
Time Series Modelling with MATLAB: the
SSpace toolbox?

Diego J Pedregal1[0000−0003−4958−0969], Marco A Villegas1[0000−0002−8491−3231],
Diego A Villegas1, and Juan R Trapero2[0000−0002−5879−3133]

1 Industrial Engineering Politecnic, University of Castilla-La Mancha, 13071 Ciudad
Real, Spain

2 Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha,
13071 Ciudad Real

Abstract. SSpace is a MATLAB toolbox for State Space modelling that
provides the user with tools for linear Gaussian, non-linear and non-
Gaussian systems with the most advanced and up-to-date features avail-
able in any State Space framework. Great flexibility is achieved because
each model is coded on a standard MATLAB function, thence having
absolute control on particular parameterizations, parameter constraints,
time variation of parameters or variances, arbitrary non-linear relations
with inputs, time aggregation, nested models, system concatenation, etc.
The toolbox may be used by specifying State Space systems from scratch
or by using ready-to-use templates for standard methods (like VARMAX,
exponential smoothing, unobserved components, dynamic linear regres-
sion, etc.). The toolbox is freely available via a public code repository
with full documentation and help system. This chapter demonstrates the
toolbox’s potential with several examples.

Keywords: MATLAB · State Space systems · Kalman filter · smoother
algorithm · Maximum Likelihood.

1 Introduction

SSpace is a MATLAB toolbox that implements linear, non-linear and non-
Gaussian State Space (SS) systems in a very flexible and powerful way. It is
mainly based on the work of Peter C. Young and collaborators [14, 15] along
many years seasoned with many other elements, mainly found in the books of
Andrew C. Harvey, James Durbin and Siem J. Koopman [5, 7]. Though SS sys-
tems may be considered a ‘classical’ tool nowadays (especially in engineering and

? This work is published Valenzuela O., Rojas F., Pomares H., Rojas I. (eds.) Theory
and Applications of Time Series Analysis. ITISE 2018. Contributions to Statistics.
Springer, Cham. This work was supported by the European Regional Development
Fund and Spanish Government (MINECO/FEDER, UE) under the project with
reference DPI2015-64133-R and by the Vicerrectorado de Investigación y Poĺıtica
Cient́ıfica from UCLM by DOCM 31/07/2014 [2014/10340].

2 D.J. Pedregal et al.

economics), the approach is still remarkably alive as an area of active research,
judging by the amount of research articles and books on this topic.

There are also numerous packages available in the marketplace, some of them
available for free, and many others available commercially. There are already sev-
eral toolboxes written in MATLAB including some supplied with the core pro-
gram (like Signal Processing, Control, etc.), but others exist, such as CAPTAIN
[14], SSM [12], SSMMATLAB [6] and E4 [2]. Two packages worth mentioning
because of their relevance are STAMP [9] and SSfPack [10]. Some further exam-
ples are listed in volume 41, 2011 of the Journal of Statistical Software [3]. Some
others are written either in R [13], RATS [4], gretl [11], etc. Among the com-
mercial programs, the following incorporate SS routines with different degrees
of complexity: Eviews , SAS , Stata , etc.

In a broad sense, SSpace provides the user with the most advanced and
up-to-date features available in any State Space framework, e.g., the capability
of dealing with both univariate and multivariate models, exact Kalman filter
initialization, univariate treatment of multivariate time series, non-linear and
non-gaussian modelling, alternative objective functions in parameter optimiza-
tion (not only maximum likelihood), straightforward modelling of non-linear
input-output relationships, etc.

The flexibility and easiness of use is reflected in the fact that SSpace was
designed keeping in mind the final user and the usability of the library, by se-
lecting easy-to-remember function names, and more importantly, by allowing a
direct correspondence between the analytical expression of models and the corre-
sponding definition in MATLAB code. In addition, users are also provided with
a set of model-templates for approaching many standard models with maximum
simplicity. A full help system and documentation for each function is included in
both HTML and MATLAB format, complemented with eight step-by-step de-
mos to demonstrate the use of the toolbox with standard well-known examples
and others much less standard.

A final advantage of SSpace is that it is freely available via Internet at
https://bitbucket.org/predilab/sspace-matlab/, where potential users are en-
couraged to push their own contributions and suggestions.

