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Abstract

Recent breakthroughs in Dynamic Transmission Network Expansion Plan-

ning (DTNEP) have demonstrated that the use of robust optimization, while

maintaining the full temporal dynamic complexity of the problem, renders

the capacity expansion planning problem considering uncertainties computa-

tionally tractable for real systems. In this paper an adaptive robust formula-

tion is proposed that considers, simultaneously: i) a year-by-year integrated

representation of uncertainties and investment decisions, ii) the capacity ex-

pansion lines have and iii) the construction and/or dismantling of renewable

and conventional generation facilities as well. The Dynamic Transmission

Network and Renewable Generation Expansion Planning (DTNRGEP) prob-

lem is formulated as a three-level adaptive robust optimization problem. The

first level minimizes the investment costs for the transmission network and

generation expansion planning, the second level maximizes the costs of oper-
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ating the system with respect to uncertain parameters, while the third level

minimizes those operational costs with respect to operational decisions. The

method is tested on two cases: i) an illustrative example based on the Garver

IEEE system and ii) a case study using the IEEE 118-bus system. Numeri-

cal results from these examples demonstrate that the proposed model enables

optimal decisions to be made in order to reach a sustainable power system,

while overcoming problem size limitations and computational intractability

for realistic cases.

Keywords: power systems, renewable generation expansion planning,

robust optimization, transmission network expansion planning.

Nomenclature

This section states the main notation used in this paper for quick refer-

ence.

Indices and Sets:

D Set of demand indices.

g Index for groups of generators built per phases.

G Set of indices of all generation units installed at the beginning of time

horizon considered which can not be removed from the system.

G+ Set of all prospective and independent new possible generators.

G+
g Set of all prospective new generators which can be installed at different

phases associated with group g.
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G− Set of all generators to be uninstalled or dismantled during the study

period.

i Index related to generators.

j Index associated with loads.

k Index referring to lines.

l Counter index for each iteration.

L Set of all existing transmission lines.

L+ Set of prospective transmission lines.

n Index related to buses.

N Set of networks buses.

n(i) Bus index for the i-th generating unit.

n(j) Bus index for the j-th demand.

t Index related to time period.

T Set of indices of years.

U (t) Set of indices of the uncertain variables for time period t.

ΨD
n Set of indices of demand for bus n.

ΨG
n Set of indices of generating units for bus n.

Constants:
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bk Line k susceptance (S).

cGi Generator i operational cost (e/MWh).

cGI
i Generator i investment cost (e).

cLIk Line k investment cost (e).

cSj Consumer j load-shedding cost (e/MWh).

e
(t)
j Percentage of load shed by the j-th demand for year t.

fmax
k Line k capacity (MW).

h
(t)
µ,j Nominal value evolution factor for demand j and period t.

h
(t)
σ,j Dispersion value evolution factor for demand j and period t.

I Discount rate.

Ny Number of study periods.

o(k) Line k sending-end bus.

r(k) Line k receiving-end bus.

tG
−

i Time period when generator i ∈ G− is uninstalled or dismantled.

ΠG Generation expansion investment budget (e).

ΠL Transmission expansion investment budget (e).

σ Annual weighting factor (h).

Primal variables:
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c
(t)
o Operating cost associated with given values of upper- and middle-level

variables for year t (e).

c
(t)
op Operating cost related to given values of upper-level variables for year t

(e).

c
(t)
op,ν It corresponds to c

(t)
op at iteration ν.

f
(t)
k Line k power flow for year t (MW).

f
(t)
k,ν Line k power flow for year t (MW) at iteration ν.

g
(t)
i Power production of generating unit i for year t (MW).

g
(t)
i,ν Power production of generating unit i for year t (MW) at iteration ν.

p
(t)
j Power consumption of demand j for year t (MW).

p
(t)
j,ν Power consumption of demand j for year t (MW) at iteration ν.

r
(t)
j Load shed of demand j for year t (MW).

r
(t)
j,ν Load shed of demand j for year t (MW) at iteration ν.

u(t) Vector of random or uncertain parameters (u
G(t)
i ,u

D(t)
j ) for year t, in-

cluding maximum generation capacities and loads (MW).

u
(t)
ν Vector of random or uncertain parameters (u

G(t)
i,ν ,u

D(t)
j,ν ) for year t at

iteration ν.

x
(t)
k Binary variable representing new line k construction at the beginning of

year t.
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x̃
(t)
k Line k status (existing vs no existing) at the beginning of year t.

x̃
(t)
k,ν Line k status at the beginning of year t and iteration ν.

y
(t)
i Binary variable representing new generator i construction at the begin-

ning of year t.

ỹ
(t)
i Generator i status (existing vs no existing) at the beginning of year t.

ỹ
(t)
i,ν Generator i status at the beginning of year t and iteration ν.

θ
(t)
n Bus n voltage angle for year t (radians).

θ
(t)
n,ν Bus n voltage angle for year t (radians) at iteration ν.

1. Introduction

1.1. Motivation

The new objective of the Kyoto Protocol for reducing Greenhouse Gases

(GHG) encourages the development of renewable energy sources within elec-

tric systems [1]. The main reason for this is to combat the upward trend in

worldwide average temperatures and climate change, and thus, it is expected

that vast amounts of new generation facilities, especially renewable ones, will

be built in the medium-term future.

Transmission network and renewable generation expansion planning an-

alyze the issue of how to expand or reinforce an existing power transmission

network, incorporate new renewable generation facilities and dismantle the

old ones in order to adequately service system loads over a given time hori-

zon while decreasing GHG emissions. This problem is challenging for several

reasons [2]:
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1. Transmission and generation investment decisions have a long-standing

impact on the power system as a whole.

2. Transmission and generation investments, especially new generation

sources, must be integrated appropriately into the existing system.

3. Consumption and renewable energy generation uncertainties, such as

with wind and solar power plants, make resolution of the problem com-

plicated. Note that wind power is the renewable technology that has

most developed in the last decade, while the next renewable technology,

in constant evolution, is photovoltaic power. The introduction of these

types of renewable sources in the generation mix increases uncertainty

about the feasibility of generation.

4. The expansion planning problem is by nature a multi-stage one that

entails planning a horizon over several years. Keeping the dynamic

complexity of the problem mostly results in computationally intractable

problems.

5. Transmission expansion planning (TEP) and generation expansion plan-

ning (GEP) have usually been addressed independently, i.e. transmis-

sion planning is determined by considering that it is not possible to

build new generation facilities and vice versa. However, transmission

and generation expansion plans are clearly interrelated and treating

them separately provides suboptimal solutions. The reason why these

problems have been treated independently is that TEP pertains to a

welfare-focused agent (ISO), while GEP relates to profit-focused pro-

ducers.
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1.2. Literature Review

Transmission and generation expansion planning have been extensively

studied areas from the time power systems began to operate [3]. In recent

years, these problems have been widely researched and analyzed from dif-

ferent viewpoints, such as: solution method, reliability, electricity market,

uncertainty, environmental impact, the modeling approach, from the time

horizon viewpoint, time frames, among others [4]. State-of-the-art transmis-

sion planning is introduced in [5], where different contributions are classified

by the solution method, treatment of the planning horizon, by considering the

electrical sector restructuring, and the tools for developing planning models.

