
IWANN2017: LEARNING ALGORITHMS WITH REAL WORLD APPLICATIONS

An Intelligent Transportation System to control air pollution and road
traffic in cities integrating CEP and Colored Petri Nets

Gregorio Dı́az1 • Hermenegilda Macià1 • Valentı́n Valero1 • Juan Boubeta-Puig2 •

Fernando Cuartero1

Received: 20 December 2017 / Accepted: 26 October 2018 / Published online: 12 November 2018
� The Author(s) 2018

Abstract
Air pollution generated by road traffic in large cities is a great concern in today’s society since pollution has an important

impact on human health, even causing premature deaths. To address the problem, this paper presents an Intelligent

Transportation System model based on Complex Event Processing technology and Colored Petri Nets (CPNs). It takes into

consideration the levels of environmental pollution and road traffic, according to the air quality levels accepted by the

international recommendations as well as the handbook emission factors for road transport methodology. This proposal,

therefore, tackles a common problem in today’s large cities, where traffic restrictions must be applied due to environmental

pollution. CPNs are used in this work as a tool to make decisions about traffic regulations, so as to reduce pollution levels.

Keywords Intelligent control systems � Complex Event Processing � Event processing languages � Formal methods �
Petri Nets

1 Introduction

The increase in vehicles in road traffic is a characteristic

phenomenon of today’s world, which means that related

problems such as traffic accidents, pollution (air and noise),

long travel times, etc., are increasing in the same way.

Numerous reports have been published in order to determine

the extent of the problem, and in particular this has led to the

development of a new area of study, Intelligent Trans-

portation Systems (ITS) [1]. ITS has emerged as an impor-

tant element for both improving human life and the modern

economy [2], with the main objective of optimizing road

traffic by managing the capacity of the roads, improving

driver safety, reducing energy consumption and improving

the quality of the environment, among many others things.

Moreover, an increase is expected in the development of ITS,

integrating concepts such as big data, thus generating the

new concept of Internet of Vehicles (IoV), as Xu et al. pro-

pose in [3], where a survey of applications of IoV and big

data in autonomous vehicles is presented.

A key component for the study and development of ITS

is traffic modeling, which provides a framework to better

investigate and test the state of the road in real time and

accurately predict future traffic. In general, a desirable

model must meet the following requirements:

• It must be consistent with traffic flow.

• It must be flexible, using parameters that characterize

the traffic flow, and be able to represent different

situations and random changes in the traffic flow.

• It should be simple, but capable of capturing the

information required in order to take decisions about

traffic regulations.

& Gregorio Dı́az

Gregorio.Diaz@uclm.es

Hermenegilda Macià

Hermenegilda.Macia@uclm.es

Valentı́n Valero

Valentin.Valero@uclm.es

Juan Boubeta-Puig

juan.boubeta@uca.es

Fernando Cuartero

Fernando.Cuartero@uclm.es

1 School of Computer Science, University of Castilla-La

Mancha, Campus Universitario s/n, 02071 Albacete, Spain

2 Department of Computer Science and Engineering,

University of Cadiz, Avda. de la Universidad de Cádiz 10,

11519 Puerto Real, Cádiz, Spain

123

Neural Computing and Applications (2020) 32:405–426
https://doi.org/10.1007/s00521-018-3850-1(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-9116-9535
http://orcid.org/0000-0003-1462-5274
http://orcid.org/0000-0003-3462-7656
http://orcid.org/0000-0002-8989-7509
http://orcid.org/0000-0001-6285-8860
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-018-3850-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-018-3850-1&domain=pdf
https://doi.org/10.1007/s00521-018-3850-1

In this context, we focus on traffic control in cities, taking

into account the levels of environmental pollution

according to the air quality levels accepted by the inter-

national recommendations [4]. Thus, we are tackling a

common problem in large cities, where traffic restrictions

must be applied due to pollution.

The methodology we use to design ITS is Complex

Event Processing (CEP) [5] in combination with formal

methods to model and test the proposed solutions [6]. CEP

provides users with facilities for analyzing and correlating

large volumes of data in the form of events with the aim of

detecting relevant or critical situations for a particular

domain in real time. To meet this objective, the conditions

describing the situations of interest to be detected must be

specified as event patterns. Patterns are implemented by

using the languages provided by CEP engines, the so-called

Event Processing Languages (EPLs), and once the patterns

are defined, they can be deployed in the CEP engine in

question [7].

Additionally, Petri Nets (PNs) [8] are a formalism

which provides mathematical rigor and a graphical repre-

sentation of the model, offering a better comprehension

from a visual model and a mathematical underlying model

in order to obtain important results about all its possible

behaviors. Furthermore, Petri Nets are supported by tools,

which allow us to simulate and analyze the behavior of a

given system in a suitable manner.

The main aim of our proposal is to combine the use of

CEP and Petri Nets to model and test ITS and, specifically,

the city traffic flow, taking into account air pollution con-

ditions. Thus, the contributions of this study are:

• A combination of CEP and Colored Petri Nets (CPNs)

to provide an ITS.

• Definition of event patterns to detect high-risk situa-

tions produced by air pollutants.

• A model of traffic flow using CPNs.

• A methodology to test an ITS using the validation and

verification features of CPNs.

• A realistic use case as a proof of concept, which also

allows us to study the scalability of our proposal.

The structure of the paper is as follows. Section 2 presents

the motivation of this work. Section 3 provides an over-

view of the CEP technology and the specific model of Petri

Nets we use: CPNs. The city road model using CPNs is

presented in Sect. 4 and the air quality and road traffic

event patterns in Sect. 5. Section 6 presents the whole ITS

system, integrating both the CPN model and the EPL

patterns. This model is then applied to a real case study in

Sect. 7, taking as reference the division into districts of

Madrid, the capital city of Spain. Section 8 presents the

related works, and finally, Sect. 9 presents our conclusions

and lines of future work.

2 Motivation

In urban environments, road traffic can be a significant

environmental problem due to the disproportionate expo-

sure of citizens to environmental toxics, thus representing a

public health problem. Air pollution remains one of the

main factors related to preventable diseases and premature

mortality in the EU. In 2010, it was estimated that air

pollution in the EU caused more than 400,000 premature

deaths. It was also the cause of preventable diseases,

including respiratory conditions such as asthma, and

exacerbated cardiovascular problems [9].

The greatest impact on human health occurs in urban

areas, where air pollution levels are highest. Of particular

concern is the health impact of exposure to atmospheric

particulate matter of 2.5 micrometers (PM2:5) and ozone

(O3). However, nitrogen dioxide (NO2) and sulfur dioxide

(SO2) are also a concern, both on their own and as ozone

precursors. Across Europe, it is estimated that 20–30% of

the urban population is exposed to PM2:5 with levels above

the EU reference values, and 91–96% are exposed to more

stringent levels than those of the World Health Organiza-

tion [9]. At international level, the Organization for Eco-

nomic Cooperation and Development (OECD) states that:

‘‘Unless we clean the air, by the middle of the century one

person will die prematurely every 5 s from outdoor air

pollution’’ [10].

According to [9], air pollutants can be classified as

primary (emitted directly into the atmosphere) or sec-

ondary (formed in the atmosphere of precursor pollutants).

The main primary air pollutants include primary PM, BC,

sulfur oxides SOx, NOx (which includes NO and NO2),

NH3, CO, methane (CH4), benzopyrene (BaP) and hydro-

carbons. Secondary air pollutants include secondary PM,

O3 and NO2. The AQI index [11] reports daily air quality

on the basis of five of these major pollutants.

Air pollutants may have a natural, anthropogenic or

mixed origin, depending on their sources or the sources of

their precursors. Emissions from motor vehicles contribute

to air pollution in urban areas, and in many cities ensuring

adequate air quality is a major problem. Road transport is

the main source of air pollution in urban areas, and,

therefore, there is a growing need to control current and

future flow emissions as accurately as possible. As a result,

a series of emissions models and emission factor databases

have recently been developed. For instance, Yuan et al.

[12] describe the complex way in which air pollution dis-

persion occurs in high density cities, such as Hong Kong.

Moreover, there is a relationship between the state of the

traffic and the level of emission of pollutants. Borge et al.

[13] presented a detailed study for the city of Madrid

(Spain). This study was conducted by analyzing hourly

406 Neural Computing and Applications (2020) 32:405–426

123

emissions from nearly 15,000 road segments distributed in

9 management areas covering Madrid City and surround-

ings. Traffic status was evaluated in four levels: free flow,

heavy, saturated and stop and go. Significant quantitative

information can be derived from this work, such as the

relationship between the average speed vs the speed limit

in order to establish the traffic level. Table 1 contains the

traffic level ratios for a trunk road/primary city proposed in

Borge et al.’s work.

3 Background

This section explains the background for both the CEP

technology used for defining air quality and road traffic

event patterns, and the CPN formalism.

3.1 Complex Event Processing

In CEP [14], a situation is an event occurrence or an event

sequence that requires an immediate reaction. Events can

be classified into two main categories: simple events, which

are indivisible and happen at a point in time and complex

events, which usually contain more semantic meaning and

are obtained by processing a set of other events. Complex

events can be derived from other events by applying or

matching event patterns, i.e., templates where the condi-

tions describing situations to be detected are specified. A

CEP engine is the software used to match these patterns

over continuous and heterogeneous event streams, and to

raise real-time alerts after detecting them. These event

patterns are implemented by using Event Processing Lan-

guages (EPLs). Further information about existing EPLs

can be found in the survey by Cugola and Margara [15].

CEP is performed in 3 stages (see Fig. 1): (1) event

capture—events are received and analyzed by CEP tech-

nology, (2) analysis—based on the event patterns previ-

ously defined in the CEP engine, the latter will process and

correlate the information in the form of events in order to

detect critical or relevant situations in real time, and (3)

response—after detecting a particular situation, this will be

notified to the system, software or device in question.

The main advantage of using this technology is that such

important or critical situations can be identified and

reported in real time, thus reducing latency in decision-

making. It is worth noting that we have chosen Esper EPL

[16] as EPL in this work, since this rich high-level pro-

cessing language is more complete than others, providing

more temporal and pattern operators for defining the situ-

ations of interest. For the sake of brevity, we refer to the

particular language Esper EPL simply as EPL throughout

the rest of the paper.

However, domain experts are usually unaware of CEP

technology, and writing the event patterns code is a

somewhat cumbersome task, which requires implementing

the conditions to be met to detect relevant situations. Thus,

we propose MEdit4CEP-CPN [6], a MEdit4CEP-based

approach [7] extended by a Colored Petri Net (CPN) for-

malism, which supports the modeling, simulation, analysis

and both syntactic and semantic validation of complex

event-based systems. More specifically, MEdit4CEP-CPN

provides domain experts with the ability to graphically

model the event patterns (situations of interest) to be

detected for a particular CEP domain. As an example,

Fig. 2a shows the modeled event pattern in charge of

detecting how many times the air quality 3-level has been

exceeded (i.e., the pm2_5 value is greater than 55.4 l g/m3)

per station in the last 4 h. Additionally, the editor validates

the pattern syntax, automatically transforms the graphical

pattern models into a CPN model, generates its corre-

sponding CPN code executable by CPN tools [17], vali-

dates the pattern semantics and generates the Esper EPL

code (see Fig. 2b) to be deployed in the final event-based

system.

There are three important structural elements derived

from EPL to consider in this work: the schema, which

defines the event type structure; an every pattern operator,

which provides us with all the events fulfilling a certain

condition from the input data flow, and sliding time data

windows for processing event information in time slides, as

well as the arithmetic operators such as average, counter,

Table 1 Traffic level ratios in a trunk road/primary city

Level of traffic Value 1-h average speed/speed limit

Free flow 1 [0:87848

Heavy 2 0.75303–0.87848

Saturated 3 0.45306–0.75302

Stop and go 4 \ 0:45306

Event
capture Analysis Response

Event pattern 1

Event pattern definition

Event pattern 2

Event pattern 1

Events

Detected situations

Actions

CEP engine

Fig. 1 Complex Event Processing stages

Neural Computing and Applications (2020) 32:405–426 407

123

etc. Figure 3 shows three EPL extracts, where (a) specifies

an event schema with two properties propname1 and

propname2, both of type double, (b) specifies an event

pattern Pattern1, which detects the input events whose

propname1 is greater than 10.0 and (c) calculates the

average of propname2 values over the last 8 h.