2 General State Space framework

SSpace supports multivariate linear and non-linear Gaussian models, and uni-
variate non-Gaussian models. The linear Gaussian version is shown in Equation
(1).

State Equations: αt+1 = Ttαt + Γt +Rtηt
Observation Equations: yt = Ztαt +Dt + Ctεt

(1)

In these equations, αt is the state vector of length n; yt are the m× 1 vector
of output data; ηt ∼ N(0, Qt) and εt ∼ N(0, Ht) are the state and observational
vectors of Gaussian noises, with dimensions r × 1 and h× 1, respectively; both

The MATLAB SSpace toolbox 3

noises are allowed to be correlated by a system matrix St = Cov(ηt, εt) of dimen-
sion r×h; Γt and Dt are two matrices included to deal with input-output models
in a flexible way. The remaining elements in (1) are the rest of system matrices
with appropriate dimensions. The system is completed by making assumptions
about the stochastic properties of the initial state vector, i.e., α1 ∼ N(a1, P1),
where a1 and P1 are its mean and covariance matrix, respectively.

The non-linear models in SSpace are shown in Equation (2).

αt+1 = Tt(αt) + Γt +Rt(αt)ηt
yt = Zt(αt) +Dt + Ct(αt)εt

(2)

Functions Tt(αt) and Zt(αt) provide non-linear transformations of the state
vector into vectors of size n × 1 and m × 1, respectively. Matrices Qt and Ht

may also depend on the state vector, but St = 0.

Finally, the non-Gaussian SS set up is shown in Equation (3):

αt+1 = Ttαt + Γt +Rtηt
yt ∼ p(yt | θt) +Dt

θt = Ztαt

(3)

Here θt is known as the signal. This representation allows stochastic volatility
models (i.e., yt = exp(1

2θt)εt + Dt); exponential family models (where p(yt |
θt) = exp[y′tθt − bt(θt) + ct(yt)],−∞ < θt < ∞); and models in which the
observations are generated by the relation yt = θt + εt, εt ∼ p(εt) (with p(•)
being a distribution of the exponential family).

Given any of the previous systems, the estimation problem consists of finding
the first and second order moments (i.e., mean and covariance) of the state vec-
tor, conditional on all the data in a sample. The tools that allow this operation
to be performed in linear Gaussian systems are the well-known Kalman filter,
fixed interval and disturbance smoothers. These algorithms may be adapted to
deal with non-linear systems by running them on a Taylor linear expansion of
the original non-linear system (extended Kalman filter and smoothers). Things
become rather more complicated for non-Gaussian systems, which require sim-
ulation based methods that imply running the recursive algorithms repeatedly
with extra computational burden. An excellent exposition of all these filtering
and smoothing techniques may be found in [5], see also SSpace documentation.

The application of the recursive algorithms requires knowledge of all the
system matrices. The normal situation is that part of the system matrices are
known a priori and part are unknown. The unknowns are estimated in SSpace
by time domain Exact Maximum Likelihood (ML) optimization, though less
common procedures are also available in SSpace, e.g., estimation by minimization
of several-step ahead forecast errors.

There are plenty of issues not commented in this chapter because of space
constraints. For further reading, refer to SSpace documentation and [15, 7, 14,
5].

4 D.J. Pedregal et al.

3 SSpace overview

The feature that gives SSpace its real power is the possibility of specifying mod-
els in MATLAB coded functions. Such functions follow a fixed structure that is
supplied with the toolbox in a set of templates that should be used to avoid cod-
ing bugs. The general template is a standard MATLAB function called SampleSS

shown below. This function has an input argument p, that is a vector of unknown
parameters and that will be estimated later on. The system matrix names are
easily identifiable and the template will work properly as long as the user does
not remove anything from it, and just adds meaningful MATLAB code.

function model = SampleSS(p)

model.T = []; model.Gam = []; model.R = [];

model.Z = []; model.D = []; model.C = [];

model.Q = []; model.H = []; model.S = [];

Take as an example the AR(1) process in equation (4) with var(ηt) = σ2
η.

yt = φyt−1 + ηt (4)

A straightforward SS representation of this model consists of equation (4)
playing the role of the state equation with yt = αt as the observation equation.
By comparing this particular case with the general linear Gaussian case in equa-
tion (1), the system SS matrices are inferred as Tt = φ, Rt = Zt = 1, Ct = 0,
Qt = σ2

η, Ht = 0. Γt and Dt do not exist because the model has no inputs. The
filled-in version of SampleSS for this particular case is listed below, where the
function is renamed as ar1 to keep the original version of SampleSS intact for
future use.

function model = ar1(p)

model.T = p(1); model.Gam = []; model.R = 1;

model.Z = 1; model.D = []; model.C = 0;

model.Q = 10.^p(2); model.H = 0; model.S = [];

The input p is in this case a vector of two elements, namely φ and σ2
η. Beware

that the system matrix Q = σ2
η, identified as the second element of the input

argument p, should be positive or zero. Thence, Q is defined as any positive or
negative power of 10.

