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9 ABSTRACT: A phenyltriazine compound has been used for
10 the first time as a monomer in the construction of a hydrogel.
11 This physically cross-linked soft material showed blue
12 fluorescence when excited under UV-light. Polymer formation
13 and intermolecular H-bonds arising from triazine moieties
14 operate as aggregation-induced emission (AIE) mechanisms.
15 The combination of soft materials and AIE properties expands
16 the applications of these materials. As a proof of concept, two
17 luminescent dyes have been incorporated into the hydrogel to
18 produce a white-light-emitting material.

19 Since 2001, when Tang reported the aggregation-induced
20 emission (AIE) concept,1 the interest in this phenomenon
21 has increased steadily. Nowadays, more than 4500 research
22 groups are involved in AIE studies, as summarized in a recent
23 special issue.2 A large number of molecules, polymers,
24 dendrimers, and MOFs have been described as AIE-
25 luminogens (AIEgen) and they have been appropriately
26 reviewed.3−6 The presence of aromatic systems and their
27 restricted rotation are the most common features in AIE
28 structures. A huge number of interesting applications for
29 AIEgen have also been reported. Examples of biological
30 probes, chemical and biosensors, optoelectronics devices, and
31 smart materials have been extensively reviewed,5,7−10 along
32 with the recent use of AIE-fluorophores in solar concen-
33 trators.11

34 A great deal of effort has been focused on establishing
35 mechanisms to explain this relatively new phenomenon.5,12

36 Restriction of intramolecular rotations (RIR), restriction of
37 intramolecular vibrations (RIV), and restriction of intra-
38 molecular motions (RIM) have been proposed as the origins
39 of AIE. RIR is characteristic of molecules that adopt propeller-
40 type conformations that avoid packing of aromatic rings. This
41 phenomenon was observed for the first time by Chen et al. in
42 1,1-disubstituted-2,3,4,5-tetraphenylsiloles.13 RIV has been
43 shown to be the mechanism operating to explain AIE in
44 molecules that do not have rotatable units, such as
45 tetrabenzoheptafulvalene derivatives.14 In these cases, the
46 vibrational motions, unlike the rotational motions in the case
47 of RIR, are the origin of the exciton energy consumption. RIM

48is used to describe the coexistence of both rotational and
49vibrational restrictions in AIE molecules.15,16

50Hydrogels are three-dimensional (3D) polymeric networks
51that are able to absorb aqueous solutions without dissolving.
52This high water content imparts exceptional properties to these
53materials, including flexibility, softness, and biocompatibility,
54which make them suitable materials for biological applications
55such as controlled drug delivery,17 tissue engineering, and
56regenerative medicine18 or biosensors,19 among others.20 The
57three-dimensional structure of hydrogels is often maintained
58through hydrogen bonds, van der Waals forces, or π−π and
59dipole−dipole interactions (physically cross-linked hydrogels),
60but it can also be sustained by covalent bonds (chemically
61cross-linked hydrogels).
62The AIE phenomenon has already been observed in
63supramolecular gels15,21−24 formed by the self-assembly of
64low molecular weight molecules, as well as polymer hydrogels
65bearing archetypal luminogens in their structural design.25−30

66However, to the best of our knowledge, the existence of a
67hydrogel with AIE properties resulting from the hydrogelation
68process, and not as a consequence of the luminescent nature of
69its single components, has not been described to date.
70White-light-emitting materials have recently shown great
71potential for lighting devices and sensors.31−33 In general,
72white light can be generated by the simultaneous emission of

Received: September 10, 2019
Accepted: October 2, 2019

Letter

pubs.acs.org/macroletters

© XXXX American Chemical Society A DOI: 10.1021/acsmacrolett.9b00712
ACS Macro Lett. XXXX, XXX, XXX−XXX

lhc00 | ACSJCA | JCA11.1.4300/W Library-x64 | research.3f (R4.1.i3 HF01:4938 | 2.1) 2018/08/24 11:08:00 | PROD-WS-120 | rq_1895872 | 10/03/2019 08:38:01 | 5 | JCA-DEFAULT

pubs.acs.org/macroletters
http://dx.doi.org/10.1021/acsmacrolett.9b00712


73 blue, green, and red colors or of two complementary colors
74 (e.g., blue and orange), including the entire visible spectrum.
75 Obtaining soft materials able to emit white light that can be
76 easily handled in the solid form is a challenge, and there are
77 only a few examples in literature.34,35 Consequently, obtaining
78 such materials poses a challenge for the scientific community.
79 We report here the synthesis of a physical phenyl-
80 diaminotriazine (PhDAT) hydrogel by radical polymerization
81 of acrylic and vinyl monomers: acrylamide (AM), oligo-
82 (ethylene glycol) methyl ether methacrylate (OEGMA) and 6-

s1 83 (4-vinylphenyl)-2,4-diamino-1,3,5-triazine (VPhDT; Scheme
s1 84 1).36 VPhDT is a multifunctional monomer because it can take

