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Abstract

In this paper an approach for hierarchical time series forecasting based on State Space modelling is pro-

posed. Previous developments provide solutions to the hierarchical forecasting problem by algebra manip-

ulations based on forecasts produced by independent models for each time series involved in the hierarchy.

The solutions produce optimal reconciled forecasts for each individual forecast horizon, but the link along

time that is implied by the dynamics of the models is completely ignored. Therefore, the novel approach in

this paper improves upon past research at least in two key points. Firstly, the algebra is already encoded in

the State Space system and the Kalman Filter algorithm, giving an elegant and clean solution to the problem.

Secondly, the State Space approach is optimal both across the hierarchy, as expected, but also along time,

something missing in past developments. In addition, the present approach provides an unified treatment

of top-down, bottom-up, middle-out and reconciled approaches reported in the literature; it generalizes the

optimization of hierarchies by proposing combined hierarchies which integrate the previous categories at

different segments of the hierarchy; and it allows for multiple hierarchies to be simultaneously adjusted. The

approach is assessed by comparing its forecasting performance to the existing methods, through simulations

and using real data of a Spanish grocery retailer.

Keywords: Forecasting, Hierarchical forecasting, Reconciliation, State Space, Forecast combination.

1. Introduction

Business and economic applications relying on time series are usually aggregated across geographic or

logical dimensions to form hierarchical structures. The data is then forecast at different levels of aggregation

which have been reported as beneficial in terms of robustness and accuracy. However, independent forecasts

of all time series at all levels of aggregation have the undesired property of being inconsistent across the

hierarchy. Therefore, a strategy for reconciling forecasts across aggregation levels to improve consistency

is required.

Research on hierarchical time series have been reported in the literature for several decades. Examples

of early studies include Grunfeld and Griliches (1960); Orcutt et al. (1968); Shlifer and Wolff (1979);
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Barnea and Lakonishok (1980); Gross and Sohl (1990); Dangerfield and Morris (1992); Fliedner (1999);

Weatherford et al. (2001); etc. In supply chain scenarios, for example, disaggregated demand data is usually

available for every shop or distribution center. At this level, natural hierarchies can be formed aggregating

data corresponding to the criteria of interest. Logical hierarchies can be formed when data are grouped based

on relevant criteria to the business. Families (or groups) of products in grocery industries, for example, have

an important role as a business variable for supply chain orchestration (Fliedner and Lawrence, 1995; Muir,

1979). Synthetic hierarchies can be defined simply by attending to the nature of time series themselves.

In these cases, time series are first classified into groups according to their structural components so as to

optimize modeling, and then are aggregated to form the next level of the hierarchy (Fliedner, 2001).

A number of different approaches for optimizing hierarchical forecasts have been proposed in recent

years. The bottom-up approach entails forecasting the lowest level in the hierarchy and propagating the

forecasts upwards according to the hierarchy structure (Orcutt et al., 1968; Dangerfield and Morris, 1992).

The top-down strategy forecasts the uppermost level time series and then disaggregate down the forecasts

to lower levels using different approaches, normally proration or by ratios of every single time series with

respect to the aggregate, as described by Gross and Sohl (1990); Strijbosch et al. (2008); Boylan (2010).

Middle-out approach combines both previous approaches by forecasting a middle level and then aggregating

bottom-up as well as disaggregating top-down. Optimal reconciliation is proposed as a way of modifying

individual forecasts and making them compatible, without the need to fix any of them on a priori grounds,

the procedure has been also extended to temporal hierarchies (Hyndman et al., 2011, 2016; Athanasopoulos

et al., 2017). Recently, an allegedly new procedure appeared, known as integrated hierarchies, based on

multivariate State Space systems (Pennings and van Dalen, 2017).

Debate as to which approach is best in forecasting terms has been going on for some time. Some studies

are in favor of top-down approaches (Grunfeld and Griliches, 1960; Gross and Sohl, 1990; Fliedner, 1999),

others prefer the bottom-up strategy (Orcutt et al., 1968; Dangerfield and Morris, 1992; Zellner and Tobias,

2000; Weatherford et al., 2001), while others advocate a reconciled approach (Hyndman et al., 2011, 2016).

Some more theoretically oriented studies have focused on analyzing the conditions under which approach

produces more accurate forecasts than others (Shlifer and Wolff, 1979; Lütkepohl, 1984; Widiarta et al.,

2009; Sbrana and Silvestrini, 2013; Rostami-Tabar et al., 2016).

