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Abstract  11 

Operations and maintenance tasks are critical to the reliability of a wind 12 

turbine. The state-of-the-art demonstrates the effectiveness of reliability 13 

centred maintenance, but there are no research studies that consider false 14 

alarms to reliability of the wind turbines. This paper presents a novel 15 

approach based on artificial neural networks to reliability centred 16 

maintenance. The methodology is employed for false alarm detection and 17 

prioritization, training the artificial neural networks over the time to increase 18 

the system reliability. The approach is applied to a real dataset from a 19 

supervisory control and data acquisition system together with a vibration 20 

monitoring system of a wind turbine. The results accuracy is done by 21 

confusion matrices, studding real alarms with the estimations provided by 22 

the approach, and the results are validated with real false alarms and 23 

compared by the results given by a fuzzy logic model. The method provides 24 

accuracy results (over 90%). A novelty is to use a two real dataset from a wind 25 

turbine to create a redundant response to detect false alarms by artificial 26 

neural networks.   27 

 28 

Key words: Reliability centred maintenance, condition monitoring, artificial 29 

neural network, wind energy conversion systems, false alarms 30 
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1. Introduction 1 

Wind energy has become one the most important renewable energy sources 2 

due to wind energy conversion systems (WECS), and increases in the 3 

complexity and extent of producing electric power [1]. It has led to increases 4 

in the efficiency of the system, and therefore in competitiveness within the 5 

electrical market. Investment in renewable energy depends on technological 6 

conditions, politics and economic decisions [2]. It has generated a growing 7 

trend in global, annual installed wind capacity, according to Figure 1 [3,4]. 8 

The cumulative global capacity rose from 3.5 GW in 1994 to more than 480 9 

GW in 2016, i.e. 20 years ago, the global capacity was 0.7% of the total current 10 

capacity [5]. Wind energy is expected to increase at an annual average rate of 11 

6% until 2035 [3].  12 

 13 

Fig 1: Global Annual Capacity. Source: Global Wind Energy Council [3]. 14 

It is estimated that the electricity produced by one wind turbine (WT) is 15 

similar to the electricity produced daily by 1.000 Kg of fuel. Experts have 16 

estimated that wind energy avoided the emission of 140 million tonnes of CO2 17 

in 2011 in the EU, the equivalent of one third of all car emissions in the EU 18 

[6].  19 

The expected growth of wind energy is a consequence of the new technologies 20 

for WECS. Offshore wind farms will play an essential role in the future. 21 

Offshore locations allow more energy production than onshore ones because 22 

there is more wind and the WTs can be larger, and they also have less 23 

environmental impact [7]. Figure 2 shows the expected onshore and offshore 24 

capacity until 2030. Onshore capacity indicates a decline in growth, whereas 25 

offshore capacity continues to grow.  26 
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 1 

Fig 2: Offshore and onshore capacity estimation [6]. 2 

Offshore wind energy involves some drawbacks that must be considered to 3 

ensure effective energy production, but it is more difficult to predict and 4 

evaluate the wind as a resource. The main difference between offshore and 5 

onshore is investment as well as operation and maintenance (O&M) costs. 6 

Offshore installation costs are double those of onshore; offshore installation 7 

costs being about 1.44 million €/MW  [8]. Offshore O&M costs are 23% of total 8 

system costs, 12% of which are for onshore wind farms [9].  9 

Wind farms will require a specific infrastructure regarding the location and 10 

the transport required for maintenance tasks, e.g. vessels, helicopters, fixed 11 

installations, mobile jack-up installations, etc. [9]. The costs are high; 12 

therefore it is necessary to optimize preventive and corrective maintenance 13 

strategies in order to reduce their use [10].  14 

Wind farms require optimized maintenance processes to avoid losses of 15 

production and to increase the system reliability [11]. Many researchers have 16 

demonstrated the efficiency of the reliability centred maintenance systems 17 

for WTs [12-15]. New techniques and methods for data analysis are employed 18 

in reliability centred maintenance [10,16,17]. However, a few studies are 19 

focused on the consequences and effects of an incorrect data analysis. False 20 

alarms, also known as predictors, can inflict significant economic loss for both 21 

offshore and onshore wind farm operators.  22 

This paper presents a novel approach for improving the reliability of wind 23 

turbines. In this field, multiple data driven techniques and methods have 24 

been developed. These methods are based on risk analysis [18], correlation of 25 

faults and weather conditions [19], the analysis of the statistical uncertainty 26 

of component reliability [20] or dirt and mud detection [21]. Other studies aim 27 

at developing maintenance strategies through opportunistic condition based 28 

maintenance [22], or considering production and deterioration uncertainties 29 

[23]. This paper proposes a data driven analysis for identifying false alarms. 30 
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This function can be incorporated into any maintenance strategy [24], leading 1 

to significant improvements in system reliability.   2 

 3 

This paper is divided into six sections. The first section is an introduction 4 

where the contextual information is provided in order to explain the main 5 

objective of the paper. Section 2 presents a state-of-the-art of the techniques 6 

and methods employed to improve the reliability of wind turbines. Section 3 7 

provides information about the principal characteristics of the data 8 

acquisition systems employed in this paper. Section 4 discusses the approach. 9 

The approach is applied in a case study in Section 5. The results of the case 10 

study and a validation of the methodology are provided in Section 6. Finally, 11 

some conclusions are drawn and presented in Section 7.  12 

 13 

2. State-of-the-Art 14 

According to industrial standard ISA-18.2 (2009) [25], “an alarm system is 15 

the collection of hardware and software that detects an alarm state, this 16 

communicates the indication of that state to operators, and it records changes 17 

in the alarm state’’. Alarm is also defined as an “operational signal or message 18 

designed to notify personnel when a selected anomaly, or a logical 19 

combination of anomalies, requiring corrective actions is encountered” [15]. 20 

Regarding to ISO 13379 [15], descriptors could be identified in some cases as 21 

alarms because they are used to express symptoms and anomalies. Descriptor 22 

is defined as a “data item derived from raw or processed parameters or an 23 

external observation”. In some research papers the term “condition” can be 24 

found instead of descriptors. This paper employs the term alarm rather than 25 

predictor because predictor can also be identified with other terms related to 26 

measurement, and alarm also contains details different from symptoms and 27 

anomalies. 28 

Condition monitoring (CM) and supervisory control and data acquisition 29 

(SCADA) systems have led to improvements in the reliability and the 30 

productivity of wind farms [26,27]. CM is defined as “the detection and 31 

collection of information and data that indicate the state of a machine” (see 32 

reference [28]). However, these systems can generate false alarms due to a 33 

wrong data analysis [14], i.e. many alarms can be triggered and turn out to 34 

be false. A solution is to prioritize alarms and try to detect any false alarms. 35 

