1	Integrated metatranscriptomics and metaproteomics for the
2	characterization of bacterial microbiota in unfed Ixodes ricinus
3	
4	Angélica Hernández-Jarguín ^{1,&} , Sandra Díaz-Sánchez ^{1,&} , Margarita Villar ¹ , José de la
5	Fuente ^{1,2*}
6	
7	¹ SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM,
8	Ronda de Toledo s/n, 13005 Ciudad Real, Spain.
9	² Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma
10	State University, Stillwater, OK 74078, USA.
11	
12	^{&} The first two authors contributed equally to the work reported in this paper.
13	
14	*Correspondence: José de La Fuente. SaBio. Instituto de Investigación en Recursos
15	Cinegéticos, IREC-CSIC-UCLM-JCCM, 13005 Ciudad Real, Spain; e-mail:
16	jose_delafuente@yahoo.com
17	
18	Running title: Metaomics of tick bacterial microbiota
	1

46 47

20 Abstract

An innovative metaomics approach integrating metatranscriptomics and metaproteomics was used to characterize bacterial communities in the microbiota of the Lyme borreliosis spirochete vector, *Ixodes ricinus* (Acari: Ixodidae). Whole internal tissues and salivary glands from unfed larvae and female ticks, respectively were used. Reused I. ricinus RNA-sequencing data for metranscriptomics analysis together with metaproteomics provided a better characterization of tick bacterial microbiota by increasing bacteria identification and support for identified bacteria with putative functional implications. The results showed the presence of symbiotic, commensal, soil, environmental, and pathogenic bacteria in the I. ricinus microbiota, including previously unrecognized commensal and soil microorganisms. The results of the metaomics approach may have implications in the characterization of putative mechanisms by which pathogen infection manipulates tick microbiota to facilitate infection. Metaomics approaches integrating different omics datasets would provide a better description of tick microbiota compositions, and insights into tick interactions with microbiota, pathogens and hosts.

36 Keywords: metatranscriptomics; metaproteomics; metaomics; tick; microbiota; biofilm

1. Introduction

The microbiota plays an important role in several processes affecting human and animal health, agriculture, environment, and host-pathogen interactions (Kau et al., 2011; Schwabe and Jobin, 2013; Philippot et al., 2013; Bouchez et al., 2016). Next-generation sequencing or omics technologies can be used for microbiota characterization under different experimental and natural conditions. Metagenomics have been used to characterize the microbiota in different hosts including both model and nonmodel organisms such as humans and tick vectors (Clay et al., 2008; Andreotti et al., 2011; Carpi et al., 2011; Vayssier-Taussat et al., 2015; Qiu et al., 2014; Williams-Newkirk et al., 2014; van Treuren et al., 2015; Narasimhan and Fikrig, 2015; Yoon et al., 2015; Abraham et al., 2017; Heintz-Buschart and Wilmes, 2017; Greay et al., 2017; Varela-Stokes et al., 2017; Xiang et al., 2017). Different metatranscriptomics approaches have been also applied to the study of microbial communities in arthropod vectors and vertebrate hosts (Mäder et al., 2011; Johannson et al., 2013; Vayssier-Taussat et al., 2013; Razzauti et al., 2015; Luo et al., 2017). Recently, metaproteomics and metabolomics have emerged as powerful tools for the characterization of dynamic host-microbiome interactions, particularly in combination with metagenomics and metatranscriptomics approaches (Tanca et al, 2013; 2014; Franzosa et al., 2015; Aguiar-Pulido et al., 2016; Cheng et al., 2017). Furthermore, metaomics or the integration of different omics approaches allows network-based analyses to describe the complexity and function of different biological processes involved in host/tick-pathogen and host/tick-microbiome interactions (Franzosa et al., 2015; Villar et al, 2015; Narasimhan and Fikrig, 2015), and the discovery of new targets for prevention and control of tick-borne diseases (Abraham et al., 2017; Narasimhan et al., 2017; Xiang et al., 2017).

Ixodes ricinus (Linnaeus 1758) (Acari: Ixodidae) are obligate hematophagous ectoparasites and vectors of multiple pathogens such as *Borrelia* spp. (Lyme borreliosis and hard tick-borne relapsing fever), Anaplasma phagocytophilum (human granulocytic anaplasmosis), tick-borne encephalitis virus (TBE), and Babesia spp. (babesiosis) (de la Fuente et al., 2008; 2017). Additionally, I. ricinus have a diverse community of commensal and symbiotic microorganisms which exert multiple effects on tick fitness, nutrition, development, reproduction, defense against environmental stress, immunity and transmission of tick-borne pathogens (Bonnet et al., 2017; de la Fuente et al., 2017). The I. ricinus microbiome was first characterized using a metagenomics approach (Carpi et al., 2011; Nakao et al., 2013; Bonnet et al., 2014). Vayssier-Taussat et al. (2013) characterized the bacterial community of *I. ricinus* using a whole transcriptomics approach, resulting in a better identification of previously unknown bacteria and accurate identification of potential pathogens. This method also provides a better understanding of the tick-microbiome interactions when compared to metagenomics. Additionally, reusing RNA sequencing (RNA-seq) data has been also used as an efficient strategy for the screening of pathogens in ticks (Zhuang et al., 2014a).

In this study, we used the integration of metatranscriptomics and metaproteomics for the characterization of the tick bacterial microbiota in unfed I. ricinus. Reused I. ricinus RNA-seq data for metranscriptomics analysis together with metaproteomics provided a better characterization of tick microbiome by increasing bacterial identification and support for identified bacteria with putative functional implications.

2. Materials and methods

- 2.1. Tick samples and processing.

Tick samples were obtained and processed as previously described (Genomic Resources Development Consortium et al., 2014). Briefly, I. ricinus unfed larvae and adult females were obtained from the reference laboratory colony maintained at the tick rearing facility of the Institute of Parasitology of the Biology Centre of the Academy of Sciences of the Czech Republic. Whole internal tissues and salivary glands from 300 larvae and 30 female ticks, respectively were combined and used for RNA-seq. All ticks were washed with a series of solutions composed of tap water, 3% hydrogen peroxide, two washes of distilled water, 70% ethanol and two more washes with distilled water prior to dissection for DNA, RNA and protein extraction. Total DNA, RNA and proteins were extracted using Tri Reagent (Sigma-Aldrich, St. Louis, MO, USA) according to manufacturer instructions. RNA was further purified with the RNeasy MinElute Cleanup Kit (Qiagen, Valencia, CA, USA) and characterized using the Agilent 2100 Bioanalyzer (Santa Clara, CA, USA) in order to evaluate the quality and integrity of RNA preparations. DNA and RNA concentrations were determined using the Nanodrop ND-1000 (NanoDrop Technologies Wilmington, Delaware USA). Proteins were resuspended in 20 mM Tris-HCl pH 7.5 with 4% SDS and protein concentration was determined using the BCA Protein Assay kit (Thermo Scientific, Rockford, IL, USA) with bovine serum albumin (BSA) as standard.

2.2. Integrated metaomics experimental design.

103 An integrated metatranscriptomics and metaproteomics approach was developed for the 104 characterization of *I. ricinus* bacterial microbiota (Fig. 1). Reused *I. ricinus* RNA-seq data 105 (Genomic Resources Development Consortium et al., 2014) derived from combined female 106 salivary glands and larvae were the basis for metatranscriptomics analysis that resulted in 107 the database of identified bacterial genera. This database was then used to generate the

Uniprot protein database for application as a variant of the proteomics informed by transcriptomics (PIT) approach (Evans et al., 2012) in the metaproteomics analysis.

2.3. Metatranscriptomics for the identification of bacterial species in the tick microbiome.

A metatranscriptomics pipeline was developed based on the reused *I. ricinus* RNA-seq data (Fig. 1). Tick RNA-seq analysis was conducted as previously described (Genomic Resources Development Consortium et al., 2014). The I. ricinus transcriptome, raw reads and assembly results can be accessed at dryad entries doi: 10.5061/dryad.9is92/1 - doi: 10.5061/dryad.9js92/8. The metatranscriptomics database was then generated from the 19,831,942 I. ricinus unaligned reads that did not match to the I. scapularis reference genome (assembly JCVI ISG i3 1.0; http://www.ncbi.nlm.nih.gov/nuccore/NZ ABJB00000000) (Genomic Resources Development Consortium et al., 2014). The unaligned reads were extracted from the BAM files (the binary version of the SAM file, a tab-delimited text file that contains sequence alignment data) that resulted after the assembly of I. ricinus transcriptome using the SAMtools (Li et al., 2009; Li, 2011; http://samtools.sourceforge.net). Then, the unaligned reads were searched against a bacterial sequence database constructed with genome and/or species-specific ribosomal RNA (rRNA) sequences downloaded from the NCBI (https://www.ncbi.nlm.nih.gov) (Supplementary file 1 - Table 1). The bioinformatics

approach to identify bacterial sequences was done in two steps. First, the LAST genome-scale sequence comparison tool (http://last.cbrc.jp) was used to search against the bacterial database previously constructed. The reads containing poly-A tails were discarded. As cut-off criteria for genome-scale sequence comparison we applied minimum alignment length of 100 nucleotides, e-value 0.001, with a word size of 11, and a minimum of 70% sequence

identity. Then, the putative bacterial reads detected with LAST were further confirmed by
 BLAST (<u>https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE_TYPE=BlastSearch</u>)

(Frith et al., 2010 a,b; Kiełbasa et al., 2011). BLAST assignments were done by using the 10 best BLAST hits (BBH) for each putative bacteria previously assigned by LAST. The sequences with hits matching to bacteria were confirmed as identified bacterial sequences, discarding the rest. Manual filtering was applied to remove those sequences with similarity to functional domains. The metatranscriptomics database was constructed taking the number of count reads or identifications (IDs) assigned to each identified bacterial sequences, and normalized against the total number of IDs (Supplementary file 2 – Dataset 1).

2.4. Metaproteomics for bacterial protein identification.

The metaproteomics pipeline included *de novo* identification using a protein database constructed based on the bacterial genera identified by metatrascriptomics, a variant of the PIT approach (Evans et al., 2012) (Fig. 1). Protein extracts (150 µg per sample) were on-gel concentrated by SDS-PAGE as previously described (Villar et al., 2015). The unseparated protein band was visualized by staining with GelCode Blue Stain Reagent (Thermo Scientific), excised, cut into 2x2 mm cubes and digested overnight at 37 °C with 60 ng/µl sequencing grade trypsin (Promega, Madison, WI, USA) at 5:1 protein:trypsin (w/w) ratio in 50 mM ammonium bicarbonate, pH 8.8 containing 10% (v/v) acetonitrile (Shevchenko et al., 2006). The resulting tryptic peptides from the gel band were extracted by 30 min-incubation in 12 mM ammonium bicarbonate, pH 8.8. Trifluoroacetic acid was added to a final concentration of 1% and the peptides were finally desalted onto OMIX Pipette tips C18 (Agilent Technologies, Santa Clara, CA, USA), dried-down and stored at -20 °C until mass spectrometry analysis. The desalted protein digests were resuspended in 0.1% formic