A review of generation expansion planning techniques in the face of grow-

ing uncertainty is presented in [6]. In this document, the literature review

is split into several categories: a) the modeling approach, b) algorithms, c)

time frames, d) time scope, and e) others, which makes it easier to discuss

the contribution this paper has made.

The main difficulty of transmission and generation expansion planning

problems is taking decisions with the great amount of uncertainty associ-

ated with different factors [7]. Moreover, the integration of renewable energy

into the generation mix increases uncertainty on the generation side [8]. The

stochastic programming techniques enable an optimal decision to be found in

problems involving uncertainty data [9]. In order to incorporate i) demand,

ii) the equivalent availability factor of the generating plants and iii) the trans-

mission capacity factor of the transmission lines as random events, stochastic

programming and probabilistic constraints are used in [10] in a new model

for generation and transmission expansion. Uncertainty associated with in-
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tentional attacks on the transmission network has been put forward in [11] by

using a stochastic programming problem with recourse, while [12] utilizes the

Monte Carlo simulation and scenario reduction technique to create scenarios

that simulate random characteristics of system components and load growth.

Chance-constrained optimization is a type of stochastic programming which

handles the stochasticity of the problem by specifying a confidence level at

which the stochastic constraints are required to hold [13]. In [14] a chance-

constrained programming method was set out to solve the transmission net-

work expansion problem bearing in mind the uncertainties of both the load

and the wind farm output. The impact of integrating wind power into an ex-

isting power system is researched in [15], where the calculation of the optimal

wind power capacity is also formulated as a chance-constrained programming

problem. However, stochastic programming formulations result in computa-

tionally intractable problems in real-size networks. In contrast, recent break-

throughs have proved that computational tractability for realistic systems is

possible by using Adaptive Robust Optimization (ARO) frameworks [16, 17].

One application of ARO to transmission expansion planning is reported in

[18] using a Benders decomposition scheme to solve the ARO problem, while

[19] applies a -column-and-constraint generation method solely based on pri-

mal cuts. Although it is true that these robust methods are more efficient

than their stochastic counterparts, it is also correct that solution times for

mixed-integer linear programming problems increase exponentially with re-

spect to the size of the problem. For this reason, [20] addressed that problem

by taking different features from existing algorithms. An additional advan-

tage robust optimization offers is that it is the recommended approach for
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considering long-term uncertainties [2].

The number of algorithms that can be applied to address the generation

and transmission expansion planning problem can be classified mainly for

optimization (including decomposition techniques [21]), heuristic [22], meta-

heuristic [23], genetic algorithms [24], etc. Firstly an optimization problem is

proposed in [25] with a two-stage min-max-min model for co-optimizing the

expansion of the transmission system and uncertain generation capacity with

high security standards. Secondly, [26] presents a new two-phase bounding

and decomposition approach to compute optimal and near-optimal solutions

for large-scale investment problems using mixed integer linear programming

(MILP). The decomposition phase improves Benders algorithm by accelerat-

ing the convergence of the bounds and in the lower bound an auxiliary cut

is included in the Benders master problem. A heuristic algorithm for multi-

stage transmission planning, considering security constraints by means of a

genetic algorithm is also described in [27], based on a tree searching heuristic

algorithm (TSHA) combined with a genetic algorithm (GA), whereas [28]

shows a constructive heuristic algorithm for solving long-term transmission

expansion planning using a DC model. An efficient metaheuristic technique

based on artificial bee swarm optimization is used to configure the hybrid

system put forward in [29].

Even though transmission and generation expansion planning is by nature

a multi-stage problem, the complexity of this dynamic nature has meant that

in most studies about transmission and generation expansion planning in the

technical literature there are different simplifying assumptions. The time

frame for most research studies is one year because planning and investment
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costs are considered annually [18, 30, 31, 32]. However, in order to ensure

tractability while keeping the model accurate enough; in many studies a time

frame of several years, which are treated both separately and sequentially, is

considered [33, 34, 35]. The use of an integrated year-by-year representation

of investment decisions (dynamic approach) has been considered to be highly

complex and a computationally intractable problem. For this reason, most

research related to this topic focus on very small test cases or use heuristic

methods [36, 37, 38]. However, in [39] the ARO formulation proposed by [20]

is expanded to a dynamic approach to the transmission network expansion

planning problem and computational tractability is now possible for realistic

cases.

Three kinds of time periods are normally assessed such as i) one year, ii) 5

or 10 years and iii) 20 to 25 years. A single 1-year period is the most frequent

approximation when what is presented is a methodological novelty [18, 19, 20,

40]. The challenge of long term assessment [39, 41] is elevated consumption

of CPU resources, where [41] considers that transmission lines have a longer

life and more predictable behavior with respect to energy storage.

The transition of a power system into a sustainable system, which is the

purpose of this paper, has also been addressed in various papers previously.

The variability effect associated with renewable-based electricity generation

on power systems dynamics is assessed in [42] with a set-theoretic method,

while [43] uses a Differential Evolution algorithm to study the impact the in-

creasing penetration of wind power technology has. Finally, a framework for

the generation expansion planning problem with regard to energy efficiency

solutions is developed in [44].
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According to the literature review and to the best of our knowledge, there

is no available method in the current literature which simultaneously deals

with TEP and GEP with uncertainty, which takes an integrated multi-stage,

multi-year or multi-period approach, and which is capable of dealing with

realistic cases. The proposal presented in this paper intends to fill this niche.

1.3. Aims and Contributions

The purpose of this paper is three-fold:

1. To extend the ARO formulation proposed by [39] for the dynamic ap-

proach dealing simultaneously with TEP and GEP with uncertainty.

2. To provide a highly flexible model with respect to generation capacity

expansion planning possibilities:

(a) Conventional generation facilities (set G−) which have reached the

end of their lifetimes during the time period considered can be

dismantled or decommissioned.

(b) A set of all prospective and independent new possible generators

with uncertainty in their production capacity can be considered.

(c) The construction of renewable generation facilities in different and

sequential phases (sets G+
g for different groups g) can be consid-

ered.

(d) It enables conventional facilities without uncertainties to be in-

cluded.

3. To show that computational tractability for an integrated year-by-year

representation of investment decisions in line capacities and genera-

tion is possible for realistic cases, ensuring the achievement of a global

optimal solution.
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In summary, as a mayor contribution of this paper, we address a yet unre-

solved and challeging problem which is of utmost practical interest since it

circumvents simplifying assumptions typically adopted in the models avail-

able in the literature.

Regarding the selection of the robust approach to represent the uncer-

tainties in generation capacities and demand values, these expansion plans

are generally made for long-term planning horizons, thus it is important that

future demand, decommissioning of old generating units and the increas-

ing penetration of renewable generating units are represented appropriately.

Unlike scenario based methods and chance-constrained programming, ARO

neither requires accurate probabilistic information nor relies on a discrete

set of uncertainty realizations that need a tradeoff between tractability and

accuracy that may be hard to attain. Rather, uncertainty is modeled by deci-

sion variables within an uncertainty set, which thereby comprises an infinite

number of uncertainty realizations. Hence, the size of the robust counterpart

does not depend on the space dimensions of uncertainty realizations belong-

ing to the uncertainty set, which is beneficial for implementation purposes.

