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ABSTRACT: Inventory policies are traditionally characterized assuming several hypotheses 

that lead to commit important errors when are used in practical environments. This is the 

case when the inventory is continuously reviewed by means of the Order-Point, Order-Up-

to-Level (s, S) system and undershoots, i.e. the difference between the order-point and the 

inventory position when it is reached, are neglected. This paper analyses conceptually and 

empirically the bias on the classic fill rate formula when neglecting undershoots. After that, 

we suggest a non-parametric approach based on a State Dependent Parameter algorithm to 

propose a new non-linear expression, named analytic fill rate that correct that bias. The 

proposed approach is developed under a data-driven perspective and is easily 

implementable in practice. This research is developed in a lost sales context with stochastic 

and i.i.d. discrete demand. 
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1. INTRODUCTION 

The purpose of an inventory system consists of answering two important key issues: (1) 

when to launch a replenishment order, and (2) the size of this replenishment order. Control 

parameters of inventory policies are devoted to determine these issues following a design 

objective, normally a cost or a customer service criterion. In practice, inventory costs are 

difficult to quantify or even estimate, particularly stockout costs (Larsen and Thorstenson, 

2008; Liberopoulos et al., 2010; Silver, 2008). For this reason, managers set a service level 

to design inventory policies. The question is how to implement it. First of all, it is necessary 

to know the managerial context and define the type of control procedure. One of the most 

important issues related to the managerial context is the way the company deals with 

stockouts. If any unsatisfied demand is backordered and filled as soon as possible, context 

is named as Backordering. On contrary, if unsatisfied demand is lost, context is known as 

Lost Sales. Although the problem of lost sales was formulated more than 50 years ago by 

Karlin and Scarf (1958) traditional inventory models have focused on backordering 

contexts since are easier to formulate (Zipkin, 2008a, 2008b). However, interest in lost sales 

models have been increasing over the last years (Bijvank et al., 2014; Bijvank and Johansen, 

2012; Bijvank and Vis, 2011; Cardós et al., 2017; Cardós and Babiloni, 2011a, 2011b; 

Guijarro et al., 2012; Johansen, 2013; Kouki et al., 2018) and this research is developed in it. 

Regarding the control procedure, inventory policies are split into continuous and periodic 

review policies. If the status of the inventory is known at any moment, the inventory is 

continuously reviewed. On contrary, if the status of the inventory is only known every 

period of time (for instance every week), the inventory is periodically reviewed. For 

strategic items (normally classified as A items) continuous review is preferable (Silver et 

al., 1998) since allows controlling stockouts more easily despite the managerial costs that 

transaction reporting implies.  



Continuous review policies are classified into two types. In general, once the inventory 

position drops to the reorder point, s, (refer also as ROP further on) a replenishment order 

is launched and received L units of time later, where L is the lead time. Such a replenishment 

order may be constant, as is the case of an Order-point, Order-Quantity (s, Q) system, or 

variable ordering enough to raise the inventory position to the order-up-to-level, S, and 

thereafter managed by means of a policy Order-Point, Order-Up-to-Level (s, S) system. This 

paper focuses on the (s, S) due to its versatility and extended use in practice. By definition, 

the (s, S) policy implies that, in a stochastic demand context, both the replenishment cycle, 

i.e. time elapsed between two consecutive order deliveries, and the order quantity are 

variable and therefore simultaneous determination of parameters is necessary to guarantee 

the mathematical optimality of the policy once a service objective is set. However, in 

practice “the values of the control parameters are set in a rather arbitrary fashion” (Silver et 

al., 2017) and the most common approach consists of assuming that all demand transactions 

are unit sized. It implies that the inventory position always reaches exactly the ROP and 

therefore the order quantity is constant and equal to S-s being equivalent to the policy (s, Q) 

with Q=S-s (Vincent, 1985). However, the inventory position may not be exactly at ROP, but 

a certain amount below it. This amount is called deficit or undershoot at the reorder point 

(we refer to it as undershoot in the rest of the paper). Neglecting undershoots greatly reduce 

the mathematical complexity of the problem but can severely reduce the service level of the 

system (Schneider, 1979) what lead to increase stockout costs especially when managing 

lumpy or erratic demand items for which the unitary demand assumption is not 

appropriate. In practice, service levels are usually measured through the cycle service level 

(CSL) or the fill rate. This paper focuses on the fill rate that is commonly defined as the 

fraction of demand that is immediately satisfied from the stock without shortage (Brown, 

1962). 

