The results 

indicate that treatment of HaCaT cells with sub-toxic concentrations of sFLG induces 

mild mitochondrial damage preceded by a cytosolic Ca2+ overload and a parallel 

increase in oxidative stress.  

There is evidence to indicate that GO alters proteins related to energy metabolism in 

breast cancer cells, specifically those related to oxidative phosphorylation and the TCA 

cycle 58. Moreover, we previously reported that these pathways are altered by GO and 

FLG in HaCaT cells and that this is linked to a pro-death phenotype 23. GO and FLG 

can damage mitochondria and induce HaCaT cell death upon acute treatment 57 and it is 

possible that sFLG also alters the organelle and exerts moderate damage that is not 

sufficient to trigger either apoptosis or necrosis.  

This mild mitochondrial damage caused by sFLG is also supported by the results on 

mitochondrial Ca2+ levels, the deregulation of which could affect the whole cell 

bioenergetics 59. This factor should be considered for future uses of GRMs, as one of the 

envisaged biomedical applications of these compounds is to deliver drugs into 

mitochondria 60,61.  

Another indirect clue for mitochondrial damage is the activation of the NOX1 enzyme 

in response to sFLG, as described herein. The activation of this enzyme could be the 

key to revealing why the level of H2O2 increased in the early stages, where 

mitochondria are not yet severely damaged. Indeed, Sun et al. reported previously that 

carbon nanotubes can induce NOX activity in vitro 62. Recently, Pelin et al. proposed a 

putative mechanism for mitochondrial damage induced by FLG and GO in HaCaT skin 

keratinocytes, whereby the GRM-induced ROS increase is mediated by the activation of 

flavoprotein-based oxidative enzymes 57. In the same work, the authors observed 
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indirectly (using a NOX inhibitor) that NOX was not altered. In our case, an alteration 

was observed in the activity of this enzyme and this could indicate a differential effect 

of the sFLG. 

sFLG not only increases H2O2 levels but also affects the whole redox balance by 

decreasing the level of antioxidant molecules such as GSH. It has previously been 

reported that GO decreases the level of GSH in zebrafish and rat kidneys 63,64. A 

decrease in GSH is also linked to FLG-induced cytotoxicity in HUVEC cells 65. GSH 

prevents oxidative stress and a drop in the levels of this compound could be fatal if 

cellular ROS levels are increased due to external agents 66. Thus, sFLG could be 

disarming antioxidant HaCaT components as a decrease in the level of GSH and its 

precursors was observed (Figure 4). 

sFLG also cuts glutamine levels and induces a double impact in cell homeostasis. 

Firstly, a reduction in glutamine levels could also be indicative of an enhanced 

consumption of the amino acid – a consequence of an adaptative response to 

mitochondrial stress 67. Secondly, glutamine and glutamate, which is also diminished, 

are key metabolites for the synthesis of GSH 66.  

The results reported here for sFLG indicate metabolic changes that precede more 

evident cellular alterations. In this scenario, the observed enhanced levels of glucose 

and lactate are striking and suggest a shift from oxidative phosphorylation to aerobic 

glycolysis, a change that is called the Warburg effect – a metabolic alteration observed 

in tumor cells 68,69. OCR is also increased and this also supports mitochondrial damage 

and the start-up of bioenergetics mechanisms that are not related to oxidative 

phosphorylation. Overall, these results confirm that mitochondrial biology is being 

affected, although this process must be studied carefully as the observed metabolic 

change shares more characteristics with tumor metabolism than one might expect 25. 
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Specifically, the metabolic remodeling and cellular events altered by sFLG resemble the 

changes produced by UV in skin cells in the early stages of tumorigenesis before any 

evident cell transformation occurs 26. It has recently been reported that these skin pre-

tumor cells, even though phenotypical alterations have not yet occurred, show a 

metabolic remodeling that precedes transformation into tumor cells, which is related to 

an increase in lactate and glycolysis and an enhancement in glutamine dependency 26. 