At present, discussions remain inconclusive and will probably persist over the following decades, for

several reasons. Firstly, empirical comparisons suggest that there is no single approach that outperforms

the rest, as the results depend on the complexity of the hierarchy, the quality of the data at each level,

the accuracy of the models, etc. Secondly, setting out general conditions on which any hierarchy is better

optimized on theoretical grounds presupposes ideal conditions that may or may not be met in experiments

with real data, thus weakening importance for day to day practice. Finally, discussions are becoming more

complicated because of the emergence of novel ways to optimize a hierarchy (for example, the reconciled

approach). This paper seeks to take the debate a step further by proposing a new strategy to carrying out all

the aggregation approaches, and for generalizing a hierarchy by defining each node type.

In this paper, a State Space (SS) approach for the general treatment of hierarchies is proposed, providing
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a framework that gives an unified solution for top-down, bottom-up, middle-out and reconciled hierarchical

forecasting approaches. This framework permits a new category, combined, defined as any feasible logical

combination of the aforementioned categories. In this framework, all the previous cases are seen as partic-

ular examples of a combined hierarchy, in which each node is defined in any of such categories. In other

words, our approach to the problem would consist on defining the hierarchy structure and the type of each

single node.

This approach improves upon recent research (mainly Hyndman et al., 2011, 2016) at least in two

fundamental ways. Firstly, the appropriate SS form and the associated optimal recursive algorithms provide

an elegant optimal solution to the hierarchical forecasting problem without the need to turn up to any

additional algebra. Secondly, given the recursive nature of the solution to the state estimation problem

given by the Kalman Filter, the optimality is propagated along time, i.e., the solution preserves the time

consistency implied by the individual models for each time series. This fact is completely disregarded in

previous studies.

Time consistency is, on the contrary, taken into account in Pennings and van Dalen (2017). But, though

developed also in a State Space framework, the approach is rather different and more restricted than the

one in this paper. Certainly, it consists of a multivariate Unobserved Components or Structural model a la

Harvey (Harvey, 1989) with components arbitrarily constrained, in which the hierarchical restrictions are

taken into account solely in a bottom-up manner. The univariate modelling does not play any rule and no

dynamical models are proposed for aggregated time series. In this paper, other models than Unobserved

Components are possible, all bottom-up, top-down and reconciled structures are possible, dynamical models

are specified for aggregated series and time consistency is preserved.

The layout of the paper is as follows. Section 2 states the problem of forecasting a hierarchy. Section

3 reviews SS fundamentals. Section 4 shows how a general hierarchy may be set up in the SS framework.

Several reflections emerge from the results of a numerical simulation (Section 5) and the experimentation

on real data of a Spanish grocery retailer (Section 6). The paper concludes with a final discussion and

afterthoughts in Section 7.

2. Hierarchical forecasting

The problem of hierarchical forecasting consists in finding optimal forecasts for all the time series

involved in a hierarchy in such a way that the forecasts add up according to the constraints imposed by the

hierarchy. There are many types of hierarchies and even more ways to organize the same data into different

hierarchies. The total sales of a company could be disaggregated first into regions and then in product

families, or vice-versa, leading to different hierarchies in each case. Figure 1 shows an example of a simple

hierarchy, composed of three levels and eight nodes or time series, five of which are at the bottom level, as

in Hyndman et al. (2016).

A hierarchy may be represented as a multivariate model with a number of constraints. However, relevant

hierarchies are assumed to be large, making their multivariate representation infeasible. Thus, a more
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Figure 1: An example of a simple hierarchy

appropriate approach consists in identifying univariate models for each time series at every level in the

hierarchy, and achieving forecast reconciliation in a second stage.

Any hierarchy or grouping data structure may be expressed as a linear transformation of the bottom

level variables. The ensuing matrix transforms the data or the forecasts at the bottom layer into the whole

data structure in a straightforward manner. Taking ynode the data at any node in the hierarchy of Figure 1,

such transformation is 

yTOT AL

yA

yB

yAA

yAB

yAC

yBA

yBB



=


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



yAA

yAB

yAC

yBA

yBB


(1)

or simply yt = S bt, where yt is the vector of data or forecasts of all the time series, S is the summing matrix

(Hyndman et al., 2011) defining the hierarchy and bt is the data or forecasts at the bottom level.

3. State Space modelling

The general linear Gaussian SS model implemented in this paper is shown in Equation (2).