Once the model is fully specified, the way it is handled should be told to
SSpace by means of a number of fundamental functions shown in the following
listing.

>> sys = SSmodel(’y’, data , ’model ’, @ar1);

>> sys = SSestim(sys); % Estimation
>> sys = SSvalidate(sys); % Validation
>> sys = SSsmooth(sys); % Smoothing

The first command builds a new SSpace object, called sys, consisting of a
model written in ar1.m that will be applied to the data stored in memory in a

The MATLAB SSpace toolbox 5

variable called data. The second command estimates the model by exact ML.
The third shows the results in tabular form with diagnostic statistics to check
model validity. Finally, the last command provides the smoothed estimates of
states and their covariance matrices. With each command, the system object
sys is filled in with the relevant output information that may be used later on.

One caveat is that any model implemented has to be transformed to SS form
as a previous step before it may be used in SSpace. However, this limitation is
readily overcome, because the toolbox is provided with a number of predefined
templates for a set of common methods. Table 1 lists all the available functions
to deal with an existing SSpace system and the templates included, see details
in the documentation.

Table 1. Main functions and templates included in SSpace.

Main functions:

SSmodel Creates SSpace model object or adds properties
to an existing one

SSestim Estimation of a SSpace model

SSvalidate Validation of a SSpace model

SSfilter Optimal kalman filtering of SSpace model
SSsmooth Optimal fixed interval smoothing of SSpace model
SSdisturb Optimal disturbance smoother

SSdemo Run SSpace demos 1 to 8

Templates:

Linear and Gaussian models

SampleSS: General SS template
SampleARIMA: ARIMA models with eXogenous variables
SampleVARMAX: VARMAX models
SampleBSM: Basic Structural Model
SampleDHR: Dynamic Harmonic Regression
SampleDLR: Dynamic Linear Regression
SampleES: Exponential Smoothing with eXogenous variables

Non-Gaussian models

SampleNONGAUSS: General non-Gaussian models
SampleEXP: Non-Gaussian exponential family models
SampleSV: Sochastic volatility models

Non-linear models

SampleNL: General non-linear models

Other templates

SampleAGG: Models with time aggregation
SampleCAT: Concatenation of State Space systems
SampleNEST: Nesting in inputs State Space systems

For example, the same AR(1) model may be implemented with the aid of the
SampleARIMA template. The advantage of using the SampleARIMA template is

6 D.J. Pedregal et al.

that the model is directly defined in terms of the ARIMA specification, instead
of using its SS representation. Therefore, the user does not even need to know the
SS representation of an AR model. The listing below shows the SampleARIMA

template prepared to deal with a much more complicated ARIMA model, in
which all the references to the system matrices of a SS model are replaced by
alternative references to the backshift operator polynomials typical of an ARIMA
model (as algebraic vectors), as is the norm in other MATLAB toolboxes.

function model= SampleARIMA(p)

Sigma = 10.^p(1); % Noise variance
DIFFpoly= [1 -1]’; % Differences
ARpoly = conv ([1 p(2)], [1 zeros(1, 11) p(3)]) ’;

MApoly = [1 -p(2)]’; % AR and MA polynomials
D = p(4); % Input variables (constant)

The model implemented is an ARIMA(1, 1, 1)×(1, 0, 0)12 with a constant (in
matrix D) and a parameter constraint consisting of setting the AR(1) parameter
as the negative of the MA(1). This is a constraint that will be ludicrous in many
real situations but is introduced here solely as an example of how easy it is to
implement parameter constraints in SSpace.

One last point worth mentioning is that Table 1 includes a template list for
non-linear and non-Gaussian templates. It also includes other templates to carry
out useful operations with time series, namely time aggregation (SampleAGG),
concatenation of SS systems (SampleCAT) and nesting SS systems in inputs
(SampleNEST).