Summarising, on the one hand, the (s, S) policy is widely used in practice but assuming that 

undershoots at ROP are negligible introduces an important bias on the fill rate. On the other 



hand, there is not an optimal approach to solve it and the mathematical complexity to 

characterize the policy makes no sense in practice (Silver et al., 2017). Indeed, as Silver and 

collaborators point out, practitioners are looking for understandable approaches that offer 

good solutions at a reasonable computational cost. The objective of this research is precisely 

to bridge that gap by proposing a bias analysis and correction of the undershoots 

assumption following a data-driven perspective.  

In general, the digitalization of companies is offering a great amount and variety of data (Big 

Data) that is transforming the way supply chain management is working (Wang et al., 2016). 

In particular, Gandomi and Haider (2015) indicate the need to develop appropriate and 

efficient methods to leverage such data and they review areas of big data analytics as text 

analytics or predictive analytics. In this sense, this work extends such a vision to propose a 

novel area as stock control analytics. Although the nomenclature may be new, the use of 

data analytics tools to overcome limitations associated to theoretical models is not that new. 

For instance, Strijbosch et al. (1997)correct the bias introduced by using demand forecasts 

instead of first moments of the statistical demand distribution, which are unknown. That 

article proposed a heuristic method based on simulations, which reduced the bias 

substantially. Novel methods based on this data-driven perspective are recently published 

to deal with the uncertainty of demand distributions. Huber et al. (2019) revisit the 

newsvendor problem subject to a target CSL employing Machine Learning and Quantile 

Regression approaches that circumvent the need of assuming a statistical distribution for 

the demand. Regarding uncertainty of statistical demand distribution, Trapero et al. 

(2019a) investigate parametric and non-parametric methods to enhance the safety stock 

estimation problem for a certain target CSL. Their results show that non-parametric 

approaches as Kernel density estimators provide good performance in terms of cost and 

CSL for lower lead times and parametric approaches as GARCH outperform the rest of 

methods for higher values of lead time. Trapero et al. (2019b) continue with this line of 

research by proposing a combination scheme of GARCH and Kernel whose weight 



parameters are determined by minimizing the tick-loss (newsvendor) linear asymmetric 

cost function. 

Previous articles show how data-driven approaches are offering versatile solutions to deal 

with limitations of traditional theoretical assumptions. In this work, following the same 

philosophy, we centre on the assumption of neglecting undershoots on the (s, S) inventory 

policy when demand is modelled by any discrete distributions for a lost sales case. To the 

best of authors’ knowledge, this particular topic has been overlooked in the literature. 

Basically, this research aims at determining the extent of bias introduced by such an 

assumption and it also proposes a methodology to reduce it if enough data is available. The 

data-driven approach employed to cope with this problem is the State Dependent 

Parameter (SDP) estimation technique. SDP estimation involves the non-parametric 

identification of the state dependency using recursive methods of time variable parameter 

estimation which allow for rapid (state dependent) parametric change (Young et al., 2001). 

SDP estimation has been successfully applied in a supply chain context in (Trapero et al., 

2011), particularly, to correct judgmental forecasts bias. 

The results show that the fill rate bias induced by neglecting undershoots in a continuous 

review (s, S) policy, assuming a lost sales situation, can be substantially reduced from 7% to 

1%. These results were obtained for simulated demand coming from an i.i.d. Negative 

Binomial distribution using a non-linear parametric approach and considering fill rates 

higher than 50%. 

The rest of this paper is organized as follows. Section 2 describes the main assumptions and 

notation of the system. Section 3 introduces the classical fill rate formula and gives an 

intuition of the potential bias induced by neglecting undershoots. In that section, the 

experimental setup is also detailed. Section 4 explores the SDP approach to correct the bias 

associated to the classical fill rate estimation. Section 5 is devoted to discussing the results. 

Finally, the main conclusions are drawn in Section 6.  