Transition equation: αt+1 = Tαt + Rηt, ηt ∼ N(0,Q)

Observation equation: yt = Zαt + Cεt, εt ∼ N(0,H)
(2)

In these equations αt is a non-observable state vector of length n; ηt and εt are the state and observational
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vectors of zero mean Gaussian noises, with dimensions r × 1 and h × 1, respectively; both are considered

independent or each other along this paper, but in general applications may be allowed to be correlated with

covariance S = Cov(ηt, εt) of dimension r × h; yt is the k × 1 vector of output data. The initial state vector

is assumed to be stochastic with Gaussian distribution, i.e., α1 ∼ N(a1, P1), and independent of all data and

noises involved in the system.

The remaining elements in (2) are the so called system matrices with appropriate dimensions, i.e.:

T : n × n; R: n × r; Q: r × r;
Z: k × n; C: k × h; H: h × h.

All the system matrices may be time varying, but they are not explicitly considered here simplify the

notation.

Further sophistication may be introduced in both equations by means of additional matrices taking into

account either linear or non-linear input-output relationships. These particular configurations with a number

of extensions not quoted here (such as non-gaussian and non-linear models) are implemented in the SSpace
toolbox written by the authors for the MATLAB environment (The MathWorks, Inc, 2018; Villegas and

Pedregal, 2018). This toolbox is based on several references, like Harvey (1989), Young et al. (1999),

Durbin and Koopman (2012), Casals et al. (2016). Other pieces of software related to this are, among many

others, Commandeur et al. (2011), Koopman et al. (2009), Taylor et al. (2007), Gómez (2015).

Many standard univariate techniques considered for forecasting actually fit into the present framework.

Typical examples are ExponenTial Smoothing (ETS) or ARIMA models, but others not so common in

this area are also implementable, like Unobserved Components (UC) models (Harvey, 1989; Durbin and

Koopman, 2012; Young et al., 1999). In addition, SS systems offer an exceptional framework in which all

the hierarchical approaches, bottom-up, top-down, middle-out and reconciled, fit in quite naturally. Even

any logical mixture of these approaches, combined with any mixture of models, may be used simultaneously

across any hierarchy, as described in the next section. This allows to use the most convenient model and

approach for each part of the hierarchy. To sum up, SS methodology provides the possibility of a unified

treatment of all possible cases.

3.1. The Kalman Filter

It is well-known that the Kalman Filter (KF) is a recursive algorithm that provides the optimal estimation

of the states and their covariances of a SS system at any point in time by minimizing the mean squared error,

conditional on all information available up to that point in time (Kalman, 1960). There have been many

formulations of the recursive equations, of which the decomposition in prediction and correction steps is

especially illustrative in the present context. The algorithm is shown in Equation (3), where at = E(αt|Yt−1),

at|t = E(αt|Yt), Pt = Var(αt|Yt−1), Pt|t = Var(αt|Yt), Yt−1 and Yt stand for all information available up to

t − 1 or t, respectively. The variable vt is known as the innovation (with time covariance matrix Ft), the
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information that cannot be predicted from all the information available at the previous step.

Correction step: Prediction step:

vt = yt − Zat

Ft = ZPtZ′ + CHC′

Kt = PtZ′F−1
t

at|t = at + Ktvt at+1 = Tat|t

Pt|t = Pt − KtFtK′t Pt+1 = T Pt|tT ′ + RQR′

(3)

Additionally, the forecast for the output data is produced by yt+1 = Zat+1. Given an appropriate ini-

tialization of the KF, i.e. appropriate values for a1 and P1, the algorithm proceeds recursively applying the

correction equation after the prediction equation for t = 1, 2, · · · ,N.

Correction equations are skipped if missing data is present. Forecasts are the natural outcome of the

KF if the output data is set to missing information, because the correction equations do not apply and

the prediction equations are applied recursively. The issue of initialization, especially for non-stationary

models, is a complex one for which the solution applied in this paper and implemented in SSpace is the

exact initial KF as in Durbin and Koopman (2012).

The KF assumes all system matrices are known. However, in real situations this is very rarely the case.

Therefore, prior to the application of the KF, estimation of the unknown parameters should be carried out.

There are many ways to do this task, of which Maximum Likelihood in time domain via error decomposition

is very often preferred, because of its good statistical properties in very general situations. See details in

Durbin and Koopman (2012), also Young et al. (1999) for frequency domain approaches.

