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Abstract

This paper proposes a capacity investment model to analyze the influence of the

controllability of the charge of plug-in electric vehicles (PEVs) in generation and

storage expansion decisions. The proposed model provides the financial incentives

that should be offered to PEV users in order to implement the optimal expan-

sion decisions. Considering that the decision-making process faced by the power

system planner must simultaneously consider long- and short-term uncertainties,

a three-stage stochastic programming problem is formulated. In this model, ca-

pacity investments and financial incentives for PEV users are decided in the first

stage, whereas operating decisions regarding the day-ahead and real-time markets

are made in the second and third stages, respectively. Numerical results are pro-

vided from a realistic case study based on the isolated power system comprising

Lanzarote and Fuerteventura islands in Spain.
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1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) has proven the hu-

man responsibility for the ongoing global warming and claims radical changes
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in the economic development [1]. Since the electricity generation is currently

the cause of 30% of the global greenhouse gas emissions, mandatory changes are

needed in this sector. For this reason, power systems have started a major trans-

formation that will require a higher interaction between consumers and electricity

suppliers in order to accommodate the expected massive electricity production

from renewable energies.

The variability of the output of intermittent renewable sources, such as wind

and solar radiation, may be compensated by an increase in the flexibility in the

demand side. In this sense, the direct control of the charging processes of the bat-

teries of plug-in electric vehicles (PEVs) may represent a useful instrument used

by power system operators (SOs) to facilitate the operation of future power sys-

tems. However, the high acquisition cost of PEVs and the still poor development

of charging infrastructures are currently the main barriers for spreading the use

of PEVs. Considering the above, the development of capacity expansion models

specially tailored for power systems with high presence of renewable generating

units and controllable loads are of utmost importance.

The capacity expansion problem considering renewable units has been widely

studied. For instance, [2] presents a novel stochastic programming problem to de-

cide how a thermal-dominated power system can be transformed into a renewable-

dominated one. The impact of forecast errors of wind power production on the

capacity expansion planning has been investigated in [3]. A classical two-stage

stochastic programming is presented in [4] to analyze the effect of the uncertainty

in capacity expansion decisions. Reference [5] proposes a multistage model to de-

cide generation, storage and transmission investments considering simultaneously

large- and small-scale uncertainties. A sample average approximation method for

the capacity expansion problem is proposed in [6]. In [7], a generation and storage

capacity expansion model that considers power ramps, minimum power output

and minimum up and down times is presented. The authors of [8] propose a

mixed-integer linear formulation for modeling a generation and transmission ex-
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pansion problem considering different time scales.

Some works have also analyzed the capacity expansion problem considering

the presence of a large number of electric vehicles. For instance, reference [12]

proposes a deterministic capacity expansion problem considering smart charge

and discharge of electric vehicles. In [13], the capacity expansion problem for

distribution systems considering storages and electric vehicle charging stations

has been studied.

In this paper we assume the role of a power system planner that seeks to

determine the optimal generation and storage investment decisions to be imple-

mented on an existing power system. For doing that, a novel formulation for the

generation and storage capacity problem considering a large presence of electric

vehicles is proposed. In order to increase the flexibility in the operation of power

systems, we assume that the system operator can exercise a direct control over

the charging processes of PEVs in exchange for a financial reimbursement paid

to PEV users. Considering this, the expansion plans determined by the power

system planner are usually used to promote the installation of some technolo-

gies over others in a non-arbitrary manner. In this manner, the expansion plans

decided by the system planner are useful either to design incentive policies or

to determine quantitatively the maximum capacities of generation and storage

technologies that are allowed to be installed by private investors in a given power

system. Accordingly, the final decision about whether or not to invest in a given

technology is only made by investors, not by system planners.

Since renewable generating units are becoming economically competitive, a

capacity investment model especially tailored for power systems with a high pres-

ence of such technologies is required. This consideration is relevant because the

availability of the power output of most frequent renewable technologies is vari-

able, volatile and uncertain. Note that some recent works, as [3], have proven

that modeling short-term uncertainties in capacity expansion problems may affect

the investment decisions obtained for power systems with high presence of units
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with uncertain power outputs. For this reason, the capacity expansion model

proposed in this paper considers the effect of the variability and uncertainty of

the production of renewable units in the day-ahead energy and reserve capacity

markets, as well as in the real-time energy market.

In order to increase the flexibility in the operation of power systems, we con-

sider that SOs may exercise a direct control over the charging process of PEVs

in exchange for a financial reimbursement that is paid to PEV users. The capa-

bilities of PEVs to contribute in the integration of renewable sources have been

investigated in [14]. The resulting number of controlled PEVs is a function of

the total value of the offered incentives, whose optimal values are an output of

the proposed model. These financial incentives represent additional costs for

the power system operation that must be taken into account in the capacity

expansion problem. Note that the effect of the presence of electric vehicles in

the investments in transmission and distribution networks is not analyzed in this

study. The control over the charging processes of PEVs could be implemented

in practice through financial intermediaries as aggregators or retailers, [15]-[17].

Note that none of the works consulted proposes procedures to determine such

incentives.

Finally, long-term uncertainties as the annual demand growth, capital costs

of generating and storage units, the number of PEVs and the degree of willing-

ness of PEV users to delegate the charge of their PEVs to the SO are explicitly

characterized in this capacity expansion problem.

The structure of this paper is as follows. Section 2 describes the decision

framework and the formulation of the proposed capacity expansion problem.

Section 3 explains the solution procedure used to solve the resulting problem.

In Section 4 numerical results are provided and discussed. Finally, in Section 5

the conclusions of this work are presented.
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2. Mathematical formulation

In this section we describe the generation and storage capacity expansion

problem that is proposed to analyze the influence of controlling the charge of

electric vehicles in the generation and storage capacity decisions.

2.1. Initial assumptions

The mathematical formulation described in this section is based on the fol-

lowing assumptions:

• Thermal and renewable power units and energy storage facilities are used

to provide the energy demanded by traditional loads and electric vehicles.

• Renewable units are non dispatchable and provide intermittent power out-

puts.

• Generation offer and consumption bid curves are linear.

• The ability of loads to respond to pricing is very small and is therefore

ignored.

• The transmission network is represented by the DC approximation [18].

• PEVs charge their batteries from the grid.

• PEV users are willing to leave the control of the charge and discharge of

their vehicles if a large enough economic reimbursement is offered to them

by the SO.

• The number of controlled vehicles only depends on the value of the offered

incentive.

• The energy stored in the PEVs at the end of the charging period has to be

greater than or equal to a minimum level defined by PEV users.
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• There exist appropriate communication facilities allowing the effective con-

trol of PEVs.

• The energy charged by those PEVs that are not controlled by the SO is

modeled as an inelastic demand.