2. SYSTEM DESCRIPTION, NOTATION AND ASSUMPTIONS 

This paper considers a single echelon, single item inventory system where demand is 

stochastic and modelled by a discrete distribution. The stock is controlled following a 

continuous review Order-Point, Order-Up-to-Level (s, S) system for the lost sales case. In 

this system, when the inventory position is at or below the ROP a sufficient amount is 

ordered to raise the inventory position up to the order-up-to-level. The replenishment 

order is received L unit of times after being launched. We consider that the replenishment 

cycle (also refer as just cycle further on) is the time between two consecutives deliveries 

and it starts at order delivery. Fig. 1 shows an example of the evolution of the on-hand stock 

and the inventory position when the system is not out of stock (a) and when it is out of stock 

(b). 

 

Fig. 1 Evolution of the stock in a (s, S) inventory policy and lost sales when the system is not out of 

stock (a) and when it is out of stock (b). 
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L =  lead time (time), 

τ =  elapse of time from the beginning of the cycle to the ROP is reached (time), 

zt =  on-hand stock at t (units),  

dt =  demand at instant t (units),  

Dt =  accumulated demand over t (units), 

fL(·) =  probability function of demand during L, 

X+ = maximum [X, 0] for any expression X, 

Qt = order quantity at instant t (units), 

𝛽𝑎 = achieved fill rate, 

𝛽𝑖 =  estimated fill rate for method i. 

General assumptions of this paper are: (i) time is discrete and is organized in a numerable 

and infinite succession of equally spaced instants; (ii) the lead time, L, is constant and 

known; (iii) there is never more than one order outstanding which implies that the 

condition s<S-s is always true; (iv) demand process is considered stationary and i.i.d., and 

defined by any discrete distribution function; and (v) unfilled demand is lost. Note that 

assumption (i) is tantamount to assuming that each transaction is updated in a specific 

instant of time considering a sequence of discrete and infinitely small intervals that is, 

indeed, the way informatics systems that are used for control continuously inventories 

works. On the other hand assumption (iii) is generally accepted in inventory research since 

if it is not the case the numerical difficulties are insurmountable (Schneider, 1981) specially 

for the lost sales case (Hadley and Whitin, 1963; Cohen et al., 1988; Johansen and Hill, 2000). 

 

  



3. THE BIAS OF THE FILL RATE CLASSIC ESTIMATION FOR THE (s, S) POLICY 

3.1 Classic approach and conceptual bias 

The fill rate is defined as the fraction of demand that is immediately fulfilled from on-hand 

stock. The most common approach to estimate this service measure consists of computing 

the complement of the ratio between the expected shortage per replenishment cycle 

(ESPRC) and the total expected demand per replenishment cycle (EDPRC). Fill rate has been 

traditionally computed by assuming that undershoots at ROP are negligible and therefore 

order quantity is always constant. Fig. 2 shows the evolution of the stock in a (s, S) inventory 

policy where is shown that if the ROP is reached exactly, order quantity is always equal to 

S-s and therefore equivalent to the (s, Q) system. 

  

Fig. 2 Evolution of the stock in a (s, S) inventory policy when undershoots are neglected. 

Then the expected shortage per replenishment cycle is straightforwardly computed as
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delivery, which, in a lost sales context is obtained as  0 Lz S s E s D
+

= − + − . Therefore, in 

order to reach exactly the ROP,  0 LD z s S 2s E s D
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formula to compute the fill rate is: 
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However neglecting undershoots at ROP has two important implications that directly 

affects the accuracy of the classic formula: (1) the system will only be out of stock during 

the lead time and therefore the protected period is reduced to L, when it is possible that the 

stock out occurs in the same instant the ROP is reached (Fig. 3); (2) zτ is always equal to s. 

Despite this fact greatly reduces the mathematical complexity of the formula, since knowing 

the probability distribution of stock levels at τ is a challenge, it leads to overestimate 

systematically the real fill rate. For example, if the stock at t is one unit above the ROP and 

demand at t+1 is 2 units, the ROP is reached and a replenishment order is placed. The real 

stock at launching is s-1 units. Therefore, the on-hand stock remaining on the shelves 

available to meet demand during the lead time is one unit less than what is assumed if 

undershoot is neglected. Thus, classic fill rate is higher than the real one and therefore the 

stockouts are larger than expected. This simple example shows why neglecting undershoots 

introduces a significant bias on classic formula of the fill rate. 