The uncertainty set can be built using intervals defined by lower and upper

bounds for uncertain parameters. Such information may be easier to acquire

than probability distributions. Moreover, the robust solution protects against

all realizations of uncertainty within the uncertainty set. A worst-case set-

ting such as this is a particularly desirable feature in planning problems.

Additionally, ARO provides a flexible modeling framework to control with

ease how conservative the robust solution is by means of pre-specifying user-

defined uncertainty budgets or conservativeness parameters that modify the
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uncertainty set. All these features make ARO the best option for tractability,

dealing simultaneously with multi-year capacity transmission and generation

expansion planning problems for realistic cases.

Note that in this paper we have considered a variable cost for renew-

able generating units. We do not consider losses because this is the standard

approach taken by the power industry, and in fact losses are not relevant con-

sidering that the robust approach takes into account the worst case, which

corresponds to large demand values and low generation capacity from renew-

able units. In this scenario losses do not play a role in selecting which units

to produce.

1.4. Paper Structure

The rest of the paper is structured as follows. Section 2 describes the ro-

bust formulation of the DTNRGEP problem. The proposed decomposition

method to solve the problem is described in Section 3. Section 4 provides nu-

merical results for two examples. Finally, in Section 5 important conclusions

are drawn.

2. Robust Dynamic Transmission Network and Renewable Gener-

ation Expansion Planning Formulation

TEP and GEP have been traditionally dealt with independently, however

we follow the strategy given by [45] that considers the perspective of a central

planner. This central planner determines the generation and transmission

expansion plan that is optimal for the operation of the electric system as

a whole. Thus, the central planner is responsible for carrying out optimal
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transmission plans and for setting incentives for private investors to build

the most appropriate generation facilities for the system.

Based on the assumption above and the robust model presented in [39]

for the dynamic transmission expansion planning problem under uncertainty,

the formulation of the robust DTNRGEP problem can be made as a mixed-

integer trilevel problem, where inner levels can also be decoupled by time

period as shown in Figure A.1: 1) the upper-level is associated with identi-

fication of the least-cost expansion and generation plan; 2) the middle level

characterizes, the worst case realization of uncertainty sources for a given

upper-level investment plan, for each time period considered, and 3) the

lower level also provides the optimal system operation for given upper-level

investment decisions and middle-level uncertainty realizations for each time

period considered.

2.1. Upper-level problem

The most important variables for the upper-level correspond to binary

variables x
(t)
k which represent new line k construction at the beginning of

year t, and binary variable y
(t)
i which represents new generator i construction

at the beginning of year t. The description of the remaining variables can

be found in the notation section at the beginning of the manuscript. The

detailed formulation of the upper-level problem is as follows:

Minimize

x
(t)
k , x̃

(t)
k , y

(t)
i , ỹ

(t)
i

∑
t∈T

1

(1 + I)t−1

(∑
k∈L+

cLIk x
(t)
k

+
∑

i∈G+∪G+
g ;∀g

cGI
i y

(t)
i +

c
(t)
op

(1 + I)

 ; (1)
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subject to

ΠL ≥
∑
t∈T

∑
k∈L+

1

(1 + I)t−1
cLIk x

(t)
k (2)

x̃
(t)
k = 1; ∀k ∈ L,∀t ∈ T (3)

x̃
(t)
k =

p=t∑
p=1

x
(p)
k ; ∀k ∈ L+,∀t ∈ T (4)

∑
t∈T

x
(t)
k ≤ 1; ∀k ∈ L+ (5)

x
(t)
k ∈ {0, 1}; ∀k ∈ L+,∀t ∈ T (6)

ΠG ≥
∑
t∈T

∑
i∈G+∪G+

g ;∀g

1

(1 + I)t−1
cGI
i y

(t)
i (7)

ỹ
(t)
i = 1; ∀i ∈ G,∀t ∈ T (8)

ỹ
(t)
i =

p=t∑
p=1

y
(p)
i ; ∀i ∈ G+ ∪ G+

g ;∀g; ∀t ∈ T ; (9)

∑
t∈T

y
(t)
i ≤ 1; ∀i ∈ G+ ∪ G+

g ;∀g (10)

y
(t)
i ∈ {0, 1}; ∀i ∈ G+ ∪ G+

g ;∀g;∀t ∈ T (11)

ỹ
(t)
i = 1; ∀i ∈ G−,∀t = 1, ..., tG

−

i (12)

ỹ
(t)
i = 0; ∀i ∈ G−,∀t = tG

−

i + 1, ..., Ny (13)

y
(t)
i+1 ≤ ỹ

(t)
i ;∀i ∈ G+

g ;∀g;∀t ∈ T (14)

y
(t)
i+1 + y

(t)
i ≤ 1;∀i ∈ G+

g ;∀g; ∀t ∈ T ; (15)

where the objective function (1) is the total net present cost (NPC) (its

derivation can be found at Appendix A), which comprises three terms,

namely the investment costs for expansion and generation, and the worst-

case operation cost which is made up of the middle and lower level problems,
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which will be disaggregated in the following subsections. Equations (2)-(6)

are the constraints related to the construction of lines as presented in [39],

which: i) limit the maximum expansion investment (eq. 2), ii) force the

line status to 1 for all existing transmission lines at the beginning (eq. 3),

and iii) once the line has been constructed (eq. 4), iv) ensure that no line

is constructed more than once throughout the time horizon considered (eq.

5), and v) establish the binary nature of line investment decisions (eq. 6).

Constraints (7)-(15) are novel and associated with generation facilities. Con-

straint (7) keeps the maximum amount of generation investment within the

available budget. Constraint (8) makes the generation status equal to 1 for

all existing generation facilities at the beginning of the time horizon consid-

ered which cannot be dismantled (belonging to set G). Constraint (9) makes

the generation status equal to 1 once any generation facility belonging to set

G+ ∪ G+
g is constructed, while constraint (10) ensures that no generation fa-

cility is constructed more than once. Restriction (11) establishes the binary

nature of generation investment decisions. For generators to be dismantled

during the study period (∀i ∈ G−), constraint (12) makes the generation i

status equal to 1 until the facility is dismantled, i.e. t ≤ tG
−

i , while constraint

(13) makes the status equal to 0 once it is dismantled, i.e. t > tG
−

i . Con-

straints (14) and (15) ensure that for each generation group to be constructed

in consecutive phases, the order of construction is sequential according to the

generator set G+
g order, thus phase i+ 1 cannot be constructed before phase

i. Note that it would be simple to consider the possibility of dismantling old

lines in a similar fashion to the generation case by adapting constraints (12)

and (13).
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2.2. Middle-level problems

Given the values of the first-stage decision variables x
(t)
k , y

(t)
i , it is pos-

sible to establish the statuses of lines and generators x̃
(t)
k , ỹ

(t)
i required for

the middle- and lower-level problems (eqs. (4) and (9), respectively). Each

middle-level problem identifies the worst-case uncertainty realizations yield-

ing the largest operating cost c
(t)
op in (1) for each period t; ∀t ∈ T . The

detailed formulation of the middle level-problem for one period t is as fol-

lows:

c(t)op = Maximum

u(t) ∈ U (t)

c
(t)
o (16)

subject to

u
G(t)
i = ūG

i − ûG
i z

G(t)
i ;