2.2. Notation

The notation used throughout the paper is included below for quick reference.

Sets and Indices

C Sets of controlling modes of electric vehicles, indexed by c

E Set of characteristic days, indexed by e

I Set of generating and storage units, indexed by i

In Set of generating and storage units located in bus n

IG/S Set of generating/storage units

IG,D/I Set of dispatchable/intermittent generating units

I
G,D/I
n Set of dispatchable/intermittent generating units located in bus n

IS
n Set of storage units located in bus n

K Set of plug-in electric vehicle groups, indexed by k

Kt Set of plug-in electric vehicle groups that are connected to the grid in period

t

L Set of transmission lines, indexed by `

M Set of blocks in piecewise price-cuota curves, indexed by m

N Set of buses, indexed by n

T Set of time periods, indexed by t

Tk Set of time periods in which PEVs group k can be charged from or dis-

charged to the grid
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ν Index used the denote the iteration counter in the Benders’ decomposition

algorithm

Ξ Set of scenarios modeling long-term uncertainty, indexed by ξ

Ω Set of scenarios modeling short-term uncertainty, indexed by ω

Parameters

C
CU/CD
ietξ Offering cost of up/down reserve capacity of unit i in characteristic day e,

period t and long-term scenario ξ

C
D/C
ietξ Offering cost/consumption bid in the day-ahead energy market of unit i in

characteristic day e, period t and long-term scenario ξ

C
DU/DD
ietξ Offering cost of deploying up/down reserve of unit i in characteristic day e,

period t and long-term scenario ξ

CG,C
iξ Annualized capital cost of generating unit i and long-term scenario ξ

CSE,C
iξ Annualized capital cost of the energy component of storage unit i in long-

term scenario ξ

CSP,C
iξ Annualized capital cost of the power component of storage unit i in long-

term scenario ξ

CUD Cost of unserved demand

LD
netξ Demand in the day-ahead market in bus n, characteristic day e, period t

and long-term scenario ξ

LEV,D
knetξ Demand in the day-ahead market of non-controlled electric vehicle group k

in bus n, characteristic day e, period t and long-term scenario ξ

LEV,R
knetξω Demand in the real-time market of non-controlled electric vehicle group k

in bus n, characteristic day e, period t, long-term scenario ξ and short-term

scenario ω

LR
netξω Demand in the real-time market in bus n, characteristic day e, period t,

long-term scenario ξ and short-term scenario ω
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NEV
knξ Number of electric vehicles pertaining to group k and bus n in long-term

scenario ξ

PBPT
max Maximum charged/discharged power in the battery of a PEV k

P
BS,0/F
kneξω Initial/final status of the battery of PEV group k, at bus n, in characteristic

day e, period t, long-term scenario ξ and short-term scenario ω

PEV,S
max,k Maximum energy level stored in PEV group k

SP
(ν)
ξe Parameter that is equal to the optimal objective function of the subproblem

associated with long-term scenario ξ and characteristic day e in iteration

(ν) of the Benders’ decomposition algorithm

PEV,S
min,k Minimum energy level stored in PEV group k

PG
up/dw,i Upper/down ramp factor of generating unit i

P L
max,` Capacity of transmission line `

t
I/F
k Initial/final charging time of the battery of PEVs group k

UD
iet Availability of intermittent unit i in the day-ahead market in characteristic

day e and period t

UR
ietω Availability of intermittent unit i in characteristic day e, period t and short-

term scenario ω

wd Weight of characteristic day d

X` Reactance of line `

X̂EV
kcmξ Auxiliary parameter used to compute the per unit number of PEVs in group

k pertaining to charging mode c, block m and long-term scenario ξ

z
(ν)
lo Lower bound of problem (P1) computed in iteration (ν) of the Benders’

decomposition algorithm

z
(ν)
up Upper bound of problem (P1) computed in iteration (ν) of the Benders’

decomposition algorithm

γ
SS,0/E
i Factor used to model the initial/ending status of the storage unit i
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γS,EP
i Relationship between energy and power capacities in storage unit i

γSSmin
i Factor used to model the minimum energy that must contain storage unit i

ηEV Efficiency of charging/discharging PEVs

ηS
i Efficiency of charging/discharging storage unit i

λ̂EV
kcmξ Auxiliary parameter used to compute the incentive offered to electric vehicle

group k in charging mode c, block m and long-term scenario ξ

πdω Probability of short-term scenario ω in day d

τξ Probability of long-term scenario ξ

Variables

c
U/D
ietξ Up/down reserve capacity scheduled by generating or storage unit i in the

day-ahead market, characteristic day e, period t and long-term scenario ξ

pC
ietξ Consumption power scheduled by storage unit i in the day-ahead market,

in characteristic day e, period t and long-term scenario ξ

pD
ietξ Generation power scheduled by unit i in the day-ahead market, in charac-

teristic day e, period t and long-term scenario ξ

p
EV,C/D
knetξω Power charged/discharged from the batteries of PEV group k in bus n,

characteristic day e, period t, long-term scenario ξ and short-term scenario

ω

p
EV,DD/DC
knetξ Power discharged/charged in the day-ahead market by PEV group k, in

bus n, characteristic day e, period t and long-term scenario ξ

pEV,S
knetξω Energy level in the batteries of PEV group k in bus n, characteristic day e,

period t, long-term scenario ξ and short-term scenario ω

pG,C
i Capacity built of generating unit i

pL,D
`etξ Power flow through line ` in the day-ahead market, characteristic day e,

period t and long-term scenario ξ
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pL,R
`etξω Power flow through line ` in the day-ahead market, in characteristic day e,

period t, long-term scenario ξ and short-term scenario ω

pR
ietξω Power generated in the real-time operation by generating unit i, in charac-

teristic day e, period t, long-term scenario ξ and short-term scenario ω

p
SC/SD
ietξω Power charged/discharged by storage i in characteristic day e, period t,

long-term scenario ξ and short-term scenario ω

pSE,C
i Energy capacity built of storage unit i

pSP,C
i Peak power of storage unit i

pSS
ietξω Energy level in storage i, day e, period t, long-term scenario ξ and short-

term scenario ω

pUD,R
netξω Unserved demand in bus n in the real-time operation, in characteristic day

e, period t, long-term scenario ξ and short-term scenario ω

r
EV,U/D
knetξω Up/down reserve deployed by PEV group k in bus n, characteristic day e,

period t, long-term scenario ξ and short-term scenario ω

r
EV,UC/DC
knetξω Up/down reserve deployed by PEV group k in bus n from charging in

characteristic day e, period t, long-term scenario ξ and short-term scenario

ω

r
EV,UD/DD
knetξω Up/down reserve deployed by PEV group k in bus n from the discharging,