395 396	156	acid and analyzed by reverse phase (RP)-liquid chromatography (LC)-mass spectrometry
397 398	157	(MS)/MS (RP-LC-MS/MS) using an Easy-nLC II system coupled to an ion trap LCQ Fleet
399 400	158	mass spectrometer (Thermo Scientific). The peptides were concentrated (on-line) by
401 402 403	159	reverse phase chromatography using a 0.1x20 mm C18 RP pre-column (Thermo Scientific),
403 404 405	160	and then separated using a 0.075 x 100 mm C18 RP column (Thermo Scientific) operating
406 407	161	at 0.3 ml/min. Peptides were eluted using a 180-min gradient from 5 to 35% solvent B in
408 409	162	solvent A (solvent A: 0.1% formic acid in water, solvent B: 0.1% formic acid in
410 411	163	acetonitrile). Electrospray ionization (ESI) was done using a Fused-silica PicoTip Emitter
412 413	164	ID 10 mm (New Objective, Woburn, MA, USA) interface. Peptides were detected in survey
414 415	165	scans from 400 to 1600 amu (1 mscan), followed by three data dependent MS/MS scans
416 417 418	166	(Top 3), using an isolation width of 2 mass-to-charge ratio units, normalized collision
410 419 420	167	energy of 35%, and dynamic exclusion applied during 30 sec periods. The MS/MS raw files
421 422	168	were searched against a compiled database containing the Uniprot Ixodidae taxonomy
423 424	169	(134,957 entries in February 2017) together with a database created from the bacterial
425 426	170	genera identified by metatranscriptomics (4,185,346 Uniprot entries in February 2017)
427 428	171	using the SEQUEST algorithm (Proteome Discoverer 1.4, Thermo Scientific). The
429 430	172	following constraints were used for the searches: tryptic cleavage after Arg and Lys, up to
431 432	173	two missed cleavage sites, and tolerances of 1 Da for precursor ions and 0.8 Da for MS/MS
433 434 435	174	fragment ions and the searches were performed allowing optional Met oxidation and Cys
436 437	175	carbamidomethylation. A false discovery rate (FDR) < 0.01 was considered as condition
438 439	176	for successful peptide assignments and at least two peptides per protein were the necessary
440 441	177	condition for protein identification. After discarding Ixodidae assignations, peptides
442 443	178	corresponding to bacterial genera were grouped and the total number of peptide spectrum
444 445 446	179	matches (PSMs) for each bacterial genera were normalized against the total number of 8

PSMs (Supplementary file 3 – Dataset 2). The gene ontology (GO) annotations for
biological process (BP) were done in proteins identified in tick-borne pathogens (TBPs; *Anaplasma, Borrelia, Ehrlichia* and *Rickettsia* genera) according to Uniprot
(http://www.uniprot.org) (Supplementary file 3 – Dataset 2).

460 184

2.5. Phylogenetic and taxonomic abundance analyses.

The metatrasncriptomics and metaproteomics bacteria relative abundance and taxonomic analyses were done using a Heatmap Tool associated with a pruned phylogenetic tree generated with the platform phyloT (http://phylot.biobyte.de) based on NCBI taxonomy, and visualized using the Interactive Tree of Life software v3.4.3 (http://itol.embl.de) (Letunic and Bork, 2011). A correlation analysis was conducted in Microsoft Excel (version 12.0) between bacterial genera identification by metatranscriptomics (IDs) and metaproteomics (PSMs). The Pearson's correlation coefficient was calculated using the Pearson's Coefficient Calculator Correlation (http://www.socscistatistics.com/tests/pearson/Default2.aspx) (r = 0.5).

2.6. Validation of tick bacterial microbiota identifications by real-time PCR.

DNA from the same unfed larvae and female salivary glands samples were used for validation of tick bacterial microbiota identification by real-time PCR. Specific oliginucleotide primers for the bacteria *Rickettsia* spp., *Ehrlichia* spp., Spotted Fever Group (SFG) Rickettsia, Anaplasma spp., Anaplasma phagocytophilum, Borrelia spp., Wolbachia spp., Candidatus Midichloria mitochondrii and Pseudomonas putida were used (Table 1). The iScript One-Step was used to perform the real-time PCR with SYBR Green and the iQ5 thermal cycler (Bio-Rad, Hercules, CA, USA) following manufacturer's recommendations. A dissociation curve was run at the end of the reaction to ensure that only one amplicon was formed and that the amplicons denatured consistently in the same

temperature range for every sample (Ririe et al., 1997). DNA levels were normalized against tick 16S rRNA and Ixodes rps4 genes following the conditions previously reported by Zivkovic et al. (2009) and Koči et al. (2013). Normalization was performed using the genNorm method (ddCT method as implemented by Bio-Rad iQ5 Standard Edition, Version 2.0) (Livak and Schmittgen, 2001).

3. Results and discussion

3.1. Metatranscriptomics bacteria identification in *I. ricinus* microbiota.

The metatranscriptomics analysis identified a total of 450 reads that matched with specific bacterial genomes distributed among 8 phyla and 38 genera, including uncultured bacteria (Table 2, Fig. 2 and Supplementary file 2 – Dataset 1). The most represented phyla identified were Proteobacteria with 21 genera, followed by Actinobacteria and Firmicutes represented by 7 and 4 genera, respectively (Table 2). Other phyla such as Tenericutes, Spirochaetes, Fusobacteria and Bacteroidetes were also identified but with lower diversity (Table 2 and Figure 2). As expected, most of the bacteria identified by metatranscriptomics have been previously described as apart of the microbiota in different tick species (Table 3). However, other genera such as Actinomyces, Amycolatopsis, Bidifidobacterium, Giliamella, Kurthia, Mesorhizobium and Variovorax have not been previously reported in ticks (Table 3). Identified bacteria included tick endosymbionts such as Candidatus Midichloria, Wolbachia, Francisella, Spiroplasma and Rickettsiella, commensals such as Escherichia, Staphylococcus and Streptococcus, soil and environmental microorganisms such as Acinetobacter, Arthrobacter, Bradyrhizobium, Sphingomonas and Pseudomonas, human pathogens such as *Brucella* and *Enterococcus*, and TBPs such as *Anaplasma*, Ehrlichia, Rickettsia, Neorickettsia and Borrelia (Table 2, Fig. 2 and Table 3). Among the

newly identified bacteria in tick microbiota, commensal (Actinomyces, Bidifidobacterium, Giliamella) and soil (Amycolatopsis, Kurthia, Mesorhizobium and *Variovorax*) microorganisms were present (Table 2, Fig. 2 and Table 3).

3.2. Integration of metatranscriptomics and metaproteomics approaches.

The metatranscriptomics and metaproteomics results were integrated to provide a metaomics approach to bacteria identifications in the I. ricinus microbiota. A total of 10,845 PSMs were assigned to different bacterial genera present in the metatranscriptomics database (Supplementary file 3 – Dataset 2). Metaproteomics not only provided support to metatranscriptomics results by identifying 87% of the identified bacterial genera (Table 2), but also increased bacteria identification for different genera (Fig. 3A, Supplementary file 2 - Dataset 1 and Supplementary file 3 - Dataset 2). However, metaproteomics may results in some peptide assignments that could match to several related species, which requires further analyses with amino acid sequences of peptides used for protein identity for better definition at the species level (Tanca et al., 2013; 2014; Fernández de Mera et al., 2017). Therefore, the integration of metaproteomics with metatranscriptomics provides a better resolution at the species level. For example, although several Rickettsiella spp. were identified at metatranscriptomics and metaproteomics levels, only a Rickettsiella endosymbiont of *Ixodes* spp. was identified by both analyses (Supplementary file 2 – Dataset 1 and Supplementary file 3 - Dataset 2). These bacteria are closely related to pathogenic Rickettsiella spp. (Cordaux et al., 2007), and the metaomics approach provided a better support for the presence of *Rickettsiella* endosymbionts in the *I. ricinus* microbiota. Differences in bacterial identification by metranscriptomics and metaproteomics may be also due to differences in RNA and protein levels (Fig. 2 and Table 2), which could be affected by post-transcriptional and post-translational modifications (Fan et al., 2013;

Ayllón et al., 2015; Villar et al., 2015). This suggestion was supported by the multiple bacterial proteins that were identified by metaproteomics when compared to results of metatranscriptomics analysis (Supplementary file 2 - Dataset 1 and Supplementary file 3 -Dataset 2). Additional support to integrated metatranscriptomics and metaproteomics results was provided at the DNA level by PCR (Fig. 3B).

3.3. Putative functional implications of integrated metaomics results.

This study is a "proof-of-concept" for the metaomics approach to tick microbiome characterization. Integrated metatranscriptomics and metaproteomics results were functionally more relevant than those obtained by metranscriptomics alone, suggesting that identified bacteria might form part of the active microbial community in unfed I. ricinus. Differences in bacterial microbiota composition have been attributed to variations between tick species, collection sites, sex and developmental stages, feeding status, and pathogen infection (Williams-Newkirk et al., 2014; van Treuren et al., 2015; Bonnet et al., 2017; Abraham et al., 2017; Xiang et al., 2017). A correlation analysis between metatranscriptomics and metaproteomics results revealed the absence of correlation for the entire bacterial microbiome, and for certain phyla such as Proteobacteria and Actinobacteria (Fig. 3C). However, for Firmicutes and TBPs a positive correlation was obtained between normalized RNA IDs and protein PSMs (Fig. 3C). Most of the metatranscriptomics data corresponded to rRNA, which is the predominant material in the ribosome and essential for protein synthesis (Cole et al., 2003). Therefore, a positive correlation between rRNA and protein levels may reflect that these bacteria were metabolically active in unfed I. ricinus. These commensal and environmental bacteria (Firmicutes) and TBPs may interact to affect multiple processes in the tick such as tick fitness, nutrition, development, reproduction, defense against environmental stress,

⁶⁷⁵
⁶⁷⁶
⁶⁷⁷
⁶⁷⁸
⁶⁷⁷
⁶⁷⁸
⁶⁷⁶
⁶⁷⁷
⁶⁷⁸
⁶⁷⁶
⁶⁷⁷
⁶⁷⁸
⁶⁷⁶
⁶⁷⁷
⁶⁷⁸
⁶⁷⁷
⁶⁷⁸
⁶⁷⁶
⁶⁷⁷
⁶⁷⁸
⁶⁷⁶
⁶⁷⁷
⁶⁷⁸
⁶⁷⁶
⁶⁷⁷
⁶⁷⁸
⁶⁷⁶
⁶⁷⁷
⁶⁷⁸
⁶⁷⁷
⁶⁷⁸
⁶⁷⁶
⁶⁷⁷
⁶⁷⁸
⁶⁷⁶
⁶⁷⁷
⁶⁷⁸
⁶⁷⁶
⁶⁷⁶
⁶⁷⁷
⁶⁷⁸
⁶⁷⁶
⁶⁷⁶
⁶⁷⁷
⁶⁷⁸
⁶⁷⁶
⁶⁷⁶
⁶⁷⁶
⁶⁷⁷
⁶⁷⁸
⁶⁷⁶
⁶⁷⁷
⁶⁷⁸
⁶⁷⁶
⁶⁷⁶
⁶⁷⁷
⁶⁷⁸
⁶⁷⁶
⁶⁷⁷
⁶⁷⁸
⁶⁷⁶
⁶⁷⁶
⁶⁷⁷
⁶⁷⁸
⁶⁷⁶
⁶⁷⁶
⁶⁷⁶
⁶⁷⁷
⁶⁷⁸
⁶⁷⁶
<

The GO analysis for BP was conducted on proteins identified in TBPs (Anaplasma, Borrelia, Ehrlichia and Rickettsia genera) (Supplementary file 3 – Dataset 2) that showed a positive correlation between metatranscriptomics and metaproteomics results (Fig. 3C). The results showed that excluding unknown proteins, energy metabolism was the most abundant BP in all bacterial genera (Fig. 4). Another BP represented in all bacteria was protein synthesis (Fig. 4). Finally, BPs represented in some but not all bacterial genera included regulation of tick host gene expression, bacteria-tick interactions, DNA replication and transcription, DNA repair, nucleoside metabolism, cell wall biosynthetic process, cell division, and motility (Fig. 4). These results further supported that some of the identified bacteria may be metabolically active, and involved in tick-bacteria interactions.