 

Fig. 3 Evolution of the stock in a (s, S) inventory policy when stockout occurs when the ROP is reached. 

 

3.2 Empirical analysis of the bias  

In order to analyse the bias of the classic fill rate, we design an experiment as follows (see 

Fig. 4): (1) we combine a set of input parameters that define the inventory policy and the 

simulated demand; (2) for each combination of the input data, we simulate a (s, S) inventory 

system using Monte Carlo method and calculate the achieved fill rate; (3) for each input data 

combination we also compute the classic fill rate using expression (1).  

Regarding the input data, an extensive range of values for s, S and L is selected in order to 

provide realistic values of fill rate (from 0.5 to 0.99). Regarding the demand, we select a set 

of parameters (r, θ) for the Negative Binomial distribution based on considering the four 

demand categories suggested by Syntetos et al. (2005): smooth, lumpy, intermittent and 

erratic, where r is the number of successes and θ the probability of success. Table 1 presents 

the set of data used in the experiment which considers every feasible combination of these 

values per factor leading to 1,440 different cases (excluding cases where s≥S-s). The 
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inventory system simulation follows the diagram of Fig. 5 and for each input data 

combination, the achieved fill rate is obtained as the average fraction of the complement of 

the unfulfilled demand over the total demand in every replenishment cycle when 

considering 20,000 consecutive periods, i.e.: 

1

 1
1

 


=

= −
N

n
a

n n

unfilled demand

N total demand
             (2) 

where N indicates the total number of replenishment cycles. To assure the consistency of 

the results, Monte Carlo simulations accomplish thirty replications to each case using the 

average of these replications as the final achieved fill rate. 

Demand Distribution 

Negative Binomial 
r = 0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 3.5, 4 

θ = 0.1, 0.3, 0.4, 0.5, 0.6, 0.8, 0.9 

Inventory system 

Reorder point s = 2, 3, 5, 6 

Order-up-to-level S = 5, 7, 12, 15 

Lead time L = 1, 2, 3, 4 

Table 1: Input Data 

 

 

 

 

Fig. 4. Experiment design 
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Fig. 5. Diagram of the simulation 
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Fig. 6 compares the classic (βc) and the achieved (βa) fill rate plotted as red circles and as a 

solid line, respectively. That figure shows the bias introduced in the calculation of the fill 

rate due to neglecting undershoots. The bigger the distance between red circles and the blue 

line, the bigger the bias. Note that the bias is positive, i.e., the classic fill rate always 

overestimates the achieved fill rate as explained in section 3.1. What is empirically found is 

that the bias size is not constant and it seems to increase over the central part of the figure. 

 

Fig. 6. Achieved fill rate (solid line) versus classic fill rate (red circles) 

Therefore, the problem is to find the bias between βc and βa that seems to have a non-linear 

pattern.  

 

  



4. DATA-DRIVEN BIAS CORRECTION OF THE CLASSIC FILL RATE 

In the previous section, we have analysed by simulations the bias size for neglecting 

undershoots in the development of the classic fill rate. In this section, we will model that 

bias to further correct it. We assume that the data is cross-sectional, i.e., the relationship 

between the achieved fill rate and the classic fill rate does not depend on time. The initial 

number of experiments were 1,440. We focus on fill rates greater than 50 %, filtering the 

number of experiments to 1,091. The training and test set are divided by random sampling, 

where 70% of the data (764 experiments) is used for estimation purposes and the rest of 

data (327 experiments) for validation.  

 

Fig. 7. Relationship between classic fill rate and achieved fill rate for the training set. 

 

Fig. 7 shows the training set. In that figure, we can observe that the bias between fill rates 

is nonlinear and it is greater for values of target fill rate between 0.55 and 0.9 



approximately, where the maximum bias is reached around 0.6 and 0.75. To model that bias, 

this work adopts an SDP approach, in which we have to define the state and the parameter 

that makes that state varying. An initial model could be as follows: 

𝛽𝑆𝐷𝑃 = 𝛼1(𝛽𝑎) ⋅ 𝛽𝑐               (3) 

where α1 is the state that somehow depends on the parameter βa. Note that, we do not know 

exactly the relationship between the state (α1) and the parameter (βa) and it will be the SDP 

algorithm, the one which will provide a curve to give us some insights about the pattern of 

such a dependency.  