3.2 Colored Petri Nets

A Petri Net (PN) is a bipartite directed graph, with two

types of nodes, places (circles) and transitions (rectangles)

[8]. Places and transitions can be connected by arcs, either

place-transition (PT) or transition-place (TP) arcs (see

Fig. 4). Let P be the set of places, T the set of transitions,

X ¼ P [T (nodes) and F � P� T [T � P the set of

arcs. For any node x 2 X (place or transition), we define the

preconditions and postconditions of x, denoted by �x and

x�, respectively, as follows: �x ¼ fy 2 X j ðy; xÞ 2 Fg,
x� ¼ fy 2 X j ðx; yÞ 2 Fg.

Places usually represent states or system conditions,

while transitions are the actions or events that produce

changes in the system state. Arcs can have an associated

weight (a natural number), by default 1. Places are then

annotated by tokens to indicate system states. These tokens

are usually depicted by dots or the number of tokens on the

corresponding place. For example, a token on a place can

indicate that the condition represented by this place is

currently satisfied, or a number of tokens can indicate the

number of processes waiting for a condition to occur, etc.

The current state of the PN is thus defined by the set of

tokens on every place, called the Petri Net marking, and a

firing rule determines the conditions under which transi-

tions are fired (executed) in order to change the current

marking. Thus, for a transition to be fireable (enabling

condition) all its precondition places must have at least as

many tokens as the weight of the arc that connects them.

The firing of a transition removes a number of tokens equal

to the weight of the corresponding PT-arc from each pre-

condition place and writes on its postcondition places as

many tokens as indicated by the corresponding TP-arcs.

Colored Petri Nets (CPNs) are a well-known extension

of Petri Nets. They extend the basic model with data

information on the tokens. CPNs are supported by a widely

used tool, CPN tools [17], which allows CPNs to be cre-

ated, edited, simulated and analyzed. The notation descri-

bed below is that used in this specific tool. In this paper, we

only present an informal description of the CPN dynamical

behavior. We omit the formal definitions, which can be

found in [18, 19].

In CPNs, places have an associated color set (a data

type), which specifies the set of token colors allowed at this

place, so that tokens bring certain data information,

according to the data type of its associated place. However,

a place can have no attached information at all, as in the

plain model. In this case, we indicate UNIT as the color set

of the place. However, a place can now have as a color set,

for instance, the set of integer numbers INT , a Cartesian

product of two or more color sets as INT2 ¼ INT � INT , a

string ðSTRINGÞ, etc. In this case, each token has an

attached data value (color), which belongs to the corre-

sponding place color set. In CPN tools, the current number

of tokens on every place is drawn in green on the right-

hand side of the place circle, and the specific colors of

these tokens are indicated by the notation n‘v, meaning that

(a)

@Name("Threshold4PM2_5")
insert into Threshold4PM2_5
select a1.stationId as stationId,

count(a1.pm2_5) as num
from pattern [every a1 =

AirMeasurement(a1.pm2_5 > 55.4)].win:time(4 hours)
group by a1.stationId

(b)

Fig. 2 Threshold4PM2_5 pattern. a Pattern model. b Pattern imple-

mentation in EPL

(a) create schema event_name (propname1 double,
propname2 double);

(b) @Name(’Pattern1’)
insert into Pattern1
select a1.propname1
from pattern [every a1 = event_name(a1.propname1>10.0)]

(c) @Name(’Pattern2’)
insert into Pattern2
select avg(a1.propname2) as average
from pattern [(every a1 = event_name)].win:time(8 hours)

Fig. 3 EPL basic schema and two patterns

408 Neural Computing and Applications (2020) 32:405–426

123

we have n instances of color v. Symbol ‘‘??’’ is used to

represent the union of colors in CPN tools. Thus, a marking

1‘3þþ3‘2 denotes that we have 1 token with value 3 and

3 tokens with value 2 on a place with color set INT.

The arc inscriptions are now extended to color set

expressions, which are constructed using variables, con-

stants, operators and functions. The arc expressions must

evaluate to a color or multiset of colors in the color set of

the attached place. Furthermore, transitions can have

guards that can restrict their firing, which are Boolean

expressions constructed by using the variables, constants,

operators and functions of the model.

For any transition t with variables x1; x2; . . . on its input

and output arc expressions, we call a binding of t an

assignment of concrete values to each of these variables. A

transition t is then enabled if there is a binding of t for

which we have enough tokens on its precondition places

matching the values of the corresponding inscriptions, and

this binding makes true the guard of t.1

Thus, arc expressions are evaluated by assigning values

to the variables, and these values are then used to select the

tokens that must be removed or added when firing the

corresponding transition. A transition t can then be fired

when it is enabled for a binding b. When several transitions

are enabled with their corresponding bindings,2 the tran-

sition and binding selected for firing is chosen non-deter-

ministically. The firing of t with a binding b removes the

tokens on its precondition places matching with the values

obtained for the corresponding arc expressions, and gen-

erates new tokens on its postcondition places with the

values obtained for the associated arc inscriptions.

For instance, the CPN depicted in Fig. 4 models the

different ways we have to travel from Zone1 to Zone6 in a

city. Transitions tritoj represent transits from adjacent

zones. Places Zonei have INT as color set, so variable x is

integer. Arcs leaving these transitions tritoj are labeled

with inscriptions xþ cij, which means that the token pro-

duced will be delayed by cij time units (transit duration).

Thus, all transitions tr1toj, for j ¼ 2; 3; 4; 5 are enabled

initially, so as to allow the movement from Zone1 to Zonej.

Let us assume tr1to2 is fired. In this case, the token on

Zone1 is removed and place Zone2 is marked with one

token with value c12. Transition tr2to3 can then be fired

and Zone3 is marked with one token with value c12þ c23.

Finally, tr3to6 can be fired, thus reaching Zone6 with one

token with value c12þ c23þ c36.

Following this same procedure for every CPN N with a

given initial marking M0 we can obtain all the markings

reachable from it. We call ReachðN;M0Þ the set of all

reachable markings from M0 (state space of ðN;M0Þ). This
set is of particular interest because it provides us with

information about all the events that can occur in a system

modeled by the considered net.

Finally, some CPN models can be very large, with a

great number of both places and transitions, so the visu-

alization of the whole model can be very difficult, not only

because of the large number of places and transitions, but

also due to the tangle of arcs crossing the net. The hier-

archical features of CPN tools can then be used to split

these models in several smaller pieces. These smaller

pieces are called pages and can be linked by using sub-

stitution transitions and fusion sets. Substitution transitions

refer to transitions that are replaced by subnets represented

in other pages, while fusion sets are sets of places used in

different pages, which are functionally identical and

therefore correspond to the same place from a formal

viewpoint. In this paper, we use fusion places to split the

city map model in two pages, so the links between the

pages are these common places, which have a blue fusion

label on their left bottom corner.
1 It is true by default, when no guard has been specified.
2 Even the same transition with different bindings.

Zone1

INT

0

Zone2

INT

Zone3

INT

Zone6

INT

Zone4

INT

Zone5

INT

tr1to2 tr2to3

tr1to3

tr1to5

tr4to5 tr5to6

tr3to6

tr1to4

x

x+c12 x x+23 x

x+c36

x

x+c14

x
x+c15

x

x+c56

x
x+c13

x x+c45

1

1`0

Fig. 4 A Marked Colored Petri Net

Neural Computing and Applications (2020) 32:405–426 409

123

4 Modeling a city map with CPNs

Following the example depicted in Fig. 4, a city will be

divided into zones, which are represented by places,

labeled with the zone names: Zonei, i ¼ 1; 2; . . .; n, where

n is the number of zones. Our goal is to obtain different

routes to travel from Zonea to Zoneb. Transitions will

represent movements from one zone to another by

traversing some streets. Thus, transition tritoj captures the

movement from Zonei to Zonej. These transitions have a

Boolean guard, which will not allow the same zone to be

traversed again to avoid cycles.

As an illustration, we show the main page of a simple

city map CPN model in Fig. 5, which is an extension of the

city map shown in Fig. 4, by allowing the reverse move-

ments as well. The color set associated with places Zonei is

defined as follows:

colset Zo = product INT * INTlist * INT;

which consists of a Cartesian product, where the first

component corresponds to the target zone, the second

component represents the route followed by the token to

reach this place, as a list of traversed zones, from its

starting zone to the current one, and the third component is

the time spent using this route, expressed in minutes. As an

example, see the marking of Zone1 in Fig. 5:

(6,[1],0). This represents a car traveling from Zone1

to Zone6, which is currently in Zone1, so no time has been

spent yet. Variables x, y labeling the PT-arcs are of color

set Zo, so they have the three components described above.

TP-arcs are labeled with expressions that allow us to add

the new step in the followed route and increase the time

spent by the corresponding amount. Notice the transition

guards transit(x,i), which avoids our crossing the

same zone twice and only allows a movement when a car

has not reached its destination. Thus, transit(x,i) is

only true when a car in Zone x can move to Zone i. This

guard is defined as follows:

fun transit(x:Zo,i:INT) =
noReturn(i,x) andalso not(isDest(x))

where function noReturn is used to avoid cycles and

isDest checks whether the car has reached its destina-

tion. These functions are defined as follows:

Fig. 5 Main city map CPN page

410 Neural Computing and Applications (2020) 32:405–426

123

fun noReturn(i:INT,x:Zo)= not(mem (#2x) i)
fun isDest(x:Zo) = (hd(rev(#2x)) = #1x)

The operator ’’#i x’’ in both functions extracts the ith

element of tuple x, that is, given the tuple (a,b,c),

#1(a,b,c) evaluates to a. Function mem(l,i) is a

Boolean function that checks whether element i is in the

list l. Thus, noReturn checks whether i is in the second

field of x, which contains the list of traversed zones.

Function isDest reverses the list (function rev) and

checks whether the head (function hd) is equal to the

destination (first field of x).

For instance, let us consider the marking

1‘(6,[1,2],3) in Zone2, which captures a car travel-

ing from Zone1 to Zone6, currently positioned in Zone2

and having spent 3 min. To continue, two transitions could

then be considered: tr2to1 and tr2to3. However, transition

tr2to1 cannot be fired, since Zone1 already belongs to the

route list. Instead, transition tr2to3 is enabled, since 3 does

not belong to the list and the car has not reached its des-

tination. Firing tr2to3 removes the token (6,[1,2],3)

from Zone2 and generates a new token (6,[1,2,3],7)

on Zone3 (assuming c23 ¼ 4). Notice the fusion tags on the

left corner of places Zonei, which identify the shared places

(fusion places) with the Destination CPN page.

Figure 6 depicts the Destination CPN page that com-

pletes the model, where the main element is place Desti-

nation. This is a sink place, where tokens come to finish the

routes. It captures the information about the route followed

and the total time spent on it. The color set of Destination

is defined as follows:

colset De = product INTlist * INT;

which consists of a list (route to reach its destination) and

an integer (total transit time).

4.1 State space analysis

The first technique we use for the system analysis is the

state space graph, which provides us with all the possible

system behaviors. Thus, we can get all the possible routes

from a given initial location to a final location, which

always allows the optimal solution to be found. Figure 7

shows the state graph obtained for the CPN depicted in

Figures 5 and 6. The only place that initially has one token

is Zone1, which represents a transit from Zone1 to Zone6.