characteristic day e, period t, long-term scenario ξ and short-term scenario

ω

r
U/D
ietξω Deployed up/down reserve in the real-time operation by generating or stor-

age unit i, in characteristic day e, period t, long-term scenario ξ and short-

term scenario ω

r
UC/DC
ietξω Up/down reserve deployed in the real-time operation from the charge of

storage unit i, in characteristic day e, period t, long-term scenario ξ and

short-term scenario ω
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r
UD/DD
ietξω Up/down reserve deployed in the real-time operation from the discharge of

storage unit i, in characteristic day e, period t, long-term scenario ξ and

short-term scenario ω

sD
ietξ Power spillage of intermittent generating unit i in the day-ahead market,

in characteristic day e, period t and long-term scenario ξ

sR
ietξω Power spillage of intermittent generating unit i in the real-time market, in

characteristic day e, period t, long-term scenario ξ and short-term scenario

ω

vEV
kcnm Binary variable that is equal to 1 if the incentive offered to PEV group k,

in charging mode c, in bus n belongs to block m of the price-quota curve,

being 0 otherwise

xEV,C
kcnξ Per-unit number of controlled PEVs in group k, charging mode c, bus n

and long-term scenario ξ

αEV,C
knξe Dual variable associated with constraint (71)

αG,C
ieξ Dual variable associated with constraint (68)

αSE,C
ieξ Dual variable associated with constraint (69)

αSP,C
ieξ Dual variable associated with constraint (70)

β Auxiliary variable used to estimate the expected operation costs for given

first-stage variables in the Benders’ decomposition algorithm

λEV
knc Incentive offered to electric vehicle group k in bus n and charging mode c

λEV,A
kncm Auxiliary variable used to compute the incentive offered to electric vehicle

group k in bus n, charging mode c and block m

θL,D
netξ Voltage angle of bus n in the day-ahead market, characteristic day e, period

t and long-term scenario ξ

θL,R
netξω Voltage angle of bus n in the real-time market, in characteristic day e,

period t, long-term scenario ξ and short-term scenario ω
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2.3. Decision framework and planning horizon

We consider a power system planner that desires to determine the optimal

generating mix to procure the demand in a specified target year at minimum

cost. To achieve this objective, the planner has to decide the capacity to install

from a set of thermal and renewable candidate generating units. Renewable units

are assumed to be non dispatchable with intermittent power output. In order to

facilitate the incorporation of a large number of renewable units, energy storage

systems can be also installed to increase the flexibility of the power system oper-

ation. Note that energy storage systems are adequate for performing a temporal

arbitrage of energy, as well as providing up and down reserves.

Together with storage units, an appropriate management of controllable loads

can provide additional flexibility to the power system operation. In this sense,

PEVs present great ability for providing flexibility since i) their consumption of

energy from the grid does not occur when they are at usage, ii) they are parked

the major part of the day, iii) the processes of charging and discharging their

batteries can be automatically controlled, and iv) they have a relatively large

capacity of storage. In this manner, we assume that the SO will be able to control

the charging process of a set of PEVs in exchange for a financial reimbursement

paid to PEV users. The willingness of PEV users to be controlled by the SO is

dependent on the offered financial incentive. Additionally, PEVs are classified in

different groups according to their usage pattern, so that all PEVs belonging to

the same group are assumed to have similar charging and discharging profiles.

We assume that the power system operation is settled in two stages. The

first-stage represents the day-ahead market in which the scheduling of energy

and up and down reserve capacities for each market participant are assigned. The

real-time market is characterized in the second-stage in which the deployment of

the reserves is determined to counteract unexpected deviations of demand and

intermittent power outputs.

Considering the above, the proposed generation and energy storage capacity
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expansion model aims at determining:

• The capacity to install for each candidate generating unit.

• The capacity to install for each candidate energy storage unit.

• The economic incentives to offer to those PEV users willing to delegate the

control of the charge of their PEVs to the SO.

In this problem we distinguish between long- and short-term uncertainties.

Long-term uncertain parameters are those concerning the whole planning hori-

zon. For instance, the future values of demand growth, capital costs of generating

and energy storage units and the number of PEVs are examples of long-term un-

certain parameters. The hourly demand and the renewable output availability

for the next day can be defined as short-term uncertain parameters. Long- and

short-term uncertain parameters are characterized by two different sets of sce-

narios denoted by Ξ and Ω, respectively. Because of the very nature of long-term

uncertain parameters, they can be statistically characterized by expert judgment

using the available information provided in technical reports [19]. On the other

hand, the scenarios used to characterize the short-term uncertain parameters can

be generated using standard scenario generation techniques based on time series

models [20].

Considering the above, the proposed investment model is formulated by the

three-stage stochastic programming problem represented in Figure 1. As it can

be observed in this figure, investment decisions on generating and storage units

are made at the first stage. The storage capacity is defined in terms of power

and energy. In this stage, the economic incentives offered to PEV users are

also determined. The second and third stages are used to represent the daily

power system operation. The second stage characterizes the day-ahead energy

and reserve capacity markets where energy and reserve capacity are scheduled for

each of the 24 hours of the next day. The third stage models the real-time market

where the deployment of reserves are determined. As is customary in capacity
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expansion problems, the considered planning horizon is characterized by a set of

characteristic days.

Figure 1: Decision-making process

2.4. Three-stage stochastic programming formulation

The mathematical formulation of the problem described above is the following:

MinimizeΘ∑
ξ∈Ξ

τξ

[∑
i∈IG

CG,C
iξ pG,C

i +
∑
i∈IS

(
CSE,C
iξ pSE,C

i + CSP,C
iξ pSP,C

i

)
+∑

k∈K

∑
n∈N

∑
c∈C

∑
m∈M

NEV
knξX̂

EV
kmξλ

EV,A
kcnm +

∑
e∈E

we
∑
t∈T

( ∑
i∈IG,D∪IS

(
CD
ietξp

D
ietξ + CCU

ietξc
U
ietξ + CCD

ietξc
D
ietξ

)
+

∑
ω∈Ω

πeω

( ∑
i∈{IG,D∪IS}

(
CDU
ietξr

U
ietξω − CDD

ietξr
D
ietξω

)
+

∑
n∈N

CUDpUD
netξω

))]
(1)

14



Subject to:

• Investment constraints

0 ≤ pG,C
i ≤ PG,C

max,i, ∀i ∈ IG (2)

0 ≤ pSE,C
i ≤ P SE,C

max,i, ∀i ∈ IS (3)

0 ≤ pSP,C
i ≤ P SP,C

max,i, ∀i ∈ IS (4)

pSE,C
i = γS,EP

i pSP,C
i , ∀i ∈ IS (5)