Quiu et al.[29] showed the importance of improving the reliability of alarm 36 

detection systems, because the data is overwhelming and there are a large 37 

number of false alarms. Their research demonstrated that 11.5% of the 38 

alarms were reset without any intervention or following any rules, and 12% 39 

can be reset by certain "rules".  40 

Hameed et al. [30] showed an implementation of a CM and Diagnosis (CM&D) 41 

system, allowing the detection of faults, but also generating false alarms. A 42 

general data interpretation and diagnostic techniques of CM&D can be found 43 

in reference [15]. They concluded that it is necessary to fix an optimal 44 

threshold criterion to detect false alarms. A detailed state-of-the-art of WT 45 
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reliability based on CM&D is presented in [31,32]. Yang et al. [14] explained 1 

the main characteristics and limitations of the current CM&Ds. They 2 

concluded that the variation of fault-related parameters, e.g. temperatures or 3 

vibration, may not always correspond to a WT fault because they can depend 4 

on more variables. They proposed a detailed analysis of the data to find the 5 

cause of the variation and, therefore, to increase the reliability of the alarms. 6 

Allan May and David [33] showed that the identification of false alarms 7 

affects the cost-benefit of the CM&D in offshore WTs. They employed Markov 8 

chains and a time-series model to determine the implications of CM&D on 9 

detection rates, or false alarms. This work shows that the reliability of the 10 

CM&D affects the annual failure rate and the availability of the WTs. They 11 

concluded that the CM&D can reduce operational lifetime costs by 20% of 12 

preventive maintenance using some known detection rates. 13 

Crabtree et al. analysed the main commercial CM employed in SCADA 14 

systems in WT [34]. They distinguish between onshore and offshore cases. 15 

Chen et al. [35] showed the main methods employed in SCADA to analyse the 16 

data employing statistical methods to data offline and online, and considering 17 

a large number of signals.  18 

This paper analyses the signals from the SCADA and CM&D together to 19 

increase the accuracy of the system reliability. There are similar studies, but 20 

with different approaches, fewer variables analysed or only ones that focus 21 

on a component of the WT. Feng et al. [36] study the reliability of a gearbox 22 

in WTs, demonstrating that faults can be predicted by SCADA and CM&D 23 

together just days before they happen. However, only a signal is used, 24 

generating false alarms. They suggested analysing the SCADA and CM 25 

dataset to increase accuracy. The systems process the data independently and 26 

with different formats, limiting the accuracy of alarm prediction. Chen et al. 27 

[37]  consider the SCADA dataset to analyse the oil temperature in bearings 28 

together with CM to detect gearbox faults weeks in advance. Dao et al. [38] 29 

reached a similar conclusion using non-linear data trends to continuously 30 

monitor the WT. This paper presents an approach that considers a large 31 

number of variables that require a robust approach based on artificial neural 32 

networks (ANN). 33 

There are new approaches based on ANN that are improving fault detection 34 

accuracy. Su and Chong [39] proposed a ANN fault detection system for 35 

modelling an induction motor through the vibration spectra. They observed 36 

that vibration harmonics variations can be used for detecting faults, but 37 

tracking variations in the fundamental vibration might result in false alarms. 38 

A similar approach is employed in this paper, but considers a large number 39 

of signals from the SCADA and CM.  40 

 41 
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The real case study employed in this paper was considered in reference [40]. 1 

The approach presented generates alarms based on the collected data. False 2 

alarm detection is based on a new approach for the identification of alarms 3 

by Fuzzy Logic. Fuzzy logic is a superset of conventional (Boolean) logic that 4 

has been extended to handle the concept of partial truth, truth values 5 

between "completely true" and "completely false”. The creation of fuzzy 6 

systems implies the definition of a set of fuzzy rules. In this case, the variables 7 

considered correspond to the distance of the value measured by the SCADA 8 

to the simple moving average. The greater the distance from the average, the 9 

more likely an abnormal measure it is, and, therefore, the greater the 10 

likelihood of an alarm being generated. Three different outcomes of the fuzzy 11 

system have been considered. Firstly, the values are in range of normal 12 

behaviour and no actions are required. Secondly, orange alarms are triggered 13 

where the probability of an alarm exceeds a defined threshold, but it is not a 14 

critical point. Finally, a red alarm is triggered when the probability is 15 

unacceptable and the system needs urgent action. The results of this 16 

methodology can become a statistical support for the generation of alarms. 17 

The methodology can also be used as complementary information for 18 

evaluating the priority of each alarm. A similar type of process is used in 19 

neural networks (NN), expert systems and other artificial intelligence 20 

applications.  21 

Most research considers the benefits of detecting alarms, but the literature 22 

review shows that there are not many studies that consider the disadvantages 23 

of false alarms [41]. In this paper, a novel approach is presented to increase 24 

the system reliability studying the SCADA together with a CM based on 25 

vibration signals. The approach employs ANN to detect false alarms and 26 

alarm prioritization. It considers the responses from a SCADA and a CM&D 27 

to provide redundant results to increase the accuracy of the results. The data, 28 

from a real case study, are studied over time. 29 

 30 

3. SCADA and CM to RCM in WTs 31 

WTs are monitored by sensors, where fault detection is generally done by a 32 

simple threshold to complex signal processing methods [42]. This paper 33 

considers CM based on vibration signals together with a SCADA. The 34 

vibration signal is done according to ISO standard 2041 [43]. 35 

RCM is a methodology that identifies the functions of a system in a given 36 

operational context, the way these functions may fail and then establishes a 37 

set of applicable and effective preventive maintenance tasks, based on 38 

considerations of system safety and economy. [15]. Signal processing is 39 

employed on the CM/SCADA data to set a correct maintenance [44]. Several 40 

research studies have demonstrated the benefits of RCM [45-48].  41 
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The main WT components that are monitored are blades [49], bearings 1 