The I. ricinus ticks used in this study were obtained from an uninfected reference laboratory colony. Then, why TBPs such as A. phagocytophilum and Borrelia spp. were identified by integrated metatranscriptomics and metaproteomics analysis? Two possible responses to this question are (a) that the colony may be infected with transovarially transmitted TBPs or (b) that although these bacteria were identified as TBPs, they may represent non-pathogenic genetic variants of these pathogens. In support to the last suggestion, it has been shown the presence of non-pathogenic species and/or variants in both A. phagocytophilum and Borrelia spp. (Anderson et al., 1990; Massung et al., 2002; 2003; Portillo et al., 2005; Al-Khedery and Barbet, 2014; Stokes et al., 2016). Nevertheless, their role as commensals or pathogenic potential is unknown.

Recently, Abraham et al. (2017) demonstrated that *A. phagocytophilum* manipulates tick
microbiota through induction of *I. scapularis* antifreeze glycoprotein (IAFGP) that results
microbiota through induction of *I. scapularis* antifreeze glycoprotein (IAFGP) that results

in alteration of bacterial biofilm formation to facilitate infection. Additionally, they showed that A. phagocytophilum alters the composition of the tick microbiota after midgut infection (Abraham et al., 2017). Based on our results and using commensal (Streptococcus) and Anaplasma bacteria that were identified in the I. ricinus microbiota as putatively metabolically active (Firmicutes and TBPs with a positive correlation between normalized RNA IDs and protein PSMs; Fig. 3C), we hypothesized that *Anaplasma* infection may be also facilitated by interfering with biofilm formation through reduction of the levels of biofilm matrix binding proteins (MBPs) and/or the presence of bacteria producing MBPs. Biofilm MBPs play structural roles in the biofilm formation and are produced by several commensal bacteria (Fong and Yildis, 2015), but in this study were identified only in Streptococcus (A0A0M4K0V8, A0A0M4JKY5, and E1M3U5; normalized PSMs = 0.06, Supplementary file 3 – Dataset 2). However, this hypothesis needs to be addressed by studies in ticks uninfected and experimentally infected with pathogens such as A. phagocytophilum.

4. Conclusions

The innovative metaomics approach used in this study resulted in the characterization of the bacterial microbiota in unfed *I. ricinus*. The approach proposed in this study for the characterization of tick microbiota was based on reused RNA-seq data. Although this is a limitation when compared to metagenomics approaches, it provides the opportunity to reuse already existing data for microboiota characterization. The reuse of RNA-seq data not targeted at bacterial sequences probably affects the identification of some bacterial taxa. However, the integration of metatrancriptomics and metaproteomics approaches provided a better characterization of tick bacterial microbiome when compared to RNA-seq alone by

increasing bacteria identification and support for identified bacteria with putative functional implications. The results corroborated previous reports on the presence of symbiotic, commensal, soil, environmental, and pathogenic bacteria in the I. ricinus microbiota. Additionally, previously unrecognized commensal and soil microorganisms were identified in unfed *I. ricinus*. The results of the metaomics approach suggested new mechanisms by which pathogen infection affects biofilm formation to manipulate tick microbiota and facilitate infection. Metaomics approaches integrating different omics datasets from metagenomics, metatranscriptomics and metaproteomics studies would provide a better description of tick microbiota composition, and insights into functional implication of tick interactions with microbiota, pathogens and hosts. **Conflict of interest statement** The authors declare that there are no conflicts of interest. Acknowledgments We thank Raquel Tobes and Marina Manrique (Oh no sequences! Research group, Era7 Bioinformatics, Granada, Spain) for technical assistance with the metatranscriptomics analysis. This work was financially supported by the H2020 COllaborative Management Platform for detection and Analyses of (Re-) emerging and foodborne outbreaks in Europe (COMPARE) Grant 643476. MV was supported by the Research Plan of the University of Castilla- La Mancha (UCLM), Spain. **Supplementary information**

841		
842 843 844	345	Supplementary file 1 – Table 1. Bacterial sequence database constructed with genome
845 846	346	and/or species-specific rRNA sequences.
847 848	347	Supplementary file 2 - Dataset 1. Metatranscriptomics database of tick bacterial
849 850	348	microbiota.
851 852	349	Supplementary file 3 - Dataset 2. Metaproteomics database of tick bacterial microbiota.
000 854		
855		
856		
857		
858		
859		
860		
862		
863		
864		
865		
866		
867		
868		
870		
871		
872		
873		
874		
875		
876 977		
077 878		
879		
880		
881		
882		
883		
884 995		
886		
887		
888		
889		
890		
891		
892 893		
894		16
895		10
896		

897 898	
899 900 35	1 References
901 902 35	Abraham, N.M., Liu, L., Jutras, B.L., Yadav, A.K., Narasimhan, S., Gopalakrishnan, V.,
904 35 905	Ansari, J.M., Jefferson, K.K., Cava, F., Jacobs-Wagner, C., Fikrig, E., 2017. Pathogen-
906 35 907	mediated manipulation of arthropod microbiota to promote infection. Proc. Natl. Acad. Sci.
908 35 909	55 U. S. A. 114, E781-E790.
910 911 35	Aguiar-Pulido, V., Huang, W., Suarez-Ulloa, V., Cickovski, T., Mathee, K., Narasimhan,
912 913 35 914	G., 2016. Metagenomics, metatranscriptomics, and metabolomics approaches for
915 35 916	microbiome analysis. Evol. Bioinform. Online. 12(Suppl 1), 5-16.
917 918 35	Al-Khedery, B., Barbet, A.F., 2014. Comparative genomics identifies a potential marker of
920 36 921	human-virulent Anaplasma phagocytophilum. Pathogens. 3, 25-35.
922 923 36	Anderson, J.F., Barthold, S.W., Magnarelli, L.A., 1990. Infectious but nonpathogenic
924 925 926	isolate of <i>Borrelia burgdorferi</i> . J. Clin. Microbiol. 28, 2693-2699.
926 927 36 928	Andreotti, R., Perez de Leon, A.A., Dowd, S.E., Guerrero, F.D., Bendele, K.G., Scoles,
929 36 930	G.A., 2011. Assessment of bacterial diversity in the cattle tick <i>Rhipicephalus (Boophilus)</i>
931 36 932	<i>microplus</i> through tag-encoded pyrosequencing. BMC Microbiol. 11, 6.
933 934 36 935	Ayllón, N., Villar, V., Galindo, R.C., Kocan, K.M., Šíma, R., López, J.A., Vázquez, J.,
936 36 937	Alberdi, P., Cabezas-Cruz, A., Kopáček, P., de la Fuente, J., 2015. Systems biology of
938 36 939	tissue-specific response to Anaplasma phagocytophilum reveals differentiated apoptosis in
940 36 941	the tick vector <i>Ixodes scapularis</i> . PLoS Genet. 11, e1005120.
942 943 944	Benson, M.J., Gawronski, J.D., Eveleigh, D.E., Benson, D.R., 2004. Intracellular symbionts
945 37 946	and other bacteria associated with deer ticks (Ixodes scapularis) from Nantucket and
947 37 948	Wellfleet, Cape Cod, Massachusetts. Appl. Environ. Microbiol. 70, 616-620.
949 950 951 952	17

Bonnet, S., Michelet, L., Moutailler, S., Cheval, J., Hébert, C., Vayssier-Taussat, M., Eloit, M., 2014. Identification of parasitic communities within European ticks using next-generation sequencing. PLoS Negl. Trop. Dis. 8, e2753. Bonnet, S., Binetruy, F., Hernández-Jarguín, A., Duron, O., 2017. The tick microbiome: Why non-pathogenic microorganisms matter in tick biology and pathogen transmission. Front. Cell. Infect. Microbiol. 7, 236. Bouchez, T., Blieux, A.L., Dequiedt, S., Domaizon, I., Dufresne, A., Ferreira, S., Godon, J.J., Hellal, J., Joulian, C., Quaiser, A., Martin-Laurent, F., Mauffret, A., Monier, J. M., Peyret, P., Schmitt-Koplin, P., Sibourg, O., D'oiron, E., Bispo, A., Deportes, I., Grand, C., Cuny, P., Maron, P.A., Ranjard, L., 2016. Molecular microbiology methods for environmental diagnosis. Environ. Chem. Lett. 14, 423-441. Budachetri, K., Browning, R. E., Adamson, S. W., Dowd, S. E., Chao, C.C., Ching, W.M., Karim, S., 2014. An insight into the microbiome of the Amblyomma maculatum (Acari: Ixodidae). J. Med. Entomol. 51, 119-129. Cafiso, A., Bazzocchi, C., De Marco, L., Opara, M.N., Sassera, D., Plantard, O., 2016. Molecular screening for Midichloria in hard and soft ticks reveals variable prevalence levels and bacterial loads in different tick species. Ticks Tick Borne Dis. 6, 1186-1192. Carpi, G., Cagnacci, F., Wittekindt, N. E., Zhao, F., Qi, J., Tomsho, L. P., Drautz, D.I., Rizzoli, A., Schuster, S.C., 2011. Metagenomic profile of the bacterial communities associated with Ixodes ricinus ticks. PLoS ONE. 6, e25604. Cheng, K., Ning, Z., Zhang, X., Li, L., Liao, B., Mayne, J., Stintzi, A., Figeys, D., 2017. MetaLab: an automated pipeline for metaproteomic data analysis. Microbiome. 5, 157.

1009		
1010	2 0 7	
1012	395	Clay, K., Klyachko, O., Grindle, N., Civitello, D., Oleske, D., Fuqua, C., 2008. Microbial
1013	396	communities and interactions in the lone star tick <i>Amblyomma americanum</i> Mol Ecol 17
1014	570	communities and interactions in the fone star tiek, <i>Amoryoninia uncriteanum</i> . 1001. 12601. 17,
1015	397	4371-4381.
1017		
1018	398	Cole I.R. Chai B. Marsh T.I. Farris B.I. Wang O. Kulam S.A. Chandra S.
1019	570	Cole, J.K., Chai, D., Marsh, T.L., Farris, K.J., Wang, Q., Kulani, S.M., Chandra, S.,
1020	399	McGarrell, D.M., Schmidt, T.M., Garrity, G.M., Tiedje, J.M., Ribosomal Database Project,
1021		
1022	400	2003. The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows
1023		
1025	401	regular updates and the new prokaryotic taxonomy. Nucleic Acids Res. 31, 442-443.
1026		
1027	402	Cordaux, R., Paces-Fessy, M., Raimond, M., Michel-Salzat, A., Zimmer, M., Bouchon, D.,
1028		
1029	403	2007. Molecular characterization and evolution of arthropod-
1031	40.4	nether and Distance II have and During Minghist 72 5045 5047
1032	404	pathogenic <i>Ricketistetta</i> bacteria. Appl. Environ. Microbiol. 73, 3043-3047.
1033		
1034	405	Courtney, J.W., Kostelnik, L.M., Zeidner, N.S., Massung, R.F., 2004. Multiplex real-time
1035	406	DCD for detection of Annularma abase actuality and Demulia bundle for I. Clin
1037	406	PCK for detection of Anapiasma phagocytophilum and Borrelia burgaorjeri. J. Clin.
1038	407	Microbiol 42 3164-3168
1039		
1040	408	de la Fuente I. Estrada Peña A. Venzal I.M. Kocan K.M. and Sonenshine D.F. 2008
1041	400	de la Fuente, J., Estrada-Fena, A., Venzai, J.W., Koean, K.W., and Sonensnine, D.E., 2008.
1043	409	Overview: Ticks as vectors of pathogens that cause disease in humans and animals. Front,
1044		
1045	410	Biosci. 13, 6938-6946.
1046		
1047	411	de la Fuente, J., Antunes, S., Bonnet, S., Cabezas-Cruz, A., Domingos, A.G., Estrada-Peña,
1049		
1050	412	A., Johnson, N., Kocan, K.M., Mansfield, K.L., Nijhof, A.M., Papa, A., Rudenko, N.,
1051		
1052	413	Villar, M., Alberdi, P., Torina, A., Ayllón, N., Vancova, M., Golovchenko, M., Grubhoffer,
1053	414	L Corresponde & Facks A.P. Contenant C. Base B.O.M. 2017 Tick nother an
1054	414	L., Caracappa, S., Fooks, A.K., Goriazar, C., Rego, R.O.M., 2017. Tick-pathogen
1056	415	interactions and vector competence: identification of molecular drivers for tick-borne
1057	110	interactions and vector competence. Identification of inforcedual articles for liek come
1058	416	diseases. Front. Cell. Infect. Microbiol. 7, 114.
1059		
1061		
1062		19
1063		
1064		