4 Examples

4.1 Example 1: Regression

Regression may be introduced in SSpace models in many different ways, and
this worked example is included here as an illustration of SSpace flexibility when
implementing this sort of models (see also demo number 5 of SSpace).

Consider 300 samples from a simulation of the model in equation (5), where
B stands for the backshift operator such that Blyt = yt−l; at is a Gaussian white
noise serially independent with mean zero and variance 0.25 and et is another
Gaussian white with zero mean and variance 1. This case may be seen as a
regression with three inputs, namely a constant, an AR(1) process and a cosine
wave. A simulated response of equation (5) is depicted in Figure 1.

yt = 15 + 4ut + 2cos(2πt/50) + et
ut = 1

(1−0.8B)at
(5)

Because of the simplicity of this model, one sees immediately that this re-
gression with three inputs may be viewed as a simplified version of a SS system
in which the state equation does not exist and the observation equation does
not relate to the states in any way, i.e., Tt = 0, Rt = Zt = 0, Ct = 1, Qt = 0,

The MATLAB SSpace toolbox 7

0 50 100 150 200 250 300

Samples (t)

5

10

15

20

25

y
t

Fig. 1. A simulation sample of model in equation (5).

Ht = 1, Γt does not exist and Dt = β is a vector of three time invariant param-
eters affecting each input. The user model file based on the general SampleSS
template is shown below, where matrix D plays the role of β parameters of the
regression.

function model= regression1(p)

model.T = 0; model.Gam = []; model.R = 0; model.Z = 0;

model.D = [p(1) p(2) p(3)]; model.C = 1; model.Q = 0;

model.H = 1; model.S = 0;

Since the observation noise variance is not included in the model, it should be
estimated by concentrated ML. The execution of the estimation function would
explicitly require the use of the concentrated ML function. Assuming that the
inputs have been included in a 3 × T MATLAB matrix called u, the command
to estimate the model is

>> sys=SSmodel(’y’,y, ’u’, u, ’model ’,@regression1 ,...

’OBJ_FUNCTION_NAME ’, @llikc);

In this listing the output-input data are y and u, respectively; the model is
in function regression1 above; and the objective function is llikc, with the
latter ‘c’ indicating the concentrated ML optimization.

Estimation results truncated to save space for the time series in Figure 1
are shown when using the SSvalidate function. Parameter estimates are highly
significant and close to their theoretical values.

--

Param S.E. T-test P-value |Gradient|

--

p(1) 15.0710 0.0623 241.9089 0.0000 0.000000

p(2) 3.9847 0.0646 61.7117 0.0000 0.000000

p(3) 1.7903 0.0835 21.4530 0.0000 0.000000

--

8 D.J. Pedregal et al.

A different way to implement this regression model consists of defining matrix
D as a time varying matrix, and adding the model inputs as a second input in
the user function. The next listing shows a variety of alternative definitions of
matrix D.

function model= regression2(p, u)

...

model.D = [p(1) p(2) p(3)] * u;

...

model.D = filter(1, [1 -p(5)], u);

...

model.D = 1 ./ (exp(-p(5) * u));

...

model.D = p(5) * u;

ind = find(y > 0);

model.D(1, ind) = p(6) * u(1, ind);

The first case is just a redefiniton of the linear model through a time varying
D matrix; the second one defines the input-output relation as a transfer function
model, that may be generalized to any order; the third case is a general non-
linear function; the fourth case is a linear piece wise relation, depending on
whether variable y is positive or negative (in this case y should be supplied as
an additional input to the user model function). It is important to note that, as
all the previous specifications only affect the definition of matrix D for modelling
input-output relationships, they may be introduced in any sort of model.

The call to estimate this model below is somewhat different to the previous
calls, because the additional input to function regression2 ought to be told
explicitly.

>> sys=SSmodel(’y’,y, ’model ’,@regression2 ,...

’user_inputs ’, u, ’OBJ’, @llikc);

Any of the previous regression versions have an advantage that allows the
use of SSpace in a completely novel and even ‘mischievous’ way, consisting of
interpolating missing values of input variables at the same time the model pa-
rameters are estimated (note that missing values in output variables are not a
problem in SS systems in contrast to missing values in input variables). This
is simply solved by including all the missing values as additional parameters to
estimate. For example, assuming there are two missing consecutive values in the
second input at observations 200 and 201, the following line of code should be
introduced prior to the definition of matrix D.