∀i ∈ G ∪ G+ ∪ G− ∪ G+
g ;∀g (17)

u
D(t)
j = ūD

j h
(t)
µ,j + ûD

j h
(t)
σ,jz

D(t)
j ;

∀j ∈ D (18)∑
i∈G∪G+∪G−∪G+

g ;∀g

z
G(t)
i ≤ ΓG

(
ỹ
(t)
i ,∀i

)
(19)

∑
j∈D

z
D(t)
j ≤ ΓD (20)

z
G(t)
i ∈ {0, 1};∀i ∈G ∪ G+ ∪ G− ∪ G+

g ;∀g (21)

z
D(t)
j ∈ {0, 1};∀j ∈D (22)

z
G(t)
i ≤ ỹ

(t)
i ;∀i ∈G ∪ G+ ∪ G− ∪ G+

g ;∀g. (23)

Equation (16) represents the worst operational costs, where generation and

load-shedding costs are at a maximum with respect to uncertain parameters.
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Constraints (17)-(22) define the polyhedral uncertainty set similarly as done

in [39]. Random generation capacity u
G(t)
i depends on binary variable z

G(t)
i ,

if the binary variable z
G(t)
i is 1, maximum generation capacity is set to the

nominal value ū
G(t)
i minus the maximum deviation allowed from the nominal

value û
G(t)
i , otherwise maximum generation capacity is set to the nominal

value ū
G(t)
i . The uncertain demand values u

D(t)
j , are analogous to the values

shown above although in this particular case, demand nominal values and

dispersion are allowed to evolve during the time horizon using parameters h
(t)
µ,j

and h
(t)
σ,j. These parameters enable us to configure variation in demand values

and their uncertainties over time (see reference [39] for more details). Note

that constraints (17) and (18) take advantage of the fact prescribed by [19]

that the worst case is when generation capacities are as low as possible and

demand values are as high as possible. The level of uncertainty is controlled

throughout the uncertainty budgets ΓG and ΓD, which sets the maximum

number of generators whose maximum capacity might be different from their

nominal values and the maximum load levels that might change in relation

to nominal values, respectively. This is in contrast to reference [39] where

the uncertainty budget for power generation was constant. In this case the

uncertainty budget for each time period ΓG is a function of the number

of active generators for each period, i.e. ỹ
(t)
i ,∀i. The reader is reminded

that the uncertainty budget is the maximum number of generators whose

maximum capacity is allowed to depart from their nominal values, if the

number of generators increases, the uncertainty budget should also rise to

keep a comparable level of protection against uncertainty. Note that what the

appropriate selection of this function is ΓG
(
ỹ
(t)
i ,∀i

)
, lies beyond the scope
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of the paper. Finally, constraint (23) is also new in this paper and sets the

binary variables related to generators to zero in case the generators are not

active at time period t, thus they cannot account for the uncertainty budget

in (19).

Wind farms might be modelled assuming that the corresponding uncer-

tainty set, associated with generation capacity, must range between zero and

the expected or average power production. This means that this type of gen-

erating units might be incapable of producing energy under the worst case

setting, which represent the no wind case.

2.3. Lower-level problems

Finally, the middle-level variables required for the lower-level problems

are maximum generation capacities u
G(t)
i and demand values u

D(t)
j . In the

lower-level problem, the operating cost c
(t)
o for given values of upper- and

middle-level variables is minimized with respect to operational decisions for

each time period t. The detailed formulation for a given time period t is

given as follows. Note that the dual variables associated with constraints are

provided separated by a colon.

c(t)o = Minimum

g
(t)
i , p

(t)
j , r

(t)
j ,

θ
(t)
n , f

(t)
k

σ
∑

i∈G∪G+∪G−∪G+
g ;∀g

cGi g
(t)
i +

+σ
∑
j∈D

cSj r
(t)
j

)
; (24)
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subject to ∑
i∈ΨG

n

g
(t)
i −

∑
k|o(k)=n

f
(t)
k +

∑
k|r(k)=n

f
(t)
k +

∑
j∈ΨD

n

r
(t)
j

=
∑
j∈ΨD

n

p
(t)
j : λ(t)

n ; ∀n ∈ N ; (25)

f
(t)
k = bkx̃

(t)
k (θ

(t)
o(k) − θ

(t)
r(k)) : ϕ

(t)
k ; ∀k ∈ L ∪ L+; (26)

θ(t)n = 0 : χ(t)
n ; n : slack (27)

f
(t)
k ≤ fmax

k : ϕ̂
(t)
k ; ∀k ∈ L ∪ L+ (28)

f
(t)
k ≥ −fmax

k : ϕ̌
(t)
k ; ∀k ∈ L ∪ L+ (29)

θ(t)n ≤ π : ξ̂(t)n ; ∀n ∈ N\n : slack (30)

θ(t)n ≥ −π : ξ̌(t)n ; ∀n ∈ N\n : slack (31)

g
(t)
i ≥ 0;

∀i ∈ G ∪ G+ ∪ G− ∪ G+
g ;∀g (32)

r
(t)
j ≥ 0; ∀j ∈ D (33)

p
(t)
j = u

D(t)
j : α

D(t)
j ; ∀j ∈ D (34)

g
(t)
i ≤u

G(t)
i ỹ

(t)
i : φ

G(t)
i ;

∀i ∈G ∪ G+ ∪ G− ∪ G+
g ; ∀g (35)

r
(t)
j ≤e

(t)
j u

D(t)
j : φ

D(t)
j ; ∀j ∈ D. (36)

Equation (24) represents the minimum(lower-level)-worst(middle-level)

operational costs, where generation and load-shedding costs are at a max-

imum. The weighting factor σ is used to make investment decisions and

worst-case operating costs comparable quantities. Constraints (25)-(33) rep-

resent operational constraints such as setting the power balance, line flows,
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reference bus, flow and voltage angle limits, etc. Check reference [39] for more

details about these constraints. Restriction (34) makes the level of demand

match the uncertain demand variable. Constraint (35) is novel and sets the

power generation to be lower than the uncertain generation capacity variable

multiplied by the binary variable ỹ
(t)
i , which establishes if the corresponding

generator is active for period t. If it is not, i.e. ỹ
(t)
i = 0, the power generation

is set to zero. Constraint (36) limits load-shedding to a percentage of the

uncertain demand variable.

3. Solution approach

The aim of this section is to extend the decomposition method presented

in [39] to solve the robust DTNRGEP problem described in Section 2. The

solution procedure consists of a column-and-constraint generation algorithm

[46] where the max-min middle- and lower-level problems are transformed

into a single level problem, the so called subproblem, using duality. Thus,

the initial three-level formulation (1)-(36) is transformed into a two-level

problem: master and subproblem. The master problem and the subproblem

are iteratively solved as described below and followed by an outline of the

proposed iterative process.