1065 1066		
1067 1068	417	Evans, V.C., Barker, G., Heesom, K.J., Fan, J., Bessant, C., Matthews, D.A., 2012. De
1069 1070	418	novo derivation of proteomes from transcriptomes for transcript and protein identification.
1071 1072 1073	419	Nat. Methods. 9, 1207-1211.
1074 1075	420	Fan, Y., Thompson, J. W., Dubois, L. G., Moseley, M. A., Wernegreen, J.J., 2013.
1076 1077	421	Proteomic analysis of an unculturable bacterial endosymbiont (Blochmannia) reveals high
1078 1079 1080	422	abundance of chaperonins and biosynthetic enzymes. J. Proteome Res. 12, 704-718.
1081 1082	423	Fernández de Mera, I.G., Ruiz-Fons, F., Mangold, K.J., Gortázar, C., de la Fuente, J.,
1083 1084	424	2013. Spotted Fever Group rickettsiae in questing ticks, Central Spain. Emerg. Infect. Dis.
1085 1086 1087	425	19, 1163-1165
1088	426	Fernández de Mera, I.G., Chaligiannis, I., Hernández-Jarguín, A., Villar, M., Mateos-
1090 1091	427	Hernández, L., Papa, A., Sotiraki, S., Ruiz-Fons, F., Cabezas-Cruz, A., Gortázar, C., de la
1092 1093	428	Fuente, J., 2017. Combination of RT-PCR and proteomics for the identification of
1094 1095	429	Crimean-Congo hemorrhagic fever virus in ticks. Heliyon. 3, e00353.
1096 1097 1098	430	Franzosa, E.A., Hsu, T., Sirota-Madi, A., Shafquat, A., Abu-Ali, G., Morgan, X.C.,
1099	431	Huttenhower, C., 2015. Sequencing and beyond: integrating molecular 'omics' for microbial
1101 1102	432	community profiling. Nat. Rev. Microbiol. 13, 360-372.
1103 1104	433	Frith, M. C., Hamada, M., Horton, P., 2010a. Parameters for accurate genome alignment.
1105 1106 1107	434	BMC Bioinformatics. 11, 80.
1108	435	Frith, M. C., Wan, R., Horton, P., 2010b. Incorporating sequence quality data into
1110 1111 1112 1113 1114 1115 1116	436	alignment improves DNA read mapping. Nucleic Acids Res. 38, e100.
1117 1118 1119 1120		20

Gall, C. A., Reif, K. E., Scoles, G. A., Mason, K. L., Mousel, M., Noh, S. M., Brayton, K. A., 2016. The bacterial microbiome of *Dermacentor andersoni* ticks influences pathogen susceptibility. ISME J. 10, 1846-1855. Genomic Resources Development Consortium, Contreras, M., de la Fuente, J., Estrada-Peña, A., Grubhoffer, L., Tobes, R., 2014. Transcriptome sequence divergence between Lyme disease tick vectors, Ixodes scapularis and Ixodes ricinus. Genomic Resources Notes accepted 1 April 2014 - 31 May 2014. Mol. Ecol. Resour. 14, 1095. Greay, T.L., Gofton, A.W., Paparini, A., Ryan, U.M., Oskam, C.L., Irwin, P.J., 2018. Recent insights into the tick microbiome gained through next-generation sequencing. Parasit. Vectors. 11, 12. Heintz-Buschart, A., Wilmes, P., 2017. Human gut microbiome: function matters. Trends Microbiol. In press. Johansson, H., Dhaygude, K., Lindström, S., Helanterä, H., Sundström, L., Trontti, K., 2013. A Metatranscriptomic approach to the identification of microbiota associated with the ant (Formica exsecta). PLoS ONE. 8: e79777. Kau, A.L., Ahern, P.P., Griffin, N.W., Goodman, A.L., Gordon, J.I., 2011. Human nutrition, thegut microbiome and the immune system. Nature. 474, 327-336. Kiełbasa, S. M., Wan, R., Sato, K., Horton, P., Frith, M. C., 2011. Adaptive seeds tame genomic sequence comparison. Genome Res. 21, 487-493. Koči, J., Šimo, L., and Park, Y., 2013. Validation of internal reference genes for real-time quantitative polymerase chain reaction studies in the tick, *Ixodes scapularis* (Acari: Ixodidae). J. Med. Entomol. 50, 79-84.

459 Kondo, N., Iiichi, N., Shimada, M., Fukatsu, T., 2002. Prevailing triple infection w	with
······································	
460 Wolbachia in Callosobruchus chinensis (Coleoptera: Bruchidae). Mol. Ecol. 11, 167-180	0.
461 Kurilshikov A. Livenova N.N. Fomenko N.V. Tunikin A.F. Der V.A. Kehilov	м
401 Kumsnikov, A., Livanova, N. N., Fomenko, N. V., Tupikin, A. E., Kai, V. A., Kabilov,	, I VI.
462 R Tikunova N V 2015 Comparative metagenomic profiling of symbiotic bacter	rial
402 R., Tikunova, N. V., 2015. Comparative metagenomic proming of symptotic backs	/I lul
463 communities associated with <i>Ixodes persulcatus Ixodes paylovskyi</i> and <i>Dermacen</i>	ntor
to communities associated with induces persureanus, induces partorshipt and Dermacen	1101
464 <i>reticulatus</i> ticks. PloS ONE, 10, e0131413.	
465 Latenia L. Dada D. 2011. Interaction Trad. Of Life 20 and in constation and disabor	
465 Letunic, I., Bork, P., 2011. Interactive Tree Of Life v2: online annotation and display	y 01
166 nhylogenetic trees made easy Nyelsie Aside Dec. 20, 175, 179	
400 phylogenetic trees made easy. Nucleic Acids Res. 59, 475-478.	
467 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecar	asis,
468 G., Durbin, R., 1000 Genome Project Data Processing Subgroup, 2009. The sequence	ence
alignment/map format and SAMtools. Bioinformatics. 25, 2078-2079.	
470 Li, H., 2011. A statistical framework for SNP calling, mutation discovery, associat	tion
471 mapping and population genetical parameter estimation from sequencing da	lata.
472 Bioinformatics. 27, 2987-2993.	
473 Liu I Li I Liu I Vu Z Vang X Liu I 2016 Population dynamics of multi	inle
475 Elu, E., El, E., Elu, J., Tu, Z., Tung, A., Elu, J., 2010. Topulation dynamics of matter	ipic
474 symbionts in the hard tick <i>Dermacentor silvarum</i> Oleney (Acari: Ixodidae) Ticks T	Fick
The symptotic in the hard tex, Dermacemen survey and the (Tean. Insurdae). These T	. IOR
475 Borne Dis. 7. 188-192.	
476 Livel KI Schmitteen T.D. 2001 Analysis of relative case summaries data using a	
476 Livak, K.J., Schmittgen, I.D., 2001. Analysis of relative gene expression data using r	rear
477 time quantitative PCP and the 2- $\Delta\Delta$ CT method. Methods, 25, 402, 408	
4// time quantitative FCK and the 2 °CT method. Methods. 25, 402-408.	
478 Luo, J., Liu, M.X., Ren, Q.Y., Chen, Z., Tian, Z.C., Hao, J.W., Wu, F., Liu, X.C., L	Luo,
479 J.X., Yin, H., Wang, H., Liu, G.Y., 2017. Micropathogen community analy	ysis
	22

480 in *Hyalomma rufipes* via high-throughput sequencing of small RNAs. Front. Cell. Infect.
481 Microbiol. 7, 374.

1239 1240 1241 1242 1243 1244 1244 1244 1244 1244 1245 1244 1244 1245 1244 1246 1247 1248 1249 1249 1249 1249 1249 1241 1241 1242 1243 1244 1244 1245 1244 1245 1246 1247 1247 1248 1248 1249 1249 1249 1249 1249 1249 1240 1241 1241 1241 1241 1242 1241</l

- 485 Martin, A.R., Brown, G.K., Dunstan, R.H., Roberts, T.K., 2005. *Anaplasma platys*: an
 486 improved PCR for its detection in dogs. Exp. Parasitol. 109, 176-180.
- 487 Massung, R.F., Mauel, M.J., Owens, J.H., Allan, N., Courtney, J.W., Stafford, K.C. 3rd.,
 1253
 488 Mather, T.N., 2002. Genetic variants of *Ehrlichia phagocytophila*, Rhode Island and
 1255
 489 Connecticut. Emerg. Infect. Dis. 8, 467-472.
- 490 Massung, R.F., Priestley, R.A., Miller, N.J., Mather, T.N., Levin, M.L., 2003. Inability of a
 1259
 1260
 491 variant strain of *Anaplasma phagocytophilum* to infect mice. J. Infect. Dis. 188, 1757-1763.
- Moreno, C.X., Moy, F., Daniels, T.J., Godfrey, H.P., Cabello, F.C., 2006. Molecular analysis of microbial communities identified in different developmental stages of Ixodes scapularis ticks from Westchester and Dutchess Counties, New York. Environ. Microbiol. 8, 761-72.
- ¹²⁷¹
 ¹²⁷²
 ¹²⁷³
 ¹²⁷³
 ¹²⁷⁴
 ¹²⁷⁵
 ¹²⁷⁶
 ¹²⁷⁷
 ¹²⁷⁶
 ¹²⁷⁶
 ¹²⁷⁶
 ¹²⁷⁶
 ¹²⁷⁶
 ¹²⁷⁶
 ¹²⁷⁶
 ¹²⁷⁷
 ¹²⁷⁶
 - 499 Narasimhan, S., Fikrig, E., 2015. Tick microbiome: the force within. Trends Parasitol. 31,
 500 315-323.