These facts do not necessarily mean that the same situation is arising in our case, but the 

indications highlighted in this work mean that this aspect must be studied more 

carefully. The reliance on glucose and glutamine of HaCaTs treated with sFLG by was 

assessed by quantifying mitochondrial respiration to determine how dependent the cells 

are on the pathway of interest to meet basal energy demand. The results show increased 

dependency on glucose and glutamine in response to sFLG (Figure 8F), thus indicating 

that mitochondria require higher amounts of glucose to maintain basal respiration, due 

to the glycolytic shift, and that cells use other energy sources such as glutamine to 

compensate for this high energy demand. These metabolic changes occur very early, 

i.e., after a 24 hour treatment, and last for seven days, which indicates that cells are not 

able to overcome the injury. If these metabolic changes are maintained over prolonged 

periods of time, they may dramatically affect cell homeostasis and lead to tumor 

features 70. This is why one of our main goals in the laboratory today is to draw 

conclusions about the effect of sub-chronic exposure to GRMs. 

As a first approach, we observed how the effect of sFLG on HaCaT cells is time-

dependent. Interesting alterations have been identified in a sub-chronic exposure of 30 

days to sFLG. Therefore, the time of exposure is also a key factor in GRM-induced 

toxicity. The decrease in maximal respiration (Figure 8D) may be due to accumulated 

damage related to the increase in mitochondrial calcium overload for 30 days (Figure 8 
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B, C). Changes in proton leak in the longer term could be produced by alterations in the 

surface area and proton permeability of the mitochondrial inner membrane 71, which is 

also directly related to Ca2+ homeostasis 72. The changes observed in mitochondrial 

respiration may be related to the Warburg effect, which is responsible for an increase in 

cell proliferation 73. The results reported here showed an increase in Ki-67 positive cells 

that, while not significant, indicated a trend towards increased cell proliferation (Figure 

8 E). In addition to these results morphological changes were observed (Figure 8 F). 

Overall, small clues were observed that could be indicative of some tumor capacity of 

sFLG and we are currently carrying out a complete approach to study this potential, not 

only with sFLG but with other GRMs with different degrees of oxidation and lateral 

sizes. 

A range of cellular changes generated by sub-lethal doses of sFLG have been 

characterized. The effects reported in this work have not been observed previously. This 

suggests that the graphene-cell relationship is much more complex than expected. 

Although more studies must be performed, this shift to a sustained pro-oxidant state in 

which GSH is decreased and O2.– is augmented leads one to speculate that the sFLG 

could be inducing in cells a similar effect to that exerted by UV 26 or even radiotherapy. 

This could lead to DNA damage and probably to the accumulation of DNA mutations 

74. Preliminary evidence already exists for DNA damage generated by different GRMs 

75-77 and it is worth highlighting the relevance of lateral size, oxidation, dose, etc. in 

DNA damage. It is therefore essential to assess whether these alterations can lead to 

tumor processes, especially with sub-lethal doses and sub-chronic exposures. 

Conclusions 

The use of GRMs for future applications is promising but it is essential to study in depth 

the effects of the primary compounds as well as their degradation products. In the work 
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described here we offer a more complete roadmap concerning the effect of sFLG on 

human skin cells. A powerful methodology is described to detect changes that are not 

evident with other classical techniques. It was observed that sFLG generates a whole 

series of changes in human skin cells, even on applying sub-lethal doses. In a multi-

experimental approach, a remodeling of the cellular energetic metabolism was observed 

along with alterations in the calcium and redox homeostasis. This metabolic reshaping 

shares some characteristics with classic tumor cell metabolism. These alterations are 

also maintained when a sub-chronic exposure is carried out. Further assays at sub-

chronic exposure are being conducted with different GRMs, with the aim of 

ascertaining the impact of prolonged elevated ROS levels and metabolic shift, as DNA 

stability could be compromised. The aim is to determine accurately the order of 

magnitude of the generated damage.  

The effect of acute doses of GRMs at short exposure times is now well characterized 

both in vivo and in vitro 18,19. The results of the present work show the relevance of sub-

toxic doses at short times and sub-chronic exposures. Similar exposure levels can be 

found in the workplace or can be envisaged in many of the present and future 

applications of graphene. It is therefore essential and necessary to study these processes 

in depth in order to guarantee safe use of this extraordinary nanomaterial.  