3.1. Master problem

The master problem constitutes a relaxation of problem (1)-(36) where

a set of operating constraints are iteratively added. The addition of such

constraints is set up with information from the subproblem, and it enables

a more robust expansion plan to be obtained at each iteration. At iteration

ν of the column-and-constraint generation algorithm, the master problem is
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formulated as the following mixed-integer linear program:

Minimize

x
(t)
k , x̃

(t)
k , y

(t)
k , ỹ

(t)
k ,

g
(t)
i,l , p

(t)
j,l , r

(t)
j,l , θ

(t)
n,l, f

(t)
k,l

l = 1, . . . , ν − 1

∑
t∈T

1

(1 + I)t−1

(∑
k∈L+

cLIk x
(t)
k

+
∑

i∈G+∪G+
g ;∀g

cGI
i y

(t)
i + γ(t)

 ;

(37)

subject to

Constraints (2)− (15) (38)

γ(t) ≥ σ

(1 + I)

∑
i∈G∪G+

∪G−∪G+
g ;∀g

cGi g
(t)
i,l +

σ

(1 + I)

∑
j∈D

cSj r
(t)
j,l ;

∀t ∈ T , l = 1, . . . , ν − 1 (39)

γ(t) ≥ 0; ∀t ∈ T (40)

23



∑
i∈ΨG

n

g
(t)
i,l −

∑
k|o(k)=n

f
(t)
k,l +

∑
k|r(k)=n

f
(t)
k,l +

∑
j∈ΨD

n

r
(t)
j,l

=
∑
j∈ΨD

n

p
(t)
j,l : λ

(t)
n,l; ∀n ∈ N ;∀t ∈ T ; l = 1, . . . , ν − 1 (41)

f
(t)
k,l = bkx̃

(t)
k (θ

(t)
o(k),l − θ

(t)
r(k),l) : ϕ

(t)
k,l; ∀k ∈ L ∪ L+;∀t ∈ T ; l = 1, . . . , ν − 1

(42)

θ
(t)
n,l = 0 : χ

(t)
n,l; n : slack;∀t ∈ T ; l = 1, . . . , ν − 1 (43)

f
(t)
k,l ≤ fmax

k : ϕ̂
(t)
k,l; ∀k ∈ L ∪ L+;∀t ∈ T ; l = 1, . . . , ν − 1 (44)

f
(t)
k,l ≥ −fmax

k : ϕ̌
(t)
k,l; ∀k ∈ L ∪ L+;∀t ∈ T ; l = 1, . . . , ν − 1 (45)

θ
(t)
n,l ≤ π : ξ̂

(t)
n,l; ∀n ∈ N\n : slack;∀t ∈ T ; l = 1, . . . , ν − 1 (46)

θ
(t)
n,l ≥ −π : ξ̌

(t)
n,l; ∀n ∈ N\n : slack;∀t ∈ T ; l = 1, . . . , ν − 1 (47)

g
(t)
i,l ≥ 0;

∀i ∈ G ∪ G+ ∪ G− ∪ G+
g ;∀g;∀t ∈ T ; l = 1, . . . , ν − 1 (48)

r
(t)
j,l ≥ 0; ∀j ∈ D;∀t ∈ T ; l = 1, . . . , ν − 1 (49)

p
(t)
j,l = u

D(t)
j,l : α

D(t)
j,l ; ∀j ∈ D; ∀t ∈ T ; l = 1, . . . , ν − 1 (50)

g
(t)
i,l ≤u

G(t)
i,l ỹ

(t)
i : φ

G(t)
i,l ;

∀i ∈G ∪ G+ ∪ G− ∪ G+
g ;∀g;∀t ∈ T ; l = 1, . . . , ν − 1 (51)

r
(t)
j,l ≤e

(t)
j u

D(t)
j,l : φ

D(t)
j,l ; ∀j ∈ D;∀t ∈ T ; l = 1, . . . , ν − 1; (52)

where the additional decision variables g
(t)
i,l , p

(t)
j,l , r

(t)
j,l , θ

(t)
n,l, and f

(t)
k,l , corre-

sponding to g
(t)
i , p

(t)
j , r

(t)
j , θ

(t)
n , and f

(t)
k , respectively, are associated with

the demand values and generation capacities identified by the subproblem at

iteration l through u
D(t)
j,l and u

G(t)
i,l .

The objective function (37) is identical to (1) except for the last term

associated with operational costs, where
c
(t)
op

(1+I)
is replaced by γ(t) that relates
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to year on year operational costs, and it represents the pointwise maximum

within all linear approximations of
c
(t)
op

(1+I)
. Expression (38) includes upper-

level constraints. Constraints (39) are primal decomposition cuts, where the

operating costs corresponding to the uncertainty realizations identified at

iteration l represent lower bounds for each γ(t). The nonnegativity of each

γ(t) is imposed in (40). Finally, constraints (41)-(52) correspond to lower-

level constraints (25)-(36).

3.2. Subproblems

At each ν iteration of the column-and-constraint generation algorithm,

the subproblem, for each time period, determines the worst-case uncertainty

realizations yielding the maximum operating cost for a given upper-level

decision provided by the previous master problem. Mathematically, each

subproblem is a mixed-integer linear max-min problem comprising the two

lowermost optimization levels (16)-(36) parameterized in terms of the upper-

level decision variables given x̃
(t)
k,ν , ỹ

(t)
i,ν , which is cast as a single-level equivalent

that relies on duality theory. Thus, operating costs c
(t)
op for each time period

t; ∀t ∈ T are obtained as follows:

c(t)op= Maximize

u(t), λ
(t)
n , ϕ

(t)
k , χ

(t)
n , ϕ̂

(t)
k ,

ϕ̌
(t)
k , ξ̂

(t)
n , ξ̌

(t)
n , α

D(t)
j , φ

G(t)
i , φ

D(t)
j



∑
k∈L∪L+

(
ϕ̂
(t)
k − ϕ̌

(t)
k

)
fmax
k +

∑
n∈N\n:slack

π
(
ξ̂(t)n − ξ̌(t)n

)
+

∑
i∈G∪G+∪G−∪G+

g ;∀g

(
u
G(t)
i ỹ

(t)
i,νφ

G(t)
i

)
+
∑
j∈D

(
u
D(t)
j α

D(t)
j +e

(t)
j u

D(t)
j φ

D(t)
j

)


(53)
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subject to:

λ
(t)
n(i) + φ

G(t)
i ≤ σ

(1 + I)
cGi ;

∀i ∈ G ∪ G+ ∪ G− ∪ G+
g ;∀g (54)

− λ
(t)
n(j) + α

D(t)
j ≤ 0; ∀j ∈ D (55)

λ
(t)
n(j) + φ

D(t)
j ≤ σ

(1 + I)
cSj ; ∀j ∈ D (56)

− λ
(t)
o(k) + λ

(t)
r(k) + ϕ

(t)
k + ϕ̂

(t)
k + ϕ̌

(t)
k = 0;

∀k ∈ L ∪ L+ (57)

−
∑

k|o(k)=n

bkx̃
(t)
k,νϕ

(t)
k +

∑
k|r(k)=n

bkx̃
(t)
k,νϕ

(t)
k

+ ξ̂(t)n + ξ̌(t)n = 0; ∀n ∈ N\n : slack (58)

−
∑

k|o(k)=n

bkx̃
(t)
k ϕ

(t)
k +

∑
k|r(k)=n

bkx̃
(t)
k ϕ

(t)
k

+ χ(t)
n = 0; n : slack (59)