There are 17 states in Figure 7. The notation on each state

is the following: the state number at the top, and below it

two numbers: the number of predecessors and the number

of successors. We show the detailed state information in

pink color for the terminal states3 (those having 0 as

number of successors). Only one place is marked with one

token in all of these states, which corresponds to the

location at which the route stops, either because the car

reached its destination (place Destination marked) or

because the car could not make any more movements (due

to the restriction introduced of not allowing cycles). From

the information on this token, we can obtain the route

followed (list) and the total time spent on that route. For

instance, Zone4 is marked in state 8 with the route

[1,5,4], which corresponds to one token that has trav-

eled from Zone 1 to Zone 5, and then to Zone 4, which

cannot go further, because there are no other outputs from

Zone4 than to return to either Zone1 or Zone5. However,

states 12, 13, 16 and 17 contain markings for which the

Destination place is reached. Therefore, these states show

us the routes that can be followed to cover the transit from

Zone1 to Zone6. We can now easily obtain the fastest route

taking the state with the minimum time. Specifically, the

fastest route in this case is highlighted at state 17,

[1,2,3,6], which takes 9 min.

4.2 Analysis via simulation

State space exploration is not always possible because the

state graph may be huge in many cases, which makes

generating it impossible due to time and resource restric-

tions. Simulation techniques can then be used in these

cases to obtain a fast response, but as they do not usually

cover all possible behaviors, the solution they provide is

not always optimal. Simulations are based on experiment

repetitions, so the solution returned is the best one obtained

after a number of repetitions.

In our case, the experiment can be repeated by intro-

ducing not only one token at the starting zone, but a

number of them, all with the same starting and destination

zone, so as to cover as many paths as possible. Simulations

are performed automatically, and we cannot control the

CPN tools simulator engine, so there is no way to avoid

path repetitions. As a consequence, the number of tokens at

Fig. 6 Destination CPN page

3 A state is said to be terminal when no movements can be made from

it.

Neural Computing and Applications (2020) 32:405–426 411

123

the initial zone is chosen as a model constant, independent

of the map structure.

Each token can follow a different path, so place Desti-

nation will possibly become marked with many tokens,

those that have reached the destination zone. From these

tokens, we take the one providing us with the minimum

time, which is then the best route among those followed by

the tokens.

Figure 8 depicts this situation, where, from the marking

of place Destination, we can conclude that 18 tokens have

reached their destination in 9 min. This is the best route for

this simulation, since there is no other simulated route

taking less time. This is actually the same route returned by

the state space exploration technique, and the other routes

in place Destination also correspond to the successful final

states obtained with the state graph. The correspondence

between the graph states and simulation routes is presented

in Table 2. Routes a to d are all successful, route a being

the fastest solution. By contrast, routes e and f lead to a

deadlock.

Simulation times are noticeably shorter than the times

required to construct the state space, especially for large

CPNs. Thus, it is a technique that quickly provides good,

but possibly not optimal, solutions. In Sect. 7, we will

combine both techniques in order to improve state space

exploration by using the branch and stop options of CPN

tools. These options allow us to prune the exploration when

a route is more expensive than one that has already been

computed or one known by simulation.

Finally, simulations can be expanded by including

tokens on different zones, so as to check different transit

routes simultaneously. Transit routes with stops can also be

obtained with these techniques, by dividing the route into

legs that are analyzed separately.

5 Event pattern modeling

This section explains the event patterns modeled and

automatically implemented, by using our MEdit4CEP-CPN

editor [6], to detect situations of interest in two domain

applications: air quality and road traffic.

5.1 Air quality

For simplicity, in the following description we only con-

sider one important pollutant: PM2:5. As explained in

Sect. 2, around 20–30% of the urban population in Europe

is exposed to this pollutant with levels above the EU ref-

erence values, causing numerous premature deaths and

preventable diseases. In any event, the following method-

ology would be similarly applied for the other pollutants.

The US Environmental Protection Agency (EPA) pro-

vides information on the ranges of each pollutant in a

particular air quality level. Based on the EPA technical

Fig. 7 State Space Analysis to

obtain all available routes for a

car traversing the city from

Zone 1 to Zone 6

412 Neural Computing and Applications (2020) 32:405–426

123

information, a classification is made calculating the aver-

age value of a pollutant across 1 h, 8 h or 24 h, depending

on the type of pollutant. For instance, for PM2:5, the

average value over a 24-h period is required. Once we have

this average value, we can report the air quality level by

taking the range to which the value belongs (see Table 3).

The EPA also defines a global level for air quality, the

Air Quality Index (AQI) [11], which is calculated as the

highest of all the pollutant levels in a location at a specific

time, so as to obtain one of six air quality levels: Good,

Moderate, Unhealthy for Sensitive Groups, Unhealthy,

Very Unhealthy and Hazardous.

According to this EPA technical information, the

AirMeasurement domain and a set of event patterns have

been graphically modeled by using MEdit4CEP-CPN, to

detect the AQI level at a particular location. We assume

data are received in this location according to such a

domain, which has been modeled and transformed into

EPL code as follows:

create schema AirMeasurement(
timestamp string, stationId string, location string,

pm2_5 float, pm10 float, o3 float, no2 float,
so2 float, co float);

More specifically, this EPL schema defines the event

information required for the air quality measurements. It

contains the time at which the measurement is taken, the

station and location identifiers and the pollutants included

in the AQI index (PM2:5, PM10, O3, NO2, SO2 and CO).

Once the AirMeasurement domain is designed, the event

pattern editor is automatically reconfigured for this domain.

Figure 9a shows the design of a pattern that computes the

average value for PM2:5 at every location based on the

PM2:5 measurements received during the last 24 h. Thus,

from all the simple events of AirMeasurement for a same

location the average value for PM2:5 is obtained, and a new

complex event with the stationId and the computed average

value is created and inserted into the flow PM2_5Avg, so as

to have all PM2_5Avg average values obtained over the

time period. These average values are computed as they are

received by using time sliding data windows.

Once the pattern is modeled and syntactically validated,

the EPL code automatically generated for the PM2_5Avg

pattern is shown in Fig. 9b.

In parallel, we monitor the PM2_5Avg events, to check

the level of PM2:5. For this purpose, we have defined 6

additional patterns to detect when PM2:5 is Good, Moder-

ate, Unhealthy for Sensitive Groups, Unhealthy, Very

Unhealthy and Hazardous. For instance, Fig. 10a shows the

modeled PM2_5Moderate pattern. It is detected when the

average value of PM2:5 is greater than or equal to 12.1, and

smaller than 35.5. In this case, a new complex event with

the station Id, the level name (PM2_5Moderate) and a level

number (2 has been assigned for PM2:5 moderate) is cre-

ated and inserted into the PollutantLevel flow. The EPL

code generated for this pattern is shown in Fig. 10b.

PM2_5Good, PM2_5UnhealthyForSensitiveGroups,

PM2_5Unhealthy, PM2_5VeryUnhealthy and PM2_5Ha-

zardous patterns are defined analogously according to the

intervals for average PM2:5 values described in Table 3.

The corresponding complex events will be inserted into the

PollutantLevel flow, with levelNumber 1, 3, 4, 5 and 6,

respectively.

The AirQualityLevel pattern has then been modeled as

indicated in Fig. 11a. This pattern selects the maximum air

quality level detected during 5-min batching windows for a

particular station and establishes this level as the air quality

level for the station, inserting it in the AirQualityLevel

flow.

5.2 Road traffic

In order to automatically detect the current level of traffic

in a particular city, we modeled a set of event patterns.

These are defined according to the traffic ratios (see

Table 1) based on the statistic speeds and speed limits

reported by the Handbook Emission Factors for Road

Transport (HBEFA) methodology.

By using the MEdit4CEP-CPN editor, as in the previous

air quality scenario, the Traffic domain was modeled and

transformed into EPL code as follows:

Fig. 8 Simulation result for 100 tokens from Zone1 to Zone6

Table 2 Mapping graph states and simulation routes

Route Place Space state Simulation

a Dest 17: 1‘([1,2,3,6],9) 18‘([1,2,3,6],9)

b Dest 16: 1‘([1,4,5,6],11) 24‘([1,4,5,6],11)

c Dest 13: 1‘([1,5,6],10) 10‘([1,5,6],10)

d Dest 12: 1‘([1,3,6],10) 10‘([1,3,6],11)

e Zone4 8: 1‘(6,[1,5,4],10) 16‘(6,[1,5,4],10)

f Zone2 6: 1‘(6,[1,3,2],13) 22‘(6,[1,3,2],13)

Neural Computing and Applications (2020) 32:405–426 413

123

create schema Traffic(
timestamp string, stationId string, location string,

speed float);

This EPL schema defines the event information required

for the traffic measurements which are taken every 5 min

by the Madrid City Council. More specifically, a Traffic

event is generated every 5 min containing the average

speed of all the vehicles that pass by a particular station

during this time, the time stamp at which the event is

created, the station identifier and the station location.

Once the Traffic domain is designed, the event pattern

editor is automatically reconfigured for this domain, which

allows us to define the corresponding patterns. As an

illustration, Fig. 12a shows the design of a pattern that

computes the last 1-h average speed at every station. Thus,

from all the simple events of Traffic that have passed by a

station, the average speed value is obtained, and a new

Table 3 AQI categories

Air quality category Pollutants

Name L Color NO2 (ppb) 1 h SO2 (ppb) 1 h CO (ppm) 8 h O3 (ppm) 8 h PM2:5 (lg/m3) 24 h PM10 (lg/m3) 24 h

Good 1 Green 0–53 0–35 0.0–4.4 0.000–0.054 0.0–12.0 0–54

Moderate 2 Yellow 54–100 36–75 4.5–9.4 0.055–0.070 12.1–35.4 55–154

Unhealthy for

sensitive groups

3 Orange 101–360 76–185 9.5–12.4 0.071–0.085 35.5–55.4 155–254

Unhealthy 4 Red 361–649 186–304 12.5–15.4 0.086–0.105 55.5–150.4 255–354

Very unhealthy 5 Purple 650–1249 305–604 15.5–30.4 0.106–0.200 150.5–250.4 355–424

Hazardous 6 Maroon 1250–2049 605–1004 30.5–50.4 [0.200 250.5–500.4 425–604

(a)

@Name("PM2_5Avg")
insert into PM2_5Avg
select a1.stationId as stationId,

avg(a1.pm2_5) as value
from pattern [(every a1 =

AirMeasurement)].
win:time(24 hours)

group by a1.stationId

(b)

Fig. 9 PM2_5Avg pattern. a Pattern model. b Pattern implementation

in EPL

(a)

@Name("PM2_5Moderate")
insert into PollutantLevel
select a1.stationId as stationId,

2 as levelNumber,
’PM2_5Moderate’ as levelName

from pattern [(every a1 =
PM2_5Avg(a1.value >= 12.1 and
a1.value < 35.5))]

(b)

Fig. 10 PM2_5Moderate pattern. a Pattern model. b Pattern imple-

mentation in EPL

414 Neural Computing and Applications (2020) 32:405–426

123

complex event with the stationId and the computed average

value is created and inserted into the SpeedAvg flow.

Once the pattern is modeled and syntactically validated,

the EPL code automatically generated for the SpeedAvg

pattern is shown in Fig. 12b.

Moreover, we monitor the SpeedAvg events in order to

check the traffic level, according to Table 1. For this pur-

pose, we have defined 4 additional patterns to detect when

the traffic level is free flow, heavy, saturated and stop and

go. As an example, Fig. 13a depicts the modeled Saturat-

edTraffic pattern. It is detected when the average speed

value divided by 50 Km/h (the speed limit in a city) is

greater than or equal to 0.45306, and smaller than or equal

to 0.75302. In this case, a new complex event with the

station Id and the level number (3 has been assigned for the

saturated traffic level) is created and inserted into the

SaturatedTraffic flow. The EPL code generated for this

pattern is shown in Fig. 13b.