...

u(2, 200)= p(4); u(2, 201)= p(5);

...

Another way to deal with regressions is by specifying them as Dynamic Linear
Regressions in which the parameters are assumed to vary over time as either
Random Walks or Integrated Random Walks. In the case of three inputs the
model may be written as in equation (6).

The MATLAB SSpace toolbox 9

yt = utβt + εt (6)

This model may be fit into equation (1) easily if the state vector is just
the time varying parameter and it is assumed to follow an independent random
walk process (βt+1 = βt + ηt). Then βt = αt, Tt = Rt = I (an identity matrix),
Zt = ut, Ct = 1, Qt = Q (diagonal), Ht = 1. In this case, Zt is a time varying
system matrix.

SampleDLR helps the user to specify this type of models correctly. In partic-
ular, model in equation (5) is listed below.

function model = dlr(p, u)

D = [1 1 1];

Q = diag (10.^p(1:3));

H = 1;

Here, variable D indicates, with 1’s, which of the inputs are affected by time
varying parameters; Q is the diagonal covariance matrix noises affecting the time
varying parameters in such a way that big diagonal values imply big time vari-
ations, while values close to zero imply constant parameters; finally, H is the
variance of the observed noise, that in this specification is concentrated out
from the likelihood function (i.e., H=1). Such specification may be used in two
different ways: i) specifying zero variances in Q matrix is effectively telling the re-
cursive algorithms that the model is a time constant regression, and the filtered
states are their least squares recursive estimation; and ii) estimating Q matrix a
time varying regression is estimated.

The code in the next listing produces the results below, where SSpace au-
tomatically detects that the system is a time varying regression and therefore
shows the final states as the estimates of the time varying parameters. Vari-
ances of parameters (10.^ [p(1) p(2) p(3)]) are clearly zero, implying that
the regression parameters ([State(1) State(2) State(3)]) are constant and
close to the simulated ones. Further regression discussions are included in demo
number 5 of SSpace.

sys= SSmodel(’y’, y, ’model’, @dlr , ...

’user_input ’, u’, ’OBJ’, @llikc);

sys= SSestim(sys);

sys= SSvalidate(sys);

--

Param S.E. T-test P-val |Grad|

--

p(1) -11.7780 62.4750 0.1885 0.8506 0.000000

p(2) -14.8145 38.7453 0.3824 0.7025 0.000000

p(3) -10.1355 45.8441 0.2211 0.8252 0.000000

State (1) 15.0710 0.0626 240.6985 0.0000 -

State (2) 3.9847 0.0649 61.4029 0.0000 -

State (3) 1.7903 0.0839 21.3454 0.0000 -

--

10 D.J. Pedregal et al.

4.2 Example 2: Time aggregation in a Basic Structural Model with
trigonometric seasonality

The well-known air passengers data from [1], but with the first five years trans-
formed to quarterly aggregated data is shown in Figure 2.

0 50 100 150

Months

200

300

400

500

600

700

800

M
ill

.
p
a
s
s
e
n
g
e
rs

Fig. 2. Air passengers data of [1] with time aggregation.

An appropriate model for this time series is a Basic Structural Model [7] with
trigonometric seasonality that may be implemented in SSpace easily with the
help of SampleBSM template. A version of this model may be seen in the listing
below (user function airpasBsm).

function model= airpasBsm(p)

% TREND MODEL (Local Linear Trend)
TT = [1 1;0 1];

ZT = [1 0];

RT = [1 0;0 1];

QT = diag (10.^(p(3:4)));

% TRIGONOMMETRIC SEASONAL MODEL with common variance
Periods = [12 6 4 3 2.4 2];

Rho = [1 1 1 1 1 1];

Qs = repmat (10.^(p(1)), 1, 6);

% IRREGULAR (observed noise)
H = 10.^(p(2));

However, in order to handle time aggregation, this function ought to be called
inside another one based on SampleAGG template, which contains just a correct
call to the user function. This extra function needs as an extra input the output
data to locate exactly where the time aggregation takes place, signaled in the
output data as standard MATLAB NaN (Not-a-Number) values.

function model= airpasBsm_agg(p, y)

model1 = airpasBsm(p);

The MATLAB SSpace toolbox 11

Smoothed trend and seasonal components obtained with this model with
and without time aggregation are shown in Figure 3. Differences are very small,
meaning that the interpolation is rather appropriate.