−∞ ≤ λ(t)
n ≤ ∞; ∀n ∈ N (60)

−∞ ≤ ϕ
(t)
k ≤ ∞; ∀k ∈ L ∪ L+ (61)

−∞ ≤ χ(t)
n ≤ ∞; n : slack (62)

ϕ̂
(t)
k ≤ 0; ∀k ∈ L ∪ L+ (63)

ϕ̌
(t)
k ≥ 0; ∀k ∈ L ∪ L+ (64)

ξ̂(t)n ≤ 0; ∀n ∈ N\n : slack (65)

ξ̌(t)n ≥ 0; ∀n ∈ N\n : slack (66)

−∞ ≤ α
D(t)
j ≤ ∞; ∀j ∈ D (67)
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φ
G(t)
i ≤ 0; ∀i ∈ G ∪ G+ ∪ G− ∪ G+

g ;∀g (68)

φ
D(t)
j ≤ 0; ∀j ∈ D (69)

Constraints (17)-(22) (70)

z
G(t)
i ≤ ỹ

(t)
i,ν ;∀i ∈G ∪ G+ ∪ G− ∪ G+

g ;∀g. (71)

Subproblems (53)-(71) result from substituting the third-level problem by

its dual in problem (16)-(23) for each time period t. An important aspect of

resolution of subproblems is the linearization of bilinear terms in the objec-

tive function (53), i.e.,
∑

i∈G∪G+∪G−∪G+
g ;∀g

(
u
G(t)
i ỹ

(t)
i,νφ

G(t)
i

)
+
∑

j∈D

(
u
D(t)
j α

D(t)
j +

e
(t)
j u

D(t)
j φ

D(t)
j

)
. The linearization process is described in more detail in [20].

Note that variable ỹ
(t)
i,ν is considered a parameter within our subproblem.

Maximization of the operating cost is subject to middle-level constraints

(17)-(22), as formulated in (70) and (71). These subproblems provide the

next uncertain parameter values u(t) within the uncertainty sets to give the

least desirable operational costs for each year, which will be used next in the

master problem.

The resulting formulation (53)-(71) is a mixed-integer linear programming

problem, which can be solved by using state-of-the-art mixed-integer math-

ematical programming solvers such as CPLEX or Gurobi, thereby ensuring

a global optimum is achieved.

3.3. Solution method

Once the master problem and subproblem formulations are given, the

solution method consists of solving the following problems by iteration:

Master problem: For given realizations of the uncertain parameters

obtained from subproblems at the previous iterations, new first-stage
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variable x̃
(t)
k,ν , ỹ

(t)
i,ν values are calculated by means of (37)-(52). The lower

bound for the optimal objective function is updated

z(lo) =
∑
t∈T

1

(1 + I)t−1

(∑
k∈L+

cLIk x
(t)
k,ν +

∑
i∈G+∪G+

g ;∀g

cGI
i y

(t)
i,ν + γ(t)

)
.

Subproblems, one for each year: For given values of the first-stage

decision variables x̃
(t)
k,ν , ỹ

(t)
i,ν , uncertain parameters within the uncer-

tainty set which give the least desirable operational costs (16), i.e. u
(t)
ν

and c
(t)
op,ν , respectively, are calculated by solving subproblems in (53)-

(71). The upper bound for the optimal objective function is updated

z(up) =
∑
t∈T

1

(1 + I)t−1

(∑
k∈L+

cLIk x
(t)
k,ν +

∑
i∈G+∪G+

g ;∀g

cGI
i y

(t)
i,ν + c(t)op,ν

)
.

The iterative scheme put forward is described step by step in the following

algorithm:

Algorithm 3.1. (Robust Dynamic Transmission Network and Re-

newable Generation Expansion Planning).

Input: Selection of uncertainty budgets ΓG and ΓD, time periods to divide

the time horizon, interest rate I, definition of the uncertainty sets for

each time period, definition of the prospective lines sets L+, prospective

and independent generators G+, prospective and independent genera-

tors to be installed at different phases G+
g , generators to be dismantled

G− and process tolerance ε. These data are selected by the decision

maker.
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Step 1: Initialization. Initialize the iteration counter to ν = 1, and upper

and lower bounds for the objective function z(up) = ∞ and z(lo) = −∞.

Step 2: Solving the master problem at iteration ν. Solve the master

problem (37)-(52). The result provides values of the decision variables

x
(t)
k,ν , y

(t)
i,ν and γ(t). Update the lower bound for the optimal objec-

tive function z(lo) =
∑

t∈T
1

(1+I)t−1 (
∑

k∈L+ cLIk x
(t)
k,ν+

∑
i∈G+∪G+

g ;∀g c
GI
i y

(t)
i,ν+

γ(t)). Note that at the first iteration the optimal solution matches the

no investment case. Alternatively, we could start with any other vector

for decision variables.

Step 3: Solving subproblems at iteration ν for each year t. For

given values of the decision variables x
(t)
k,ν , y

(t)
i,ν , we calculate the least

desirable operational costs within the uncertainty set c
(t)
op,ν , whereby

we also obtain the corresponding uncertain parameters u
(t)
ν . This is

achieved by solving subproblems (53)-(71). Update the upper bound for

the optimal objective function z(up) =
∑

t∈T
1

(1+I)t−1 (
∑

k∈L+ cLIk x
(t)
k,ν +∑

i∈G+∪G+
g ;∀g c

GI
i y

(t)
i,ν + c

(t)
op,ν).

Step 4: Convergence checking. If (z(up) − z(lo))/z(up) ≤ ε go to Step 5,

else update the iteration counter ν → ν + 1 and continue from Step 2.

Step 5: Output. The solution for a given tolerance corresponds to x
(t)∗
k =

x
(t)
k,ν and y

(t)∗
i = y

(t)
i,ν .

The advantage of this bi-level formulation given by (37)-(52) and (53)-

(71) is that it has the same problem structure as that defined by [46], and
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therefore the proposed column-and-constraint generation method guarantees

convergence to a global optimum.

4. Examples

In this section, the numerical results for an illustrative example based

on the Garver system [30] and a case study using the IEEE 118-bus test

system [47] are shown to analyze the joint study of transmission network

and generation expansion planning.

All numerical tests have been implemented and solved using CPLEX

within GAMS [48] on a Windows DELL PowerEdge R920 server with two

Intel Xeon E7−4820 processors clocking at 2 GHz and 768 Gb of RAM. The

tolerance for stopping in all cases is equal to ε = 10−6.

4.1. Illustrative Example. Garver’s 6-bus System

The model is initially tested on the Garver’s 6-bus system depicted in

Figure A.2. This system is composed of 6 buses, 3 generators, 5 levels of

inelastic demand and 6 lines. Data for generation and demand capacities,

and supply and bidding prices are given in [20]. The load-shedding cost is

equal to one hundred times the bidding price for each level of demand. Line

data are obtained from Table I of reference [32], including construction costs.