6 ITS for traffic control by using CEP
and CPNs

CEP technology provides us with air pollution and traffic

condition levels, which can then be used in the city map

CPN model presented in Sect. 4 to make decisions about

traffic regulations. In this scenario, we use synthetic data to

simulate this information flow, which is assumed to be

provided by a CEP engine. The integration of both tech-

nologies, thus allowing the CPN to provide traffic regula-

tions conclusions in real time, will be a matter of future

research, as indicated in the conclusions section, and also

following some ideas about the learning of the proposed

system that were presented by Li et al. in [20].

We start from the city map CPN model presented in

Fig. 5, which is now enriched in order to manage the two

situations of interest indicated in the previous section. The

intention is to make decisions about traffic control by

closing and opening the connections between zones

according to the levels of traffic and pollution. Closing an

area may seem an extreme decision, especially if it is an

access to the city. However, it is a measure that can be

adopted in large cities, as occurs in the case of Madrid.

According to Article 35 of the Sustainable Mobility Ordi-

nance, approved by the Madrid City Council, extraordinary

measures to restrict traffic and parking vehicles on urban

roads may be enacted either during episodes of high air

pollution or for reasons of road safety and severe traffic

congestion [21]. Taking this ordinance as reference, con-

nections will be closed when one of the following condi-

tions occurs:

1. The pollution level is higher than 3, i.e., Unhealthy,

Very Unhealthy or Hazardous.

2. The pollution level is Unhealthy for Sensitive Groups

(3), but there have been 16 peaks of PM2:5 with values

higher than 55:4 l g/m3 in the last 24 h.

3. The Pollution level is Unhealthy for Sensitive Groups

(3) and traffic level is either Saturated or Stop and go

(levels 3 and 4, respectively).

(a)
@Name("AirQualityLevel")
insert into AirQualityLevel
select a1.stationId as stationId,

max(a1.levelNumber) as level
from pattern [(every a1 =

PollutantLevel)].
win:time_batch(5 minutes)

group by a1.stationId
(b)

Fig. 11 AirQualityLevel pattern. a Pattern model. b Pattern imple-

mentation in EPL

(a)

@Name("SpeedAvg")
insert into SpeedAvg
select a1.stationId as stationId,

avg(a1.speed) as value
from pattern [(every a1 = Traffic)].

win:time(1 hours)
group by a1.stationId

(b)

Fig. 12 SpeedAvg pattern. a Pattern model. b Pattern implementation

in EPL

Neural Computing and Applications (2020) 32:405–426 415

123

These specific conditions are encoded in our CPN model

by the Boolean function close:

fun close(a:int,p:int,l:int) =
if a>3 orelse (a=3 andalso p>15) orelse
(a=3 andalso l>2) then true else false

Parameter a represents the Air Quality level, obtained

by the AirQualityLevel pattern (see Fig. 11), p stands

for the number of peaks, obtained by the Thresh-

old4PM2_5 pattern (see Fig. 2) and l is the traffic level,

obtained by patterns FreeflowTraffic, HeavyTraffic,

SatturatedTraffic and StopAndGoTraffic (see

Fig. 13 for SaturatedTraffic level pattern).

Furthermore, traffic levels are computed taking into

account the average speeds of cars in relation to the limits,

so we can now use the current traffic level to compute the

average times for the transits between adjacent zones, using

the following function:

fun traffic_time(l:int,t:int) =
case l of

1 => round(real t/1.0)
| 2 => round(real t/0.8)
| 3 => round(real t/0.5)
| 4 => round(real t/0.1)

Parameter l is the traffic level and t the average time

for a transit between two adjacent zones. This function

takes into account the ratios between average and limit

speeds provided in Table 1, establishing how the transit

time is increased for levels 2, 3 and 4. These times are

actually increased in an inverse proportion of 80%, 50%

and 10%, respectively. These percentages capture the

average proportion reduction in traffic speed according to

Table 1.

A function genLevels has been implemented, using

four auxiliary functions, to randomly produce level and

peak values in the CPN.

fun genLevels()=1‘(genAQLlevel(),genPeaks(),
genTraffic(),genTraffic())

Function genAQLlevel generates Air Quality Levels,

genPeaks generates the peaks and genTraffic the

traffic levels for transits between Zonei to Zonej and vice

versa. Function genAQLlevel is based on a custom

distribution, where levels 2 and 3 have the highest likeli-

hood (40% and 35%), levels 1 and 4 are almost the same

(9% and 10%), level 5 is rare (5%), and level 6 is very rare

(1%). It is then defined as follows:

fun genAQLlevel() =
let

val b = discrete(1,100)
in

if (b <= 9) then 1
else if (b > 9 andalso b <= 49) then 2
else if (b > 49 andalso b <= 84) then 3
else if (b > 84 andalso b <= 94) then 4
else if (b > 94 andalso b <= 99) then 5
else 6

end;

where function discrete(1,100) generates a random

value between 1 and 100, which is then used to produce the

final result. In a similar way, function genPeaks pro-

duces the peaks, which are evenly distributed between 1

and 20 occurrences, so it is defined as follows:

fun genPeaks() = discrete(1,20)

The generation of traffic levels is also based on a custom

distribution, where levels 1 and 2 occur often (40% and

50%), 3 is rare (8%), and 4 hardly occurs (2%):

fun genTraffic() =
let

val b = discrete(1,100)
in

if (b <= 40) then 1
else if (b >40 andalso b <=90) then 2
else if (b >90 andalso b <= 98) then 3
else 4

end;

Function genLevels is used in the new city map CPN

model (see Fig. 14) to feed places Levelij by the firing of a

new transition init_g. Place pinit is initially marked with

one single token, so init_g only fires once. Its firing gen-

erates one token on each place Levelij, with the 4 values

previously mentioned, namely Air Quality level, Peaks and

Traffic level in both directions.

Thus, the Levels color set is defined as follows:

(a)

@Name("SaturatedTraffic")
insert into SaturatedTraffic
select a1.stationId as stationId,

3 as level
from pattern [(every a1 = SpeedAvg(

((a1.value / 50.0) >= 0.45306 and
(a1.value / 50.0) <= 0.75302)))]

(b)

Fig. 13 SaturatedTraffic pattern. a Pattern model. b Pattern imple-

mentation in EPL

416 Neural Computing and Applications (2020) 32:405–426

123

colset Levels = product INT*INT*INT*INT;

For instance, we could obtain one token

1‘(3,15,2,3) as initial marking for a place Levelij,

which corresponds to an AQI 3 level, 15 peaks and traffic

levels 2 (heavy) for the transit Zonei to Zonej and 3 (Sat-

urated) for the opposite direction.

The city map CPN model is then modified as indicated

in Fig. 15. Transit transitions (tr2to3 and its reverse tr3to2

in the CPN piece shown in the figure) now use the level

information provided by init_g, so guards isO-

pen(3,x,a,p,l1) and isOpen(2,y,a,p,l2) are

used to check whether the transit is open or closed, taking

into account pollutants and traffic conditions.

These guards are defined as follows:

fun isOpen(i:int,y:Zo,a:int,p:int,l:int) =
noReturn(i,y) andalso not(close(a,p,l))
andalso not(isDest(y))

As an illustration, consider the markings shown in

Fig. 15 for places Zone2, Zone3 and Level23. Transition

tr3to2 is closed, since the Boolean expression (a=3

andalso l2[2) is true and therefore close returns

true. However, transition tr2to3 is open, since none of the

close conditions is satisfied.

Notice also the use of function traverseSection in

the arcs from transit transitions to their destination zones

(see Fig. 15). This function is implemented by using the

traffic_time function commented above, as follows:

fun traverseSection(i:INT,x:Zo, t:INT, l:INT)=
(#1x, (#2x^^[i]),#3x+traffic_time(l, t))

which adds the current leg4 to the path followed and

increases the total time by the amount computed by func-

tion traffic_time. For instance, taking again the marking in

Fig. 15, we have obtained traverseSectionð3; x; c23; l1Þ
¼ ð6; ½1; 2; 3�; 8Þ.

Figure 16 indicates the changes for the connections with

the Destination place. In this figure, we have considered

100 tokens in the Zone1 place traveling from Zone1 to

Zone6. This choice of 100 tokens for the simulations has

turned out to be an appropriate value to obtain the minimal

route, i.e., some tokens have been able to reach the Zone6

place. Notice the loop arcs between the Zonei places and

the end_i transitions, which are now introduced so as to

obtain the minimal route in the Destination place, instead

of all the possible routes from Zone1 to Zone6. Thus, only

one initial token is now required on Destination for the

route under study, which initially has a very high value

(tmax) as total transit time (second field). As new tokens

arrive at Destination, this value is updated with the mini-

mum value between the old one and that of the token that

has just arrived. For this purpose, function mini is defined,

which compares the time stored on the token on Destina-

tion with the time obtained from a route, taking the mini-

mum one:

fun mini(y:Zo,z:De)=
if (#3y < #2z) then 1‘(#2y,#3y) else 1‘z

Function isDestiny extends function isDest

introduced in Sect. 4. This function enables transition

end_i when the token represented by parameter y has

reached its destination (isDest), as previously men-

tioned. Furthermore, isDestiny checks whether the

initial and target zones are the same in y and z.

fun isDestiny(y:Zo,z:De)=
isDest(y) andalso
hd(rev(#2y))=hd(rev(#1z)) andalso
hd (#2y) = hd (#1z)

Should we need to compute a different route, we would

only change the initial marking on Destination to the cor-

responding one 1‘([i,j],tmax), writing the following

initial marking on place Zonei: 100‘(j,[i],0).

Moreover, we can compute several routes at the same time

by marking the Zonei places and the Destination place with

Level12

LevelsL12

Level23 Levels
L23

Level36

LevelsL36

Level56
Levels

L56

Level45
LevelsL45

Level15

Levels
L15Level14

LevelsL14

Level13

Levels
L13

pinit

init_g

genLevels()
genLevels() genLevels()

genLevels()genLevels()

genLevels()genLevels()

genLevels()

Fig. 14 Producing initial level information

Zone2

ZoZ2
Zone3

ZoZ3
Level23

LevelsL23

tr3to2

isOpen(2,y,a,p,l2)

tr2to3

isOpen(3,x,a,p,l1)

traverseSection(2,y,c32,l2) y

x traverseSection(3,x,c23,l1)

(a,p,l1,l2)
(a,p,l1,l2)

(a,p,l1,l2) (a,p,l1,l2)

1`(6,[1,2],3)
1`(6,[1,3],9)

1

1`(6,[1,2],3)

1

1`(6,[1,3],9)

1

1`(3,15,2,3)

Fig. 15 Transits between Zone2 and Zone34 ^^[i] adds the current zone i to the list.

Neural Computing and Applications (2020) 32:405–426 417

123

the corresponding tokens. For instance, we can compute a

route from Zone1 to Zone3 and a route from Zone3 to

Zone6 writing the marking 1‘([1,3],tmax)??

1‘([3,6],tmax) at Destination, token

100‘(3,[1],0) at Zone1 and token 100‘(6,[3],0)

at Zone3.

Figures 17 and 18 show the pollution and traffic levels

obtained in a simulation and the corresponding result

obtained in place Destination, with the fastest route from

Zone1 to Zone6. According to the levels indicated in

Fig. 17, transitions tr1to2, tr1to3 and tr1to5 would be

closed, so the only route available is that indicated on place

Destination in Fig. 18. Notice that this is route b in

Table 2, but now the average time is different. In Table 2,

this route took 11 min and now, due to heavy traffic con-

ditions, it takes 14 min.

Finally, notice that the state graph can now be con-

structed in an even lower time, because of the restrictions

introduced. Some transitions can now be closed, so the

number of possible routes can be reduced significantly, and

consequently, the graph size can also be reduced. Figure 19

depicts state 6 of the state graph that is obtained with the

same simulated conditions of pollutant and traffic levels,

which corresponds to the fastest route.

7 Case study: city of Madrid

In this section, the city map CPN model is applied to a real

scenario, which is based on the division into districts of

Madrid, the capital city of Spain. Madrid consists of 21

districts.5 In addition, 24 air quality monitoring stations are

spread throughout the city (Table 4), but not in all districts.