Methods 

sFLG preparation and characterization 

sFLG was prepared using a previously described protocol 24. 75 mg of graphite (Bay 

Carbon, Inc.) and 4.5 g of glucose (Panreac) were mixed in a 250 mL stainless-steel 

grinding bowl (15 stainless steel balls, each with a diameter of 2 cm) at 250 rpm and 4 h 

using a Retsch PM 100 planetary mill in an air atmosphere. The resulting solid was 
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dispersed in 100 mL of water, sonicated for 1 min and centrifuged at 1500 rpm for 15 

min to remove graphite and subsequently dialyzed to remove the residual glucose. The 

final graphene dispersions were left to stand for 5 d at room temperature in an air 

atmosphere. The supernatant was collected and lyophilized at −80 °C at a pressure of 

0.005 bar to obtain sFLG. 

In order to avoid possible metal contamination from stainless steel balls, 1 mg of sFLG 

was treated with 1 mL of HCl (37%). The mixture was sonicated for 30 s and 

centrifuged for 5 min at 4000 rpm. The supernatant was removed and the solid was 

washed again with HCl (37%), NaOH (6M) and finally three times with deionized 

water. Dry powder samples were obtained after lyophilization at −80 °C at a pressure of 

0.005 bar. 

Thermogravimetric analysis (TGA) was carried out using a TGA Q50 (TA Instruments) 

at 10 °C min–1 under a nitrogen flow from 100 °C to 800 °C.  

Raman spectra were recorded on an InVia Renishaw microspectrometer (Renishaw plc, 

United Kingdom) equipped with a 532 nm point-based laser, with a 50× objective and 

an incident power density below 1 mW µm–2 to avoid laser heating effects. Raman 

samples were measured in solid state under ambient conditions with at least 30–40 

random points taken on the sample. 

Elemental analysis was performed with a LECO CHNS-932 analyzer, with complete 

combustion of the sample with four doses of oxygen and quantification of the released 

gases by thermal conductivity. 

The morphology and lateral size were analyzed with a High-Resolution Transmission 

Electron Microscope (HRTEM) JEOL 2100 at an accelerating voltage of 100 kV. 

Samples were prepared as dilute dispersions of graphene for dip-casting on Lacey 
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copper grids (3.00 mm, 200 mesh), coated with carbon film, and dried under vacuum. 

Finally, the lateral dimension distribution was calculated using ImageJ 1.53 software 

(https://imagej.nih.gov/ij/) and probing at least 100 flakes in each case.  

In addition, total reflection X-ray fluorescence of sFLG was performed using a Bruker-

S2 PicoFox TXRF spectrometer.  

Cell culture 

HaCaT cells, a human epidermal keratinocyte line, were maintained in DMEM culture 

medium (#D5796; Sigma-Aldrich) supplemented with 10% fetal bovine serum (FBS) 

(#F4135; Sigma-Aldrich) and 1% antibiotic/antimycotic (#A5955; Sigma-Aldrich) a t 

37 ºC in a 5% CO2 atmosphere. Cells were used up to the 15th passage. 

Cells exposure to sFLG 

Cells were exposed to sFLG for 6 h, 24 h, 7 d or 30 d depending on the assay. For 7 d 

and 30 d incubation, cell cultures were maintained according to standard procedures. 

Cells received fresh medium every 3–4 days and were subcultured and treated with 

sFLG every 7 d (see Supplementary Figure 6). 

Determination of apoptosis, necrosis and viability 

Viability, necrosis and apoptosis were determined as reported previously 23. Briefly, 

HaCaT cells were seeded in 96 well plates and incubated for 24 h and 7 d with sFLG 

ranging from 0.5 to 100 µg/mL. Cells were incubated with 10 μg/mL ethidium bromide 

(EtBr) (#46067; Sigma-Aldrich) and 1 μM Calcein-AM (#C34852; Thermo Fisher). 

Viable (Calcein positive; green) and necrotic (EtBr positive; red) cells were determined 

by fluorescence microscopy using a Cytation 5 system (20× objective; BioTek) and 

image analysis with ImageJ 1.53. Immediately after image acquisition, cells were fixed 

and permeabilized for 2 min in ice-cold methanol and stained with 1 μg/mL Hoescht 
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33258 (#861405; Sigma-Aldrich). Apoptotic nuclei were determined according to 

morphological criteria 23. The results are presented as percentage of viable, necrotic or 

apoptotic cells vs. total (n = 3).  