• Financial incentive offered to PEVs

λ̂EV
kcm−1v

EV
kncm ≤ λEV,A

kncm ≤ λ̂EV
kcmv

EV
kncm,∀k,∀n,∀c,∀m (6)∑

m∈M

vEV
kncm = 1, ∀k,∀n,∀c (7)∑

m∈M

λEV,A
kncm = λEV

knc, ∀k, ∀n,∀c (8)

xEV,C
kncξ =

∑
m∈M

X̂EV
kmξv

EV
kncm, ∀k,∀n,∀c, ∀ξ (9)∑

c∈C

xEV,C
kncξ ≤ 1, ∀k, ∀n,∀ξ (10)

xEV
knξ =

∑
c∈C

xEV,C
kncξ , ∀k,∀n,∀ξ (11)

• Day-ahead market constraints{
0 ≤ pD

ietξ ≤ pG,C
i , ∀i ∈ IG,D, ∀t (12)

0 ≤ pD
ietξ ≤ pSP,C

i , ∀i ∈ IS,∀t (13)

0 ≤ pC
ietξ ≤ pSP,C

i , ∀i ∈ IS,∀t (14)

pD
ietξ + sD

ietξ = UD
ietp

G,C
i , ∀i ∈ IG,I,∀t (15)

pD
ietξ ≥ 0, ∀i ∈ IG,I,∀t (16)

sD
ietξ ≥ 0, ∀i ∈ IG,I,∀t (17)

pL,D
`etξ =

1

X`

(
θD
O(`)etξ − θD

F (`)etξ

)
, ∀`, ∀t (18)
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−P L
max,` ≤ pL,D

`etξ ≤ P L
max,`, ∀`,∀t (19)

−π/2 ≤ θD
netξ ≤ π/2, ∀n,∀t (20)∑

i∈In

pD
ietξ −

∑
i∈ISn

pC
ietξ +

∑
k∈Kt

(
pEV,DD
knetξ − p

EV,DC
knetξ

)
−

∑
`∈LO

n

pL,D
`etξ +

∑
`∈LF

n

pL,D
`etξ = LD

netξ +
∑
k∈Kt

(1− xEV
knξ)L

EV
knetξ,

∀n,∀t (21)

0 ≤ cU
ietξ ≤ pG,C

i , ∀i ∈ IG,C, ∀t (22)

0 ≤ cD
ietξ ≤ pG,C

i , ∀i ∈ IG,C, ∀t (23)

0 ≤ cU
ietξ ≤ pSP,C

i , ∀i ∈ IS,∀t (24)

0 ≤ cD
ietξ ≤ pSP,C

i , ∀i ∈ IS,∀t (25)

• Real-time market constraints

{
pR
ietξω = pD

ietξ + rU
ietξω − rD

ietξω, ∀i ∈ IG,D,∀t (26)

0 ≤ pR
ietξω ≤ pG,C

i , ∀i ∈ IG,D,∀t (27)

pR
ietξω − pR

iet−1,ξω ≤ PG
up,i, ∀i ∈ IG,D,∀t (28)

pR
iet−1,ξω − pR

ietξω ≤ PG
dn,i, ∀i ∈ IG,D,∀t (29)

pR
ietξω + sR

ietξω = UR
ietξωp

G,C
i , ∀i ∈ IG,I,∀t (30)

sR
ietξω ≥ 0, ∀i ∈ IG,I,∀t (31)

0 ≤ rU
ietξω ≤ cU

ietξ, ∀i ∈ IG,D,∀t (32)

0 ≤ rD
ietξω ≤ cD

ietξ, ∀i ∈ IG,D,∀t (33)

pL,R
`etξω =

1

X`

(
θR
O(`)etξω − θR

F (`)etξω

)
, ∀`, ∀t (34)

−P L
max,` ≤ pL,R

`etξω ≤ P L
max,`, ∀`,∀t (35)

−π/2 ≤ θR
netξω ≤ π/2, ∀n,∀t (36)
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∑
i∈In

(
rU
ietξω − rD

ietξω

)
+
∑
i∈IRn

(
pR
ietξω − pD

ietξ

)
−

∑
k∈Kn

(
rEV,U
knetξω − r

EV,D
knetξω

)
+

∑
`∈LO

n

(
pL,R
`etξω − p

L,D
`etξ

)
+
∑
`∈LF

n

(
pL,R
`tξω − p

L,D
`tξ

)
+

pUD
netξω = LR

netξω − LD
netξ +∑

k∈Kt

(1− xEV
knξ)(L

R,EV
knetξω − L

D,EV
knetξ),∀n,∀t (37)

pSS
ietξω = γSS,0pSE,C

i , ∀i ∈ IS, t = 0 (38)

pSS
ietξω ≥ γSS,EpSE,C

i , ∀i ∈ IS, t = NT (39)

pSS
ietξω = pSS

iet−1,ξω + ηSpSC
ietξω −

1

ηS
pSD
ietξω,

∀i ∈ IS,∀t (40)

γSSmin
i pSE,C

i ≤ pSS
ietξω ≤ pSE,C

i , ∀i ∈ IS,∀t (41)

pSD
ietξω = pD

ietξ − rUC
ietξω + rDC

ietξω, ∀i ∈ IS,∀t (42)

pSC
ietξω = pC

ietξ + rUD
ietξω − rDD

ietξω, ∀i ∈ IS,∀t (43)

0 ≤ pSC
ietξω ≤ pSP,C

i , ∀i ∈ IS,∀t (44)

0 ≤ pSD
ietξω ≤ pSP,C

i , ∀i ∈ IS,∀t (45)

rU
ietξω = rUC

ietξω + rUD
ietξω, ∀i ∈ IS,∀t (46)

0 ≤ rUC
ietξω ≤ pC

ietξ, ∀i ∈ IS,∀t (47)

0 ≤ rUD
ietξω ≤ pSP,C

i − pD
ietξ, ∀i ∈ IS,∀t (48)

rD
ietξω = rDC

ietξω + rDD
ietξω, ∀i ∈ IS,∀t (49)

0 ≤ rDC
ietξω ≤ pSP,C

i − pC
ietξ, ∀i ∈ IS,∀t (50)

0 ≤ rDD
ietξω ≤ pD

ietξ, ∀i ∈ IS,∀t (51)
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pEV,S
knetξω = NEV

kn P
BS,0
kneξωx

EV
knξ,∀k, ∀n, t = tIk − 1 (52)

pEV,S
knetξω ≥ NEV

kn P
EV,F
kneω x

EV
knξ,∀k, ∀n, t = tFk − 1 (53)

pEV,S
knetξω = pEV,S

knet−1,ξω + ηEVpEV,C
knetξω −

1

ηEV
pEV,D
knetξω,

∀k,∀n, t ∈ Tk (54)