[50,51], gearboxes [52], electrical or electronic components [53,54] and the 2 

tower [49]. Several measurement techniques can be employed for CM [55]: 3 

Vibration [56]; acoustic emission [21,57]; ultrasonic testing [58,59]; rotor 4 

speed [60]; oil analysis [12],etc. RCM is employed to reduce the energy loss, 5 

the downtimes and to optimize the O&M tasks [50]. Vibration analysis is a 6 

technique for monitoring rotatory equipment [61,62]. Gearbox, bearings and 7 

rotor are the most susceptible components to be analysed with vibrations. The 8 

CM is based on vibration signals employing 8 accelerometers, see Figure 3 9 

[5]. A one-second signal from each point is selected and stored every three 10 

hours to discretize the continuous vibration signals. The feature parameters 11 

are extracted from the one-second signals. 12 

 13 

 14 

Fig. 3. Location of the different accelerometers of the CM [5] 15 

 16 

The SCADA is also employed for fault detection [63,64], but it can be 17 

employed for forecasting [65,66] and production assessment [67,68]. It collects 18 

data from several sensors, usually every 10 min, and is managed by a central 19 

computer. The sensors are employed for finding an optimal control solution 20 

and reducing O&M costs [69-71]. There are some advantages, see e.g. [12]; 21 

however some studies show that it can present some disadvantages related to 22 

reliability and operational conditions [69]. This paper study 34 variables from 23 

the SCADA together with the dataset from CM, a novelty regarding the state-24 

of-the-art.  25 

4. Approach  26 

 27 

The main objective of this paper is to develop a methodology to detect false 28 

alarms in a WT. The proposed strategy is to correlate the condition of the WT 29 

and the outcomes of two independent data acquisition systems (SCADA and 30 

CM). The approach employs an NN-based structure to establish relationships 31 

between data from a CM, that measures vibrations, and a SCADA system. 32 

The approach is composed of the multi-stage decision scheme shown in 33 

Figure 4, and employs the nomenclature shown in ISO 13374 [72].  34 
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 3 

Fig.4. Flowchart of the proposed approach (terminology adapted from [72]) 4 

 5 

The design of the ANN based structure is based on: 6 

- The analysed data that comes from two independent data sources. The 7 

ANNs enable the processing of data of different natures.  8 

- Three different ANNs allow three different solutions to be obtained. 9 

The redundancy of the solutions is essential for reinforcing the veracity 10 

of a specific outcome and avoiding errors in the detection of false 11 

alarms. The output of each ANN can be considered as an independent 12 

solution of the structure.  13 

- ANNs allows an intelligent adjustment of the weights of ANNs in order 14 
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to provide a response adapted to the current conditions of the WT. This 1 

adjustment is carried out through a feedback process where the 2 

historical database is uploaded.  3 

- The cascade connection of the Alarm-ANN in this structure allows 4 

analysis of the SCADA system and the CM from a holistic point of view, 5 

considering all the data collected from the WT as a unique data source. 6 

This means the effect of possible errors in the SCADA output are 7 

attenuated due to the CM outcome and vice versa.  8 

4.1 Data acquisition (DA) 9 

The data is collected in a specific format according to the data acquisition 10 

system. It is transformed to a scaled digital representation [72]. Two data 11 

sources are studied: historical and online data. The data is formatted to a 12 

common structure [73]. In this paper, three different databases have been 13 

considered regarding the data source [72]:  14 

- SCADA database: It contains the SCADA dataset collected over a long 15 

period. This database contains the values and the units of the 16 

parameters, and the times when they were measured.  17 

- Condition report: This database contains the WT condition over time, 18 

e.g. alarms, warnings, orders, etc. Alarms cause the WT to stop 19 

working. Warnings indicate that there are some parameters out of 20 

range, and the orders request start/stop. This paper is focused on 21 

alarms and warnings. Orders are not considered because they cannot 22 

assume a false positive. The condition report indicates whether the WT 23 

presents an alarm or not, warning and/or any order at any time.  24 

- CM database: It contains the historical data from the CM. This 25 

information is not completely stored since the CM provides continuous 26 

signals and, therefore, there is not enough capacity for it to be stored 27 

in the real case study. Feature parameters are extracted from the 28 

signals in order to reduce the size of the dataset without losing the most 29 

important information.  30 

- The online data is the information about the current WT condition. 31 

This data is also provided by the SCADA and the CM. The online data 32 

will be processed only in the event of an alarm, see Figure 4.  33 

 34 

4.2 Data Manipulation: filtering and preparation 35 

The data from the condition report can generate false alarms and separate 36 

them from the orders. The filter acts so that the database only has the desired 37 

alarms and warnings.  38 

The SCADA dataset is filtered to remove incorrect values. This data is 39 

provided by a large number of sensors, where some can be out of service. The 40 

SCADA must trigger an alarm when the parameters exceed a determined 41 

threshold, but no alarm should be activated when a sensor is not providing 42 
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any data, i.e. not a number (NaN). The wrong data is removed from the 1 