1290		
1291 1292	501	Narasimhan, S., Rajeevan, N., Liu, L., Zhao, Y.O., Heisig, J., Pan, J., Eppler-Epstein, R.,
1293 1294	502	Deponte, K., Fish, D., Fikrig, E., 2014. Gut microbiota of the tick vector Ixodes scapularis
1295 1296	503	modulate colonization of the Lyme disease spirochete. Cell Host Microbe. 15, 58-71.
1297 1298 1200	504	Narasimhan, S., Schuijt, T.J., Abraham, N.M., Rajeevan, N., Coumou, J., Graham, M.,
1300 1301	505	Robson, A., Wu, M.J., Daffre, S., Hovius, J.W., Fikrig, E., 2017. Modulation of the tick gut
1302 1303	506	milieu by a secreted tick protein favors Borrelia burgdorferi colonization. Nat. Commun. 8,
1304 1305	507	184.
1306 1307	508	Noda, A.A., Rodríguez, I., Mondeja, B., Fernándeze, C., 2013. Design, optimization and
1308 1309	509	evaluation of a polymerase chain reaction for detection of Borrelia spp. Adv. Clin. Exp.
1310 1311	510	Med. 5, 639-653.
1312 1313	511	Oteo, J.A., Portillo, A., Santibáñez, S., Blanco, J.R., Pérez-Martínez, L., Ibarra, V., 2006.
1314 1315 1316	512	Cluster of cases of human Rickettsia felis infection from Southern Europe (Spain)
1317 1318	513	diagnosed by PCR. J. Clin. Microbiol. 44, 2669-2671.
1319 1320	514	Philippot, L., Raaijmakers, J.M., Lemanceau, P., van der Putten, W.H., 2013. Going back
1321 1322 1323	515	to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11, 789-799.
1323 1324 1325	516	Ponnusamy, L., González, A., Van Treuren, W., Weiss, S., Parobek, C., Juliano, J.J,
1326 1327	517	Knight, R., Roe, R.M., Apperson, C.S., Meshnick, S.R., 2014. Diversity of Rickettsiales in
1328 1329	518	the microbiome of the lone star tick, Amblyomma americanum. Appl. Env. Microbiol. 80,
1330 1331 1332	519	354-359.
1333 1334	520	Portillo, A., Santos, A.S., Santibáñez, S., Pérez-Martínez, L., Blanco, J.R., Ibarra, V., Oteo,
1335 1336	521	J.A., 2005. Detection of a non-pathogenic variant of Anaplasma phagocytophilum in Ixodes
1337 1338 1339 1340	522	ricinus from La Rioja, Spain. Ann. N. Y. Acad. Sci. 1063, 333-336.
1341 1342 1343 1344		24

1346		
1347	523	Oiu V Nakao R Ohnuma A Kawamori F Sugimoto C 2014 Microbial population
1348	525	Qiu, T., Nakao, K., Olinulia, A., Kawamori, T., Sugimoto, C., 2014. Microbial population
1349	524	analysis of the salivary glands of ticks: a possible strategy for the surveillance of bacterial
1350	02.	
1351	525	pathogens. PLoS ONE. 9, e103961.
1353		
1354	526	Pazzouti M. Colon M. Pornard M. Maman S. Klopp C. Charbonnel N. Vavesiar
1355	520	Kazzauti, M., Galan, M., Bernaru, M., Mainan, S., Klopp, C., Charbonner, N., Vayssier-
1356	527	Taussat M Floit M Cosson LF 2015 A comparison between transcriptome
1357	521	
1358	528	sequencing and 16S metagenomics for detection of bacterial pathogens in wildlife. PLoS
1359		
1361	529	Negl. Trop. Dis. 9, e0003929.
1362		
1363	530	Ririe K M Rasmussen R P Wittwer C T 1997 Product differentiation by analysis of
1364	550	Rine, Rivi, Rushussen, R.I., Wittwei, C.I., 1997. Houdet differentiation by analysis of
1365	531	DNA melting curves during the polymerase chain reaction. Anal. Biochem. 245, 154-160.
1366		
1367	522	Duiz Eans E. Earmándaz da Mara I. C. Asavada D. Cartázar C. da la Evanta I. 2012
1368	332	Ruiz-rons, r., remandez de Mera, I., G., Acevedo, P., Gonazar, C., de la ruente, J., 2012.
1370	533	Factors driving the abundance of <i>Irodes ricinus</i> ticks and the prevalence of zoonotic I
1371	555	racions any me abundance of modes riennas deks and the prevalence of zoonotie 1.
1372	534	ricinus-borne pathogens in natural foci, Appl. Environ, Microbiol, 8, 2669-2676.
1373		
1374	525	Soltar S. I. Cay, M. I. Turak F. M. Calua S. T. Caalgaan, W. O. Maffatt M.F. Turnar
1375	555	Salter, S. J., Cox, M. J., Turek, E. M., Calus, S. T., Cookson, W. O., Morrau, M.F., Turner,
1370	536	P Parkhill I Loman N I Walker A W 2014 Reagent and laboratory contamination
1378	220	1., I untillin, V., Doman, I.V., Waller, II.W., 2011. Reagont and Mooratory containmator
1379	537	can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87.
1380		
1381	538	Schabereiter Gurtner, C. Lubitz, W. Bolleke, S. 2003, Application of broad range 16S
1382	558	Schaberener-Ourther, C., Lubitz, W., Koneke, S., 2005. Application of bload-range 105
1383	539	rRNA PCR amplification and DGGE fingerprinting for detection of tick-infecting bacteria
1384	557	intervention and DOOD interprinting for detection of the interving outerna.
1386	540	J. Microbiol. Methods. 52, 251-260.
1387		, ,
1388	541	Schevehenko A. Tomas H. Havlis I. Olson I.V. Mann M. 2006. In gol digestion for
1389	341	Schevenenko, A., Tolhas, H., Haviis, J., Olsen, J. V., Malin, M., 2000. In-gel digestion for
1390	542	mass-spectrometric characterization of proteins and proteomes. Nat. Protoc. 1, 2856-2860
1391	512	mass spectrometric characterization of proteins and proteomes. Pat. 170000. 1, 2000 2000.
1392	C 4 2	
1394	545	Schwade, K.F., Jobin, C., 2015. The microbiome and cancer. Nat. Rev. Cancer. 13, 800-
1395	511	812
1396	544	012.
1397		
1398		25
1399		
1400		

of

1401 1402		
1403	545	Selvaratnam, S., Schoedel, B. A., McFarland, B. L., Kulpa, C. F., 1995. Application of
1405 1406	546	reverse transcriptase PCR for monitoring expression of the catabolic <i>dmpN</i> gene in a
1407 1408	547	phenol-degrading sequencing batch reactor. Appl. Environ. Microbiol. 61, 3981-3985.
1409 1410 1411	548	Stokes, J.V., Moraru, G.M., McIntosh, C., Kummari, E., Rausch, K., Varela-Stokes, A.S.,
1412 1413	549	2016. Differentiated THP-1 cells exposed to pathogenic and nonpathogenic Borrelia
1414 1415	550	species demonstrate minimal differences in production of four inflammatory cytokines.
1416 1417	551	Vector Borne Zoonotic Dis. 16, 691-695.
1418 1419 1420	552	Tanca, A., Palomba, A., Deligios, M., Cubeddu, T., Fraumene, C., Biosa, G., Pagnozzi, D.,
1421 1422	553	Addis, M.F., Uzzau, S., 2013. Evaluating the impact of different sequence databases on
1423 1424	554	metaproteome analysis: Insights from a lab-assembled microbial mixture. PLoS One. 8,
1425 1426 1427	555	e82981.
1428 1429	556	Tanca, A., Palomba, A., Pisanu, S., Deligios, M., Fraumene, C., Manghina, V., Pagnozzi,
1430 1431	557	D., Addis, M.F., Uzzau, S., 2014. A straightforward and efficient analytical pipeline for
1432 1433	558	metaproteome characterization. Microbiome. 2, 49.
1434 1435	559	Trout Fryxell, R., DeBruyn, J., 2016. The microbiome of Ehrlichia-infected and uninfected
1436 1437 1438	560	lone star ticks (Amblyomma americanum). PLoS ONE. 11, 1-19.
1439 1440	561	van Overbeek, L., Gassner, F., van der Plas, C. L., Kastelein, P., Nunes-da Rocha, U.,
1441 1442	562	Takken, W., 2008. Diversity of Ixodes ricinus tick-associated bacterial communities from
1443 1444 1445	563	different forests. FEMS Microbiol. Ecol. 66, 72-84.
1446 1447	564	Van Treuren, W., Ponnusamy, L., Brinkerhoff, R.J., Gonzalez, A., Parobek, C.M., Juliano,
1448 1449	565	J.J., Andreadis, T.G., Falco, R.C., Ziegler, L.B., Hathaway, N., Keeler, C., Emch, M.,
1450 1451	566	Bailey, J.A., Roe, R.M., Apperson, C.S., Knight, R., Meshnick, S.R., 2015. Variation in the
1452 1453		
1454 1455		26
1456		

1458		
1459 1460	567	microbiota of Ixodes ticks with regard to geography, species, and sex. Appl. Environ.
1461 1462 1463	568	Microbiol. 81, 6200–6209.
1464 1465	569	Varela-Stokes, A.S., Park, S.H., Kim, S.A., Ricke, S.C., 2017. Microbial communities
1466 1467	570	in North American ixodid ticks of veterinary and medical importance. Front. Vet. Sci. 4,
1468 1469	571	179.
1470 1471	572	Vayssier-Taussat, M., Moutailler, S., Michelet, L., Devillers, E., Bonnet, S., Cheval, J.,
1472 1473	573	Hébert, C., Eloit, M., 2013. Next deneration sequencing uncovers unexpected bacterial
1474 1475 1476	574	pathogens in ticks in Western Europe. PLoS One. 8, e81439.
1477 1478	575	Vayssier-Taussat, M., Kazimirova, M., Hubalek, Z., Hornok, S., Farkas, R., Cosson, J.F.,
1479 1480	576	Bonnet, S., Vourch, G., Gasqui, P., Mihalca, A.D., Plantard, O., Silaghi, C., Cutler, S.,
1481 1482	577	Rizzoli, A., 2015. Emerging horizons for tick-borne pathogens: from the "one pathogen-
1483 1484	578	one disease" vision to the pathobiome paradigm. Future Microbiol. 10, 2033-2043.
1485 1486 1487	579	Villar, M., Ayllón, N., Alberdi, P., Moreno, A., Moreno, M., Tobes, R., Mateos-Hernández,
1488 1489	580	L., Weisheit, S., Bell-Sakyi, L., de la Fuente, J., 2015. Integrated metabolomics,
1490 1491	581	transcriptomics and proteomics identifies metabolic pathways affected by Anaplasma
1492 1493	582	phagocytophilum infection in tick cells. Mol. Cell. Proteomics. 14, 3154-3172.
1494 1495 1496	583	Williams-Newkirk, A.J., Rowe, L.A., Mixson-Hayden, T.R., Dasch, G.A., 2014.
1497 1498	584	Characterization of the bacterial communities of life stages of free living lone star ticks
1499 1500	585	(Amblyomma americanum). PLoS ONE. 9, e102130.
1501 1502 1503	586	Xiang, L., Pożniak, B., Cheng, T., 2017. Bacteriological analysis of saliva from partially or
1503 1504 1505	587	fully engorged female adult Rhipicephalus microplus by next-generation sequencing.
1506 1507	588	Antonie Van Leeuwenhoek. 110, 105-113.
1508		
1509		
1510		27
1512		

1513 1514		
1515 1516	589	Xu, X. L., Cheng, T. Y., Yang, H., Yan, F., 2015. Identification of intestinal bacterial flora
1517 1518	590	in Rhipicephalus microplus ticks by conventional methods and PCR-DGGE analysis. Exp.
1519 1520	591	Appl. Acarol. 66, 257-268.
1521 1522	592	Yoon, S.S., Kim, E.K., Lee, W.J., 2015. Functional genomic and metagenomic approaches
1523 1524 1525	593	to understanding gut microbiota-animal mutualism. Curr. Opin. Microbiol. 24, 38-46.
1526 1527	594	Zhuang, L., Zhang, Z., An, X., Fan, H., Ma, M., Anderson, B.D., Jiang, J., Liu, W., Cao,
1528 1529	595	W., Tong, Y., 2014a. An efficient strategy of screening for pathogens in wild-caught ticks
1530 1531	596	and mosquitoes by reusing small RNA deep sequencing data. PLoS One. 9, e90831.
1532 1533	597	Zhuang, L., Wang, C.Y., Tong, Y.G., Tang, F., Yang, H., Liu, W., Cao, W.C., 2014b.
1534 1535	598	Discovery of Rickettsia species in Dermacentor niveus Neumann ticks by investigating the
1536 1537 1538	599	diversity of bacterial communities. Ticks Tick Borne Dis. 5, 564-568.
1539 1540	600	Zivkovic, Z., Blouin, E.F., Manzano-Roman, R., Almazán, C., Naranjo, V., Massung, R.F.,
1541 1542	601	Jongejan, F., Kocan, K.M., de la Fuente, J., 2009. Anaplasma
1543 1544	602	phagocytophilum and Anaplasma marginale elicit different gene expression responses in
1545 1546 1547	603	cultured tick cells. Comp. Funct. Genomics. 2009, 705034.
1548		
1549 1550		
1551		
1552		
1553		

Figure legends

Figure 3. Comparative analysis of metranscriptomics and metaproteomics results. (A) Representation of the bacterial phyla with the corresponding number of genera (species) identified at RNA/protein levels. (B) Validation of integrated metatranscriptomics and metaproteomics results by PCR. Bacterial DNA levels were determined by real-time PCR and normalized against tick 16S rRNA and Ixodes rps 4. Oligonucleotide primers and real-time PCR conditions are described in Table 2. DNA levels are shown in arbitrary units as normalized Ct values. Two experiments were conducted with similar results. (C) Correlation analysis was conducted between normalized number of count reads or identifications (IDs; metatranscriptomics) and peptide spectrum matches (PSMs; metaproteomics) results (Table 2) corresponding to all bacterial genera (N=38),

Figure 2. Phylogenetic and taxonomic abundance analyses. Phylogenetic pruned tree and associated heatmap showing the relative abundance of bacterial genomes (number of count reads or identifications, IDs) and the correspondent peptide assignments (peptide spectrum matches, PSMs) at genus level. The analyses were done using a Heatmap Tool associated with a pruned phylogenetic tree generated with the platform phyloT (http://phylot.biobyte.de) based on NCBI taxonomy, and visualized using the Interactive Tree of Life software v3.4.3 (http://itol.embl.de).

microbiota. Reused I. ricinus RNA-seq data was the basis for metatranscriptomics analysis that resulted in the database of identified bacterial genera. This database was then use to generate the Uniprot protein database used in metaproteomics analysis.