Regarding expansion possibilities, 6 generation units and 3 transmission

lines between each pair of buses could be installed. The characteristics of

potential generation units, which are assumed to be wind units, are shown in

Table A.1. The first three generation units belong to one group (g = 1) to be

constructed and installed in phases (at different times) at the same bus 1, so

if the model decides to include them in generation expansion planning they
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must be installed sequentially, i.e. G+
1 ≡ {4, 5, 6}. In addition, it is known

that the existing generator at bus 1 is going to be dismantled at time period

8 because it will have reached the end of its useful life, i.e. G− ≡ {1}. The

remaining sets associated with generation are G ≡ {2, 3} and G+ ≡ {7, 8, 9}.

Operational and investment costs for generators is presented in Table A.1.

As regards the characteristics of the new possible transmission lines, they

are also attained from Table I of reference [32]. The maximum available

investment budget for transmission lines is 40 million euros.

The time horizon considered is 25 years and the discount rate is 10%.

The weighted factor σ is equal to the number of hours in one year, i.e. 8760,

so that the load-shedding and power generation costs are related to years,

which can be compared with the annualized investment cost.

Regarding the uncertainty sets, the maximum capacity of conventional

generators can decrease by up to 50% with respect to their nominal values,

i.e. ûG
i = 0.5ūG

i ; i = 1, 2, 3, while for renewable generators their maximum

capacity can decrease by 100% with respect to their nominal values, i.e. ûG
i =

ūG
i ; i = 4, . . . , 9. Load levels may change by a maximum of 20% with respect

to their nominal values, i.e. ûD
j = 0.2ūD

j ; j = 1, . . . , 5. Finally, annual growth

rates for load nominal values and dispersion are equal to 1.2%, i.e. h
(t)
µ,j =

h
(t)
σ,j = 1.012(t−1). Four case studies are analyzed, considering two different

combinations of uncertainty budgets associated with generation capacities

and demand values and two different generation investment budgets. It is

worth stressing that the inclusion of new generators implies updating the

uncertainty budget associated with generation, we use the following step

function to define ΓG
(
ỹ
(t)
i ,∀i

)
: if 1 or 2 generators are built, the generation
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uncertainty budget increases by one unit; if 3 or 4 generators are built, the

uncertainty budget increases by two units; and finally, if 4 or 5 generators

are built, the uncertainty budget increases by three units. Results about

investment cost, and lines and generators built for each case study using the

proposed model are given in Table A.2. Investment costs in Table A.2 are

split into line and generation investments, respectively. From this table the

following observations are outstanding:

• Case a), generation expansion:

– Building generation unit 4 at period 1, the system almost has

enough generation capacity to supply demand for the worst pos-

sible scenario. There is a slight amount of load shedding, but the

construction of an additional generation unit is not profitable at

this time.

– Since demand progressively increases from period to period, it is

required to build generation unit 5 at period 2, and generation

units 6 and 9 at period 3. Note that generation units at bus 1 are

built sequentially in three different phases according to constraint

(14).

– In period 8, unit 1 (150 MW) is dismantled, which force the con-

struction of generation unit 8 (200 MW).

– Given the generation units built at periods 23, 24 and 25, the

system almost has enough generation capacity to supply demand

for the worst possible scenario. There is a slight amount of load

32



shedding, but the construction of an additional generation unit is

not possible because of the budget limitation.

• Case a), line capacity expansion:

– Most of the constructed lines connect the 600MW generation unit

(bus 6) with the rest of the system.

– The rest of lines reinforce the system to allow generation to reach

demand buses.

• Case b), generation expansion: Even though the budget has in-

creased with respect to case a) and we could build additional generation

units, the solution is exactly the same in terms of construction of gen-

eration units. The reason is that the slight amount of load shedding,

corresponding to the worst possible case at periods 23, 24 and 25, does

not make the investment in an additional generation unit profitable.

• Case c), generation expansion: This case increases uncertainty

budget with respect to case a), therefore, generation capacity require-

ments come at earlier periods. In particular, generation unit 9 (100MW)

is built at period 1 instead of period 3. In contrast, the construction

of generation units 5 and 6 can be delayed from periods 2 and 3 to

periods 4 and 5, respectively.

• Case c), line capacity expansion: The increment of generation

capacity at earlier periods forces more lines to be built at period 1 with

respect to case a).
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• Case d), generation expansion: This case increases uncertainty

budget with respect to case c). This budget increment allows to build

generation unit 7 at period 2 instead of generation unit 8 at period 8.

Regarding computational tractability, the number of iterations required

are 16, 15, 10 and 16, respectively, for study cases a), b), c) and d). The

maximum computing time is eight hours for case a).

4.2. IEEE 118-bus test system example

We also apply the proposed model on a bigger and more realistic case

using the IEEE 118-bus test system [47] which is composed of 118 buses, 186

existing lines, 54 generators and 91 loads. We assume that the generator

located at bus 4 stops working at period 8 because it reaches the end of its

useful life, i.e. G− ≡ {4}. Generation capacities and demand loads can be

found in [20]. The load-shedding cost is ten times the bidding price of each

level of demand. Additionally, the same 61 existing lines given in [20] can be

duplicated to build additional lines. Data for all lines are taken from [47].

The characteristics of new possible generators are shown in Table A.3 and

there are two groups of generators to be installed sequentially at buses 4 and

20, i.e. G+
1 ≡ {56, 57, 58} and G+

2 ≡ {64, 65, 66}. The investment budgets

for the generators and transmission lines are 1,500 and 100 million euros,

respectively. The discount rate is 10% and the time horizon is 25 years.

Due to uncertainty, conventional generators can decrease by 50% with

respect to their nominal values, i.e. ûG
i = 0.5ūG

i ; i = 1, . . . , 54, while for

renewable generators their maximum capacity can decrease by 100% with

respect to their nominal values, i.e. ûG
i = ūG

i ; i = 55, . . . , 84. Demand levels
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may change by up to of 50% with respect to their nominal values. Annual

growth rates for load nominal values and dispersion are equal to 1.2%, i.e.

h
(t)
µ,j = h

(t)
σ,j = 1.012(t−1).

Using the following uncertainty budgets ΓG = 15 and ΓD = 20, the DT-

NRGEP approach provides a total investment cost of 1,599.574 million euros,

1,499.666 million euros for constructing the generators shown in Table A.4

and 99.908 million euros for constructing the lines 187, 189, 191, 192, 203,

204, 205, 206, 207, 211, 223, 226, 241. Lines 189 and 204 are constructed at

periods 15 and 3, respectively, while the remaining lines are constructed at

the beginning of the time period considered. In terms of operational costs,

a total of 1.069 billion euros are needed, of which 360.961 million euros are

required for load-shedding.

Note that as in the previous example, the sequential installation of the

corresponding generators is respected. Thus, three generators are built at pe-

riods 1, 2 and 3, respectively, at bus 20. Regarding computational tractabil-

ity, 5 iterations are required to reach convergence in a computational time of

4 hours and 28 minutes.

5. Conclusions

In this paper the use of robust optimization for solving the dynamic

transmission and renewable generation expansion planning problem has been

extended. The model put forward herein provides the initial design and the

expansion plan as regards forthcoming years in terms of where and when

new lines and/or generators have to be constructed. It may be assumed

that the probability distributions for the random variables (uncertainty sets)
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change between consecutive years. The model set out herein provides an

integrated approach for reaching the global optimal solution, and overcomes

the size limitations and computational intractability associated with this type

of problem for realistic cases.