SCADA database before the NNs are trained. The NaN components are 2 

converted into 0, and the zero vectors are removed from the database. 3 

Figure 5 shows the SCADA before/after being filtered. 4 

 5 

Fig. 5. Erroneous values from SCADA system 6 

A period is defined for the CM data before the feature parameters are 7 

calculated, because they can only be achieved for a certain memory [5]. The 8 

parameters employed in this paper regarding ISO 3373 [74] are: mean, root 9 

mean square, peak, skewness, standard deviation, shape indicator, Kurtosis, 10 

crest factor, impulse and clearance factor.   11 

 12 

4.3 Data manipulation: ANN 13 

Once the data have been filtered and set, they will be used by an NN-based 14 

structure. This structure is composed of three different networks.  15 

A CM-ANN will link the feature parameters extracted from the CM with the 16 

condition report. The inputs and outputs of the ANN are provided in Table I. 17 

The CM-ANN will recognise descriptors (patterns) in the CM data, and they 18 

will be associated to the specific condition of the WT set by the condition 19 

report at that time. In other words, the CM-ANN employs the condition report 20 

to supervise the training.  21 

Table I. CM-ANN input/output structure  22 

 23 

 24 

 25 

 26 

 27 

 28 

 SCADA Data before filtering 

1 2 3 … N 

Date 1 𝑎1
1 𝑎1

2 𝑎1
3 𝑎1

… 𝑎1𝑗
N  

Date 2 𝑎2
1 𝑎2

2 𝑎2
3 𝑎2

… 𝑎2𝑗
N  

Date 3 𝑎3
1 𝑎3

2 𝑎3
3 𝑎3

… 𝑎3𝑗
N  

Date 4 0 0 0 0 0 

Date 5 𝑎5
1 𝑎5

2 𝑎5
3 𝑎5

… 𝑎5
𝑁 

Date 6 𝑎6
1 NaN 𝑎6

3 𝑎6
… 𝑎6

N 

Date 7 𝑎7
1 𝑎7

2 𝑎7
3 𝑎7

… 𝑎7
N 

 Input CM Data Output  

Feature 1 Feature 2 Feature ‘j’ WT Condition  

Date 1 𝑒11
𝑘  𝑒12

𝑘  𝑒1𝑗
𝑘  C1 

Date 2 𝑒21
𝑘  𝑒22

𝑘  𝑒2𝑗
𝑘  C2 

Date 3 𝑒31
𝑘  𝑒32

𝑘  𝑒3𝑗
𝑘  C3 

Date 4 𝑒41
𝑘  𝑒42

𝑘  𝑒4𝑗
𝑘  C4 

Delete vector 

Set component to 0  
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𝑒𝑖𝑗
𝑘  represents the value of the feature ‘j’ extracted from the signal of the CMS sensor 1 

‘k’ at the data acquisition time ‘i’. The features are defined in Table IV. Ci is the 2 

condition in i. 3 

The CM data are independent of the condition report because the report is 4 

generated by the SCADA. Therefore, alarms not related with vibrations will 5 

not detected within the CM data. The objective is to employ these data to 6 

create redundancies in the diagnostic and, consequently, to support the 7 

decision of the SCADA system.  8 

A SCADA-ANN will establish the relationship between the condition report 9 

and the SCADA data. As aforementioned, the condition report is generated 10 

from the SCADA data. Each alarm is activated when a specific parameter, or 11 

a set of parameters, exceeds a determined threshold. This ANN considers the 12 

specific parameters together with the SCADA data. The SCADA-ANN 13 

employs the condition report to supervise the training. The input/output 14 

structure of this ANN is indicated in Table II: 15 

Table II. SCADA-ANN input/output structure  16 
 17 

 18 

 19 

 20 

 21 

 22 

𝑃𝑖𝑗 is the value of the parameter j collected by the SCADA system at the sampling 23 

time i. The different parameters are described for a specific case study in Table III. 24 

Health assessment is employed to determine if the system is degraded [72]. 25 

In case of i presents an abnormal value, the ANN will evaluate these 26 

parameters to determine whether an alarm should be activated or not. The 27 

SCADA activates an alarm when the wind speed exceeds a threshold. The 28 

ANN considers all the variables, i.e. the wind speed, the turbulences, the 29 

vibrations, etc. An incorrect work of the anemometer could be detected 30 

without activating an alarm. 31 

Finally, the Alarm-ANN joins the outputs "CM-ANN" and "SCADA-ANN" 32 

and processes these data in order to obtain a deeper data analysis. At this 33 

level, the data inputted into the Alarm-ANN does not come from the WT, but 34 

it is processed information provided by the previous ANNs. The Alarm-ANN 35 

will recognise patterns and will correlate these patterns with the WT 36 

condition. The outcomes of the Alarm-ANN represent the unification of the 37 

outcomes of the previous ANNs.  38 

 Input SCADA Data Output  

 Parameter 1 Parameter 2 Parameter ‘i’ WT Condition  

Date 1 𝑃11 𝑃12 𝑃1𝑗 C1 

Date 2 𝑃21 𝑃22 𝑃2𝑗 C2 

Date 3 𝑃31 𝑃32 𝑃3𝑗 C3 

Date 4 𝑃41 𝑃42 𝑃4𝑗 C4 
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 4.4 State Decision 1 