Hourly data gathered from these stations can be read at the

URL http://www.mambiente.munimadrid.es/sica/scripts/,

where we can also obtain data logs.

Figure 20 shows the 21 districts and the air quality

monitoring stations, which are indicated in either yellow or

green. We decided to join districts 10, 19 and 20—in which

there are no measuring stations—to some adjacent districts,

in order to establish our city map model, so as to have an

air quality monitoring station in each zone. Thus, we

consider a map that consists of 18 zones, and in each zone,

we have a station that provides us with the air quality

information. We call Zonei the zone corresponding to

district i and Zonei j the zone obtained by joining districts

i and j.

From Table 4, we can see that only NO2 is measured in

all stations, so this will be the only pollutant considered in

the scenario. In fact, NO2 is possibly the most significant

pollutant in the case of Madrid, due to the peak values it

reaches during the episodes of high air pollution. This

pollutant is mainly produced by diesel engines, so the city

council applies traffic restrictions during these episodes,

banning vehicles from driving in the city center.

We have several traffic monitoring stations in each zone,

located in the main streets of each district. Thus, we

selected one traffic monitoring station in each zone in order

to gather the estimated traffic in the zone, so these stations

provide us with the general traffic conditions in each zone.

The information gathered from these stations can be

obtained at https://bit.ly/2Oobzzy. In this case, the

Fig. 17 Generation of pollution and traffic levels

Fig. 18 Destination page after the simulation

Fig. 16 New Destination CPN page

5 http://www.madrid.es.

418 Neural Computing and Applications (2020) 32:405–426

123

http://www.mambiente.munimadrid.es/sica/scripts/
https://bit.ly/2Oobzzy
http://www.madrid.es

information is updated every 5 min and can be rendered

using either Google Mapsr or Google Earthr apps, as

shown in Fig. 21.

We then constructed the city map CPN with 18 zones

(see Fig. 22), and the closing conditions were adapted to

only one pollutant (NO2), as follows:

1. The NO2 pollution level is higher than 3, i.e.,

Unhealthy, Very Unhealthy or Hazardous.

2. The NO2 pollution level is Unhealthy for Sensitive

Groups (3), but in the last 3 h the increase is always

positive between hours and the average increase is

higher than 15 ppb.

3. The NO2 pollution level is Unhealthy for Sensitive

Groups (3) and traffic level is either Saturated or Stop

and go (levels 3 and 4, respectively).

The pollution and traffic information used to restrict the

movements from one zone to another is always based on

the destination zone, as shown in Fig. 23, where we can see

that transits from Zone2 to Zone3 (transition tr2to3) use the

levels taken from Zone3, and conversely for the move-

ments from Zone3 to Zone2.

As an illustration, we have chosen a high pollution

scenario that occurred in Madrid on January 23rd, 2018, at

21:00, which is shown in Table 5. Columns H18 to H22

indicate the NO2 level measured from 18:00 to 22:00, and

P21andP22 the average increase in the last 3 h, but only if

it is positive, otherwise it is zero. Values greater than 15 for

these two last columns are highlighted in bold.

In this table, NO2 levels are reported in ppb, but the

information provided by the stations is expressed in l g/m3,

so a measurement conversion is required. For this con-

version, NO2 pollutant is considered to behave as an ideal

gas, so the ideal gas equation, PV ¼ nRT , is applied for the

conversion, taking as temperature T the average value

obtained in Madrid on January 23rd, 2018, 283.55 K and

taking as pressure (P) the average value in Madrid,

0.9114 atm. In this equation, V is the volume to be

obtained, n the number of moles and R the gas constant,

R ¼ 0:082 atm l/(mol K).

We used these data to obtain the levels indicated in

Fig. 24, and then according to our closing conditions, the

access to both Zone5 and Zone8 is closed at 21:00, because

the NO2 pollution level is Unhealthy for Sensitive Groups

(3); in the last 3 h the increase is always positive, and the

average increase is higher than 15 ppb. One hour later, at

22:00, access to Zone5 is open, Zone8 is still closed, as are

Zone4 and Zone7.

With these levels (at 21:00), we obtained the simulation

results shown in Fig. 25 for a movement from Zone1 to

Zone20_21, using 1000 tokens. This starting value of 1000

tokens was obtained after a number of simulations, with

increasing values, until a stable value was obtained. The

shortest path obtained for these conditions is indicated by

the first field on the token on place Destination:

1‘([1,2,13,1819,2021],54)

which took 54 min (second field).

The results of the state space analysis are shown in

Table 6 for the same route used in the simulation. The state

space has been constructed for three different scenarios.

The first, No Restrictions, corresponds to the ideal situa-

tion, free flow traffic in which all transits are open, and

thus, it produces the largest graph, with the maximum

number of both nodes and arcs. The other two scenarios

correspond to the data obtained at 21:00 and at 22:00,

respectively. In order to explore the state graph produced

and thus obtain the shortest path, we use the Search-

AllNodes(pred,eval,start, comb) function,

provided by CPN tools. This traverses all the nodes of the

state space, evaluating the eval function for the nodes for

which predicate pred is true. This evaluation starts with

the initial value indicated by the expression start, and

the result is obtained by combining (function comb) the

value obtained with the previous execution of eval and

the new value computed for the current node.

Thus, the specific use of this function for our case study

is as follows:

SearchAllNodes(fn _ => true,fn n =>
hd(Mark.EndDestination’Destination 1 n), start, Shorter)

where start and Shorter are defined as follows:

val start = (empty,tmax):De;
fun Shorter(new:De,old:De) = if (#2 new) < (#2 old)

then new else old;

Fig. 19 State space for the generated levels in Fig. 17

Neural Computing and Applications (2020) 32:405–426 419

123

Table 4 Air quality monitoring

stations in Madrid [Type = T

(Traffic), U (Urban

background), S (Suburban)]

Station Type District - number NO2 PM10 PM2.5 O3

Pza. de España T Moncloa-Aravaca - 9 Yes

Esc. Aguirre T Salamanca - 4 Yes Yes Yes Yes

Ramón y Cajal T Chamartı́n - 5 Yes

Cuatro Caminos T Chamberı́ - 7 Yes Yes Yes

Barrio del Pilar T Fuencarral - 8 Yes Yes

Castellana T Chamartı́n - 5 Yes Yes Yes

Pza. Castilla T Tetuán - 6 Yes Yes Yes

Pza. del Carmen U Centro - 1 Yes Yes

Mendez Álvaro U Arganzuela - 2 Yes Yes Yes

Retiro U Retiro - 3 Yes Yes

Moratalaz T Moratalaz - 14 Yes Yes

Vallecas U Pte. Vallecas - 13 Yes Yes

Ens. Vallecas U Villa Vallecas - 18 Yes Yes

Arturo Soria U Ciudad Lineal - 15 Yes Yes

Barajas Pueblo U Barajas - 21 Yes Yes

Urb. Embajada U Barajas - 21 Yes Yes

Sanchinarro U Hortaleza - 16 Yes Yes

Tres Olivos U Fuencarral-EL Pardo - 8 Yes Yes Yes

Juan Carlos I S Barajas - 21 Yes Yes

Casa Campo S Moncloa-Aravaca - 9 Yes Yes Yes Yes

El Pardo S Fuencarral-El Pardo - 8 Yes Yes

Fdez. Ladreda T Usera - 12 Yes Yes

Villaverde U Villaverde - 17 Yes Yes

Farolillo U Carabanchel -11 Yes Yes Yes

Fig. 20 Districts of Madrid City with Air Quality Measurement

stations

Fig. 21 Madrid districts with traffic levels

420 Neural Computing and Applications (2020) 32:405–426

123

Zone1

ZoZ1

Zone2

ZoZ2

Zone4

ZoZ4

Zone3

ZoZ3

Zone5

ZoZ5

Zone6

ZoZ6

LevelZ1

LevelsL1

LevelZ3
LevelsL3

LevelZ6

LevelsL6
LevelZ5

Levels
L5

LevelZ4

Levels
L4

LevelZ
10_11

LevelsL10_11

LevelZ2

LevelsL2

Zone7

ZoZ7
Zone9

ZoZ9

LevelZ7

LevelsL7

LevelZ9

LevelsL9

Zone
10_11

ZoZ10_11

Zone13

ZoZ13

Zone12

ZoZ12

LevelZ12

LevelsL12

LevelZ13

LevelsL13

Zone14

ZoZ14

LevelZ14

LevelsL14

Zone15

ZoZ15

LevelZ15

LevelsL15

Zone8

ZoZ8

LevelZ8

LevelsL8

Zone16

ZoZ16

LevelZ16

LevelsL16

Zone17

ZoZ17

LevelZ17

LevelsL17

Zone
18_19

ZoZ18_19

Zone
20_21

ZoZ20_21

Level
Z18_19

LevelsL18_19

Level
Z20_21

LevelsL20_21

tr1to2

isOpen(2,y,a,p,t2)

tr1to4

isOpen(4,y,a,p,t2)

tr2to3

isOpen(3,y,a,p,t2)

tr4to5

isOpen(5,y,a,p,t2)

tr1to3

isOpen(3,y,a,p,t2)

tr2to1isOpen(1,y,a,p,t2) tr3to2

isOpen(2,y,a,p,t2)

tr6to5

isOpen(5,y,a,p,t2)

tr5to4

isOpen(4,y,a,p,t2)

tr4to1

isOpen(1,y,a,p,t2)

tr3to1

isOpen(1,y,a,p,t2)

tr7to1

isOpen(1,y,a,p,t2)

tr1to7

isOpen(7,y,a,p,t2)

tr9to1

isOpen(1,y,a,p,t2)

tr1to9

isOpen(9,y,a,p,t2)

tr2to
10_11

isOpen(1011,y,a,p,t2)

tr10_11
to2

isOpen(2,y,a,p,t2)

tr2to12

isOpen(12,y,a,p,t2)
tr12to2

isOpen(2,y,a,p,t2)

tr2to13

isOpen(13,y,a,p,t2)

tr13to2

isOpen(2,y,a,p,t2)

tr3to4isOpen(4,y,a,p,t2)

tr4to3

isOpen(3,y,a,p,t2)

tr3to13

isOpen(13,y,a,p,t2)

tr13to3

isOpen(3,y,a,p,t2)

tr3to14

isOpen(14,y,a,p,t2)

tr14to3

isOpen(3,y,a,p,t2)

tr4to7
isOpen(7,y,a,p,t2)

tr7to4

isOpen(4,y,a,p,t2)

tr4to15

isOpen(15,y,a,p,t2)

tr15to4

isOpen(4,y,a,p,t2)

tr5to6

isOpen(6,y,a,p,t2)

tr5to7

isOpen(7,y,a,p,t2)

tr7to5

isOpen(5,y,a,p,t2)

tr8to5

isOpen(5,y,a,p,t2)

tr5to8

isOpen(8,y,a,p,t2)

tr5to16

isOpen(16,y,a,p,t2)

tr16to5

isOpen(5,y,a,p,t2)

tr5to15

isOpen(15,y,a,p,t2)

tr15to5

isOpen(5,y,a,p,t2)
tr6to7

isOpen(7,y,a,p,t2)

tr7to6

isOpen(6,y,a,p,t2)

tr6to8

isOpen(8,y,a,p,t2)
tr8to6isOpen(6,y,a,p,t2)

tr9to6

isOpen(6,y,a,p,t2)

tr6to9

isOpen(9,y,a,p,t2)

tr7to9

isOpen(9,y,a,p,t2)

tr9to7

isOpen(7,y,a,p,t2)

tr12to
10_11

isOpen(1011,y,a,p,t2)

tr10_11
to12

isOpen(12,y,a,p,t2)

tr17to12

isOpen(12,y,a,p,t2)

tr12to17

isOpen(17,y,a,p,t2)

tr13to14

isOpen(14,y,a,p,t2)

tr14to13

isOpen(13,y,a,p,t2)