0 20 40 60 80 100 120 140
4.5

5

5.5

6

6.5

lo
g

(y
)

0 20 40 60 80 100 120 140

Months

-0.2

-0.1

0

0.1

0.2

lo
g

(y
)

Fig. 3. Trend and log of airpassengers (top panel) and seasonal component. Estimated
components with time aggregation (solid lines) and without time aggregation (dotted)
are shown.

4.3 Example 3: Demand forecasting comparisons

The robustness of SSpace is evaluated in this example, in which a thorough
experiment is carried out. The data consists of 517 consecutive daily sales of
261 products from a Spanish franchise, specialized in selling dishes made from
natural products. Figure 4 shows some typical examples of the time series in the
dataset.

Although all time series are composed of integer values, the units are much
larger in top panel of Figure 4. In fact, all observations in the bottom panel
are below 12. It is well known that in such cases the Gaussian approximation is
not appropriate and other discrete distributions (mainly Poisson) are superior in
many respects (see e.g., [5]). This suggests that the sample should be split into
two groups of series, i.e., those that may be treated as continuous with higher
values per day, and the remainder, which hereafter will be referred to as discrete
time series. There are 166 time series in the continuous group, i.e., 63.6% of the
total, and 95 (36.4%) in the discrete category.

The experimental setup of this example consists of the automatic identifi-
cation and estimation of all forecasting methods for each time series using the
initial 414 daily observations. 1 to 14 days ahead forecasts are then produced in
a rolling experiment that advances the forecast origin one day at a time on the

12 D.J. Pedregal et al.

0 50 100 150 200 250 300 350 400 450 500

Days

0

100

200

S
a
le

s

0 50 100 150 200 250 300 350 400 450 500

Days

0

5

10

S
a
le

s

Fig. 4. Two examples of demand time series

remaining out-of-sample observations. Thus, 90 rounds of daily forecasts were
done for each product.

The methods used are:

– NAIVE: random walk.
– AR: pure autorregresive models with order identified with Bayesian Infor-

mation Criterion (BIC).
– ARIMA: identified as in [8].
– ETS: ExponenTial Smoothing, identified as in [8].
– UC: Unobserved Components based on the identification of several trend,

seasonal and irregular components, based on the minimization of the BIC
estimated with SSpace (using template SampleBSM).

– UCp: Poisson Unobserved Components used only for discrete time series
based on the minimization of the BIC estimated with SSpace (using template
SampleEXP).

– MEAN: mean combination of ARIMA, ETS, UC and UCp (in the case of
discrete time series).

– MEDIAN: median combination of ARIMA, ETS, UC and UCp (in the case
of discrete time series).

Mean of Mean Absolute Errors across all time series and all methods are
shown in Table 2 at different forecast horizons (from 1 to 14), with the best
method for each forecasting horizon highlighted in boldface. The table shows
clearly that UC is the method with less errors in continuous time series, while
the UCp is the best in the case of discrete time series. MEAN and MEDIAN are
often the second best. But, what is more important from the point of view of this
chapter is that the results shown require repeated runs of SSpace subroutines,
that worked robustly in this long experiment.

The MATLAB SSpace toolbox 13

Table 2. Mean of Mean Absolute Errors for continuous and discrete time series. Best
method for each forecasting horizon is highlighted in boldface.

Continuous time series

1 2 3 4 7 14

NAIVE: 0.4695 1.0833 1.7437 2.4153 4.0597 8.3784
AR: 0.3484 0.7198 1.0967 1.4816 2.6518 5.5116

ARIMA: 0.3210 0.6634 1.0133 1.3695 2.4550 5.0598
ETS: 0.3308 0.6849 1.0455 1.4117 2.5241 5.2015
UC: 0.3164 0.6539 0.9989 1.3500 2.4225 4.9901

MEAN: 0.3209 0.6635 1.0127 1.3691 2.4563 5.0740
MEDIAN: 0.3216 0.6655 1.0163 1.3728 2.4590 5.0774

Discrete time series

1 2 3 4 7 14

NAIVE: 1.0128 2.0892 3.1674 4.2484 7.3912 14.9254
AR: 0.8304 1.6736 2.5218 3.3707 5.9269 11.9996

ARIMA: 0.8285 1.6634 2.5020 3.3425 5.8658 11.8557
ETS: 0.8338 1.6762 2.5220 3.3694 5.9136 11.9533
UC: 0.8147 1.6331 2.4542 3.2784 5.7589 11.6495