The final objective is to support the detection of false alarms and the 2 

prioritization of alarms. The Alarm-ANN output is compared with the online 3 

alarm activated by the SCADA. If both outputs are the same, then all the data 4 

must be stored. If the outputs are not the same, action is needed according to 5 

the SCADA indications. In the event of a false alarm, the ANN based 6 

structure works in normal conditions and the data will be added to the 7 

database. If the method provides an incorrect result, the structure must be 8 

retrained until the correct alarm is generated using the corresponding 9 

current data. 10 

The response of the ANN-based structure generates useful information to the 11 

operators that decide which alarms could be false and the alarms that should 12 

be prioritized. Each ANN has its own precision and sensitivity for alarm 13 

detection. The objective is to compare the alarm activated by the SCADA 14 

system with the outcomes of the ANNs to validate the results.  15 

The oldest data must be deleted from the databases when the maximum 16 

storage capacity has been reached. Consequently, the databases will contain 17 

uploaded data, and the NN-based structure will maintain its size.  18 

 19 

5. Case study 20 

 21 

A real SCADA and CM installed in a large WT is analysed. The data were 22 

collected for 2 years and belong to the European project OPTIMUS [75]. The 23 

SCADA provides parameters every ten minutes shown in Table III [76]. 24 

 25 

Table III. SCADA parameters 26 
Nº Signal Nº Signal 

1 General accumulator blade 1 pressure 18 Environmental temperature 

2 General accumulator blade 2 pressure 19 
Drive end side generator bearing 

temperature 

3 General accumulator blade 3 pressure 20 
Non-drive end side generator bearing 

temperature 

4 Phi cosine 21 Generator winding temperature 

5 Turbulence level 22 Nacelle temperature 

6 Oscillation level 23 Lower gearbox radiator 

7 Vibration level 24 Upper gearbox radiator 

8 Pitch 1 angle 25 Gearbox bearing temperature 

9 Pitch 2 angle 26 Transformer 1 temperature 

10 Pitch 3 angle 27 Transformer 2 temperature 

11 Active power 28 Transformer 3 temperature 

12 General accumulator pressure 29 Grid voltage 

13 Brake pressure 30 Total reactive power 
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14 Hydraulic group pressure 31 Generator speed 

15 SP pitch angle 32 Rotor speed 

16 Hydraulic group oil temperature 33 Wind speed 

17 Gearbox oil temperature 34 Yaw 

 1 

The data shows the maximum, the minimum and the average values of each 2 

parameter in periods of ten minutes. Therefore, each SCADA data vector, Sv, 3 

is defined as: 4 

𝐒𝐯 = [𝑡, min(𝑝1 ) , 𝑝1̅̅̅, max(𝑝1), … , min(𝑝𝑖) , 𝑝�̅�, max(𝑝𝑗) … min(𝑝34) , 𝑝34̅̅ ̅̅ , max(𝑝34) ]   5 

where 𝑝𝑗 is the parameter j at the sampling time t.  6 

The SCADA also provides the Health Assessment Report (HAR). HAR is used 7 

in this paper to supervise the training stage of the NN. HAR is uploaded if 8 

the condition of the WT has any variation. Each Condition Vector (Cv) is 9 

defined as: 10 

𝐂𝐯=[date, code, act]  ,   act=  {
1   𝑓𝑜𝑟 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 

   0 𝑓𝑜𝑟 𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 
 11 

where code is referred to the identifier of each condition, also called descriptor 12 

[15], and act is a binary variable that indicates if the condition is activated or 13 

deactivated.   14 

The occurrence frequency of the different alarms is shown in Figure 6. The 15 

alarm codes cannot be explained in detail for confidentiality reasons. More 16 

than 90% are concentrated in the first 10 alarms. Therefore, to simplify this 17 

case study for the reader, the alarms considered in this paper are the 10 most 18 

repeated alarms in the historical data. 19 

 20 

 21 

Fig. 6. Bar chart of the alarms 22 
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 1 

Figure 7 shows an example of a one-second signal provided by the 2 

accelerometer 3 (Figure 3) that has been selected from the continuous 3 

vibration signal. The sample frequency is 1024 sample/s.   4 

 5 

 6 

Fig.7.  Example of one-second vibration signal 7 

The time domain signal is discarded and replaced by the corresponding 8 

parameters once the feature parameters are extracted according to Table IV. 9 

Only 1.1% of data is considered but the main information about the signal is 10 

not lost.  11 

 12 

Table IV. Example of feature parameter extraction 13 
 14 

 Date  Point    

05/03/2014 3    

Mean RMS Peak SD Skewness 

8.4778e-05 0.0413 0.1238 0.0413 0.0623 

Kurtosis  Crest Factor Shape Ind. Clearance  Impulse Factor 

2.8400 3.2417 1.2402 111.7168 3.7186 

 15 

The information shown in Table V is collected in the monitoring vector (Mv), 16 

defined as: 17 

𝐌𝐯 = [date, point, mean, Rms, SD, peak, skewness, kurtosis, crest factor, clearance, shape , impulse ],  18 

where all the components, except the date, are repeated 8 times due to the 19 

different points of interest, i.e. Mv has 89 different elements.  20 

The NNs are trained using the historical data from the SCADA system, the 21 

CM and the HAR. The number of neurons in the output layers is 10 because 22 
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only the 10 most frequent alarms are considered. The Alarm-ANN input layer 1 

has 20 neurons that correspond to the sum of the outputs of the previous NNs.  2 

The size of the NNs, i.e. the number of neurons in the hidden layer, is set 3 

according to the geometric pyramid rule [77]. The stochastic gradient descent 4 

with momentum (SGDM) optimizer is employed for training the ANNs. The 5 

hyper-parameters (learning rate, batch size, momentum, regularization) have 6 

been selected according to  the recommendations given in reference [78]. The 7 

maximum number of epochs has been set to 22 for all the ANNs. The main 8 

features of the ANNs are shown in Table V. 9 

 10 

Table V. Example of feature parameter extraction 11 

NN INPUT OUTPUT 

Neurons 

Input 

layer 

Neurons 

Hidden 

layer 

Neurons 

Output 

layer 

Initial 

learning 

rate 

Batch 

size 
Momentum 

L2 

Regularization 

SCADA- 

ANN 
Sv 

Alarm 

Code 
103 20 10 0.01 128 0.9 0.0001. 

CM-

ANN 
Cv 

Alarm 

Code 
89 32 10 0.006 98 0.95 0.0001. 

Alarm-

ANN 

Sum 

of 

alarms 

Codes 

Alarm 

predicted 
20 16 10 0.01 150 1 0.0001. 