tr18_19
to13

isOpen(13,y,a,p,t2)

tr13
to18_19

isOpen(1819,y,a,p,t2)

tr14to15

isOpen(15,y,a,p,t2)

tr15to14

isOpen(14,y,a,p,t2)

tr14to
18_19

isOpen(1819,y,a,p,t2)

tr18_19
to14

isOpen(14,y,a,p,t2)

tr15to16

isOpen(16,y,a,p,t2)

tr16to15

isOpen(15,y,a,p,t2)

tr15to
20_21

isOpen(2021,y,a,p,t2)

tr20_21
to15

isOpen(15,y,a,p,t2)

tr20_21
to16

isOpen(16,y,a,p,t2)

tr16
to20_21

isOpen(2021,y,a,p,t2)

tr18_19
to17

isOpen(17,y,a,p,t2)

tr17
to18_19

isOpen(1819,y,a,p,t2)

tr20_21
to18_19

isOpen(1819,y,a,p,t2)

tr18_19
to20_21

isOpen(2021,y,a,p,t2)

tr8to9

isOpen(9,y,a,p,t2)

tr9to8

isOpen(8,y,a,p,t2)

tr16to8

isOpen(8,y,a,p,t2)

tr8to16

isOpen(16,y,a,p,t2)

tr9to
10_11

isOpen(1011,y,a,p,t2) tr10_11
to9

isOpen(9,y,a,p,t2)

tr12to13

isOpen(13,y,a,p,t2)

tr13to12

isOpen(12,y,a,p,t2)

y

traverseSection(2,y,c12,t2)
y

traverseSection(3,y,c23,t2)

y

traverseSection(4,y,c14,t2)

y

traverseSection(5,y,c45,t2)

traverseSection(3,y,c13,t2)

y

y

traverseSection(1,y,c21,t2)

y

traverseSection(2,y,c32,t2)

y

y

traverseSection(4,y,c54,t2)

y

traverseSection(1,y,c41,t2)

y

traverseSection(1,y,c31,t2)

(a,p,t2)

(a,p,t2)

(a,p,t2)

(a,p,t2)

(a,p,t2)

(a,p,t2)

(a,p,t2)

(a,p,t2)

(a,p,t2)
(a,p,t2)

(a,p,t2)

(a,p,t2)

(a,p,t2)

(a,p,t2)

(a,p,t2)
(a,p,t2)

y

traverseSection(1,y,c71,t2)

y

(a,p,t2) (a,p,t2)

traverseSection(7,y,c17,t2)

y

(a,p,t2)

(a,p,t2)

traverseSection(9,y,c19,t2)

y

(a,p,t2)(a,p,t2)

traverseSection(1,y,c91,t2)

(a,p,t2)

(a,p,t2)

(a,p,t2) (a,p,t2)

(a,p,t2)(a,p,t2)

(a,p,t2)
(a,p,t2)

y

traverseSection(2,y,c10112,t2)

y

traverseSection(1011,y,c21011,t2)

(a,p,t2)

(a,p,t2)

y

traverseSection(12,y,c212,t2) y

(a,p,t2)

(a,p,t2)
traverseSection(2,y,c122,t2)

(a,p,t2)(a,p,t2)

y

traverseSection(13,y,c213,t2)

y

(a,p,t2)
(a,p,t2)

traverseSection(2,y,c132,t2)

(a,p,t2)

(a,p,t2)

(a,p,t2)

(a,p,t2)

y

traverseSection(3,y,c43,t2)

y

traverseSection(4,y,c34,t2)

(a,p,t2)

(a,p,t2)

(a,p,t2)

(a,p,t2)

y

traverseSection(13,y,c313,t2)

y

traverseSection(3,y,c133,t2)

(a,p,t2)
(a,p,t2)

(a,p,t2)
(a,p,t2)

y
traverseSection(3,y,c143,t2)

y
traverseSection(14,y,c314,t2)

(a,p,t2)

(a,p,t2)

(a,p,t2)
(a,p,t2)

(a,p,t2)
(a,p,t2)

y

traverseSection(7,y,c47,t2)

y

traverseSection(4,y,c74,t2) (a,p,t2)

(a,p,t2)

(a,p,t2)
(a,p,t2) y

traverseSection(4,y,c154,t2)

y

traverseSection(15,y,c415,t2)

(a,p,t2)

(a,p,t2)
y

(a,p,t2)

(a,p,t2)

traverseSection(5,y,c65,t2)

traverseSection(6,y,c56,t2)

(a,p,t2)

(a,p,t2)

(a,p,t2)(a,p,t2)

y

traverseSection(5,y,c75,t2)

y

traverseSection(7,y,c57,t2)

y

(a,p,t2)

(a,p,t2)

traverseSection(5,y,c85,t2)

(a,p,t2)

(a,p,t2)

y

traverseSection(8,y,c58,t2)

y

(a,p,t2)

(a,p,t2)

traverseSection(16,y,c516,t2)

(a,p,t2)

(a,p,t2)

y

traverseSection(5,y,c165,t2)

y

(a,p,t2)
(a,p,t2)

traverseSection(15,y,c515,t2)

(a,p,t2)
(a,p,t2)

y

traverseSection(5,y,c155,t2)(a,p,t2)

(a,p,t2)(a,p,t2)

(a,p,t2)

y

y
traverseSection(7,y,c67,t2)

traverseSection(6,y,c76,t2)

y

(a,p,t2)

(a,p,t2)

y

(a,p,t2)

(a,p,t2)

traverseSection(8,y,c68,t2)

traverseSection(6,y,c86,t2)

(a,p,t2)(a,p,t2)

y

traverseSection(9,y,c69,t2)
y

(a,p,t2)

(a,p,t2)

traverseSection(6,y,c96,t2)

(a,p,t2)

(a,p,t2)

y

traverseSection(9,y,c79,t2)

y

(a,p,t2)

(a,p,t2)

traverseSection(7,y,c97,t2)

y

(a,p,t2)
(a,p,t2)

traverseSection(12,y,c101112,t2)

y

(a,p,t2)
(a,p,t2)

traverseSection(1011,y,c121011,t2)

y

y

(a,p,t2)

(a,p,t2)

(a,p,t2)

(a,p,t2)

traverseSection(17,y,c1217,t2)

traverseSection(12,y,c1712,t2)

(a,p,t2)

(a,p,t2)

(a,p,t2) (a,p,t2)

y

y

traverseSection(14,y,c1314,t2)

traverseSection(13,y,c1413,t2)

(a,p,t2)

(a,p,t2)

y

y

(a,p,t2)

(a,p,t2)

traverseSection(1819,y,c131819,t2)

traverseSection(13,y,c181913,t2)

y

(a,p,t2)

(a,p,t2)

y

(a,p,t2)

(a,p,t2)

traverseSection(14,y,c1514,t2)

traverseSection(15,y,c1415,t2)

(a,p,t2)

(a,p,t2)

y

y

(a,p,t2)

(a,p,t2)

traverseSection(14,y,c181914,t2)

traverseSection(1819,y,c141819,t2)

(a,p,t2)

(a,p,t2)

y

y

(a,p,t2)

(a,p,t2) traverseSection(15,y,c1615,t2)

traverseSection(16,y,c1516,t2)

(a,p,t2)

(a,p,t2)
y

y

(a,p,t2)

(a,p,t2)
traverseSection(15,y,c202115,t2)

traverseSection(2021,y,c152021,t2)

(a,p,t2)

(a,p,t2)

y

y

(a,p,t2)

(a,p,t2)

traverseSection(16,y,c202116,t2)

traverseSection(2021,y,c162021,t2)

y

(a,p,t2)

(a,p,t2)

y

(a,p,t2)
(a,p,t2)

traverseSection(17,y,c181917,t2)

traverseSection(1819,y,c171819,t2)

(a,p,t2)

(a,p,t2)

(a,p,t2)(a,p,t2)

y

ytraverseSection(1819,y,c20211819,t2)

traverseSection(2021,y,c18192021,t2)

y

traverseSection(9,y,c89,t2)

(a,p,t2)

(a,p,t2)

y

traverseSection(8,y,c98,t2)

(a,p,t2)

(a,p,t2)

y
traverseSection(16,y,c816,t2)

(a,p,t2)
(a,p,t2)

y

traverseSection(8,y,c168,t2)

(a,p,t2)
(a,p,t2)

y

(a,p,t2)

(a,p,t2)

traverseSection(1011,y,c91011,t2)y

(a,p,t2)(a,p,t2)

traverseSection(9,y,c10119,t2)

y

y

(a,p,t2)(a,p,t2)

(a,p,t2)
(a,p,t2)

traverseSection(13,y,c1213,t2)

traverseSection(12,y,c1312,t2)

Fig. 22 CPN for the city map of Madrid

Neural Computing and Applications (2020) 32:405–426 421

123

Function eval is then executed for all nodes of the state

space in order to obtain the token in the Destination

place of page EndDestination, comparing the second

field (time spent) with the previous value so as to obtain the

shortest one. The resulting value after evaluating this

expression for the 21:00 scenario is 1‘([1, 2, 13,

1819, 2021], 54), which coincides with the value that was

obtained by simulation.

Two strategies have also been applied to reduce the

exploration. The first, called Branching Pruning, uses the

Branching and Stop options of CPN tools to prune the

exploration when a path has a cost greater than another one

already computed. In this case, the exploration following

that path is stopped, so a significant reduction is obtained,

as we can see from the table in the three scenarios. The

predicate used for the Branching Pruning is the following:

Where VALUE is the expression:

SearchAllNodes(fn _ => true,fn n =>
#2 (hd(Mark.EndDestination’Destination 1 n)),

tmax, Int.min)

In this predicate, every if statement checks whether the

Zonei and Destination places contain any tokens and

every then clause returns whether the travel time of the

token at Zonei is lower than those already explored that

were obtained with the expression VALUE. Thus, the state

space exploration of a certain branch is pruned if the travel

time obtained is higher to this value.

In addition, we propose the use of simulation results as a

way to also prune the exploration, because we stop all

branches for which the route has a cost greater than that

obtained from simulations. This strategy is called Simula-

tion Pruning, and we can see from the table that it provides

the best results in the three scenarios, although in general

this will depend on the quality of the results obtained by

simulation.

Zone2

ZoZ2
Zone3

ZoZ3
LevelZ3

LevelsL3

LevelZ2
LevelsL2

tr3to2

isOpen(2,y,a,p,t2)

tr2to3

isOpen(3,y,a,p,t2)

traverseSection(2,y,c32,t2) y

y traverseSection(3,y,c23,t2)

(a,p,t2)
(a,p,t2)

(a,p,t2)(a,p,t2)

Fig. 23 Transits between Zone2 and Zone3

Table 5 Data gathered from

Madrid, 23rd January 2018
Station ID District Traffic H18 H19 H20 H21 H22 P21 P22

Pza. del Carmen 28079035 1 3 46.56 52.1 57.09 58.19 48.2 6 0

Méndez Álvaro 28079047 2 3 41.57 61 84.8 73.16 56.5 0 0

Retiro 28079049 3 3 37.13 35.5 39.91 46 48.8 0 6

Escuelas Aguirre 28079008 4 4 53.76 69.8 90.34 94.77 102 19 18

Av. Ramón y Cajal 28079011 5 2 37.69 71.5 92.56 131.9 106 43 0

Pza. Castilla 28079050 6 3 43.23 64.3 70.39 100.3 89.2 26 0

Cuatro Caminos 28079038 7 4 53.21 72.6 90.34 95.33 109 21 18

Barrio del Pilar 28079039 8 1 41.57 62.6 103.1 115.8 130 32 36

Pza.de España 28079004 9 3 43.23 52.1 64.29 59.86 49.9 0 0

C/ Farolillo 28079018 11 1 48.22 68.2 71.5 63.18 61 0 0

Pza. Fdez. Ladreda 28079056 12 1 59.86 101 125.3 63.18 63.7 0 0

Vallecas 28079040 13 2 41.01 53.8 63.74 74.82 78.2 16 11

Moratalaz 28079036 14 3 35.47 47.7 73.71 94.77 67.1 24 0

Arturo Soria 28079016 15 2 25.49 46 59.86 69.28 65.4 21 0

Sanchinarro 28079057 16 1 32.15 66.5 81.47 102 95.9 35 0

Villaverde Alto 28079017 17 1 44.89 73.7 85.35 87.02 74.8 24 0

Ensanche Vallecas 28079054 18 1 37.69 67.1 100.9 97.55 105 0 0

Urb. Embajada 28079055 21 1 30.48 52.1 67.06 67.06 70.4 0 0

fn n => if (Mark.EndDestination’Zone1 1 n <> empty
andalso Mark.EndDestination’Destination 1 n <> empty)

then #3(hd (Mark.EndDestination’Zone1 1 n)) < VALUE
else if (Mark.EndDestination’Zone2 1 n <> empty

andalso Mark.EndDestination’Destination 1 n <> empty)
then #3(hd (Mark.EndDestination’Zone2 1 n)) < VALUE

.