NEV
kn P

EV,S
min,kx

EV
knξ ≤ pEV,S

knetξω ≤ NEV
kn P

EV,S
max,kx

EV
knξ,

∀k,∀n,∀t ∈ Tk (55)

pEV,C
knetξω = pEV,DC

knetξ − r
EV,UC
knetξω + rEV,DC

knetξω ,

∀k,∀n,∀t ∈ Tk (56)

pEV,D
knetξω = pEV,DD

knetξ + rEV,UD
knetξω − r

EV,DD
knetξω ,

∀k,∀n,∀t ∈ Tk (57)

0 ≤ pEV,C
knetξω ≤ NEV

kn P
BPT
max x

EV
knξ, ∀k,∀n,∀t ∈ Tk (58)

0 ≤ pEV,D
knetξω ≤ NEV

kn P
BPT
max x

EV,C
kn2ξ ,∀k,∀n,∀t ∈ Tk (59)

rEV,U
knetξω = rEV,UC

knetξω + rEV,UD
knetξω ,∀k, ∀n,∀t ∈ Tk (60)

0 ≤ rEV,UC
knetξω ≤ pEV,DC

knetξ ,∀k,∀n,∀t ∈ Tk (61)

0 ≤ rEV,UD
knetξω ≤ NEV

kn P
BPT
max x

EV
knξ − p

EV,DD
knetξ ,

∀k,∀n,∀t ∈ Tk (62)

rEV,D
knetξω = rEV,DC

knetξω + rEV,DD
knetξω ,∀k,∀n,∀t ∈ Tk (63)

0 ≤ rEV,DC
knetξω ≤ NEV

kn P
BPT
max x

EV,C
kn2ξ − p

EV,DC
knetξ ,

∀k,∀n,∀t ∈ Tk (64)

0 ≤ rEV,DD
knetξω ≤ pEV,DD

knetξ ,∀k,∀n,∀t ∈ Tk (65)}
,∀ω ∈ Ω

}
, ∀e ∈ E,∀ξ ∈ Ξ

where Θ is the set of all optimization variables in problem (1)-(65), hereinafter

denoted as problem (P1).

The objective function (1) to be minimized comprises: i) the expected invest-

ment cost of building new generating and storage units, ii) the expected cost of
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the economic incentives given to PEV users, iii) the expected cost of the energy

and reserves scheduled in the day-ahead market, and iv) the expected cost of the

deployed reserves and the unserved demand in the real-time market.

The first set of constraints of problem (P1) is related to the investment de-

cisions. Constraints (2)-(4) limit the capacity to be built per technology. Con-

straints (5) define the rate between energy and power capacities in storage units.

The second set of constraints formulates the incentives offered to PEV users.

This incentive is mathematically characterized by the variable λEV
knc and represents

the amount annually received by each PEV user belonging to group k, bus n and

control mode c. In particular, constraints (6)-(11) mathematically describe the

stepwise price-quota curves used to compute the number of PEVs willing to leave

the control of the charge to the SO according to the offered economic incentive.

Figure 2 depicts an example of a 4-block stepwise price-quota curve. Observe

that the percentage of controlled vehicles depicted in this curve (X̂EV
kcmξ) grows as

the offered incentive price increases (λ̂EV
kcmξ). Binary variables vEV

kncm are equal to

1 if the offered price belongs to block m for a given PEV group k, bus n, control

mode c, and long-term scenario ξ, being 0 otherwise. In this paper, two different

control modes are considered. The control mode denoted by c = 1 represents

charging control, whereas c = 2 characterizes charging and discharging control,

assuming vehicle-to-grid capability of PEVs. Note that the methodology behind

the estimation of these curves is a complex econometric problem beyond the scope

of this paper. For the interested reader, [21] proposes a practical procedure based

on the Hotelling model to derive price-quota curves in the case of an electricity

supplier of PEVs.
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Figure 2: Price-quota curve

The third set of constraints describes the power system operation. The clear-

ing of the day-ahead energy and reserve capacity market is formulated through

constraints (12)-(25), while the real-time operation is defined by constraints (26)-

(65). Note that day-ahead market constraints must hold for each long-term sce-

nario and each characteristic day, whereas real-time market constraints must also

be satisfied in each short-term scenario. Constraints (12)-(17) limit the power

scheduled by generating and storage units in the day-ahead market by the in-

stalled capacity. Constraints (18)-(20) define the transmission capacity limits

in the day-ahead market. As usual in generation expansion models considering

transmission constraints, (e.g. [2], [3], [7]-[11]), a DC linear representation of the

network is used. Constraints (21) enforce the power balance in the day-ahead

market. Constraints (22)-(25) limit the up and down reserve capacities scheduled

by the dispatchable generating and storage units in the day-ahead market.

The technical constraints of the generating units in the real-time operation are

formulated by constraints (26)-(31). Constraint (26) defines the power generated

by dispatchable units considering the deployed up and down reserve, while con-

straints (27)-(29) impose the power output and the ramping limits, respectively.

Constraints (30) and (31) limit the power output of the intermittent generating

units considering their capacity and the power availability factor in the real-time

operation. Constraints (34)-(36) impose the transmission capacity limits dur-
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ing the real-time operation. Constraint (37) enforces the power balance in the

real-time operation considering the up and down deployed reserves, the differ-

ence between the available renewable power in the real-time and the day-ahead

markets, the reserves deployed by the active groups of PEVs, the consequent

difference in the power flow through the transmission lines, and the difference

between the actual demand of consumers and non-controllable PEVs and the de-

mand predicted in the day-ahead market. Constraint (38) establishes the initial

energy level at each storage unit, whereas constraint (39) enforces the minimum

energy level that must remain at the end of the day. Constraint (40) imposes

the energy balance and constraints (41) establish the minimum and maximum

energy limits in the storage. Constraints (42) and (45) are used to compute and

limit the power charged and discharged in the real-time operation. According to

constraints (46)-(48), the deployed up reserve by storage units may result from

a reduction in the scheduled charged power (constraint (47)) and/or an incre-

ment in the discharged power respect to that scheduled in the day-ahead market

(constraint (48)). In the same way, constraints (49)-(51) determine the deployed

down reserve.

Finally, constraints (52)-(65) describe the state-of-charge of PEVs controlled

by the SO. Constraints (52)-(55) are used to compute the energy stored in the

batteries of PEVs in each period and scenario. Constraints (56)-(59) formulate

the power charged and discharged by controlled PEVs of group k at bus n. Sim-

ilarly to constraints (46)-(51), constraints (60)-(65) are used to formulate the up

and down reserves deployed by PEVs.