Figure 1. Metaomics experimental design. An integrated metatranscriptomics and metaproteomics approach was developed for the characterization of I. ricinus bacterial

Proteobacteria (N=21), Actinobacteria (N=7) and Firmicutes (N=4) phyla represented by 4 genera or more, and TBPs (genera Anaplasma, Ehrlichia, Rickettsia, and Borrelia). The linear correlation coefficients (R^2) and Pearson correlation coefficients (*r > +0.5) are shown. For reference, Streptococcus and Anaplasma genera are shown in black and red rhombuses, respectively. Figure 4. Protein annotation in identified tick-borne pathogens. The GO analysis for BP was conducted on proteins identified in TBPs (Anaplasma, Borrelia, Ehrlichia and Rickettsia genera). Quantitative representation of BP abundance (%) was done using the total number of PSMs represented on each BP.

638 Table 1. Oligonucleotide primers and real-time PCR conditions.

			Anneanng	
Organism		Primer sequences (5-'3')	temperature	
	Gene			Reference
T 1'1	16S	GACAAGAAGACCCTA	42.00	Zivkovic
Ixodidae	rRNA	ATCCAACATCGAGGT	42 °C	al., 2009
T 1	,	GGTGAAGAAGATTGTCAAGCAGAG	54.00	Koči et
<i>Ixodes</i> spp.	rps 4	TGAAGCCAGCAGGGTAGTTTG	54 °C	2013
		AGAGTTTGATCCTGGCTCAG		Fernánde
	16S	AACGTCATTATCTTCCTTGC	54 °C	Mera et
Rickettsia spp.	rRNA			2013
		ATGGCGAATATTTCTCCAAAA		Oteo et
SFG Rickettsia	ompA	AGTGCAGCATTCGCTCCCCCT	52 °C	2006
Anaplasma spp.	16S	CAGAGTTTGATCCTGGCTCAGAACG		
1 11	rRNA	GAGTTTGCCGGGACTTCTTCTGTA	42 °C	Ruiz-Foi
	, 10, 11		42 C	al., 2012
		ATGGAAGGTAGTGTTGGTTATGGTATT		
Ananlasma	msn?	TTGGTCTTGAAGCGCTCGTA	60 °C	Courtney
nhagocytonhilum	msp2		00 0	al., 2004
phagocytophilam				
		GGTACCIACAGAAGAAGTCC		Martin et
<i>Ehrlichia</i> spp.	16S	TAGCACTCATCGTTTACAGC	54 °C	2005
	rRNA			
Pseudomonas	dmnN	ATCACCGACTGGGACAAGTGGGAAGACC	50 °C	Selvaratr
putida	ampin	TGGTATTCCAGCGGTGAAACGGCGG	50 C	et al., 19
		GGGTCCAATAAGTGATGAAGAAAC	55.00	Kondo e
<i>wolbachia</i> spp.	wsp	TTAAAACGCTACTCCAGCTTCTGC	55°C	2002
Candidatus	169	CAAAAGTGAAAGCCTTGGGC		Cofee
Midichloria	105	TGAGACTTAAAYCCCAACATC	58 °C	
mitochondrii	rKNA			2016
	165	TAGATGAGTCTGCGTCTTATTA		Noda et
Borrelia spp.		CTTACACCAGGAATTCTAACTT	58 °C	2012

640 Table 2. Relative bacteria IDs and PSMs obtained at genus level.

1	741	
1	742	

Phy	lum	Genus	IDs	PSMs
Pro	teobacteria	Acinetobacter	0.22	0.16
		Anaplasma	10.67	0.73
		Bradyrhizobium	2.44	11.07
		Brevibacterium	1.78	0.77
		Brucella	0.22	0.38
		Candidatus Midichloria	15.55	0.05
		Candidatus Neoehrlichia	8.22	0.00
		Ehrlichia	12.89	0.63
		Escherichia	0.89	4.67
		Francisella	0.22	0.00
		Gilliamella	0.22	1.23
		Klebsiella	0.22	4.24
		Lysobacter	0.22	0.00
		Mesorhizobium	0.22	1.34
		Neorickettsia	0.67	0.06
		Pseudomonas	0.67	14.72
		Rickettsia	0.44	0.18
		Rickettsiella	1.78	0.15
		Sphingomonas	0.22	9.55
		Variovorax	0.22	3.92
		,	·	2.72

		Wolbachia	0.67	0.00
		W bibacnia	0.07	0.00
A	rtinobacteria	Actinomyces	1 33	2.90
1		netitiontyces	1.55	2.90
		Arthrobacter	0.44	4.44
		Amvcolatopsis	0.22	0.23
			••==	
		Bifidobacterium	0.44	0.68
		5		
		Corvnebacterium	1.55	5.70
		<i>,</i>		
		Propionibacterium	0.89	0.31
		1		
		Rhodococcus	0.22	7.17
Fi	rmicutes	Enterococcus	0.44	5.06
		Kurthia	0.22	0.15
		Staphylococcus	0.44	0.48
		Streptococcus	0.89	12.2
Sp	oirochaetes	Borrelia	20.67	1.23
		<i>—</i>	0.00	0.00
		Treponema	0.22	0.00
	atavaidataa	Musilacinikastor	0.22	1 72
Da	icterolucies	Muchaginibacier	0.22	1.72
Fu	isobacteria	Leptotrichia	0.22	0.27
		1		
Te	enericutes	Spiroplasma	10.67	1.03
		* *		
U	ncultured bacteria	Uncultured bacteria	2.22	2.63

Normalized data is shown as the number of count reads or identifications/ peptide spectrum

matches (IDs/PSMs) divided by the total number of IDs/PSMs x 100.

646 Table 3. Biological information about bacterial genera identified by

647 metatranscriptomics in *I. ricinus*, and previously reported in different tick species.

1856 648

Bacterial genera	Biological information	Tick spp.	References
Actinomyces	Commensals of the caecum gut flora and oral cavities in human. Responsible of abscesses formation in the mouth, lungs and gastrointestinal tract.	Data	not found
Acinetobacter	Soil organisms. Some species are opportunistic pathogens causing human infections.	I. scapularis I. ricinus I. ovatus I. persulcatus Haemaphysalis flava Amblyomma americanum Dermacentor niveus	Benson et al., 2004; Moreno et al., 2006 van Overbeek et al. 2008; Qiu et al. 2014; Clay et al. 2014; Clay et al. 2018; Zhuang et al. 2014b; Narashiman et al., 2014; 2017 Abraham et al. 2017
Amycolatopsis	Soil bacteria with antibiotic and anti-inflammatory properties.	Data	not found
Anaplasma	Tick-borne intracellular bacterial pathogens causing diseases in humans and animals.	I. scapularis I. persulcatus I. pavlovskyi I. ricinus	Benson et al., 2004; Moreno et al., 2006; Kurilshikov et al. 2014; van Overbeek et al., 2008
Arthrobacter	Soil bacteria associated to bioremediation processes.	D. niveus	Zhuang et al. 2014b
Bidifidobacterium	Commensal and symbiotic bacteria in the human body. Produce lactic acid that modulates the intestinal pH.	Data	not found
Borrelia	Vector-borne bacteria responsible for Lyme disease and relapsing fever in mammals.	Rhipicephalus microplus I. ricinus I. scapularis I. persulcatus I. pavlovskyi A. americanum	Andreotti et al., 2011; Carpi et al., 2011;Vayssier- Taussat et al., 2013; van Overbeek et al., 2008; Schabereiter- Gurtner et al., 2003;

			0.014
			2014 Clay at al. 2008
Bradyrhizobium	Soil bacteria, present in the roots of plant fixing N_2 .	I. ovatus I. persulcatus H. flava	Qiu et al., 2014
Brevibacterium	Soil bacteria, some species can be found in human skin.	I. ovatus I. scapularis	Qiu et al., 2014; Narashiman et al., 2014; 2017; Abraham et al., 2017
Brucella	Pathogenic bacteria causing disease in human and animals.	I. ricinus	Carpi et al., 2011
<i>Candidatus</i> Midichloria	Tick endosymbiotic bacteria.	A. americanum I. ricinus	Ponnusamy et al., 2014; Trout Fryxell and DeBuyn, 2016; van Overbeek et al., 2008
<i>Candidatus</i> Neoehrlichia	Tick endosymbiotic bacteria.	I. ricinus I. pavlovskyi	Carpi et al., 2011; Vayssier-Taussat et al., 2013; van Overbeek et al., 2008; Kurilshikov et al., 2014
*Corynebacterium	Saprophytes, some species are pathogenic for plants and animals.	R. microplus I. ovatus I. persulcatus H. flava	Andreotti et al., 2011; Qiu et al., 2014
Ehrlichia	Tick-borne intracellular bacterial pathogens causing diseases in humans and animals.	I. scapularis I. persulcatus I. ovatus H. flava D. reticulatus R. microplus A. americanum	Benson et al., 2004; Kurilshikov et al., 2014; Qiu et al., 2014; Xu et al., 2015; Clay et al., 2008
Enterococcus	Commensals of digestive tract, opportunistic pathogens causing septicemia and urinary tract infection in mammals.	R. microplus I. ovatus I. persulcatus A. americanum	Andreotti et al., 2011; Qiu et al., 2014; Clay et al., 2008
Escherichia	Commensals of digestive and urinary tracts, opportunistic pathogens causing diarrhea to dugantary in mammals	R. microplus D. silvarum D. niveus I. persulcatus	Andreotti et al., 2011; Liu et al., 2016; Zhuang et al., 2014b; Qiu et al., 2014
	dysentery in manimals.		2014