Sample preparation and measurements for NMR experiments  

NMR experiments (n = 3) were conducted as described before 23. Briefly, cells were 

grown in 3 × 175 cm2 flasks and treated up to 7 d with 5 μg/mL sFLG. Cells were 

detached, rinsed twice in PBS and homogenized by sonication in D2O (#151882; 

Sigma-Aldrich). NMR spectra were acquired using a Varian Inova 500 spectrometer 

operating at 499.77 MHz for 1H and at 125.678 MHz for 13C with a four-nucleus 5 mm 

1H {15N-31P) PFG high-field indirect detection probe. Standard 1D spectra with water 

suppression (presat) were recorded as previously reported by us 46 with a 8 k spectral 

width, 32 k data points, a 90º pulse width of 12 µs, a 4 s relaxation delay and 860 scans, 

at 298 K and using pulse sequences from the Varian library. Manual phase and baseline 

correction were applied to all 1D spectra for processing. 2D homo- and heteronuclear 

correlation experiments J-resolved, 1H-1H-TOCSY, 1H-13C HSQC were carried out at 

298 K for NMR peak assignment on an 800 MHz (1H) Advance NMR spectrometer 

(Bruker, Billerica, MA, USA) equipped with a 1H, 13C, 15N cryoprobe and Z-gradients 

in conjunction with the Bruker library. In addition, matching 1D and 2D data to 

reference spectra in both the Human Metabolome Database (HMDB) and the 

Birmingham Metabolite Library (BML-NMR), and the use of Chenomx NMR Suite 8.2 

were used to assist in peak identification. Addition of standard samples to the mixture of 

metabolites was carried out to confirm peak identification for selected metabolites. The 

NMR peak quantification was assessed by Simple Mixtures Analysis (SMA, Mnova 

11.0) using a known concentration of TSP (0.1 mM) as standard, and by manual peak 

picking using Global Spectral Deconvolution (GSD) from Mnova. For a more accurate 
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quantification of the metabolites, a separate sample tube containing only TSP at pH 7.4 

was prepared and its 1H NMR spectrum was registered at 298 K and with similar 

acquisition parameters as in the sample study. 

Determination and tracking of O2.−, H2O2 and Ca2+ in single cells 

Mitochondrial O2.−, total H2O2 and free cytosolic Ca2+ levels were determined as 

reported before 23, using MitoSOX fluorescent probes (#M36008; Thermo Fisher), 

H2DCF-DA (#C6827; Thermo Fisher) and Fluo-4 (#F23917; Thermo Fisher). Briefly, 

HaCaT cells were seeded in 96 well plates and incubated up to 24 h or 7 d with sFLG in 

the range 0.5 to 100 µg/mL. After treatment, cells were washed twice with PBS then 

loaded for 30 min with the fluorescent probe (one independent probe per assay; 1 µM 

MitoSOX and Fluo-4; 2.5 µM H2DCFDA) and imaged with a Nikon TiU microscope 

(20× objective). Pictures were analyzed and processed with ImageJ 1.53. The results 

show the percentage of cell signal vs. control (n  =  4). Tracking experiments were 

performed by monitoring fluorescence levels at different times in the same cells using a 

Zeiss LSM-600 confocal microscope (63× objective). Pictures were processed with Zen 

2012 blue edition and ImageJ 1.53. Results show the variation of fluorescence from 

time 0 (>25 cells/experiment). 

Mitochondrial Ca2+ measurement 

Levels of mitochondrial calcium were quantified by two different approaches. Cells 

were seeded in 96 optical well plates (Eppendorf) and incubated for 24 h or 7 d with 

sFLG 5 µg/mL. In the first approach, cells were loaded for 30 min with 1 µM Calcein-

AM (#C1430; Thermo Fisher) and 1 mM CoCl2 to quench the fluorescence 

corresponding to cytosolic Ca2+ as described before 46. After washing in fresh medium, 

images were acquired in a Cytation 5 Reader (Biotek) using a 20× objective. The results 

were calculated with ImageJ 1.53 and are expressed as relative fluorescence units 
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(RFUs) for each treatment (n  =  3). In the second approach, cells were loaded for 30 min 

with 1 µM Fluo-4 and Mitotracker Red CMXRos (#M7512; Thermo Fisher). After 

washing in fresh medium images were acquired in a Cytation 5 Reader (Biotek) using a 

20× objective. The percentage of mitochondrial area colocalized with Fluo-4 signal was 

calculated with ImageJ 1.53 (colocalization plug-in). Results are expressed as the 

percentage of mitochondrial area colocalized per cell for each treatment (>50 cells).  