3.2. An example

A simple example is proposed here in order to illustrate the SS approach. Let’s consider an ARMA(2,

1) model in Equation (4).

yt = φ1yt−1 + φ2yt−2 + εt + θεt−1, Var(εt) = σ2 (4)

The SS representation of this model is not unique, but one that is often used in the literature is α1,t+1

α2,t+1

 =

 φ1 1

φ2 0

  α1,t

α2,t

 +

 1

θ

 εt

yt =
(

1 0
)  α1,t

α2,t

 (5)

Matching system (5) with the general SS system (2) identifies the system matrices for this particular

case, i.e.,
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T =

 φ1 1

φ2 0

 ; R =

 1

θ

 εt Q = σ2

Z =
(

1 0
)

C = 0 H = 0

Matrices T , Q and R depend on the parameters of the ARMA(2,1) model and given the data may

be estimated by Maximum Likelihood. With the estimated values placed in these matrices, the KF in

Equation (3) gives the optimal estimation of the states, forecasts and their covariances. Generalizations of

this example to ARMA(p, q) models is straightforward.

4. Hierarchies in SS form

The problem stated in Section 2 may be solved by building an overall SS system that comprises all the

models in a hierarchy with the constraints imposed by the hierarchy structure and all the information in-

volved. It is assumed that the base models have been identified previously in some way, either automatically

or manually. In order to build the overall SS structure, such models ought to be cast in SS form, though not

necessarily identified within a SS framework.

The overall SS system representing the hierarchy is built in two steps:

• Build up the overall system by block concatenation.

• Add hierarchical constraints depending on the type of hierarchy.

4.1. Build overall system

Assuming that the univariate models for all variables are set up in SS form, the model for the i-th

variable may be written as in Equation (2) with a superscript ((i)) added to every single element in the SS

formulation. Such superscript runs from 1 to the number of variables k.

The first step, then, consists of building an overall SS system based on k systems of type (2) (k = 8 in
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example of Figure 1). This is possible by block concatenation of the individual systems, see Equation (6).
α(1)

t+1
...

α(k)
t+1

 =


T (1) . . . 0
...

. . .
...

0 . . . T (k)



α(1)

t
...

α(k)
t

 +


R(1) . . . 0
...

. . .
...

0 . . . R(k)



η(1)

t
...

η(k)
t


y(1)

t
...

y(k)
t

 =


Z(1) . . . 0
...

. . .
...

0 . . . Z(k)



α(1)

t
...

α(k)
t


+


C(1) . . . 0
...

. . .
...

0 . . . C(k)



ε(1)

t
...

ε(k)
t


Cov


η(1)

t
...

η(k)
t

 =


Q(1) . . . 0
...

. . .
...

0 . . . Q(k)

 ; Cov


ε(1)

t
...

ε(k)
t

 =


H(1) . . . 0
...

. . .
...

0 . . . H(k)



(6)

Once more, this system is in form (2). Given its block diagonal structure, using system (6) on the whole

dataset is exactly equivalent to using the k individual SS systems independently.

4.2. Add hierarchical constraints

Let’s rename all the system matrices in (6) in compact form as their counterparts of system (2) with su-

perscript ((K)) added to them. Then, the second step consists in finding out a modified observation equation

that replicates all the univariate models and the constraints imposed by the hierarchy at the same time. This

is achieved by pre-multiplying the overall observation equation by a matrix S (∗), given in Equation (7).

S (∗) =
(

S (K) S
)

(7)

Matrix S (∗) is actually a combination of matrix S that defines the hierarchy structure and a new matrix

S (K) that has to be found depending of the type of system (bottom-up, etc.). The dimension of S (K) is k×m,

where m is the number of aggregated variables.

• Bottom-up: S (K) = 0. Pre-multiplying the observation equation by S (∗) in this case leaves the system

as it is. In this case, forecasts may be produced simply as the aggregation of individual forecasts

without any need of the overall system. A more efficient version of this model, with less states, is

found by declaring S (K) as an empty matrix and using an overall system that only comprises the

models at the bottom level. Indeed, this is the preferred form when the system is purely bottom-up.

However, this less efficient version is preferred for the sake of the combined systems defined below.

• Top-down: as in the case of bottom-up, but inserting the forecasts obtained by the individual model of

yTOT AL as actual data. As in the previous case, the top-down system may be defined more efficiently

with less states, but this form is retained.
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• Reconciled: S (K) =
(
−I 0

)′
, where I is an identity matrix of a dimension equal to the number of

aggregated variables (m) and the rest are a block of zeros of appropriate dimension ((k − m) × m). In

this case, y(K)
t is a composition of zeros for the aggregated data and the disaggregated series bt.