3. Solution procedure

Problem (P1) results in a large-scale mixed-integer linear programming prob-

lem. Since this problem may become intractable if a large number of scenarios is

considered, we apply a procedure based on the Benders’ decomposition technique

to solve (P1) in reasonable computational times. Figure 3 represents graphically

21



the proposed solution algorithm. Observe that if first-stage decisions are fixed,

problem (P1) can be decomposed by long-term scenarios and characteristic days.

Each of these resulting problems constitutes a subproblem in the Benders’ de-

composition algorithm that emulates the day-ahead market operation for a given

long-term scenario and characteristic day. The investment and PEV incentive de-

cisions are obtained by solving a master problem which constitutes a relaxation

of (P1), where Benders’ cuts obtained from solving subproblems are added in an

iterative manner.

The practical implementation of Benders’ decomposition to solve problem

(P1) is explained in the rest of this section. In the following, superscript (ν) is

used to denote the iteration counter. The interested reader is referred to [22] for

further information on the practical implementation of Benders’ decomposition.

3.1. Subproblems

As stated above, each subproblem emulates the day-ahead market operation

for a given long-term scenario and characteristic day assuming that first-stage

variables pG,C
i , pSE,C

i , pSP,C
i and λEV

knc are fixed (i.e. obtained from the previous

execution of the master problem). Note that, if λEV
knc is known, the value of xEV,C

kncξ

can be straightforwardly obtained through constraints (6)-(9). The solution of the

subproblems provides the sensitivities of the capacity expansion cost. Then, the

following problem is solved for each long-term scenario ξ and each characteristic

day e:
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MinimizeΘSP
ξe∑

ξ∈Ξ

τξ

[∑
e∈E

we
∑
t∈T

( ∑
i∈IG,D∪IS

(
CD
ietξp

D
ietξ + CCU

ietξc
U
ietξ + CCD

ietξc
D
ietξ

)
+
∑
n∈N

CUDpUD,D
netξ +

∑
ω∈Ω

πeω

( ∑
i∈{IG,D∪IS}

(
CDU
ietξr

U
ietξω

−CDD
ietξr

D
ietξω

)
+
∑
n∈N

CUDpUD
netξω

))]
(66)

Subject to:

Constraints (11)− (65) (67)

pG,C
i = p

G,C,(ν)
i : (α

G,C,(ν)
ieξ ), ∀i ∈ IG (68)

pSE,C
i = p

SE,C,(ν)
i : (α

SE,C,(ν)
ieξ ), ∀i ∈ IS (69)

pSP,C
i = p

SP,C,(ν)
i : (α

SP,C,(ν)
ieξ ), ∀i ∈ IS (70)

xEV,C
kncξ = x

EV,C,(ν)
kncξ : (α

EV,C,(ν)
knceξ ), ∀k,∀n,∀ξ (71)

where ΘSP
ξe is the set of optimization variables of the subproblem associated with

long-term scenario ξ and day e. The optimal objective function of the subproblem

associated with long-term scenario ξ and characteristic day e in iteration (ν) is

denoted by SP
(ν)
ξe , which represents the expected operation cost on long-term

scenario ξ and characteristic day e.

3.2. Master problem

The master problem is a relaxed approximation of the original capacity expan-

sion problem that is solved to determine the capacity investments in generation

and storage units and the financial incentives offered to PEV users. The formu-
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lation of the master problem is:

MinimizeΘMP∑
ξ∈Ξ

τξ

[∑
i∈IG

CG,C
iξ pG,C

i +
∑
i∈IS

(
CSE,C
iξ pSE,C

i + CSP,C
iξ pSP,C

i

)
+
∑
k∈K

∑
n∈N

∑
c∈C

∑
m∈M

NEV
knξX̂

EV
kmξλ

EV,A
kcnm

]
+ β

(72)

Subject to:

Constraints (2)-(10) (73)

β ≥
∑
ξ∈Ξ

τξ
∑
e∈E

we

[
SP

(ν)
ξe +

∑
i∈IG

α
G,C,(ν)
ieξ

(
pG,C
i − pG,C,(ν)

i

)
+

∑
i∈IS

(
α

SE,C,(ν)
ieξ

(
pSE,C
i − pSE,C,(ν)

i

)
+ α

SP,C,(ν)
ieξ

(
pSP,C
i − pSP,C,(ν)

i

))
+

+
∑

k∈K,n∈N,c∈C

α
EV,C,(ν)
knceξ

(
xEV,C
kncξ − x

EV,C,(ν)
kncξ

)
,∀ν (74)

where ΘMP is the set of optimization variables of the master problem.The Ben-

ders’ cuts formulated by constraints (74) are used in (72) to approximate the

objective function (1). After solving the master problem, the optimal values of

variables pG,C
i , pSE,C

i , pSP,C
i , λEV,A

kcnm and β obtained in iteration (ν) are stored in pa-

rameters p
G,C,(ν)
i , p

SE,C,(ν)
i , p

SP,C,(ν)
i , λ

EV,A,(ν)
kcnm and β(ν), respectively. Observe that

an additional Benders’ cut is added to the master problem in each iteration (ν).
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3.3. Upper and lower bounds

Considering that each subproblem is solved for fixed values of the investment

variables, an upper bound of the original problem can be computed as follows:

z(ν)
up =

∑
ξ∈Ξ

τξ

[∑
i∈IG

CG,C
iξ p

G,C,(ν)
i +

∑
i∈IS

(
CSE,C
iξ p

SE,C,(ν)
i + CSP,C

iξ p
SP,C,(ν)
i

)
+
∑
k∈K

∑
n∈N

∑
c∈C

∑
m∈M

NEV
knξX̂

EV
kmξλ

EV,A,(ν)
kcnm +

∑
e∈E

weSP
(ν)
ξe

]
(75)

Since the master problem is a relaxed version of the original problem, the optimal

value of its objective function (72) at each iteration (ν) constitutes an lower bound

of the original problem:

z
(ν)
lo =

∑
ξ∈Ξ

τξ

[∑
i∈IG

CG,C
iξ p

G,C,(ν)
i +

∑
i∈IS

(
CSE,C
iξ p

SE,C,(ν)
i + CSP,C

iξ p
SP,C,(ν)
i

)
+
∑
k∈K

∑
n∈N

∑
c∈C

∑
m∈M

NEV
knξX̂

EV
kmξλ

EV,A,(ν)
kcnm

]
+ β(ν)

(76)

If the difference between the upper and lower bounds is smaller than a pre-

specified tolerance the algorithm concludes and the optimal decisions are p
G,C,(ν)
i ,

p
SE,C,(ν)
i , p

SP,C,(ν)
i and λ

EV,(ν)
knc . Otherwise, the algorithm continues.