 

4.1 Non parametric approach: SDP algorithm 

The SDP approach can be seen as an extension of the Time Variable Parameter estimation 

(TVP) (Young, 2011), where the unknown parameters are slowly variable with time. 

Typically, TVP are represented by a two-dimensional state (level and slope) to model its 

stochastic behaviour by means of a Generalized Random Walk (GRW), which is a generic 

model to unify different versions of the random walk as Integrated Random Walk (IRW), 

Random Walk (RW) and Smoothed Random Walk (SRW). More information about the use 

of TVPs in time series analysis and forecasting can be found in Harvey (1990) and Young 

(2011). 

The SDP approach employs a similar procedure, but the main difference is that parameters 

evolve stochastically with respect to another variable instead of time. Such parameters are 

denoted by State Dependent Parameters (SDP). This can be done by “sorting” the data in a 

non-temporal order. If the new ordering provides a variation of the SDP smoother and less 

rapid, a GRW will be able to describe its evolution in this transformed observation space. 

Utilizing Fixed Interval Smoothing (FIS) estimation, the SDP estimated can be “unsorted” to 

the original order. 



In our particular case, the SDP α1 can be sorted with respect to βa, this new organization of 

data is indexed by k, and thus, the stochastic dynamics of the SDP can be expressed as an 

Integrated Random Walk defined in a State Space framework as follows:  

( )
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                         (4) 

Where α1 is the level and 𝛼1
∗ is the slope. The small variations with respect to the new sorting 

is introduced with the random Gaussian noise ( )* k  with zero mean and constant variance 

σα. Such a variance is often referred to as hyper-parameter to differentiate it from the states 

that are the main object of the estimation analysis. The observation equation needed to 

complete the State Space representation is: 

𝛽𝑎 = 𝛼1(𝛽𝑎) ⋅ 𝛽𝑐 + ϵ         (5) 

The last term ϵ is the typical error component that assumes a Gaussian distribution with 

zero mean and constant variance σ2. 

Fortunately, these routines are already implemented in the CAPTAIN toolbox of MATLAB 

available in http://captaintoolbox.co.uk. Fig. 8 shows the estimated SDP α1(βa) sorted with 

respect to the parameter βa for the training set. That figure shows the non-linear pattern of 

the SDP coherently with the non-linear bias found between βa and βc in Fig. 7. 

 

  

http://captaintoolbox.co.uk/


 

Fig. 8. SDP 𝛼𝟏(𝜷𝒂) sorted with respect to the parameter 𝛽
𝒂

 

Fig. 9 depicts the SDP estimation of the fill rate (βSDP) together with the classic and achieved 

fill rates for the training set. That figure clearly shows how the SDP approach is capable of 

reducing the bias considerably. Essentially, fill rate estimates provided by βSDP fluctuate 

around βa randomly, instead of the systematic positive deviation found for the classic 

counterpart βc. 

 

4.2 Parameterization based on SDP graph 

The SDP approach provides a non-parametric estimation of the relationship of α1(βa) based 

on a graph. Nonetheless, this approach can be complemented by parameterizing such a 

curve and proposing another parametric alternative. For instance, Fig. 7 and 8 show that 

the non-linear pattern of the bias seems to be quadratic. Therefore, a quadratic polynomial 

dependent of βa can be a good candidate to model such a bias. Note that such 



parameterization makes the model fully self-contained and it reveals clearly the nature of 

the graphically identified nonlinearity with just a few parameters. 

Considering that, we can propose the following model: 

𝛽𝐿𝑅 = 𝜃0 + (θ1 + 𝜃2 ⋅ 𝛽𝑎 + 𝜃3 ⋅ 𝛽𝑎
2) ⋅ 𝛽𝑐            (6) 

Where 𝜃i for i=0, 1, 2, 3 are constants that can be estimated by means of a linear regression. 

It is important to note that, despite the non-linearities involved in the classic fill rate bias, 

thanks to the SDP identification, we have arrived at a non-linear model, but linear with 

respect to the parameters 𝜃i.  