85 part in numerous noncovalent interactions: metal coordina-
86 tion, acceptor and donor H-bond, π−π stacking, π-cation, and
87 π−σ and lone-pair interactions.37,38 Monomers such as AM
88 and OEGMA act as hydrophilic counterparts in order to offset
89 the intrinsic hydrophobicity of VPhDT, thus, allowing the
90 hydrogel to swell in water.39

91 The VPhDT monomer was prepared by a modified version
92 of a previously described method (see SI, S1−S4).40 X-ray
93 diffraction (Figures S5−S7) on this compound showed an
94 interesting supramolecular structure with two linear chains
95 assembled by CH−π and NH−N hydrogen-bonding inter-
96 actions. However, this crystalline structure did not show any
97 fluorescence properties.
98 The hydrogel was prepared by radical polymerization of
99 monomers in DMSO using potassium persulfate (KPS) as the
100 radical initiator. The reaction was carried out at 90 °C for 30
101 min in a preheated silicone cylindrical mold (see SI). When the
102 polymerization was complete, the organogel was removed from
103 the mold, followed by washing with distilled water for 3 days.

104During the washings, DMSO was phase-inverted with water
105and leached out of the hydrogel, along with unreacted
106monomers. The tentative structure of PhDAT is shown in
107Scheme 1. Fourier transform infrared (FTIR) spectroscopy
108was used to confirm the formation of the copolymer chains
109network constituting the PhDAT hydrogel (Figure S8). The
110mechanical properties of the hydrogel were tested. The
111compressive Young’s modulus (E) and the absorbed energy
112of the PhDAT hydrogels were 21.76 ± 1.23 kPa (calculated
113between 2% and 10% of strain) and 0.70 ± 0.06 (determined
114to be 0−15% area under the stress−strain curve), respectively
115(Figure S9).
116Despite the fact that a covalent cross-linker was not used, a
117 f1robust hydrogel was obtained (inset Figure 1). Hydrogen

118bonds and hydrophobic interactions are responsible for
119maintaining the 3D structure.41,42 A scanning electron
120microscopy (SEM) image of the physical hydrogel confirmed
121its typical porous morphology (Figure 1). The hydrogel can
122swell in aqueous media, thus, demonstrating its absorption
123ability. The swelling ratio at different pH values was studied by
124gravimetric analysis (Figure S10).
125The monomers themselves did not show any light response
126when irradiated under UV light, either in solution or in the
127solid state. An explanation of why VPhDT does not show AIE
128behavior in solution could be related with the free movement
129of monomers, which leads to mechanisms of motion-induced
130quenching of fluorescence. In solid state, the absence of
131fluorescence must be related to the stacking observed in the X-
132ray diffraction analysis. However, the hydrogel had blue
133fluorescence (466−468 nm) when irradiated at 373 nm
134 f2(Figure 2). On this basis, we propose that the AIE behavior
135arises from the incorporation of the phenyltriazine derivative
136into the 3D polymeric network. In the PhDAT-based hydrogel,
137where the diaminotriazine moieties are tightly immobilized
138through intermolecular hydrogen bonds, the energy is emitted
139as fluorescence, since intramolecular motions are restricted.
140Moreover, the randomized distribution of the triazine moieties
141in the network prevents the stacking observed in the solid
142state. It is important to note that the same hydrogel prepared
143without the VPhDT monomer does not present fluorescence.
144The situation described above is reflected in the fluorescence
145intensity values with respect to the swelling state of the
146hydrogel (Figure 2). It can be seen that higher intensity values
147were recorded for the hydrogel in its dried state (i.e., xerogel).