NADPH oxidase 1 quantification by Enzyme-Linked Immunosorbent Assay 

(ELISA) 

HaCaT cells were seeded in 24 well plates and incubated for 24 h and 7 d with sFLG 5 

μg/mL. The levels of NOX1 were determined from culture media using a commercial 

ELISA kit (#MBS167429; MyBiosource) following the manufacturer’s instructions. 

Briefly, cell supernatant of sFLG incubated cells were prepared and added to cells with 

10 μL anti-NOX1 antibody and 50 μL streptavidin-HRP. The plates were covered with a 

seal and incubated for 60 min at 37 °C. The wells were washed and treated with reaction 

buffers for 10 min at 37 ºC. Finally, the optical density (OD) of each well was measured 

at 450 nm. Results are expressed as pg/mL cell culture supernatants compared with the 

standard provided (n = 4). 

Determination of total antioxidant capacity 

HaCaT cells were seeded in 96 well plates and incubated for 24 h or 7 d with sFLG 5 

μg/mL. Total antioxidant capacity was determined in culture media using a commercial 

kit according to the manufacturer’s instructions (#MAK187, Sigma-Aldrich) as 

described before 74. Briefly, supernatants samples were added to wells, then Cu2+ 

Working Solution was added. The samples were mixed using a horizontal shaker and 

incubated for 90 min at room temperature in the absence of light. Absorbance was 

measured at 570 nm and compared with Trolox equivalents (ranging from 4–20 
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nmol/well). Trolox is a water-soluble vitamin E analog and serves as an antioxidant 

standard. Results are expressed as the nmol ratio vs. control (n = 4). 

Quantification of mitochondrial respiration  

A Seahorse XFp Analyzer (Seahorse Biosciences, North Billerica, MA) was used to 

quantify OCR and ECAR, following the protocol set up previously by Divakaruni et al. 

52. HaCat cells were incubated for 24 h and 7 d with sFLG 5 μg/mL in DMEM and then 

in Seahorse XFp base medium without phenol red (#103193-100 Seahorse Biosciences) 

with a density of 3 × 105 cells/well in XFp miniplates (#103025, Seahorse Biosciences). 

The samples were incubated for 60 min at 37 °C without CO2 prior to loading into the 

Seahorse analyzer. Three baseline OCR values were obtained during the first 20 min 

and then the different mitochondrial inhibitors were added (oligomycin, 1 μM; carbonyl 

cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), 0.3 μM; antimycin A and 

rotenone, 1 μM). After different injections, three OCR values were automatically 

measured by the Seahorse XFp software Wave 2.6 

(https://www.agilent.com/en/products/cell-analysis/cell-analysis-software/data-

analysis/wave-desktop-2-6). For normalization, cells were fixed and permeabilized for 2 

min in ice-cold methanol and then stained with 1 μg/mL Hoescht. The number of cells 

per well was obtained using a Nikon Ti U epifluorescence microscope with a 2× 

objective and counting with ImageJ 1.53. Data are presented as mean ± SEM for each 

time point in pmol per minute normalized to the number of cells per well (n = 5).  

Determination of cell energy phenotype 

HaCat cells were incubated for 24 h and 7 d with sFLG 5 μg/mL in DMEM and then 

incubated in XFp medium following the same protocol as indicated above. For cell 

energy phenotype determination, three baseline OCR and ECAR measurements were 

taken for each well within the first 20 min and then oligomycin (1 μM) and FCCP 
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(0.3 μM) were injected. Six OCR and ECAR values were automatically calculated. Data 

were calculated by the Seahorse XFp software Wave 2.6. Data are presented as mean 

± SEM for each time point in pmol per minute normalized to the number of cells per 

well (n = 4) as described before 52. 