Francisella-like	pathogens transmitted by	D. andersoni	2014; Gall et al.
endosymbiont	vectors (ticks, mosquitoes,	I. ricinus	2016; Vayssier
	mes), and causing tutatenna.	1. Ovaius 1. persulcatus	Nakao et al. 2013
		A maculatum	Budachetri et al
		11. macatatan	2014
Giliamella	Bee endosymbiotic bacteria.	Data	not found
	Saprophytes in soil and	R. microplus	Andreotti et al.
	water, commensals of	-	2011
Klahsialla	gastrointestinal tract,		
Kleoslella	opportunistic pathogens		
	responsible for septicemia		
	and pneumonia in mammals		
	Environmental bacteria,	Data	not found
	present in mammal feces,		
V	soil and water.		
Kurtnia	Opportunistic pathogens for		
	humans causing		
	endocarditis.		
	Natural flora in humans,	I. persulcatus	Qiu et al., 2014
Leptotrichia	some species cause	*	
<u>^</u>	opportunistic infections.		
Managli 1	Soil bacteria, present in the	Data	not found
Mesorhizobium	roots of plant fixing N ₂ .		
Mucilaginibacter	Environmental bacteria	H. longicornis	Liu et al., 2016
		I. scapularis	Benson et al., 2004;
		I. ovatus	Moreno et al., 2006
		I. affinis	van Treuren et al
		I. persulcatus	2015; Qiu et al
		I. ricinus	2014; Nakao et al
		I. pavlovskyi	2013; van Treure
		D. andersoni	et al., 2015
	Intracellular bacteria	D. reticulatus	Kurilshikov et al
	transmitted by vectors	D. niveus	2014; Zhuang et al
Neorickettsia/	(ticks, fleas, chiggers, lice).	H. longicornis	2014b; Williams
Rickettsia	responsible for human	H. formosensis	Newkirk et al
	diseases such as spotted	H. flava	2014; Carpi et al
	fever and typhus.	A.testudinarium	2011; van Overbee
	- ····································	A. americanum	et al., 2008
		A. maculatum	Vayssier-Taussat
		K. microplus	al., 2013
			Schabereiter-
			Gurtner et al., 2003
			Liu et al., 2016
			C-11 -4 1 0017
			Gall et al., 2016

			2014; Trout Fry and DeBuyn, 20 Clay et al., 20 Budachetri et 2014; Xiang et 2017; Xu et 2015
Propionibacterium	Commensals of human gut and skin.	I. ricinus I. ovatus I. persulcatus H. flava	Carpi et al., 2 Qiu et al., 2014
Pseudomonas	Saprophytes in soil, opportunistic pathogens for humans and plants, plant growth promoters.	R. microplus I. ricinus I. scapularis I. persulcatus I. pavlovsky I. ovatus H. longicornis D. niveus A. americanum	Andreotti et 2011; Xu et 2015; Schabere Gurtner et al., 20 Carpi et al., 201 Moreno et al., 20 Qiu et al., 20 Kurilshikov et 2014; Liu et 2016; Zhuang et 2014b; Clay et 2008
*Rhodococcus	Saprophytes in soil and water, one species is pathogenic for animals causing pneumonia.	R. microplus I. ricinus I. persulcatus I. ovatus I. pavlovsky I. scapularis	Andreotti et 2011; Carpi et 2011; Schabere Gurtner et al., 20 Kurilshikov et 2014; Qiu et 2014; Moreno et 2006
<i>Rickettsiella</i> endosymbiont	Tick endosymbiotic bacteria.	I. pavlovsky A. variegatum	Kurilshikov et 2014; Nakao et 2013
Sphingomonas	Environmental bacteria and bioremediation agents, some specimens cause clinical infections in humans.	I. scapularis I. ovatus I. persulcatus H. longicornis H. flava	Benson et al., 20 Qiu et al., 2014; et al., 2016
Sphingobium	Commonly isolated from soil	D. niveus I. ovatus	Zhuang et 2014b; Qiu et 2014
Spiroplasma	Symbionts in the gut hemolymph, few species are pathogenic for mice (cataracts and neurological	I. ovatus I. persulcatus H. flava	Qiu et al., 2014

2073 2074					
2075 2076			damage)		
2077 2078 2079 2080 2081 2082 2083		Staphylococcus	Saprophytes in soil, commensals of skin and mucosal surfaces, opportunistic pathogens (septicemia, food poisoning)	R. microplus D. nievus I. ricinus I. ovatus I. persulcatus H. flava	Andreotti et al., 2011; Xu et al., 2015; Zhuang et al., 2014b;Schabereiter- Gurtner et al., 2003; Qiu et al., 2014
2084 2085 2086 2087 2088 2089		Streptococcus	Saprophytes in soil and water, commensals of skin and mucosal surfaces, opportunistic pathogens (septicemia, meningitis, pneumonia)	R. microplus I. scapularis	Andreotti et al., 2011; Benson et al., 2004
2090 2091 2092 2093		Variovorax	Soil bacterium associated with bioremediation processes	Data	not found
2094 2095 2096 2097 2098 2099	640	Wolbachia	Mutualistic bacteria of many insects and nematodes	R. microplus I. scapularis I. ricinus	Andreotti et al., 2011; Benson et al., 2004; Carpi et al., 2011; van Overbeek et al., 2008
2000	649				

 Table modified from Razzauti et al. (2015).

*These genera were previously identified as contamination of DNA extraction kits reagents

and ultrapure water systems, which may lead to erroneous identifications in bacterial

assignments (Salter et al., 2014).

J

Accession Number (NCBI)	Taxonomic Assignments
NC_019395	Acidipropionibacterium acidipropionici ATCC 4875, complete genome
NC_014374	Acidilobus saccharovorans 345-15, complete genome
NC_013926	Aciduliprofundum boonei T469, complete genome
KU991570.1	Acinetobacter tjernbergiae strain T40 16S ribosomal RNA gene, partial sequence
NC_009053	Actinobacillus pleuropneumoniae L20 serotype 5b complete genome
CP014232.1	Actinomyces oris strain T14V, complete genome
NR_117358.1	Actinomyces oris strain ATCC 27044 16S ribosomal RNA gene, partial sequence
LT223615.1	Actinomyces odontolyticus partial 16S rRNA gene, strain Marseille-P2379
LT576385.1	Actinomyces sp. Marseille-P2825 partial 16S rRNA gene, strain Marseille-P2825
NC_022521	<i>Aeropyrum camini</i> SY1 = JCM 12091 DNA, complete genome.
NC_003062	Agrobacterium fabrum str. C58 chromosome circular, complete sequence
NC_018011	Alistipes finegoldii DSM 17242, complete genome
NC_014318	Amycolatopsis mediterranei U32 chromosome, complete genome
CP009110.1	Amycolatopsis methanolica 239, complete genome
NC_004842	Anaplasma marginale str. St. Maries, complete genome
CP006847.1	Anaplasma marginale str. Dawn genome
NC_007797	Anaplasma phagocytophilum HZ, complete genome
KX236049.1	Anaplasma phagocytophilum isolate LYD52 16S ribosomal RNA gene, partial sequence
CP015376.1	Anaplasma phagocytophilum str. Norway variant2, complete genome
KM021418.1	Anaplasma phagocytophilum str. BovBat18 23S ribosomal RNA gene, partial sequence
KM021425.1	Anaplasma platys str. ChieCal05 23S ribosomal RNA gene, partial sequence
KT364327.1	Anaplasma sp. "ivoriense TCI149" 23S ribosomal RNA gene, partial sequence

Supplementary file 1 – Table 1. Bacterial sequence database constructed with genome and/or species-specific rRNA sequences.

NC_011567	Anoxybacillus flavithermus WK1, complete genome
NC_014218	Arcanobacterium haemolyticum DSM 20595, complete genome
NC_008541	Arthrobacter sp. FB24, complete genome.
KX168140.1	Arthrobacter subterraneus str. SBSK-401 16S ribosomal RNA gene, partial sequence
NC_021171	Bacillus sp. 1NLA3E, complete genome
NC_003909	Bacillus cereus ATCC 10987, complete genome
NC_005363	Bdellovibrio bacteriovorus complete genome, strain HD100
KU593501.1	Bifidobacterium animalis str. DR2-1 16S ribosomal RNA gene, partial sequence
CP011965.1	Bifidobacterium longum subsp. longum strain CCUG30698, complete genome
NC_008277	Borrelia afzelii PKo, complete genome
NR_121981.1	Borrelia anserina str. BA2 23S ribosomal RNA gene, complete sequence
KM269460.1	Borrelia bissettii str. M7p 23S ribosomal RNA gene
NC_001318	Borrelia burgdorferi B31 chromosome, complete genome
NC_017418	Borrelia burgdorferi N40, complete genome
NC_011229	Borrelia duttonii Ly, complete genome
NC_010673	Borrelia hermsii DAH, complete genome
NC_022079	Borrelia miyamotoi LB-2001, complete genome
KU196080.1	Borrelia miyamotoi str. Sonom53 16S ribosomal RNA gene, partial sequence
NC_011244	Borrelia recurrentis A1, complete genome
NC_008710	Borrelia turicatae 91E135, complete genome
NC_006156	Borreliella bavariensis PBi chromosome linear, complete sequence
KX034021.1	Bradyrhizobium sp. strain TC29 16S ribosomal RNA gene, partial sequence
LC167484.1	Bradyrhizobium elkanii gene for 16S ribosomal RNA, partial sequence, str: PHM 1
NC_004463	Bradyrhizobium japonicum USDA 110 chromosome, complete genome.
CP014869.1	Brevibacterium linens str. BS258, complete genome
KX168131.1	Brevibacterium oceani str. SBSK-404 16S ribosomal RNA gene, partial sequence

CP007758 1	<i>Brucolla canis</i> str. RM6/66 chromosome 1. comulete sequence
KX529832.1	Brucella canis str. YH-C16 16S ribosomal RNA gene, partial sequence
NC_019751	Calothrix sp. PCC 6303, complete genome.
NC_008599	Campylobacter fetus subsp. fetus 82-40, complete genome
NC_017299	Clostridium botulinum H04402 065, complete genome sequence
NC_017096	Caldisericum exile AZM16c01 DNA, complete genome.
NC_019791	Caldisphaera lagunensis DSM 15908, complete genome.
NC_002163	Campylobacter jejuni subsp. jejuni NCTC 11168 = ATCC 700819 chr. complete genome
NC_013194	Candidatus Accumulibacter phosphatis clade IIA str. UW-1, complete genome
NC_013771	Candidatus Atelocyanobacterium thalassa isolate ALOHA, complete genome
NC_010482	Candidatus Korarchaeum cryptofilum OPF8, complete genome
NC_015722	Candidatus Midichloria mitochondrii IricVA, complete genome
HF568841.1	Candidatus Midichloria mitochondrii partial 16S rRNA gene, strain MA7
KU865475.1	Candidatus Neoehrlichia mikurensis isolate LN5 16S rRNA gene, partial sequence
JX406180.1	Candidatus Rickettsiella isopodorum str. JKI D244/2012 16S ribosomal RNA (rrs) gene
NC_020135	Candidatus Uzinura diaspidicola str. ASNER, complete genome
NC_011916	Caulobacter crescentus NA1000, complete genome
NC_014151	Cellulomonas flavigena DSM 20109, complete genome
NC_009480	Clavibacter michiganensis subsp. michiganensis NCPPB 382 complete genome
NC_009495	Clostridium botulinum A str. ATCC 3502 chromosome, complete genome
NC_022538	complete chromosome Acholeplasma palmae
NC_012590	Corynebacterium aurimucosum ATCC 700975, complete genome
NC_002935	Corynebacterium diphtheriae NCTC 13129, complete genome
NC_003450	Corynebacterium glutamicum ATCC 13032 chromosome, complete genome
NR_121991.1	Corynebacterium glycinophilum str. AJ 3170 23S rRNA gene
KU319425.1	Corynebacterium sp. C2-18 16S rRNA gene, partial sequence