• Combined: the way each case above is set up allows for their combination in a single hierarchy by

selecting appropriate values for the diagonal elements of matrix S (K) and the data affecting it. For

example, by setting S (K)(i, i) = −1 and zeros for the i − th aggregate variable that node is chosen as

reconciled. Otherwise, set S (K)(i, i) = 0 and missing data or the forecasts of the univariate model

for i − th aggregated series, for bottom-up or top-down options, respectively. One must bear in mind

that the middle-out case quoted in the literature is just a particular case of a combined hierarchy.

Therefore, rather than speaking about hierarchy types (i.e., bottom-up, reconciled, etc.) a thorougher

nomenclature would be to talk of node types.

4.3. Discussion

The path followed to build the SS hierarchical system illustrates how the transition equation embodies

the dynamical systems of all the independent univariate models, while the observation equation just defines

both the hierarchy structure and node types. Thus, the two-step KF in Equation (3) renders the optimal

one-step-ahead forecasts of the states: in the prediction step, which only uses the transition equation system

matrices, the independent forecasts are computed regardless of the hierarchy, while the correction step

updates them by imposing the appropriate constraints according to the hierarchy structure. Such a correction

is done by minimizing the Mean Squared Error, conditional on all information available at any time, on the

univariate models for all series and on the constraints imposed by the hierarchy.

An additional benefit of this approach is that it neatly takes advantage of the KF optimality without any

further assumptions or any further algebra. In the particular case of the top-down systems, there is no need

to elaborate on how the top forecasts have to be disaggregated (Gross and Sohl, 1990). The advantages also

apply to reconciled systems, in which additional objective functions ought to be assumed, opening the door

to different options (Hyndman et al., 2011, 2016).

Still more important is the fact that any hierarchical forecasts are produced based on past optimal fore-

casts obtained with the hierarchy and the forecasts are consistent both hierarchical-wise and time-wise,

i.e., with the constraints imposed by the hierarchy and the time dynamics of the univariate models optimally

identified. Clearly this is not the case of the Hyndman et al. (2011) approach, where the reconciled forecasts

are produced based solely on the initial univariate/independent forecasts without any reference to the pre-

vious reconciled forecasts, losing the consistency across the temporal dimension. The top-down approach

has similar consistency problems along time.

The following simple example illustrates the point of time consistency of the SS reconciled forecasts.

Let’s assume two independent AR(1) processes,

x1,t = 0.8x1,t−1 + a1,t, var(a1,t) = 1

x2,t = −0.8x2,t−1 + a2,t, var(a2,t) = 1
(8)
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Figure 2: Forecasts of a simulation of aggregation of two AR(1) systems

It is well known that the eventual forecast function of both processes decay exponentially to zero,

the first one from either the positive or negative side, while the second alternates sign around zero. The

aggregation of the two processes (yt = x1,t + x2,t) is an AR(2) because the coefficients of the two AR(1)

processes are equal and opposite in sign and the variance of both noises is the same (Granger and Morris,

1976). A simulation of the above models produces forecasts like the ones shown in Figure 2. The standard

procedure is done in the R environment with the hts package (Hyndman et al., 2011), while the SS forecasts

are done in MATLAB with the SSpace toolbox (Villegas and Pedregal, 2018). The example is done in a way

such that the base AR models are exactly the same in both cases, making sure that the observed differences

are strictly and solely due to the aggregation procedures. The SS reconciled forecasts resemble what is

expected in theory, while the standard procedure produces forecasts that are combinations of the expected.

In this sense, SS approach is time-consistent, while the standard method computed with hts package is not.

The possibilities of combined systems open up the door to further considerations. Taking the hierarchy

in Figure 1, the adjusted forecasts will be different depending on the type assigned to each node. Figure 3

shows just a few possibilities that naturally differ from those in which all the nodes are of the same type.

Then, for the same hierarchy there are many different ways to produce forecasts, all optimal from the point of

view of minimizing the mean squared error, but with different sets of information/constraints. The selection

of each node type may be carried out by a lengthy empirical process, resembling data mining procedures,

or by imposing constraints based on previous experience. Not every possible combination is logical, but the

number of logical combinations is certainly very high, increasing with the number of nodes and the depth

and width of the hierarchy. This is an area that requires more research and is beyond the scope of this paper.
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Figure 3: Some of the possible options for the top structure of the hierarchy in Figure 1. TD, BU and R stand for top-down,
bottom-up and reconciled, respectively.