 12 

6. Results and validation 13 

6.1 Accuracy Analysis by Confusion Matrices 14 

 15 

The decision-making process, given in the state decision [72], will provide 16 

feedback that allows the ANNs to improve the accuracy of their outputs as 17 

health assessments. The training process results of the ANNs are shown in 18 

Table VII by three confusion matrices. Each confusion matrix is an ordered 19 

representation of the classification provided by a NN, where the predicted 20 

values are compared with the real values. Table VI shows a scheme of a 21 

confusion matrix.  22 

Table VI. Scheme of confusion matrix 23 
 24 

 
Target Class 

Positive Negative 

Output Class 
Positive True Positive (TP) False Positive (FP) 

Negative False Negative (FN) True Negative (TN) 

 25 

The accuracy analysis of the NNs is made by the confusion matrix considering 26 

[79] [80]: 27 

- Accuracy (ACC): It corresponds to a measure of the degree of 28 

coincidence between predictions and the reality. The accuracy of an 29 
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ANN is calculated as the quotient between the number of correctly 1 

classified samples and the total number of examples. It can be obtained 2 

by: 3 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 +  𝐹𝑁
 4 

 5 

- Sensitivity or true positive rate (TPR): It is the fraction of positive 6 

examples predicted correctly by the NN. In this paper, this parameter 7 

corresponds to the ability of the ANN to detect a specific alarm. It is 8 

calculated by:  9 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 10 

 11 

- Specificity or true negative rate (TNR): It is the fraction of negative 12 

examples predicted correctly by the NN. In this paper, this parameter 13 

represents the capacity of the ANN to refuse the existence of a specific 14 

alarm.  15 

𝑇𝑁𝑅 =
𝑇𝑃

𝑇𝑁 +  𝐹𝑃
 16 

 17 

- Precision or positive predictive value (PPV): It is defined as the 18 

quotient between the true positives and the number of positives 19 

predicted by a NN. In this paper, this measure shows the degree of 20 

success of an ANN when a specific alarm is predicted. The main 21 

objective of this paper is false alarms detection; therefore, this 22 

parameter is employed for aiding the decision-making process. The 23 

precision is obtained by: 24 

 25 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 26 

 27 

- Negative predicted value (NPV): This measurement is the capacity of 28 

the ANN to discard the existence of a specific alarm, i.e. the degree of 29 

success when the occurrence of an alarm is refused.  30 

 31 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁 +  𝐹𝑁
 32 

 33 

Table VII shows the results of the different NNs (left) and the accuracy 34 

analysis by the confusion matrices (right). 35 

 36 

  37 
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Table VII. Results and validations of the ANNs 1 
 

 Confusion matrix of SCADA-Condition NN   Alarm ACC TPR TNR PPV NPV 

 257 5 0 1 0 0 2 1 1 0   786 0.929 0.854 0.964 0.916 0.934 

0 52 1 2 1 0 5 0 3 0   9001 0.950 0.709 0.973 0.709 0.973 

0 0 54 0 0 2 0 0 0 0   3078 0.953 0.581 0.994 0.915 0.955 

0 2 3 36 34 0 0 0 0 0   9026 0.879 0.128 0.979 0.452 0.894 

34 3 30 67 69 3 3 4 0 50   3072 0.754 0.867 0.740 0.298 0.977 

1 2 5 1 0 55 0 0 0 0   3062 0.980 0.833 0.990 0.847 0.988 

2 7 0 1 0 0 25 2 16 0   9002 0.932 0.222 0.976 0.364 0.953 

1 1 0 0 0 0 2 30 0 0   9010 0.985 0.757 0.994 0.848 0.99 

0 7 0 0 0 0 17 0 17 0   9025 0.948 0.378 0.972 0.359 0.974 

0 0 0 1 1 0 0 0 0 8   3125 0.940 0.138 0.993 0.571 0.945 

 Target Class 
 

        

 

 Confusion matrix of CM-Condition NN   Alarm ACC TPR TNR PPV NPV 

 184 20 38 4 0 21 11 12 4 6   786 0.758 0.713 0.779 0.613 0.847 

19 17 2 0 0 3 11 7 7 0   9001 0.895 0.34 0.933 0.258 0.954 

4 0 18 0 0 6 0 1 0 0   3078 0.889 0.191 0.984 0.621 0.899 

47 5 28 59 59 3 3 5 0 48   9026 0.684 0.541 0.707 0.23 0.905 

4 6 5 46 46 2 0 0 0 6   3072 0.837 0.438 0.898 0.4 0.912 

0 1 3 0 0 8 0 0 0 0   3062 0.95 0.186 0.995 0.667 0.955 

0 0 0 0 0 0 0 0 0 0   9002 0.967 0 1.000 0 0.967 

0 0 0 0 0 0 0 0 0 0   9010 0.967 0 1.000 0 0.967 

0 0 0 0 0 0 0 0 0 0   9025 0.986 0 1.000 0 0.986 

0 1 0 0 0 0 1 1 0 2   3125 0.92 0.032 0.996 0.4 0.923 

 Target Class 
 

        

 

 Confusion matrix of Alarms-Condition NN   Alarm ACC TPR TNR PPV NPV 

 277 0 0 0 34 1 0 0 3 0   786 0.932 0.914 0.941 0.879 0.959 

8 57 0 4 3 2 0 0 11 0   9001 0.947 0.722 0.968 0.671 0.974 

1 1 56 2 31 3 0 0 0 0   3078 0.952 0.889 0.957 0.596 0.992 

1 2 1 35 70 0 0 0 0 0   9026 0.88 0.473 0.915 0.321 0.953 

0 0 0 33 72 0 0 0 0 0   3072 0.781 0.293 0.953 0.686 0.793 

1 0 4 0 3 53 0 0 0 0   3062 0.985 0.898 0.991 0.869 0.993 

6 10 0 0 3 0 3 4 32 0   9002 0.94 0.6 0.941 0.052 0.998 

4 2 1 0 3 0 2 34 0 0   9010 0.981 0.85 0.987 0.739 0.993 

5 6 0 0 0 0 0 0 30 0   9025 0.94 0.395 0.987 0.732 0.949 

0 1 1 0 27 0 0 2 0 0   3125 0.967 0 0.967 0 1.000 

Target Class 2 

The results show that all the alarms cannot be predicted by the CM&D. Only 3 

alarms related to vibrations can be predicted by using the CM-ANN. The 4 

main advantage of this ANN is that two different and independent datasets 5 

are employed. On one hand, the vibration data generated by the CM and, on 6 

the other hand, the condition of the WT that is provided by the SCADA. The 7 

ANN is able to correlate data collected by two independent systems.  8 

ANNs can be used to support the decision process when a specific alarm is 9 

activated. Table VII shows the probabilities of success detecting each type of 10 