Table 2 summarizes the estimation results. That table shows that all parameters are 

statistically significant for a significance level of 1%. 

Parameter value (std deviation) 

𝜃0 0.598 (0.005 )* 

𝜃1 -1.07 (0.02)* 

𝜃2 2.25 (0.04)* 

𝜃3 -0.77 (0.02)* 

 

Table 2. OLS estimation results for parameters in (8). Significant at 1% confidence level. 

 



 

Fig. 9. Fill rate estimations provided by the classic (𝛽
𝒄
) and the SDP (𝛽

𝑺𝑫𝑷
) approach for the training 

set. 

To validate that the parameters can be used to correct the bias with data that has not been 

used in the training set, we use those estimated parameters in the data test set. Fig. 10 shows 

the fill rate estimates provided by the non-parametric SDP (βSDP) and the parametric model 

(βLR) compared to the achieved and classic fill rates. 



 

Fig. 10. Fill rate estimations provided by classic formula (βc), SDP approach (βSDP) and parametric 

model (βLR) for the test set. 

If we define the fill rate error as: 

𝑒𝑖,𝑗= 𝛽𝑖,𝑗 − 𝛽𝑎,𝑗 

where βij for i=1, 2, 3 is the fill rate estimated by the classic equation, the non-parametric 

SDP and the parametric Linear Regression, respectively. The index j=1, 2,.., J is the number 

of fill rate observation for the entire test set J. 

To summarize the performance of the different fill rate estimates, the Mean Error and the 

Root Mean Squared Error are chosen as metrics to offer a measure of bias and precision, 

respectively, such as: 

𝑀𝐸𝑖 =
∑ 𝑒𝑖,𝑗

𝐽
𝑗=1

𝐽
               (7) 

𝑅𝑀𝑆𝐸𝑖 = √
∑ 𝑒2

𝑖,𝑗
𝐽
𝑗=1

𝐽
            (8) 



Fig. 11 shows the ME and RMSE obtained for the different fill rate estimation techniques. 

First, it is quantified the overestimation bias produced by the classic formula in (1). Note 

that, such a classic formula displays a high error variability measured by the RMSE. That 

figure also clearly shows how the parametric approach (βLR) outperforms both the classic 

(βC) and SDP (βSDP) alternatives in terms of bias (ME) and error variability size (RMSE). It is 

important to point out that, although the parametric approach only reduces the bias slightly 

with regards to the SDP, the differences found in terms of RMSE are more apparent, where 

the (βLR) improves considerably the SDP approach. 

 

Fig. 11. ME (left panel) and RMSE (right panel) obtained for the different fill rate estimates with respect 

to the achieved fill rate for the test set. 

 

5. DISCUSSION AND PRACTICAL IMPLICATIONS 

The previous section shows that the parametric non-linear model obtained the best 

estimates of the fill rate. It is interesting to note that, observing Fig. 11, if no bias correction 



method is considered, the classic approach can provide an overestimate of almost 7 % in 

the estimation of the fill rate. In practical environments, where the fill rate is used to 

measure the performance in terms of customer service, number of backorders or to design 

inventory policies, βa is initially unknown. Then, the question is how βLR should be used to 

improve the fill rate estimation. The answer is straightforward. Managers set a target fill 

rate (βtarget), which is the minimum fill rate the system should achieve, so that βa is an upper 

bound of βtarget. Hence, without loss of generality, βaβtarget .Therefore, 𝛽𝐿𝑅 = 𝜃0 + (𝜃1 + 𝜃2 ⋅

𝛽𝑡𝑎𝑟𝑔𝑒𝑡 + 𝜃3 ⋅ 𝛽𝑡𝑎𝑟𝑔𝑒𝑡
2 ) ⋅ 𝛽𝑐  

To illustrate how βLR outperforms the classic fill rate we show in Table 3 an example of how 

βLR can help inventory managers in the decision making process. In this example, demand is 

Negative Binomial distributed with r=2 and θ=0.5, the order-up-to-level is set in 20 units 

and the lead time is 3. In this case, if the target fill rate is 0.90, with the classical approach 

the target is reached with s=6 whereas with the analytics fill rate (βLR) it is reached with a 