Determination of glycolytic stress 

HaCat cells were incubated for 7 d with sFLG 5 μg/mL in DMEM and were then 

incubated in XFp medium, without glucose, following the same protocol as indicated 

above. Three baseline ECAR measurements were taken for each well within the first 20 

min and glucose (10 mM), oligomycin (1 μM) and 2-deoxyglucose (50 μM) were 

subsequently injected. Three ECAR values were automatically calculated after each 

injection by the Seahorse XFp software Wave 2.6. Data are presented as mean ± SEM 

for each time point in pmol per minute normalized to the number of cells per well 

(n = 3).  

Evaluation of the mitochondrial fraction 

The effect of sFLG on the mitochondrial fraction was evaluated by confocal microscopy 

using Mitotracker Green (#M7514; Thermo Fisher). To this end, cells were seeded in 96 

well plates and then treated for 7 d with sFLG 5 μg/mL. Cells were loaded for 30 min 

with Mitotracker (1 µM each), washed in fresh medium and imaged with a Zeiss LSM 

880 inverted confocal microscope (63× objective). Mitotracker was quantified with 

ImageJ 1.53. Results are presented as the percentage of cell signal vs. control or 

percentage of cell area occupied by mitochondria vs. control (>100 cells). For the 

internalization study, the same protocol was carried out, with z-stack acquisitions 

performed on more than 60 slices with a difference of 16.2 μM between slices. 

Determination of Mito Fuel Flex  
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The XF Mito Fuel Flex Test (#103260, Seahorse Biosciences) is a method for 

measuring mitochondrial fuel preferential usage. HaCat cells were incubated for 7 d 

with sFLG 5 μg/mL in DMEM and then incubated in XFp medium, without glucose, 

following the same protocol as indicated above. For glutamine and glucose dependency, 

three baseline OCR measurements were taken for each well in the first 20 min and then 

BPTES (3 μM), Etomoxir (4 μM) and UK5099 (2 μM) were injected. Seven ECAR 

values were automatically calculated after each injection by the Seahorse XFp software 

Wave 2.6. Data are presented as mean ± SEM for each time point in pmol per minute 

normalized to the number of cells per well (n = 3).  

Ki-67 immunolabeling 

Ki-67 positive cells were determined by immunocytochemistry with a specific 

monoclonal antibody (#sc-15402, SantaCruz BT). Briefly, cells treated for 30 d were 

seeded in 96 well plates. Medium was removed and cells were fixed for 2 min in cold 

methanol, blocked and incubated for 60 min with anti-Ki67 antibody (1:500). The cells 

were then stained with an AlexaFluor-594 anti-mouse (#A-11005, Invitrogen) for 60 

min and stained with 1 μg/mL Hoescht (#861405; Sigma-Aldrich). Images were 

acquired in a Cytation 5 Reader (Biotek) using a 20× objective and analyzed with 

ImageJ 1.53. 

Nuclear and cell size study 

HaCaT cells were incubated with 5 µg/mL sFLG for 30 d. After treatment, cells were 

plated in 24-well plates and stained with Hoechst 33342 Solution (#861405; Sigma-

Aldrich). Bright field and Hoechst images were acquired in a Cytation 5 Reader 

(Biotek) using a 20× objective and analyzed with ImageJ 1.53 (>50 cells/treatment). 

Wound healing assay 
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Wound healing assays were performed according to the previously reported protocol 23. 

Briefly, HaCaT cells were incubated with 5 µg/mL sFLG for 30 d. After treatment, cells 

were plated in 24-well plates, grown to confluence (24 h) and then serum starved for 48 

h. A cross-scratch was made in the cell culture monolayer using a 200 μL pipette tip. 

Finally, the serum-free medium was removed, the cells were washed with Hanks' 

solution and fresh medium was added. Images were obtained in a Cytation 5 Reader 

(Biotek) using a 4× objective. ImageJ 1.53 was used to calculate the percentage of 

wound closure by measuring the open area (free of cells) per well immediately after 

making the scratch and 48 h after (n = 3). 

Statistical analysis  

Statistical analysis was conducted using GraphPad Prism 8 (San Diego, CA, USA). 