false alarm. These probabilities have been calculated from the confusion 11 

matrices. The method is accurate in identifying most of them, although some 12 

alarms cannot be detected by the three ANNs. The most important parameter 13 

in this paper is the precision of the ANN because it indicates the success of 14 

the ANN when an alarm is identified. Figure 8 shows, in terms of probability, 15 

the precisions, the negative predicted values, the sensitivities and the true 16 

negative rates of each ANN for the different alarms shown in x -axe.  17 
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Fig. 8. Results of NN validation 2 

The most suitable ANN will be selected for supporting the decision regarding 3 

a specific alarm. The CM-ANN always presents the lowest precision; however, 4 

it is employed to obtain the Alarm-ANN, which is in some cases more precise 5 

than the SCADA-ANN. The decision should be made considering the best 6 

ANN according to the alarm, given by Table VIII: 7 

Table VIII. Best NNs regarding the alarm 8 

Alarm TPR TNR PPV NPV 

786 ALARM-Cond. SCADA-Cond. SCADA-Cond. ALARM-Cond. 

9001 ALARM-Cond. SCADA-Cond. SCADA-Cond. ALARM-Cond. 

3078 ALARM-Cond. SCADA-Cond. SCADA-Cond. ALARM-Cond. 

9026 CM-Cond. SCADA-Cond. SCADA-Cond. ALARM-Cond. 

3072 SCADA-Cond. ALARM-Cond. ALARM-Cond. SCADA-Cond. 

3062 ALARM-Cond. CM-Cond. ALARM-Cond. ALARM-Cond. 

9002 ALARM-Cond. CM-Cond. SCADA-Cond. ALARM-Cond. 

9010 ALARM-Cond. CM-Cond. SCADA-Cond. SCADA-Cond. 

9025 ALARM-Cond. CM-Cond. ALARM-Cond. CM-Cond. 

3125 SCADA-Cond. CM-Cond. SCADA-Cond. ALARM-Cond. 

 9 

For example, for alarm 9010, the decision will be aided by the sensitivity of 10 

the Alarm-NN (0.85), the true negative rate of the CM-NN (1.00), the 11 

precision and the negative predicted value of the SCADA-NN (0.84 and 0.99, 12 

respectively).  A discordance between the activated alarm and the response of 13 

the ANN based structure is a statistical indicator of a false alarm. The 14 

convergence of the outputs provided by the different ANN means a higher 15 

probability of success, and, therefore, a more accurate response.  16 
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The results must be employed to feedback these ANNs once the alarm is 1 

checked. The data is incorporated into the database in the event of success of 2 

the NN-based structure. Otherwise, the structure should be retrained until 3 

the correct output for this specific alarm is obtained. This process will adapt 4 

the NNs to the real behaviour of the WT, allowing the decision maker to have 5 

extra, valuable information.  6 

The outcomes of the method can also be employed to prioritize alarms. If the 7 

same alarm is activated from different WTs at the same time, the response of 8 

the NN-based structure may be helpful in deciding which WT should be 9 

attended to first.   10 

6.2 Validation with Fuzzy Logic. 11 

 12 

A Fuzzy logic based methodology is proposed to validate the approach 13 

proposed in this paper. It has been employing previously with the SCADA 14 

dataset in reference [40]. Figure 9 shows the basic configuration of the fuzzy 15 

logic system [81]. 16 

 17 

 18 
Fig.9: Basic configuration of a fuzzy logic system. 19 

 20 

Fuzzy logic is a technique that is associated with the theory of fuzzy sets and 21 

the theory of possibilities [82]. The fuzzy system is composed by the 22 

fuzzification, fuzzy interference and the defuzzification. 23 

 24 

The objective of fuzzification is to convert any numerical value of each input 25 

data into a fuzzy subset, i.e. a linguistic value between 0 and 1 [83]. Any fuzzy 26 

subset of each input variable requires a membership function whose shape is 27 

well defined (sigmoid, hyperbolic tangent, exponential,…) [84]. This paper 28 

considers three possible subsets (Good, Acceptable, Unacceptable) for each input 29 

variable.  30 

 31 

Fuzzy inference is the process of formulating the mapping of input data based 32 

on membership functions, fuzzy logic operators (and / or), and If-Then rules 33 

at an output using the Fuzzy logic [21]. The Fuzzy rules (IF antecedent THEN 34 

consequent) in expert system are usually [85]:  35 

Rule Base 

Fuzzification 

Interface 

Input Output  

Decision-making unit 

Defuzzification 

Interface 

(fuzzy) (fuzzy) 
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 1 

𝐼𝐹 𝑉𝑎𝑟 (1) 𝑖𝑠 𝐴11 𝑎𝑛𝑑/𝑜𝑟 𝑉𝑎𝑟 (2) 𝑖𝑠 𝐴21 . . . 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐵1 2 

𝑒𝑙𝑠𝑒  3 

𝐼𝐹 𝑉𝑎𝑟 (1) 𝑖𝑠 𝐴12 𝑎𝑛𝑑/𝑜𝑟 𝑉𝑎𝑟 (2) 𝑖𝑠 𝐴22 . . . 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐵2 4 