It should be noted that Benders’ decomposition cannot guarantee optimallity

when applied to non-convex problems. However, the objective function of the

master problem, as a function of the complicating variables, convexifies if a suf-

ficient number of subproblems is considered. This result has been explained in

[23] and [24]. This convexification allows a successful implementation of Benders’

decomposition in practical exercises.
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Figure 3: Flowchart representing the Benders’ decomposition algorithm applied to solve problem
(P1).

4. Numerical results

A realistic case study based on the isolated power system of Lanzarote-

Fuerteventura (LZ-FV) in Spain has been used to analyze the performance of

the proposed formulation. The objective of this case study is to determine the

optimal generation capacity mix that should be installed at the end of year 2050

and the financial incentives offered to PEV users. It is assumed that all generating

units that are currently at work will be decommissioned prior to the considered

target year. For the sake of tractability, the target year has been represented

by a set of 7 characteristic days that have been selected by using the scenario

reduction algorithm described in [25].
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4.1. Input data

The main input data describing the LZ-FV system is provided in [26] and

[27]. This power system comprises 8 buses, 8 lines and a set of 45 candidate

generating units to install. The technologies of these candidate units are diesel,

gas, wind and solar PV. Due to limitation of space, we refer the interested reader

to [27] for further information on the technical characteristics of the generating

units, the transmission network, and consumption bids and generation offers in

the day-ahead and real-time markets. Additional specific data follow.

4.1.1. Candidate generating and storage units

We assume that all thermal units that were at usage during year 2017 are

candidate units to be installed again. The estimated potentials of renewable

power plants are also considered to determine the maximum capacity of wind

and PV power that can be installed in each bus of the system [28]. Table 1

provides the considered potentials of renewable units per bus and technology.

Table 1: Potentials of renewable capacity

Node
Capacity (MW)

Node
Capacity (MW)

Wind PV Wind PV
1 61.0 64.2 5 39.0 16.8
2 9.0 73.6 6 0.0 204.0
3 0.0 13.8 7 0.0 78.1
4 0.0 18.4 8 61.1 33.1

Additionally, 8 candidate storage facilities, one per bus, are considered. The

maximum energy capacity that can be installed per bus is 100 MWh, and a typical

relationship energy/power (γSP
i ) equal to 6 has been considered.

4.1.2. PEVs modeling

Electric vehicles are grouped into three sets that have been defined based on

the mobility study [29]. The description of the characteristics of each group is

included in Table 2. Each electric vehicle is equipped with a 40 kWh battery and

it is considered that the average daily distance driven by each vehicle is 35 km
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[30]. The energy consumption is 0.196 kWh/km. The efficiency of charging and

discharging the batteries is equal to 0.88. Electric vehicles are charged under a

peak power transfer rate of 11 kW.

Table 2: PEV group characterization

Type
Beginning

hour
Ending

hour
Duration

Percentage
of PEVs

1 17.00 8.00 (next day) 15 hours 50 %
2 20.00 8.00 (next day) 12 hours 35 %
3 8.00 17.00 9 hours 15 %

4.1.3. Financial incentive

The willingness of PEV users to leave the control of the charging processes

of their vehicles to the SO is modeled with 10-block stepwise price-quota curves.

These curves are generated for cases c = {1, 2} by discretizing two normal distri-

butions with means 100 and 200 e/PEV/year, respectively, and standard devia-

tions equal to 25 e/PEV/year. The resulting price-quota curves are depicted in

Figure 4.
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Figure 4: 10-block stepwise price-quota curve

4.1.4. Long-term uncertainty

The capital costs of renewable and storage units, the annual demand growth,

the number of PEVs, and the controllability of PEVs are characterized as long-

term uncertain parameters. For this purpose, we consider three values (low,
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medium and high) for each parameter according to the values provided in Table

3.

Table 3: Parameters modeling long-term scenarios

Parameters (%)
Low Medium High

Value Prob. Value Prob. Value Prob.
Var. of the cap. cost of renewables -25.0 0.25 0.0 0.50 25.0 0.25
Var. of the cap. cost of storages -50.0 0.25 0.0 0.50 50.0 0.25
Demand growth per year 0.0 0.25 1.0 0.50 3.0 0.25
Penetration of PEVs 15.0 0.25 30.0 0.50 50.0 0.25
Horizon. shift of price-quota curves -25.0 0.25 0.0 0.50 25.0 0.25

The variation of the capital costs of renewable and storage units provided in

Table 3 are computed over the values listed in Table 4, which includes the capital

costs of the different generating technologies and storage units. These costs are

afterwards annualized using a capital recovery factor with interest rate equal to

9% and a plant life time equal to 25 years. The demand growth included in Table

3 is applied to the actual demand in LZ-FV in year 2015. The penetration of

PEVs is computed over the total number of vehicles in LZ-FV in 2015, which

is equal to 101,648 vehicles. The uncertainty associated with the willingness

of PEV users to delegate the control of the charge of their PEVs to the SO is

modeled shifting horizontally the price-quota curves represented in Figure 4 using

the values indicated in Table 3.

Table 4: Capital costs

Technology
Capital cost

Technology
Capital cost

(e/kW) (e/kW)
Diesel 900 PV 2000
Gas 750 Storage (energy) 40(∗)

Wind 1400 Storage (power) 1000
(∗): (e/kWh)

Note that if three scenarios are defined for each of the five long-term un-

certain parameters described above, a total number of 35 = 243 scenarios are

generated. For the sake of tractability, this set of scenarios has been reduced to

10 by using a scenario reduction technique, [25]. Note that this value allows to

reach a compromise between accuracy and tractability and is consistent with the
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number of scenarios used in state-of-the-art capacity investment studies, [2]-[11].

The algorithm proposed in [25] is based on solving the full optimization problem

as many times as long-term scenarios are initially generated (243) considering

only one scenario each time. Afterwards, scenarios are selected according to cost

associated with each single scenario. The performance of the scenario reduction

algorithm is depicted in Figure 5. The cost associated with each single long-term

scenario is represented in blue color, whereas red circles are used to denote the

scenarios that are finally selected by the scenario reduction algorithm.

Figure 5: Long-term scenarios selection

4.1.5. Short-term uncertainty

The day-ahead demand, and the wind and solar PV availabilities are charac-

terized as random variables and they are modeled using a set of scenarios. The

ARIMA models proposed in [27] are used to characterize and randomly generate

scenarios for demand, wind speed and solar radiation for each characteristic day.

Considering this, an initial set of 100 scenarios is generated that has been after-

wards reduced to 12 scenarios using the fast-forward selection algorithm described

in [31].
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4.2. Results

In this section, we provide the results obtained by using the input data de-

scribed above. For the sake of comparison, three different cases are solved:

Case 1 : In this case we consider that the SO is able to control the charge

and discharge of those PEVs that wish to be controlled in exchange for a

financial reimbursement. The installation of storage units is allowed.