Kahn (1998) mentioned the idea of a hybrid approach combining the advantages of top-down and

bottom-up. As previously discussed, our approach provides a framework that takes this idea of flexibil-

ity to a new extent, allowing to assign a combination strategy to each node in the hierarchy. Moreover,

further considerations are:

• The proposed approach makes it easy to integrate multivariate models as part of the hierarchy. Instead

of a block concatenation of univariate models, the corresponding block would be replaced by the

appropriate multivariate module.

• Judgmental forecasts may be incorporated into the hierarchy at any node by selecting them as a top-

down node.

• Node types may be also time dependent, keeping the hierarchy and time consistency and building

forecasts on past optimal forecasts based on the hierarchy structure. A system might be bottom-up

at some points in time and top-down at others, meaning that by means of the latter the forecasts are

forced to reach a certain level at certain time stamps.

• Simulations are also possible, for example, it is possible to set scenarios to answer questions such us

what future paths are compatible with certain future values at certain nodes.

• Optimal confidence bands or prediction intervals may be estimated automatically from the standard

KF output in the usual way.

5. Simulations

In this section we develop a simulation study to compare the proposed methodology with existing al-

ternatives. The simulation process is basically a replication of the one described in Hyndman et al. (2011)

with minor modifications. All bottom level series are simulated as ARIMA(p, d, q) processes with d = 1,

p ∈ (0, 2) and q ∈ (0, 2) with parameter values chosen randomly with equal probability within the sta-

tionary and invertible regions. The hierarchy structure remains the same, i.e., 3 levels, with eight series at

bottom-level that are aggregated by pairs to form the four series at level 2, two series at level 1, and the most

aggregated series at the top level.
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The bottom-level series are first generated and then aggregated to form the hierarchy. The same covari-

ance matrix is used to allow for correlation between bottom level series from the same level 1 group. Such

matrix is 

7 3 2 1 0 0 0 0

3 7 2 1 0 0 0 0

2 2 6 3 0 0 0 0

1 1 3 6 0 0 0 0

0 0 0 0 7 3 2 1

0 0 0 0 3 7 2 1

0 0 0 0 2 2 6 3

0 0 0 0 1 1 3 6


Datasets of 100 samples were generated, taking the first 90 samples as the training partition for identi-

fying and fitting the models, and the last 10 observations as the out-of-sample partition. Automatic identi-

fication of ARIMA models was done using SSpace (Villegas and Pedregal, 2018) following the algorithm

implemented in the forecast package in R (Hyndman and Khandakar, 2008). The fitted models were used

to produce 1-to-7 steps-ahead predictions for each of the 15 series.

Once the individual models and predictions were calculated, reconciled forecasts were produced accord-

ing to the different approaches discussed in Section 4, i.e., bottom-up, top-down and reconciled, using both

hts (Hyndman et al., 2011) and SSpace (Villegas and Pedregal, 2018) implementations. The simulation was

repeated 1000 times. Table 1 shows the Root Mean Squared Error (RMSE) in the out-of-sample for each

of the approaches and for each of the 15 series. For convenience, an entry for the independent forecast has

been also included, though not consistent with the hierarchy. The best alternative for each horizon and level

is shown in bold. Since the bottom-up approach simply aggregates the bottom level forecasts all the way to

the top level, results are equivalent for both hts and SSpace and they are shown in a single entry. On the

other hand, different results are drawn for top-down and reconciled strategies, and RMSE values are shown

separately for each implementation.

One important point is that all models automatically identified are exactly the same in both implementa-

tions (hts and SSpace). Thence, the accuracy differences observed in Table 1 are only due to the differences

in reconciling approaches.

Since random ARIMA processes were used both to generate the series and (automatically) identify the

models, the bottom-up strategy results favored, explaining its good performance. However, the value of this

particular setup relays on providing a common ground for comparing existing approaches (hts) with the

proposed approach (SSpace), leaving apart the aforementioned discussion on top-down vs bottom-up. The

mean RMSE value for bottom-up (9.77) is indeed the best of all, even better than the independent forecasts

(10.52 mean RMSE).