ROP equal to 8 units. If we simulate this system (using the same data), we realised a fill rate 

equal to 0.90 can be only reached when s=8 whereas with s=6 the achieved fill rate is only 

0.87. Therefore if managers use the classic estimation, they expect a performance in terms 

of fulfilling the demand that is not real indeed. Therefore, the number of demand units that 

are lost is higher than expected. This leads to an unexpected increase of stockout costs. As 

a conclusion, the replenishment parameters that results when using the classic estimation 

are not adequate to reach the target fill rate. This example shows the importance that 

neglecting undershoots has on inventory systems and how to reduce them with the 

analytics approach suggested in this paper. 

  



s βtarget βc βLR 

1 0.75 0.79 0.74 

2 0.75 0.82 0.75 

3 0.80 0.84 0.80 

4 0.80 0.87 0.80 

5 0.85 0.89 0.85 

6 0.85 0.91 0.86 

7 0.85 0.93 0.86 

8 0.90 0.95 0.91 

9 0.90 0.96 0.92 

Table 3. ROP computed by βc and βLR with Negative Binomial demand with r=2, θ=0.5, L=3 and S=20 

 

6. SUMMARY AND CONCLUSIONS 

This paper focuses on the versatile Order-Point, Order-Up-to-Level (s, S) inventory system 

in the lost sales context. The control procedure of this policy consists of reviewing 

continuously the status of the inventory in order to know exactly when the inventory 

position is at or below the ROP to launch a replenishment order to raise it to the order-up-

to-level, S. Despite this system is widely used in practice, normally it is implemented 

assuming that undershoots at ROP are negligible i.e. the inventory position always reaches 

exactly the ROP, which is only possible if demand transactions are unit sized. However, if 

demand is not unitary, the assumption regarding neglecting undershoots leads to bias the 

performance of the system. This paper shows both conceptually and experimentally that 

the classical formula to compute the fill rate is biased. It can provide an overestimate of 

almost 7% in the estimation of the fill rate indeed and lead to make wrong decisions that 

directly affects the performance and costs of the inventory system. 



This paper proposes a new methodology from a data driven perspective that uses a non-

parametric SDP algorithm to model the bias and, subsequently, suggests a parametric 

analytic fill rate that outperforms the classical approach. Note that, despite the unknown 

complex non-linearities involved in the classic fill rate bias, the SDP has revealed the nature 

of such a non-linearity, which has been subsequently parameterized by a parametric non-

linear model but linear in the parameters that allows the use of the well-known linear 

regression. The importance of the analytic fill rate is that is unbiased and easily 

implemented in practice. 

Although the SDP approach can be seen as a data-driven tool it is important to distinguish 

it from other black-box data-driven tools typically associated to machine learning 

alternatives. In this work, the SDP approach was employed to learn what was the nature of 

the non-linearities involved in the classic fill rate bias by neglecting the undershoots in the 

replenishment policy (s, S). Once those non-linearities were identified by means of a curve, 

the expert modeller could come with a parametric solution taking advantage of the solid 

theory behind parametric theory. In this case, a simple linear regression was enough to 

model a complex non-linearity. Note that this philosophy follows the Data Based 

Mechanistic approach proposed by Young (2011), where the author explains that: “a model 

should not just explain the time series data well, but it should also provide a mechanistic 

description of the system under investigation”. 

In this work, we have analysed simulated demands that follow i.i.d negative binomial 

distributions. Further research should extend this study to non-stationary demand 

scenarios, as well as replacing statistical demand distributions in the fill rate classic formula 

by probabilistic forecasts of real demands. In addition, further research is also needed to 

extend these promising results to other replenishment policies. 
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APPENDIX A 

In this appendix is shown the recursive filtering/smoothing algorithms that usually are 

employed to reflect the TVP evolution (Young, 2011) and how those have been modified to 

extend it for SDP estimation. More details about this methodology can be found in (Young, 

2011; Young et al., 2001). 