.

.
else if (Mark.EndDestination’Zonei 1 n <> empty

andalso Mark.EndDestination’Destination 1 n <> empty)
then #3(hd (Mark.EndDestination’Zonei 1 n)) < VALUE

422 Neural Computing and Applications (2020) 32:405–426

123

In fact, from the analysis of the graph we concluded that

the best route in all scenarios was that obtained by simu-

lations, since none of the routes in the graph obtained by

using the Simulation Pruning strategy could reach its

destination (all were worse and so were stopped). The

predicate for the Simulation Pruning is similar to the pre-

vious predicate but substituting the VALUE expression with

the values obtained by simulation (40, 54 and 54,

respectively).

7.1 Scalability

We selected a total of 18 zones for a large city like Madrid,

since in general the areas to be closed (or simply restricted)

cover one or even several districts. This is because pollu-

tion is not a confined problem and the affected area can be

very wide. In the case of Madrid, the entire city center is

usually affected by traffic regulations when there is an

episode of high pollution. Thus, we do not expect to have a

city with hundreds of zones. Thus, the scalability analysis

is performed on two scenarios: a city map with 36 zones

(twice the size of the original city map) and another with

54 zones (three times the original city map size).

The CPN was constructed by replicating the city map of

Madrid and establishing connections between these CPNs

in order to obtain these scenarios. In this way, the only

interconnections considered are between Zone18_19 from

the first copy to Zone9 of the second copy and from

Zone20_21 of the first copy to Zone8 of the second copy,

taking 12 and 10 min, respectively. The same strategy is

applied in the second scenario between the second and

third copy.

Table 7 shows the results for the two scenarios consid-

ered—from Zone1 of the first copy to Zone20_21 of the

second copy (36 zones) or to Zone20_21 of the third copy

(54 zones)—with ‘‘No Restrictions’’ (all connections

open), so as to obtain the largest state space graph. Notice

that the state space graph is constructed by using one single

starting token on the Zone1 place. In neither case could the

complete graph be constructed, due to the state space

explosion. For the city map of 36 zones, the Branching

Pruning strategy took 66 s for completion, and Simulation

Pruning 68 s.

The simulation with 5, 000 tokens yielded the following

result:

1‘([1,4,15,2021,108,116,12021],82)

We then took 82 as the value used for the Simulation

Pruning strategy, thus obtaining the optimal solution in

both cases:

1‘([1,2,13,1819,109,106,105,116,12021],80)

Therefore, the movement from Zone1 of the first copy to

Zone20_21 of the second copy took 80 min for the best

route.

LevelZ1

Levels

LevelZ3

Levels

LevelZ8

Levels

LevelZ12
Levels

LevelZ13
Levels

LevelZ9

Levels

LevelZ14

Levels

Level
Z10_111

Levels

pinit

LevelZ2

Levels

LevelZ4

Levels

LevelZ5

Levels
LevelZ6

Levels
LevelZ7

Levels

LevelZ15

Levels

LevelZ16

Levels

LevelZ17

Levels

Level_
Z18_19
Levels

Level_
Z10_21

Levels

init_g

1`(2,6,3)

1`(1,0,3)

1`(3,32,1)

1`(2,0,1)

1`(2,16,2)

1`(2,0,3)

1`(2,24,3)

1`(2,0,1)

1`(2,0,3)

1`(2,19,4)
1`(3,43,2)

1`(3,26,3)

1`(2,21,4)

1`(2,21,2)

1`(2,24,1)

1`(2,0,1)

1`(2,0,1)

1`(3,35,1)

()

L7

L8

L9

L6
L5L4

L3

L2

L1

L20_21

L18_19

L17

L16
L15 L14

L13

L12

L10_11

1

1`()

Fig. 24 Levels in Madrid City at 21:00 hours, January 23rd, 2018

Fig. 25 Simulation results from Zone1 to Zone20_21

Table 6 State space report results

Nodes Arcs Secs Status

No restrictions

Complete state space 209,897 213,535 5551 Full

Branching pruning 396 399 0 Partial

Simulation pruning 392 395 0 Partial

21:00 hours

Complete state space 4300 4393 2 Full

Branching pruning 183 186 0 Partial

Simulation Pruning 90 91 0 Partial

22:00 hours

Complete state space 2902 2945 1 Full

Branching pruning 148 150 0 Partial

Simulation pruning 91 92 0 Partial

Neural Computing and Applications (2020) 32:405–426 423

123

In contrast, for the city map of 54 zones, none of these

techniques yielded any results with little response latency,

so we applied a new Simulation Pruning strategy by

splitting the route into legs.

This strategy works as follows. First, a simulation is run

with a relatively high number of tokens, e.g., 5, 000 tokens,

in order to obtain a suboptimal itinerary between Zone1 of

the first copy to Zone20_21 of the third copy. The subop-

timal solution obtained was:

1‘([1,3,13,1819,
109,108,105,116,12021,

208,216,22021],146)

where the numbers in the second and third lines corre-

spond to zones in the second and third copies, respectively.

Then, we applied a simulation with 5, 000 tokens restricted

to the first copy for a movement from Zone1 to its con-

nections with the second copy (Zone18_19 or Zone 20_21),

obtaining 40 min as the best result. In the same way, we

applied a new simulation to obtain a suboptimal value for a

movement from Zone1 of the first copy to Zone18_19 or

Zone 20_21 of the second copy. In this case, the value

obtained was 90 min. Finally, Simulation Pruning strategy

was applied, considering the following threshold values in

each copy: 41, 91 and 147, respectively. These values are

higher than the values obtained in the simulation to avoid a

premature ending in the state space exploration in the case

that these values were optimal. The results are shown in the

last row of Table 7, and the optimal solution was:

1‘([1,2,13,1819,
109,106,105,116,12021,

208,216,22021],122)

which takes 122 min for a movement from Zone1 of the

first copy to Zone20_21 of the third copy.

8 Related work

In recent years, several works have proposed ITS models

based on PN formalisms. In order to enhance them with the

functionalities provided by the CEP technology, we pro-

posed an unprecedented ITS model [22], which integrates

both PNs and the CEP technology to analyze traffic regu-

lations only based on the CO pollutant level imposed by the

EPA.

Regarding other works on modeling of ITS systems by

using PNs, Cavone et al. [23] present a survey on freight

logistics and transportation systems based on PN for-

malisms together with applications to analysis, simulation,

optimization and control. Junior et al. [24] propose an

analytical model based on the Stochastic PN (SPN) theory

for evaluating Vehicular Ad-Hoc Networks (VANETs)

infrastructures, where expolynomial distributions are used

to represent roadside unit service rates. They study the

overall system performance taking into account parameters

such as vehicular density, message frequency and RSU

(RoadSide Unit) radius. Qi et al. [25] make use of deter-

ministic and stochastic PNs to design an emergency traffic-

light control system for intersections prone to accidents.

Reachability analysis techniques are then used to prevent

deadlocks and livelocks. Júlvez and Boel [26] propose a

dynamic model based on continuous PNs to model the

macroscopic behavior of traffic systems. The proposed

traffic model provides a predictive control strategy on

traffic systems taking into account that traffic conditions

may vary quickly. The authors focus on the minimization

of the total delay (waiting time) of the cars in the system.

Hübner et al. [27] propose a vehicle formation model for

traffic optimization by means of a consensus algorithm and

a condition event PN, which is used to model the topology

of the vehicles’ positions. The goal formation is charac-

terized by maximum vehicle density and limited interac-

tions. Riouali et al. [28] use Generalized non-deterministic

batch Petri Nets (GNBPN), which are an extension of

hybrid PNs. They model discrete and continuous aspects of

traffic flow dynamics, taking into account state dependen-

cies based on external rules, such as stop sign or priority

roads. ČapkoviČ [29] uses three different models of PNs to

model segments of a transport network, namely P/T Petri

Nets, Timed Petri Nets and Hybrid Petri Nets. P/T Petri

Nets are used to find the safe and unambiguous structure of

the traffic-light controller. Then, Timed Petri Nets are used

to analyze the time relations between the traffic lights, and

finally, Hybrid Petri Nets are used to find flows of vehicles

within the bounds of possibility determined by the traffic

lights. Bonnefoi et al. [30] propose a specification

methodology based on a set of UML diagrams to generate

an analyzable PN formal model of an ITS. The system

requirements are then expressed as LTL or CTL properties,

which are verified by using a PN model checker. Aitouche

et al. [31] present a multiagent model using CPNs for

traffic regulation of an automated highway. Their goal is to

find solutions for the problem of congestion in Automated

Highway Systems (AHS), taking into account the departure

and arrival time of vehicles, ensuring their correct routing.

Table 7 Scalability results

Nodes Arcs Secs Status

(36 zones)

Branching pruning 12,959 12,958 66 Partial

Simulation pruning 13,272 13,271 68 Partial

(54 zones)

Simulation pruning 17,752 17,751 25 Partial

424 Neural Computing and Applications (2020) 32:405–426

123

Huang et al. [32] use Synchronized Timed Petri Nets in

a methodology to design and analyze an urban traffic net-

work system in a modular way, showing the clear presen-

tation and readability of such design. Qi et al. [33] use

Timed Petri Nets to design a two-level strategy at signal-

ized intersections for preventing incident-based urban

traffic congestion by adopting additional traffic warning

lights.

9 Conclusions and future work

In this paper, we propose an ITS model for traffic control

considering both air pollutant and traffic levels with the

aim of alleviating not only pollution but also other traffic

problems. The proposed model conforms to the three

aspects that an ITS should satisfy: (1) consistent with

traffic flow, (2) flexible to characterize a dynamic flow and

(3) simple, but rich enough to allow us to draw conclusions

about traffic regulations.

Air quality conditions and traffic flow data are assumed

to be determined by a set of sensor stations. The CEP

technology is then used to process the information gathered

from these sensors and determine the AQI and traffic

levels. Specifically, we use the MEdit4CEP-CPN tool to

model the event patterns regarding the PM2:5 pollutant as

well as the traffic level event patterns. A CPN modeling of

a city map is then defined to compute the optimal available

routes taking into account that some connections may be

closed due to air quality or traffic conditions. In addition,

an important feature of the CPN model is that transit times

between zones are computed taking into account that traffic

density is likely to affect them.

The analysis techniques of CPN tools are used to obtain

these optimal routes. One of these techniques is state

exploration based on constructing the state space graph,

which allows us to obtain all possible routes and thus

obtain the optimal one. However, the state space graph can

generally be quite large, and in some cases it could even be

impossible to generate. In these cases, simulation tech-

niques are to be applied, which quickly provide suboptimal

solutions. The simulation technique applied in this work is

based on generating a number of identical tokens on the

starting zone, so as to cover as many routes as possible, and

return the fastest one as the suboptimal solution. State

space exploration can benefit from the branching and stop

options of CPN tools so as not to construct all the state

space, pruning the branches that have a higher cost than

others previously computed. We apply this technique,

showing the benefits it provides in both time and graph

size. We also propose a combination of both simulation

and state exploration, using the results obtained by simu-

lation in order to apply the branching and stop exploration.