Some observations can be highlighted from Table 1. Regarding global averages (last row), results

seem to be scattered around the independent forecasts (10.52), except for top-down[hts] value sitting apart
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Table 1: RMSE for out-of-sample forecasting of the simulated data.
Independent Bottom-up Top-down reconciled

hts sspace hts sspace
Total 28.59 24.30 28.59 28.59 26.66 24.63
A 18.50 16.64 35.28 18.50 17.97 16.89
B 18.93 16.88 34.95 18.74 18.42 17.24
AA 11.19 10.58 24.89 11.43 11.05 10.62
AB 10.78 9.86 25.05 10.83 10.70 10.09
BA 11.18 10.59 26.60 11.64 11.35 10.77
BB 10.58 9.71 28.95 10.37 10.54 9.88
AAA 6.01 6.01 15.92 6.42 6.32 6.11
AAB 6.54 6.54 21.39 6.99 6.77 6.48
ABA 5.88 5.88 16.28 6.39 6.30 5.93
ABB 5.76 5.76 17.52 6.18 6.23 5.95
BAA 6.25 6.25 19.85 6.76 6.61 6.33
BAB 6.19 6.19 22.43 6.72 6.59 6.28
BBA 5.69 5.69 29.05 6.00 6.12 5.77
BBB 5.72 5.72 24.85 6.02 6.12 5.77
Average 10.52 9.77 24.77 10.77 10.52 9.91

(24.77), a finding in common with Hyndman et al. (2011). Reconciled[sspace] method (9.91) outperforms

all alternatives except bottom-up (9.77), including the independent baseline (10.52).

Regarding top-down and reconciled approaches, SSpace systematically provides better results than the

counterpart in hts for all series. This result comes to support the claim about the convenience of keep-

ing consistency across time while reconciling across hierarchy. As previously discussed in Section 4, the

proposed approach for reconciling forecasts also maintains consistency with models across time, which is

expected to increase coherence and performance of the final system.

Pairwise t-tests for the 6 approaches were computed. As expected from results in Table 1, top-down[hts]

vs the rest returned a p-value smaller than 10−8 for all possible comparisons. The best of all approaches

is the bottom-up (being consistent with the experiment design as previously discussed) which compared

to independent is said to be different with 99% of confidence (p-value 5.2 × 10−4), but not significantly

different from reconciled[sspace] (p-value 0.51). Finally, both reconciled approaches are different with

99% of confidence (p-value 7 × 10−3).

6. Hierarchical demand forecasting

In this section we apply the proposed approach to predict the demand of a Spanish grocery retailer. The

dataset contains daily observations on the sold units of 39 products covering the period 2013:Q1-2014:Q2.

The hierarchical structure used is described in Table 2. The top level contains aggregated demand for the

whole company. At level 1, demand is disaggregated by type of dish: first courses, pastas and meats. At

level 2 products are grouped in seven different families: salads, creams, omelets, spaghetti, macaroni, beef
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and chicken. And finally, at the bottom level we have 39 disaggregated series for the individual products,

and the hierarchy therefore involves 50 time series (39 disaggregated and 11 aggregated).

Table 2: Hierarchy for grocery demand data
Level No of series per level Aggregation vector
Company 1 [3]
Type of food 3 [3 2 2]
Family of products 7 [10 2 4 3 3 12 5]
Products 39

An optimal ARIMA model was selected for each series using the automatic identification algorithm

in Hyndman and Khandakar (2008), as done in the simulation study discussed above. A rolling window

procedure with 8 forecasting origins was implemented to produce 7-step-ahead forecasts, and the models

were re-identified at every forecasting origin. Once more, top-down, bottom-up and reconciled approaches

were computed using hts package and SSpace.

Table 3 contains the mean absolute percentage error (MAPE) for each forecast horizon and hierarchical

forecasting approach. The table is organized in several blocks, one for each hierarchical level and the mean

MAPE across all levels. MAPE for independent forecasts is shown in the first row of each section. The

approach with smallest MAPE is shown in bold for each horizon. The last column contains the average

MAPE across all forecast horizons. Since the bottom-up approach produces identical results in both im-

plementations, they are shown in a single entry, while results for top-down and reconciled approaches are

shown separately.

Some ideas emerge from this empirical study: (1) the bottom-up strategy is systematically out-performed

in all horizons and levels by either top-down or reconciled approaches. (2) As we move down in the hi-

erarchy, the reconciled approach excels at longer horizons (5, 6 and 7 steps ahead), while the top-down

approach does better at shorter horizons (1, 2 and 3 steps ahead). (3) The SSpace approach seems to sys-

tematically out-perform hts implementation for longer horizons (4, 5, 6 and 7 steps ahead) both in top-down

and reconciled approaches, while hts work better at shorter horizons in both approaches as well (with some

exceptions, see for example Level 1 of Table 3).