Case 2 : This case is similar to Case 1 but considering that PEVs cannot

be controlled by the SO.

Case 3 : This case is similar to Case 2 but considering that storages cannot

be installed.

In particular, we show: i) the generating and storage capacity to be built

in three different cases, which differ on whether or not the charging/discharging

of the PEVs is controlled by the ISO, ii) the resulting number of PEVs under

controlled in each node, iii) the day-ahead scheduling, and iv) the levelized cost

of energy in the resulting power system.

All simulations are performed with CPLEX 12.6.1 using a server with four

3.0 GHz processors and 250 GB of RAM. The resulting problem has been solved

using Benders’ decomposition considering an optimality gap equal to 0.1%. The

number of constraints, continuous and binary variables in Case 1 are 12.3×106,

7.3×106, and 480, respectively. All solution times are less than 43 hours. Note

that this solution time is reasonable for a long-term decision-making problem.

The economic and technical results are described in the following subsections.

4.2.1. Expected cost

Table 5 provides the resulting expected costs for each case. It is relevant to

note that if the possibility of controlling the charge and discharge of PEVs is not

considered (Case 2 ), the total expected cost increases 2.8% with respect to Case

1. In the same manner, if storages are not considered (Case 3 ), the expected cost

increases 4.0% with respect to Case 1.
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Table 5: Expected cost (million e)

Case
Annual inv. Annual inv. Incentive

Operation Total
gen. units storage units PEVs

Case 1 98.2 5.6 0.4 193.3 297.5
Case 2 98.8 6.3 0.0 200.6 305.7
Case 3 92.0 0.0 0.0 217.4 309.4

4.2.2. Computational performance

Table 6 provides the computational size of the full problem formulated in

Section 2.4, and of the master problem and subproblems resulting from applying

Benders’ decomposition in Case 1. The number of constraints in the master

problem corresponds to the first iteration. The average solution times to solve

the master problem and each of 10 × 7 = 70 subproblems in each iteration are

8 and 25 seconds, respectively. In total, 88 iterations are needed to reach an

optimality gap equal to 0.1%, which results in a total computational time of 43

hours.

Table 6: Size of the problems

Problem Full Master Subproblem
Constraints (#) 12309 10763 177
Continuous variables (#) 10763 1791 111
Binary variables (#) 480 480 0

4.2.3. Installed capacity

Table 7 provides the generation and storage capacity to be installed in each

case for each technology. The percentage of the capacity installed over the poten-

tial of each technology is also included. Observe that the whole available capacity

of wind power is installed in all cases. It is worth noting that if PEVs cannot

be controlled by the SO (Case 2 ), the investments in storage capacity increase

12%. If storages are not considered (Case 3 ), the installation of PV units de-

creases 20%, whereas the installation of diesel and gas units increases 6% and

46%, respectively.
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Table 7: Capacity to be installed (MW)

Case Diesel Gas Wind Solar PV Storage

Case 1
272.3 39.6 170.0 222.7 37.2

(78.4%) (7.4%) (100%) (45.4%) (27.9%)

Case 2
270.9 36.5 170.0 227.3 41.8

(78.0%) (6.9%) (100%) (45.3%) (31.4%)

Case 3
289.6 57.9 170.0 178.2 -

(83.4%) (10.9%) (100%) (35.5%) (-)

4.2.4. Financial incentives for controllable PEVs

Table 8 lists the resulting financial incentives offered by the SO to controllable

PEVs in Case 1. Observe that the financial incentive offered to PEVs in groups

1 and 2 in charging control mode is higher than that offered to PEVs belonging

to group 3. The reason for this result is that the SO may have a strong interest

in placing the charge of PEVs during valley hours at night. However, this is not

possible for group 3, which can only charge or discharge during the central part

of the day, between 8:00 and 17:00.

Table 8: Financial incentives per PEV and per year for each PEV group (e/PEV/year)

PEV group Charging Charging/discharging
1 75 122
2 75 122
3 47 150

4.2.5. Levelized cost of energy

In this subsection we analyze the resulting levelized cost of energy (LCOE)

of each generating and storage technology. The LCOE is a measure of the cost

of the energy generated by each technology, which is computed as the annualized

investment cost divided by the annual energy production plus the incurred op-

erating costs during the year. In the case of storage units, the operating costs

are computed as the cost of the energy purchased in the day-ahead and real-time

markets. Considering this, Tables 9 and 10 provide the expected number of full-

load hours and LCOE per technology and case. It is observed that gas units are
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peak units that are at operation for a small number of hours during the year,

yielding a high expected LCOE for this tehcnology. On the other hand, wind

power units present the smallest LCOE among all considered technologies.

Table 9: Expected full-load hours per technology (hours)

Case Diesel Gas Wind Solar PV Storage
Case 1 4643 72 2217 1472 3495
Case 2 4858 69 2218 1472 3433
Case 3 4653 109 2187 1473 -

Table 10: Expected LCOE per technology (e/MWh)

Case Diesel Gas Wind Solar PV Storage
Case 1 210.5 > 104 110.2 310.2 170.1
Case 2 205.9 > 104 110.1 316.8 172.7
Case 3 213.0 > 104 111.6 248.3 -

5. Summary and conclusions

This paper presents a three-stage stochastic programming problem to analyze

the generation capacity expansion of a power system considering storage units

and PEVs. The willingness of PEVs to be controlled by the system operator is

modeled by means of price-quota curves. Long- and short-term uncertainties are

explicitly considered. The resulting problem is a large-scale mixed-integer linear

programming problem that can be solved using decomposition techniques.

The numerical results obtained from a case study based on the Lanzarote-

Fuerteventura power system indicate that investment decisions are affected by

the controllability of the charge and discharge of PEVs. In particular, invest-

ments in storage facilities are significantly reduced if PEVs are controlled by the

power system operator. Additionally, it has been observed that the annual opera-

tion cost of the system can be reduced 3.6% thanks to the controllability of PEVs.

Besides, the installation of solar PVs reduces 20% if the flexibility provided by

PEVs and storages is not considered. Another interesting result is that wind

power units are massively installed in the analyzed power system independently

of the presence of storage units and the controllability of PEVs. It should be also

34



highlighted that the economical incentives offered to PEV users depend signifi-

cantly of the interval of hours in which PEVs are available for being controlled.

For instance, the incentives offered to PEVs whose charge can be controlled at

night are 59.6% higher than those offered to vehicles not connected during the

night. Conversely, those PEVs that are willing to discharge energy in the grid

obtain an incentive 22.8% higher if they are connected during the central part of

the day.
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