An overall SS model can be defined by these two equations: 

Observation equation:    𝑦𝑡 = 𝑯𝑡𝒙𝑡 + 𝑒𝑡 

State equation:    𝒙𝑡 = 𝑭𝒙𝑡−1 + 𝑮𝛈𝑡    (A.1) 

where 𝒙𝑡 is known as the state vector. In our case, the observation equation is defined in (5) 

and the state equation in (4). Then, 𝒙𝑡 = [α1,𝑡, α1,𝑡
∗ ]

𝑇
. The rest of matrices and vectors are 

defined such as:  

𝑭 = (
1 1
0 1

), 𝑮 = (
0 0
0 1

),  𝑯𝑡 = (β𝑐 0),  𝛈𝑡 = (0 η𝑡
∗)𝑇    (A.2) 

The white noise inputs 𝛈𝑡 = [0 ( )* k ]
𝑇

 are assumed to be independent of the observation 

noise σ2 and has a covariance matrix Q. These noise inputs determine the stochastic 

behaviour of the states. 

The SDP estimation can be divided in two steps. First, forward and backward recursive 

algorithms are employed. Second, a backfitting algorithm is applied with the sorted data 

with respect the dependent variable. Note that both the backward pass smoothing and 

backfitting algorithms can be applied only if it is not necessary to work in real time.  

1.1 Forward pass recursive LS equations 

Prediction: 

𝒙̂𝑡|𝑡−1 = 𝑭𝒙̂𝑡−1           



𝑷𝑡|𝑡−1 = 𝑭𝑷𝑡−1𝑭𝑇 + 𝑮𝑸𝑟𝑮𝑇        (A.3) 

Correction: 

𝒙̂𝑡 = 𝒙̂𝑡|𝑡−1 + 𝑷𝑡|𝑡−1𝑯𝑡
𝑇[1 + 𝑯𝑡𝑷𝑡|𝑡−1𝑯𝑡

𝑇]
−1

(𝑦𝑡 − 𝑯𝑡𝒙̂𝑡|𝑡−1)     

𝑷𝑡 = 𝑷𝑡|𝑡−1 − 𝑷𝑡|𝑡−1𝑯𝑡
𝑇[1 + 𝑯𝑡𝑷𝑡|𝑡−1𝑯𝑡

𝑇]
−1

 𝑯𝑡𝑷𝑡|𝑡−1     (A.4) 

1.2. Backward pass smoothing equations 

𝒙̂𝑡|𝑁 = 𝑭−1[𝒙̂𝑡+1|𝑁 + 𝑮𝑸𝑟𝑮𝑇𝑳𝑡]  

𝑳𝑡 = [𝑰 − 𝑷𝑡+1𝑯𝑡+1
𝑇 𝑯𝑡+1]

𝑇
[𝑭𝑇𝑳𝑡+1 − 𝑯𝑡+1

𝑇 (𝑦𝑡+1 − 𝑯𝑡+1𝒙̂𝑡+1)]  

𝑷𝑡|𝑁 = 𝑷𝑡 + 𝑷𝑡𝑭𝑇𝑷𝑡+1|𝑁
−1 [𝑷𝑡+1|𝑁 − 𝑷𝑡+1|𝑡]𝑷𝑡+1|𝑡

−1 𝑭𝑷𝑡  

𝑳𝑡 = 0           (A.5) 

Note that 𝑸𝑟 and 𝑷𝑡 are normalized with respect to the observation equation noise (σ2) such 

as: 

 𝑸𝑟 =
𝑸

σ2 ;  𝑷𝒕 =
𝑷𝑡

∗

σ2        (A.6) 

𝑷𝑡
∗ is the error covariance matrix related to the state estimates. The parameters inside that 

NVR matrix are estimated by Maximum likelihood prior to applying the recursive 

algorithms (Young et al., 2001). 

 

2. Backfitting algorithm for SDP models. 

1. Assume that FIS estimation has yielded an initial TVP estimate of α̂1,𝑡|𝑁
0  

2. Iterate 𝑘 = 1,2, … , 𝑘𝑐  

a. sort both βa and βc according to the ascending order of βa. 



b. obtain a FIS estimate α̂1,𝑡|𝑁
𝑘  in the relationship 𝛽𝑎 = 𝛼1(𝛽𝑎) ⋅ 𝛽𝑐 

3. Continue Step 2 until iteration kc, that is when the SDP (which is a series of length 

N) remains approximately constant. 

 