UCp: 0.8056 1.6161 2.4284 3.2456 5.7119 11.5940

MEAN: 0.8089 1.6242 2.4428 3.2642 5.7368 11.6101
MEDIAN: 0.8104 1.6259 2.4445 3.2660 5.7378 11.6103

5 Conclusions

This chapter has presented SSpace, a new MATLAB toolbox for taking full
advantage of the State Space framework. SSpace is a toolbox for State Space
modelling that provides the user with the possibility to model linear Gaussian,
non-linear and non-Gaussian systems with the most advanced and up-to-date
features available in any State Space framework, following mainly [7, 14, 5]. In
addition, all system matrices are potentially time varying and may be multivari-
ate, several estimation methods are implemented, inputs to the system may be
introduced explicitly, etc.

Further advantages are that a few functions are necessary to carry out a
comprehensive analysis of time series, always used with a fixed pattern and
with function names carefully chosen following mnemonic rules. However, what
makes SSpace flexible, powerful and transparent is that the user implements
models directly by coding MATLAB functions. This feature makes extensions of
models with non-standard properties possible, like time varying parameters or
variances, non-linear input-output relations, etc.

The toolbox is supplied with a number of templates to carry out the time
series analysis by some standard methods to avoid forcing the user to remember
their respective SS form. All these advantages, in addition to robustness, are
illustrated with several worked examples taken from real data.

14 D.J. Pedregal et al.

References

1. Box, G., Jenkins, G., Reinsel, G., Ljung, G.: Time series analysis: forecasting and
control. John Wiley & Sons (2015)

2. Casals, J., Garcia-Hiernaux, A., Jerez, M., Sotoca, S., Trindade, A.: State-Space
Methods for Time Series Analysis: Theory, Applications and Software. Forthcoming
by Chapman and Hall/CRC (2016)

3. Commandeur, J., Koopman, S., Ooms, M.: Statistical software for state
space methods. Journal of Statistical Software 41(1), 1–18 (2011).
https://doi.org/10.18637/jss.v041.i01

4. Doan, T.: State space methods in rats. Journal of Statistical Software 41(9), 1–16
(2011). https://doi.org/10.18637/jss.v041.i09

5. Durbin, J., Koopman, S.: Time series analysis by state space methods. No. 38,
Oxford University Press (2012)

6. Gómez, V.: Ssmmatlab: A set of matlab programs for the statistical analy-
sis of state space models. Journal of Statistical Software 66(9), 1–37 (2015).
https://doi.org/10.18637/jss.v066.i09

7. Harvey, A.: Forecasting, structural time series models and the Kalman filter. Cam-
bridge university press (1989)

8. Hyndman, R.J., Khandakar, Y.: Automatic Time Series Forecasting: The Forecast
Package for R. Journal of Statistical Software 3(27), 1–22 (2008)

9. Koopman, S., Harvey, A., Doornik, J., Shephard, N.: STAMP 8.2: Structural
Time Series Analyser and Modeller and Predictor. Timberlake Consultants Limited
(2009)

10. Koopman, S., Shephard, N., Doornik, J.: Statistical Algorithms for Models in State
Space Form: SsfPack 3.0. Timberlake Consultants Press (2008)

11. Lucchetti, R.: State space methods in gretl. Journal of Statistical Software 41(11),
1–22 (2011). https://doi.org/10.18637/jss.v041.i11

12. Peng, J., Aston, J.: The state space models toolbox for matlab. Journal of Statis-
tical Software 41(6), 1–26 (2011)

13. Petris, G., Petrone, S.: State space models in r. Journal of Statistical Software
41(4), 1–25 (2011). https://doi.org/10.18637/jss.v041.i04

14. Taylor, C., Pedregal, D., Young, P., Tych, W.: Environmental time series analysis
and forecasting with the captain toolbox. Environmental Modelling & Software
22(6), 797–814 (2007)

15. Young, P., Pedregal, D., Tych, W.: Dynamic harmonic regression. Journal of fore-
casting 18(6), 369–394 (1999)