NC_007164	Corynebacterium jeikeium K411 complete genome
$C_{-014329}$	Corynebacterium pseudotuberculosis FRC41, complete genome
C_015673	Corynebacterium resistens DSM 45100, complete genome
C_021663	Corynebacterium terpenotabidum Y-11, complete genome
C_019753	Crinalium epipsammum PCC 9333, complete genome.
C_{010530}	Cupriavidus taiwanensis str. LMG19424 chromosome 2, complete genome
C_019778	Cyanobacterium stanieri PCC 7202, complete genome
C_013939	Deferribacter desulfuricans SSM1 DNA, complete genome
C_013216	Desulfotomaculum acetoxidans DSM 771, complete genome
C_015589	Desulfotomaculum ruminis DSM 2154, complete genome
C_007354	Ehrlichia canis str. Jake, complete genome
C_007799	Ehrlichia chaffeensis str. Arkansas, complete genome
T308164.1	Ehrlichia chaffeensis isolate 1246 16S rRNA gene, partial sequence
C_023063	<i>Ehrlichia muris</i> AS145, complete genome.
P702294.1	Ehrlichia muris 23S rRNA gene, complete sequence
C_005295	Ehrlichia ruminantium str. Welgevonden, complete genome
X185055.1	Enterococcus faecium str. LUB950217 16S rRNA gene, partial sequence
0.015601	Erysipelothrix rhusiopathiae str. Fujisawa DNA, complete genome
015855.1	Escherichia coli str. EDL933-1 genome
1859.1	Escherichia coli 16S rRNA, complete sequence
C_021019	Eubacterium cylindroides T2-87 draft genome
C_017461	Fervidicoccus fontis Kam940 chromosome, complete genome
0.006570	Francisella tularensis subsp. tularensis SCHU S4 chromosome, complete genome
740890.1	Francisella-like endosymbiont of Ixodes ricinus 16S rRNA gene, partial sequence
R_122000.1	Gilliamella apicola str. wkB1 23S rRNA, complete sequence
2_010125	Gluconacetobacter diazotrophicus PAI 5 complete genome

NIC 010501	Condonia an VTDO comulato acomo
	Uoraona sp. N.1.N., comprete genome
NC_015153	Haemophilus influenzae F3031 complete genome
NC_013422	Halothiobacillus neapolitanus c2, complete genome
NC_015564	Hoyosella subflava DQS3-9A1, complete genome
NC_015588	Isoptericola variabilis 225, complete genome
NC_013174	Jonesia denitrificans DSM 20603, complete genome
KX691737.1	Klebsiella sp. strain 17LKA 16S rRNA gene, partial sequence
NC_010617	Kocuria rhizophila DC2201 DNA, complete genome
NC_012785	Kosmotoga olearia TBF 19.5.1, complete genome
CP013217.1	Kurthia sp. 11kri321, complete genome
KC904244.1	Kurthia sp. LAM0618 16S rRNA gene, partial sequence
NC_006087	Leifsonia xyli subsp. xyli str. CTCB07, complete genome
NC_013192	Leptotrichia buccalis DSM 1135, complete genome
NC_006055	Mesoplasma florum L1 chromosome, complete genome
NC_002678	Mesorhizobium loti MAFF303099 DNA, complete genome
NC_023044	Methanobacterium sp. MB1 complete sequence
NC_021355	Methanobrevibacter sp. AbM4, complete genome
NC_000909	Methanocaldococcus jannaschii DSM 2661, complete genome
NC_003551	Methanopyrus kandleri AV19, complete genome
NC_009712	Methanoregula boonei 6A8, complete genome
NC_019943	Methanoregula formicica SMSP, complete genome
NC_007796	Methanospirillum hungatei JF-1, complete genome
NC_000916	Methanothermobacter thermautotrophicus str. Delta H, complete genome
NC_015636	Methanothermococcus okinawensis IH1, complete genome
NC_018485	Methylocystis sp. SC2 complete genome
NC_014246	Mobiluncus curtisii ATCC 43063, complete genome

NC 014147	Moraxella catarrhalis BBH18. complete genome
NC_020418	Morganella morganii subsp. morganii KT, complete genome
NC_002944	Mycobacterium avium subsp. paratuberculosis str. k10, complete genome
NC_023036	Mycobacterium neoaurum VKM Ac-1815D, complete genome
NC_011025	Mycoplasma arthritidis 158L3-1, complete genome
NC_007633	Mycoplasma capricolum subsp. capricolum ATCC 27343, complete genome
NC_013511	Mycoplasma hominis ATCC 23114 chromosome complete genome
NC_006360	<i>Mycoplasma hyopneumoniae</i> 232, complete genome
NC_005364	Mycoplasma mycoides subsp. mycoides SC str. PG1 chromosome, complete genome
NC_004432	Mycoplasma penetrans HF-2 DNA, complete genome
NC_015153	Mycoplasma suis K13806 complete genome
KU597223.1	Mucilaginibacter sp. str. JWp32 16S rRNA gene, partial sequence
NR_076635.1	Neorickettsia risticii str. Illinois 23S rRNA gene, complete sequence
NC_007798	Neorickettsia sennetsu str. Miyayama, complete genome
NC_007406	Nitrobacter winogradskyi Nb-255, complete genome
NC_015222	Nitrosomonas sp. AL212, complete genome
NC_010085	Nitrosopumilus maritimus SCM1 chromosome, complete genome
NC_006361	Nocardia farcinica IFM 10152 DNA, complete genome
NC_008699	Nocardioides sp. JS614, complete genome
NC_018524	Nocardiopsis alba ATCC BAA-2165, complete genome
NC_005303	Onion yellows <i>phytoplasma</i> OY-M DNA, complete genome
NC_008711	Paenarthrobacter aurescens TC1, complete genome
NC_015702	Parachlamydia acanthamoebae UV-7, complete genome
NC_020514	Paraglaciecola psychrophila 170, complete genome.
NC_014414	Parvularcula bermudensis HTCC2503 str. HTCC2503, complete genome
NC_014537	Parvularcula bermudensis HTCC2503 str. HTCC2503, complete genome

Pediococcus claussenii ATCC BAA-344, complete genome	Pelobacter propionicus DSM 2379, complete genome	Persephonella marina EX-H1, complete genome	Phenylobacterium zucineum HLK1, complete genome	Photorhabdus asymbiotica ATCC43949 complete genome	Pleurocapsa sp. PCC 7327, complete genome	Porphyromonas asaccharolytica DSM 20707, complete genome	Pseudomonas syringae pv. tomato str. DC3000 chromosome, complete genome	Pseudomonas fluorescens SBW25 complete genome	Pseudomonas sp. TKP, complete genome	Propionibacterium acnes HL096PA1, complete genome	Propionibacterium acnes str. IR-TUMS/BPG6 16S ribosomal RNA gene	Pseudopedobacter saltans DSM 12145, complete genome	Pseudopropionibacterium propionicum F0230a, complete genome	Psychromonas ingrahamii 37, complete genome	Pyrobaculum aerophilum str. IM2 chromosome, complete genome	Pyrolobus fumarii 1A, complete genome	Rhodococcus sp. p52, complete genome	Rhodococcus sp. A83 A83 A83 A83 partial 16S rRNA gene, isolate A83	Rhodopseudomonas palustris CGA009 complete genome	Rickettsia bellii RML369-C, complete genome	Rickettsia felis URRWXCal2, complete genome	Rickettsia typhi str. Wilmington, complete genome	Rickettsiella endosymbiont of Ixodes tasmani isolate Ixo tasmani3 23S ribosomal	Rickettsiella sp. RKTSLLA_T3262 16S rRNA gene, partial sequence	Rothia dentocariosa ATCC 17931, complete genome	
NC_016605	NC_008609	NC_012440	NC_011144	NC_012962	NC_019689	NC_015501	NC_004578	NC_012660	NC_023064	NC_021085	KX108930.1	NC_015177	NC_018142	NC_008709	NC_003364	NC_015931	CP016819.1	AM179867.1	NC_005296	NC_007940	NC_007109	NC_006142	KP994764.1	KT697685.1	NC_014920	

nucilaginosa DY-18 DNA, complete genome	ella loihica PV-4, complete genome	zobium meliloti 2011 plasmid pSymA, complete sequence	zobium fredii NGR234 chromosome, complete genome	omonas sp. K-16 16S rRNA gene, partial sequence	omonas wittichii RW1, complete genome	etra erinaceieuropaei genome assembly S_erinaceieuropaei	ppyxis alaskensis RB2256, complete genome	<i>asma apis</i> B31, complete genome	asma diminutum CUAS-1, complete genome	asma taiwanense CT-1, complete genome	asma chrysopicola DF-1, complete genome	<i>asma</i> sp. Bratislava 1 16S rRNA gene, partial sequence	asma ixodetis str. Y-30 16S rRNA gene and 23S rRNA	asma sp. GSU5508 23S rRNA gene, partial sequence	ococcus epidermidis RP62A, complete genome	ococcus haemolyticus JCSC1435 DNA, complete genome	ococcus warneri SG1, complete genome	coccus pneumoniae R6 chromosome, complete genome	coccus uberis 0140J complete genome	coccus sp. HTS29 16S rRNA gene, partial sequence	bus solfataricus P2, complete genome	<i>icoccus</i> sp. JA-3-3Ab, complete genome	<i>ibacter turnerae</i> T7901, complete genome	<i>filum</i> sp. 1910b, complete genome	gladius cellulolyticus 1633, complete genome	
Rothia mucilaginosa I	Shewanella loihica PV	Sinorhizobium melilot	Sinorhizobium fredii N	Sphingomonas sp. K-1	Sphingomonas wittich	Spirometra erinaceieu	Sphingopyxis alaskens	Spiroplasma apis B31	Spiroplasma diminutu	Spiroplasma taiwanen	Spiroplasma chrysopic	Spiroplasma sp. Bratis	Spiroplasma ixodetis s	Spiroplasma sp. GSU ⁵	Staphylococcus epider	Staphylococcus haemc	Staphylococcus warne	Streptococcus pneumo	Streptococcus uberis (Streptococcus sp. HTS	Sulfolobus solfataricu	Synechococcus sp. JA-	Teredinibacter turnero	Thermofilum sp. 19101	Thermogladius cellulo	
NC_013715	NC_009092	NC_020527	NC_012587	KX672814.1	NC_009511	LN019399.1	NC_008048	NC_022998	NC_021833	NC_021846	NC_021280	KP967685.1	DQ004912.1	FJ824553.1	NC_002976	NC_007168	NC_020164	NC_003098	NC_012004	KX679404.1	NC_002754	NC_007775	NC_012997	NC_022093	NC_017954	

Thermosipho melanesiensis BI429, complete genome Thiocystis violascens DSM 198, complete genome	Treponema denticola ATCC 35405 chromosome, complete genome	Tsukamurella paurometabola DSM 20162, complete genome	Ureaplasma parvum serovar 3 str. ATCC 700970, complete genome	Variovorax sp. HW608 genome assembly, chromosome: I	Variovorax boronicumulans gene for 16S rRNA, partial sequence	Vulcanisaeta distributa DSM 14429, complete genome	Weissella koreensis KACC 15510, complete genome	Wolbachia endosymbiont of Culex quinquefasciatus Pel str wPip complete genome	Wolbachia endosymbiont of Drosophila melanogaster, complete genome	Wolbachia endosymbiont of Onchocerca ochengi complete genome	Wolbachia endosymbiont str. TRS of Brugia malayi, complete genome	Zymomonas mobilis subsp. mobilis ZM4, complete genome	Uncultured Lysobacter sp. clone AT204 16S rRNA gene, partial sequence	Uncultured Treponema sp. clone 5:7P56 16S rRNA gene, partial sequence	Uncultured bacterium clone 16S(V3-V4)-7606 16S rRNA gene, partial sequence	
NC_009616 NC_018012	NC_002967	NC_014158	NC_002162	LT607803.1	AB300597.1	NC_014643	NC_015759	NC_010981	NC_002978	NC_018267	NC_006833	NC_006526	KT151398.1	JQ654170.1	KX630121.1	