Data are presented as mean ± SEM from at least three different experiments. Statistical 

differences were obtained by Student t-test or one-way ANOVA. Significant differences 

were considered at: *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. 
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Figure Legends 

Figure 1. Characterization of sFLG by: (A) HRTEM Image, (B) size distribution of graphene 
sheets, (C) Raman spectra, (D) TGA results in a nitrogen atmosphere, (E) XPS results and (F) 
elemental analysis. 

 
Figure 2. Effect of sFLG on HaCaTs necrosis and apoptosis. (A) Percentage of necrotic cells 
and (B) apoptotic HaCaT cells treated with sFLG for 24 h and 7 d (n = 3). 

 
Figure 3. Impact of sFLG on HaCat cells metabolism. (A) Fold-change in metabolites induced 
by 7 d treatment with sFLG (n = 3). (B, C) main pathways altered. 
 
 
Figure 4. Effect of sFLG on free cytosolic and mitochondrial Ca2+ levels. (A) Fluo4-AM levels 
in cells treated with sFLG for 24 h and 7 d (n = 4); (B) Fluo-4 tracking in cells treated with 
sFLG 5 μg/mL (red) compared to control cells (black). (C) Mitochondrial calcium levels 
measured by quenching non-mitochondrial Calcein-AM (n = 3) and (D) % of colocalization 
between Fluo-4 and Mitotracker red in cells treated with 5 μg/mL sFLG for 24 h and 7 d (> 50 
cells). 
 
Figure 5. Impact of sFLG on H2O2 and O2

•− levels. (A) H2DCF-DA (H2O2) levels in cells 
treated with sFLG for 24 h and 7 d (n = 4). (B) H2DCF-DA tracking in cells treated with 5 
μg/mL sFLG. (C) MitoSOX-AM (O2

•−) levels in cells treated with sFLG for 24 h and 7 d (n = 
4). (D) MitoSOX-AM tracking in cells treated with 5 μg/mL sFLG. (e) NADPH oxidase 1 
levels (pg/mL of cell culture supernatant) and (F) total antioxidant capacity of cells treated with 
5 μg/mL sFLG for 24 h and 7 d (n = 3). 
 
Figure 6. Effect of sFLG on mitochondrial respiration. (A) and (B) Individual parameters for 
basal respiration, ATP production, maximal respiration, spare respiratory capacity, proton leak 
and non-mitochondrial respiration in HaCaT cells treated with 5 μg/mL sFLG for 24 h or 7 d (n 
= 4). (C) Percentage of cell area occupied by mitochondria and intensity of Mitotracker staining 
in cells treated with 5 μg/mL sFLG for 7 d (nº cells > 100). (D) Z-stack (61 slices) of cells 
stained with MitoTracker Green treated with 5 μg/mL sFLG (black dots) for 24 h.  
 
Figure 7. Glycolysis alterations induced by sFLG. (A) and (B) Individual parameters for 
glycolysis, glycolytic capacity, glycolytic reserve and non-glycolytic acidification in cells 
treated with 5 μg/mL sFLG for 24 h or 7 d (n = 4). (C) and (D) OCR and ECAR levels under 
baseline and stressed conditions, (E) metabolic potential and (F) percentage of glucose and 
glutamine dependency in cells treated with 5 μg/mL sFLG for 7 d (n = 4).  
 
Figure 8. Long-term effects of sFLG. (A), Fluo4-AM levels in HaCaT cells treated with sFLG 
for 30 d (n = 3). (B) mitochondrial Ca2+ level evaluated by quenching cytosolic Calcein-AM and 
(C) colocalization between Fluo-4 and Mitotracker red levels. (D) Individual parameters for 
basal respiration, ATP production, maximal respiration, spare respiratory capacity, proton leak 
and non-mitochondrial respiration in cells treated with 5 μg/mL sFLG for 30 d (n = 3). (E) Ki-
67 intensity and number of positive cells in control and in cells treated with 5 μg/mL sFLG for 
30 d (>50 cells). (F) Nuclear and cell area of control and treated cells with 5 μg/mL sFLG for 30 
d (>50 cells). (G) The percentage of open areas normalized in control and cells treated with 5 
μg/mL sFLG for 30 d (n = 3). 
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