Scheme 1. Synthesis and Proposed Structure of the PhDAT
Hydrogel

Figure 1. SEM image of the hydrogel at pH 7.4 (inset: digital image
of the hydrogel).
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148 Phenyltriazine moieties in this state are in their closest
149 proximity and they, therefore, experience the highest AIE
150 fluorescence. As the water content within the polymer network
151 increases, the pores expand and the phenyltriazine domains
152 move further away from each other, which leads to a notable
153 decrease in the fluorescence (Figure 2, inset).
154 Surprisingly, the hydrogel still showed AIE in its maximum
155 swollen state. This remarkable result can be explained by the
156 strong hydrogen-bonding interactions between triazine moi-
157 eties: although forced to expand in the presence of water,
158 triazine molecules still remain close to one another due to the
159 formation of strong hydrogen-bonding pairs, which arrange
160 into hydrophobic microdomains, as reported previously for
161 diaminotriazine skeletons.39,43 These domains not only restrict
162 molecular motions (RIM), but also bring together neighboring
163 triazine molecules, both of which maintain fluorescence and
164 enhance the AIE effect, despite the fact that the hydrogel is not
165 in its maximum dry state.
166 Further evidence for this mechanism was provided by
167 measuring the fluorescence while changing the pH of the

f3 168 medium. It can be seen from Figure 3 that the PL values drop

169 dramatically on decreasing the pH. These experiments were
170 carried out on samples in the initial swelling states (SD = 28)
171 with the appropriate buffered solution. It is remarkable that the
172 hydrogel maintains a high PL intensity, even at pH = 1.2, with
173 more extreme acid conditions required to decrease significantly
174 the PL intensity. This fact must be related to the low basicity of
175 the triazine ring.44

176 Indeed, in acidic media, the triazine molecules are
177 protonated and repel each other due to electrostatic repulsion;
178 consequently, the hydrogels reach their maximum swelling

179degree at pH 0.5 (SW = 25 ± 0.56). The protonation of the
180triazine ring provides two significant effects: the partial rupture
181of the hydrogen bond network45 and the modification of the π
182system. The former must be related to the decrease of the
183fluorescence intensity due to the increased mobility of the
184 f4chromophores (Figure 4). The latter is consistent with the
185observed batochromic shift caused by the increased electro-
186negativity of the triazine ring.46

187In order to test the reversibility of the process, cycling
188experiments were carried out between pH 7.4 and pH 0.5. The
189fluorescence intensity of the hydrogel decreased as the pH
190decreased from 7.4 to 0.5, whereas it was restored when the
191pH was readjusted to 7.4 (Figure S11).
192Taking advantage of the inherent blue emission of the
193hydrogel, we added two chromophores inside the gel in order
194to obtain a white-light-emitting material. For this purpose,
195fluorescein and rhodamine 101 are incorporated into the gel in
196appropriate proportions, as green and red fluorophores,
197respectively. Upon irradiation at 386 nm and following a
198Föster Resonance Energy Tranfer, a white light of (0.27, 0.36)
199 f5CIE coordinates47 was observed (Figure 5, see SI).
200In conclusion, a novel phenyldiaminotriazine-based hydrogel
201has been developed. This polymeric 3D network has a soft
202scaffold structure with aggregation-induced emission. In
203contrast to supramolecular gels, this hydrogel can be easily
204handled in the solid form. The anchoring of phenyltriazine

Figure 2. Dependence of fluorescent behavior on swelling degree
(SD) at λexc = 373 nm and digital images of fluorescent PhDAT
hydrogels under UV light (λexc = 365 nm).

Figure 3. Fluorescence spectra of PhDAT hydrogel under UV light
(λexc = 373 nm) at the initial swelling stage in different pH media.

Figure 4. Schematic illustration of pH-responsiveness and proposed
AIE mechanism for PhDAT swollen hydrogels.

Figure 5. (a) Luminescent emission of the PhDAT hydrogel under
UV light after incorporation of fluorescent dyes. (b) Fluorescence
spectrum and (c) CIE (x,y) chromaticity diagram of the white-light-
emitting hydrogel.
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205 groups in the polymer chains leads to the formation of
206 microdomains due to aggregation of triazine moieties by
207 hydrogen bonding. The topology of the network restricts the
208 movement of fluorophores (RIM), which results in a
209 fluorescent emission by AIE. Remarkably, the polymer network
210 can absorb water while maintaining the 3D integrity and the
211 fluorescent behavior. The fluorescence of the hydrogel is only
212 diminished in strongly acidic media. Therefore, this new blue-
213 light-emitting material could be used as a sensor for ions or
214 molecules capable of interacting with the different functional
215 groups of the polymer network in a reversible way without
216 losing the chromophore. In addition, the possibility of adding
217 other fluorophores to the hydrogel allows obtaining a new soft
218 material that emits white light.
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