𝑒𝑙𝑠𝑒  5 

. 6 

. 7 

𝐼𝐹 𝑉𝑎𝑟 (1) 𝑖𝑠 𝐴1𝑛 𝑎𝑛𝑑/𝑜𝑟 𝑉𝑎𝑟 (2) 𝑖𝑠 𝐴2𝑛 . . . 𝑇𝐻𝐸𝑁 𝑦 𝑖𝑠 𝐵𝑛  8 

 9 

where Var (1), Var (2),…, Var(n) are the fuzzy input (antecedent) variables, y 10 

is a single output (consequent) variable, and A11 ... A1n are the fuzzy sets 11 

[10]. The total rules used in the inference system are all possible combinations 12 

of the input variables. They depend on the number of linguistic variables that 13 

characterize the membership functions of the input data. If, for example, 14 

there are n input variables with 3 fuzzy linguistic variables, then the rules 15 

are 3n. There are two main types of fuzzy inference methods [86]: Mamdani-16 

Type and Sugeno-Type. It has been employed in this paper the Sugeno-type, 17 

where the Sugeno has an output membership function linear or constant. 18 

 19 

Defuzzification is the process of producing a quantifiable result given fuzzy 20 

sets and the corresponding membership degrees. There are many types of 21 

defuzzification methods, where in this paper has been choose the centroid 22 

technique [18][87]. 23 

 24 

The flowchart of the methodology proposed is shown by Figure 10.  25 

 26 

SCADA signals

Correlation 
between signals

Fuzzy Inputs Fuzzy system 
Alarm Probability 

(Pal)
Is Pal > 0.5 ? No alarmNo

Is Pal > 0.75 ?

Red alarm

Orange alarmNo

Yes

Yes

 27 
Fig. 10: Alarm identification flowchart. 28 

 29 

The large volume of inputs generates a huge number of fuzzy rules and, 30 

therefore, fuzzy system is complex. Several techniques can ensure the 31 

reduction of this volume such as statistical methods. The Pearson correlation 32 

[88] is employed in this paper using a linear correlation between two 33 

variables. The correlation coefficient, r, between two discrete variables, x and 34 

y, is given by:  35 

 36 

𝑟 =
𝑁(∑ 𝑥𝑦𝑁

𝑛=1 ) − (∑ 𝑥𝑁
𝑛=1 )(∑ 𝑦𝑁

𝑛=1 )

√(𝑁 ∑ 𝑥2𝑁
𝑛=1 − (∑ 𝑥𝑁

𝑛=1 )2)(𝑁 ∑ 𝑦2𝑁
𝑛=1 − (∑ 𝑦𝑁

𝑛=1 )2)
 37 
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 1 

The type of correlation can be determined according to the following criteria 2 

[76,89]: 3 

 4 

-  Weak correlation 0.3 ≤ |𝑟| < 0.5 5 

- Moderate correlation : 0.5 ≤ |𝑟| < 0.7 6 

- Strong correlation : |𝑟| ≥ 0.7 7 

- Perfect correlation |𝑟| = 1 8 

 9 

The reduction of the fuzzy system inputs is done considering the variables 10 

with perfect and strong correlation. The variables that have a strong 11 

correlation can be represented by only one variable considering their common 12 

behavior.  13 

The fuzzy inference system is based on different rules to generate the 14 

occurrence probabilities of the alarms in the output. The output of the fuzzy 15 

logic will correspond to three different scenarios [40]: 16 

- No alarms: The parameters have values under control and the 17 

condition of the WT is correct. The output of the fuzzy logic is less than 18 

0.5.  19 

- Orange alarms: Probable faults that do not cause problems for 20 

maintenance planning and can be attended by programmed with daily 21 

or weekly preventive maintenance tasks. This alarm will be considered 22 

when the output of fuzzy system is from 0.5 to 0.75. 23 

- Red alarms: Critical states (maximum values for more than one 24 

physical variable). It requires diagnosis and urgent intervention to 25 

return the status parameters to acceptable levels. This alarm will be 26 

considered when the output of fuzzy system is > 0.75. 27 

 28 

These parameters can be divided as: the variables related to the condition of 29 

the kinematic chain; the parameters related to the condition of safety 30 

systems, divided into two subgroups: the pitch control system and the braking 31 

safety system.  32 

 33 

A total of 76810 inputs have been analyzed through the created fuzzy system. 34 

The outcomes were 42.46 % of green alarms, 54.60% of orange alarms and 35 

2.94 % of red alarms  36 

The method is employed to detect false alarms by analyzing the alarms 37 

provide by the SCADA system with the alarm probability provide by the fuzzy 38 

logic.  39 

A period of 3 months, where the false alarms are known, has been considered 40 

to compare the results. The results of the Fuzzy Logic have been compared 41 

with the results of the approach presented in this paper in Table IX. 42 

Table IX. Accuracy results given by the NN approach and the Fuzzy Logic 43 

(FL) 44 
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Alarm ANN-Approach FL 

786 0.932 0.915 

9001 0.950 0.820 

3078 0.953 0.724 

9026 0.880 0.813 

3072 0.837 0.620 

3062 0.985 0.905 

9002 0.967 0.795 

9010 0.967 0.825 

9025 0.948 0.813 

3125 0.967 0.785 

 1 

Table IX shows an accuracy for the approach similar to the accuracy found by 2 

the confusion matrix. It is better in every alarm than the fuzzy logic accuracy. 3 

 4 

7. Conclusions 5 

 6 

The detection of false alarms in a wind turbine increases the system 7 

reliability. A novel approach based on artificial neural networks has been 8 

developed in this paper to detect false alarms and prioritize the alarms. The 9 

artificial neural network is composed of three different multilayer 10 

perceptrons that analyse the dataset from both a supervisory control and data 11 

acquisition system and a condition monitoring system. The dataset is 12 

analysed by pattern recognition when it has been filtered. The pattern 13 

recognition considers the historical database employed to train the artificial 14 

neural networks. The approach can analyse different alarms, the ten most 15 

repeated alarms being discussed in this paper. It has been applied to a real 16 

dataset from the OPTIMUS European project. Precision and sensitivity are 17 

more than 80%, and in some cases more than 90%. The approach accuracy 18 

has been studied by confusion matrices, comparing the estimated response of 19 

the neural network based structure with real alarms. Finally, fuzzy logic 20 

method has been also employed in order to validate the results given by the 21 

approach. 22 
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