7. Conclusions

In this paper, a new approach for hierarchical time series forecasting based on SS modelling is proposed.

The principal merit is that it provides an unified treatment of top-down, bottom-up, middle-out and recon-

ciled approaches reported in literature. In this way, the hierarchical forecasting problem is converted into

a standard SS problem for which the Kalman Filter provides an optimal solution. This fact simplifies the

assumptions on which the approach relies on. In particular, there is no need to add any way to disaggregate

down in top-down approaches (Gross and Sohl, 1990), or to propose any additional objective function in

reconciled approaches (Hyndman et al., 2011).
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Table 3: MAPE for out-of-sample forecasting of the alternative hierarchical approaches applied to a Spanish retailer demand data.

Forecast horizon
1 2 3 4 5 6 7 AVG

Top level
Independent 6.86 7.94 7.99 15.29 16.23 15.71 15.54 12.22
Bottom-up 7.48 9.90 9.78 16.41 17.68 17.07 17.00 13.62
Top-down hts 6.86 7.94 7.99 15.29 16.23 15.71 15.54 12.22

sspace 6.86 7.94 7.99 15.29 16.23 15.71 15.54 12.22
reconciled hts 6.87 7.97 7.82 15.17 16.20 15.76 15.48 12.18

sspace 7.07 8.92 10.48 17.86 17.22 15.59 14.94 13.15
Level 1
Independent 9.44 10.70 10.34 17.29 18.80 18.98 17.42 14.71
Bottom-up 10.66 12.53 12.86 19.29 20.19 19.16 18.06 16.11
Top-down hts 9.66 10.63 10.77 17.51 18.88 18.89 17.29 14.80

sspace 9.69 9.61 10.08 17.02 17.59 16.80 15.67 13.78
reconciled hts 9.68 10.83 10.87 17.52 18.87 18.84 17.25 14.84

sspace 10.44 11.28 12.51 17.83 16.71 15.16 14.38 14.04
Level 2
Independent 13.28 14.47 15.39 22.08 22.56 23.55 21.42 18.96
Bottom-up 15.10 17.20 18.24 24.44 25.44 25.36 23.69 21.35
Top-down hts 13.33 13.99 14.95 22.32 22.83 23.64 21.37 18.92

sspace 16.23 17.48 17.36 22.70 23.93 23.42 21.54 20.38
reconciled hts 13.48 14.68 14.91 22.37 23.07 23.78 21.45 19.11

sspace 15.23 17.19 17.44 22.27 21.64 20.60 19.14 19.07
Bottom level
Independent 28.09 30.19 31.99 36.80 37.23 37.72 35.95 33.99
Bottom-up 28.09 30.19 31.99 36.80 37.23 37.72 35.95 33.99
Top-down hts 27.68 29.42 30.67 36.31 36.48 37.12 35.12 33.26

sspace 31.41 31.72 32.55 36.43 36.69 36.15 34.58 34.22
reconciled hts 27.99 30.44 31.52 37.46 37.98 38.67 36.43 34.36

sspace 29.82 30.55 31.30 35.43 34.96 34.29 33.31 32.81
Average
Independent 24.48 26.37 27.89 33.14 33.65 34.17 32.39 30.30
Bottom-up 24.82 26.90 28.47 33.61 34.16 34.46 32.78 30.74
Top-down hts 24.17 25.71 26.82 32.81 33.11 33.71 31.74 29.72

sspace 27.49 27.93 28.58 32.92 33.35 32.80 31.24 30.62
reconciled hts 24.44 26.61 27.48 33.71 34.31 34.94 32.77 30.61

sspace 26.16 27.09 27.82 32.18 31.64 30.85 29.82 29.37
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Most importantly, due to the use of the Kalman Filter, the solution preserves the time consistency of the

forecasts, a property that is missing in many of the previous approaches. Moreover, forecasts are always

produced on the basis of past optimal forecasts, instead on the raw individual forecasts, enhancing the

coherency of the approach. The SS framework permits the generalization of the problem by defining the

type of each single node in a hierarchy by means of combined hierarchies. Such heterogeneity may be

even time-varying, if required. Confidence intervals or prediction intervals may be built with the aid of the

standard output of the Kalman Filter.

The new approach is evaluated on simulations and on real data of a Spanish grocery retailer. Both

experiments show that the proposed approach provides significantly better results than existing approaches.
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