As future work, the CPN model could be enriched by

improving the initial transit times between zones, taking

into account, for instance, the size of the regions and the

starting and ending points inside each region. Other key

information to compute the routes could be to consider

traffic-light information or accidents that could cause

delays or closing connections.

Other aspects could also be considered, such as closing

to traffic on the basis of type of fuel and emissions of

vehicles.

A final step would be to integrate this CEP-based

solution with an Enterprise Service Bus (ESB) to test this

approach in a real scenario, in which sensing data will be

produced by heterogeneous and ubiquitous sources.

NOTE: All the CPN models presented in the paper, the

reports obtained, and the predicates used for the application

of branching and stop options are available via the link:

https://doi.org/10.17632/cbjxbhzn43.1.

Acknowledgements The authors would like to thank Prof. Dr. Edel-

mira Valero, member of the Physical Chemistry Department at the

University of Castilla-La Mancha, for her helpful cooperation in the

matters related to air pollutants and conversions of units of measure.

Boubeta-Puig would like to thank the Real-Time and Concurrent

Systems Research Group for their hospitality when visiting them at

the University of Castilla-La Mancha, Spain, where part of this work

was developed.

Funding This study was funded in part by the Spanish Ministry of

Science and Innovation and the European Union FEDER Funds under

Grants TIN2015-65845-C3-2-R, TIN2015-65845-C3-3-R and

TIN2016-81978-REDT, and also by the JCCM regional project

SBPLY/17/180501/000276, which is also co-financed by the Euro-

pean Union FEDER Funds.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of

interest.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creative

commons.org/licenses/by/4.0/), which permits unrestricted use, dis-

tribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

1. Picone M, Busanelli S, Amoretti M, Zanichelli F, Ferrari G

(2015) Advanced technologies for intelligent transportation sys-

tems. Springer, New York

2. Bekiaris E, Nakanishi J (2004) Economic impacts of intelligent

transportation systems, vol 8. Elsevier, Amsterdam

3. Xu W, Zhou H, Cheng N, Lyu F, Shi W, Chen J, Shen XM (2016)

Internet of vehicles in big data era. IEEE/-CAA J Autom Sin

5:19–35

Neural Computing and Applications (2020) 32:405–426 425

123

https://doi.org/10.17632/cbjxbhzn43.1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

4. World Health Organization: Health Risk Assessment of Air

Pollution. General Principles (2016). http://www.euro.who.int/en/

health-topics/environment-and-health/air-quality/publications/

2016/health-risk-assessment-of-air-pollution.-general-principles-

2016. Accessed 16 Oct 2018

5. Luckham D (2012) Event processing for business: organizing the

real-time enterprise. Wiley, Hoboken

6. Boubeta-Puig J, Dı́az G, Macià H, Valero V, Ortiz G (2017)

MEdit4CEP-CPN: an approach for complex event processing

modeling by prioritized Colored Petri Nets. Inf. Syst. https://doi.

org/10.1016/j.is.2017.11.005 (in press)
7. Boubeta-Puig J, Ortiz G, Medina-Bulo I (2015) MEdit4CEP: a

model-driven solution for real-time decision making in SOA 2.0.

Knowl Based Syst 89:97–112. https://doi.org/10.1016/j.knosys.

2015.06.021

8. Peterson JL (1981) Petri net theory and the modeling of systems.

Prentice Hall PTR, Upper Saddle River

9. Air Quality in Europe (2017) Technical report no 13/2017,

European Environment Agency (EEA). Publications Office of the

European Union, Luxembourg

10. The Economic Consequences of Outdoor Air Pollution (2016)

Technical report, Organisation for Economic Co-operation and

Development (OECD). OECD Publishing, Paris. http://www.

oecd-ilibrary.org/environment/the-economic-consequences-of-

outdoor-air-pollution_9789264257474-en. Accessed 16 Oct 2018

11. EPA: Technical Assistance Document for the Reporting of Daily

Air Quality—the Air Quality Index (AQI). Technical report EPA-

454/B-16-002, U.S. Environmental Protection Agency, North

Carolina, US (2016). https://nepis.epa.gov/Exe/ZyPURL.cgi?

Dockey=P100FD3G.TXT. Accessed 16 Oct 2018

12. Yuan C, Ng E, Norford LK (2014) Improving air quality in high-

density cities by understanding the relationship between air pol-

lutant dispersion and urban morphologies. Build Environ

71:245–258

13. Borge R, de Miguel I, de la Paz D, Lumbreras J, Pérez J,

Rodrı́guez E (2012) Comparison of road traffic emission models

in Madrid (Spain). Atmos Environ 62:461–471

14. Etzion O, Niblett P (2010) Event processing in action, 1st edn.

Manning Publications Co., Greenwich

15. Cugola G, Margara A (2012) Processing flows of information:

from data stream to complex event processing. ACM Comput

Surv 44(3):15:1–15:62

16. Esper—Complex Event Processing. http://www.espertech.com/

esper/. Aug 2018

17. CPN tools home page. http://www.cpntools.org/. Aug 2018

18. van der Aalst WMP, Stahl C, Westergaard M (2013) Strategies

for modeling complex processes using Colored Petri Nets. Trans

Petri Nets Other Models Concurr 7:6–55. https://doi.org/10.1007/

978-3-642-38143-0_2

19. Jensen K, Kristensen LM (2009) Coloured Petri Nets: modelling

and validation of concurrent systems, 1st edn. Springer, Berlin

20. Li L, Lv Y, Wang FY (2016) Traffic signal timing via deep

reinforcement learning. IEEE/CAA J Autom Sin 3(3):247–254

21. Sustainable mobility ordinance (2018) Boletı́n Oficial de la

Comunidad de Madrid, vol 253. Madrid City Council,

pp 130–251. http://www.bocm.es/boletin/CM_Orden_BOCM/

2018/10/23/BOCM-20181023-36.PDF

22. Dı́az G, Macià H, Valero V, Cuartero F (2017) Intelligent

transportation system to control air pollution in cities using

Complex Event Processing and Colored Petri Nets. In: Advances

in computational intelligence. Lecture notes in computer science.

Springer, pp 415–426. https://doi.org/10.1007/978-3-319-59147-

6_36

23. Cavone G, Dotoli M, Seatzu C (2018) A survey on petri net

models for freight logistics and transportation systems. IEEE

Trans Intell Transp Syst 19(6):1795–1813. https://doi.org/10.

1109/TITS.2017.2737788

24. Junior AL, Matos R, Silva B, Maciel P (2017) Expolynomial

modelling for supporting VANET infrastructure planning. In:

2017 IEEE 22nd Pacific rim international symposium on

dependable computing (PRDC), pp 86–91. https://doi.org/10.

1109/PRDC.2017.20

25. Qi L, Zhou M, Luan W (2016) Emergency traffic-light control

system design for intersections subject to accidents. IEEE Trans.

Intell. Transp. Syst. 17(1):170–183. https://doi.org/10.1109/TITS.

2015.2466073

26. Júlvez J, Boel RK (2010) A continuous petri net approach for

model predictive control of traffic systems. Trans Syst Man

Cybern Part A 40(4):686–697. https://doi.org/10.1109/TSMCA.

2010.2041448

27. Hübner M, Lück T, Schnieder E (2009) Cooperative control of

multi-vehicle-formations in road traffic by means of consensus

algorithm and petri nets. IFAC Proc Vol 42(15):328–333. https://

doi.org/10.3182/20090902-3-US-2007.0016

28. Riouali Y, Benhlima L, Bah S (2016) Petri net extension for

traffic road modelling. Int J Sci Eng Res 7(11):282–299

29. Čapkovič F (2015) Petri net-based modelling and simulation of

transport network segments. In: Propagation phenomena in real

world networks. Intelligent systems reference library, vol 85.

Springer, Cham, pp 135–154. https://doi.org/10.1007/978-3-319-

15916-4_6

30. Bonnefoi F, Hillah LM, Kordon F, Renault X (2007) Design,

modeling and analysis of ITS using UML and petri nets. In: 2007

IEEE intelligent transportation systems conference, pp 314–319.

https://doi.org/10.1109/ITSC.2007.4357718

31. Aitouche A, Hayat S (2003) Multiagent model using Coloured

Petri Nets for the regulation traffic of an automated highway. In:

Proceedings of the 2003 IEEE international conference on

intelligent transportation systems, vol 1, pp 37–42. https://doi.

org/10.1109/ITSC.2003.1251916

32. Huang YS, Weng YS, Zhou M (2014) Modular design of urban

traffic-light control systems based on synchronized timed petri

nets. IEEE Trans Intell Transp Syst 15:530–539

33. Qi L, Zhou M, Luan W (2018) A two-level traffic light control

strategy for preventing incident-based urban traffic congestion.

IEEE Trans Intell Transp Syst 19(1):13–24

426 Neural Computing and Applications (2020) 32:405–426

123

http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2016/health-risk-assessment-of-air-pollution.-general-principles-2016
http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2016/health-risk-assessment-of-air-pollution.-general-principles-2016
http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2016/health-risk-assessment-of-air-pollution.-general-principles-2016
http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2016/health-risk-assessment-of-air-pollution.-general-principles-2016
https://doi.org/10.1016/j.is.2017.11.005
https://doi.org/10.1016/j.is.2017.11.005
https://doi.org/10.1016/j.knosys.2015.06.021
https://doi.org/10.1016/j.knosys.2015.06.021
http://www.oecd-ilibrary.org/environment/the-economic-consequences-of-outdoor-air-pollution_9789264257474-en
http://www.oecd-ilibrary.org/environment/the-economic-consequences-of-outdoor-air-pollution_9789264257474-en
http://www.oecd-ilibrary.org/environment/the-economic-consequences-of-outdoor-air-pollution_9789264257474-en
https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100FD3G.TXT
https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100FD3G.TXT
http://www.espertech.com/esper/
http://www.espertech.com/esper/
http://www.cpntools.org/
https://doi.org/10.1007/978-3-642-38143-0_2
https://doi.org/10.1007/978-3-642-38143-0_2
http://www.bocm.es/boletin/CM_Orden_BOCM/2018/10/23/BOCM-20181023-36.PDF
http://www.bocm.es/boletin/CM_Orden_BOCM/2018/10/23/BOCM-20181023-36.PDF
https://doi.org/10.1007/978-3-319-59147-6_36
https://doi.org/10.1007/978-3-319-59147-6_36
https://doi.org/10.1109/TITS.2017.2737788
https://doi.org/10.1109/TITS.2017.2737788
https://doi.org/10.1109/PRDC.2017.20
https://doi.org/10.1109/PRDC.2017.20
https://doi.org/10.1109/TITS.2015.2466073
https://doi.org/10.1109/TITS.2015.2466073
https://doi.org/10.1109/TSMCA.2010.2041448
https://doi.org/10.1109/TSMCA.2010.2041448
https://doi.org/10.3182/20090902-3-US-2007.0016
https://doi.org/10.3182/20090902-3-US-2007.0016
https://doi.org/10.1007/978-3-319-15916-4_6
https://doi.org/10.1007/978-3-319-15916-4_6
https://doi.org/10.1109/ITSC.2007.4357718
https://doi.org/10.1109/ITSC.2003.1251916
https://doi.org/10.1109/ITSC.2003.1251916

	An Intelligent Transportation System to control air pollution and road traffic in cities integrating CEP and Colored Petri Nets
	Abstract
	Introduction
	Motivation
	Background
	Complex Event Processing
	Colored Petri Nets

	Modeling a city map with CPNs
	State space analysis
	Analysis via simulation

	Event pattern modeling
	Air quality
	Road traffic

	ITS for traffic control by using CEP and CPNs
	Case study: city of Madrid
	Scalability

	Related work
	Conclusions and future work
	Funding
	References