We have solved an example with a network of 118 buses, which is a fairly

large network considering the benchmark examples traditionally used in the

technical literature. Results show that it has potential for application to

bigger networks, especially since it is an off-line problem. Nevertheless, our

computational experiments also show that the number of binary variables

defining possible network and generation unit expansions is more important

than the network size. In addition, the following additional conclusions are

in order:

1. Generation and transmission expansion decisions are highly conditioned

by uncertainties.

2. Even though the cost of building new transmission lines is much lower

than the cost of building new generation units. Generation expansion

plans are highly conditioned by transmission expansion decisions.

3. Uncertainty budgets affect expansions plans considerably.

4. For the same uncertainty budgets, the solutions associated with dif-

ferent investment budgets are not incremental, hence the necessity to

consider the year-by-year dynamics of the problem.

In summary, the model put forward herein constitutes a valuable tool for

the difficult task of transforming conventional power systems into sustainable

systems. Inclusion of losses is a subject for further research.

36



Acknowledgments

C. Roldán, A. A. Sánchez de la Nieta, and R. Garćıa-Bertrand are partly
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Appendix A. Objective function derivation

This appendix justifies the selection of the objective function used in this

study and proves that it is coherent with expressions given in the technical

literature.

Traditionally, transmission and generation expansion planning research

studies only consider one target year (static approach), and planning and

investment costs are calculated annually as follows:

R

∑
k∈L+

cLIk x
(0)
k +

∑
i∈G∪G+

∪G−∪G+
g ;∀g

cGI
i y

(0)
i

+ σ

 ∑
i∈G∪G+

∪G−∪G+
g ;∀g

cGi g
(0)
i +

∑
j∈D

cSj r
(0)
j

 ,

(A.1)

where R is the capital recovery factor, calculated as R =
I(1 + I)ny

(1 + I)ny − 1
, and

ny is the number of years considered for investment. Note that superscript

“0” in (A.1) refers to the target year. Cost (A.1) is the total annualized

cost, which corresponds to the annualized value of the total net present cost.

However, as we have considered the dynamic version, the objection function
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used in this study corresponds to the total net present cost, given as follows:

∑
t∈T

1

(1 + I)t−1


∑
k∈L+

cLIk x
(t)
k +

∑
i∈G∪G+

∪G−∪G+
g ;∀g

cGI
i y

(t)
i +

σ

 ∑
i∈G∪G+

∪G−∪G+
g ;∀g

cGi g
(t)
i +

∑
j∈D

cSj r
(t)
j


(1 + I)


.

(A.2)

Both expressions must be equivalents for the static case. Assuming that

i) investment costs are made at the beginning of the study period (t = 1)

and ii) operating costs are constant throughout the study period, expression

(A.2) simplifies as follows:∑
k∈L+

cLIk x
(1)
k +

∑
i∈G∪G+

∪G−∪G+
g ;∀g

cGI
i y

(1)
i

+
∑
t∈T

σ

(1 + I)t
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i∈G∪G+

∪G−∪G+
g ;∀g

cGi g
(1)
i +
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j∈D

cSj r
(1)
j

 .

(A.3)

If we divide equation (A.3) by constant factor
∑
t∈T

1

(1 + I)t
, it becomes:

R

∑
k∈L+

cLIk x
(1)
k +

∑
i∈G∪G+

∪G−∪G+
g ;∀g

cGI
i y

(1)
i

+ σ

 ∑
i∈G∪G+

∪G−∪G+
g ;∀g

cGi g
(1)
i +

∑
j∈D

cSj r
(1)
j

 ,

(A.4)

because

(∑
t∈T

1

(1 + I)t

)−1

= R, which implies that both expressions (A.1)

and (A.2) provide the same optimal expansion plans with the static case

assumption. However, only expression (A.2) allows for changes during the

study period, which is why it is used in this study.

38



References

[1] Kyoto protocol, Available: http://unfccc.int/kyoto protocol/items/2830.php.

[2] S. Lumbreras, A. Ramos, The new challenges to transmission expansion

planning. Survey of recent practice and literature review, Electric Power

Systems Research 134 (2016) 19–29.

[3] X. Wang, J. R. McDonald, Modern power system planning, McGraw-

Hill Companies, Singapore, 1994.

[4] R. Hemmati, R.-A. Hooshmand, A. Khodabakhshian, Comprehensive

review of generation and transmission expansion planning, IET Gener-

ation, Transmission & Distribution 7 (9) (2013) 955–964.

[5] G. Latorre, R. D. Cruz, J. M. Areiza, A. Villegas, Classification of pub-

lications and models on transmission expansion planning, IEEE Trans-

actions on Power Systems 18 (2) (2003) 938–946.

[6] O. Vishwamitra, S. H. Sayed Z., F. Peter J., Generation expansion plan-

ning optimisation with renewable energy integration: A review, Renew-

able and Sustainable Energy Reviews 69 (2017) 790–803.

[7] B. Gorenstin, N. Campodonico, J. Costa, M. Pereira, Power system ex-

pansion planning under uncertainty, IEEE Transactions on Power Sys-

tems 8 (1) (1993) 129–136.

[8] J. M. Morales, A. J. Conejo, H. Madsen, P. Pinson, M. Zugno, Inte-

grating renewables in electricity markets. Operational problems, Inter-

39



national Series in Operations Research & Management Science, Springer

Science & Business Media, New York, 2013.

[9] J. R. Birge, F. Louveaux, Introduction to stochastic programming,

Springer Series in Operations Research & Financial Engineering,

Springer Science & Business Media, New York, 2011.
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[39] R. Garćıa-Bertrand, R. Mı́nguez, Dynamic robust transmission expan-

sion planning, IEEE Transactions on Power Systems 32 (4) (2017) 2618–

2628.

[40] H. Yu, C. Chung, K. Wong, Robust transmission network expansion

planning method with taguchi’s orthogonal array testing, IEEE Trans-

actions on Power Systems 26 (3) (2011) 1573–1580.

[41] T. Qiu, B. Xu, Y. Wang, Y. Dvorkin, D. S. Kirschen, Stochastic mul-

tistage coplanning of transmission expansion and energy storage, IEEE

Transactions on Power Systems 32 (1) (2017) 643–651.

[42] Y. C. Chen, A. D. Domı́nguez-Garćıa, A method to study the effect of
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Table A.1: Candidate renewable generators related to Garver’s 6-bus test system.

Gen. Bus
Power capacity O&M costs Investment cost

ūG
i (MW) (e/MWh) (Me)

4 1 50 17.8 50

5 1 70 17.5 80

6 1 40 17.5 40

7 2 150 16.5 200

8 4 200 15.0 198

9 5 100 17.0 110
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Table A.2: Results for Garver’s 6-bus test system illustrative example.

Case Input Inv. cost New lines New generators

study ΓG, ΓD, ΠG(Me) (Me) From To Period Gen. Period

a) 1, 2, 350 384.802

1 5 5 4 1

2 3 1 5 2

2 6 1 6 3

2 6 8 8 8

(36.502+348.300) 2 6 1 9 3

3 5 1 - -

4 6 1 - -

4 6 1 - -

b) 1, 2, 450 384.802

1 5 5 4 1

2 3 1 5 2

2 6 1 6 3

2 6 8 8 8

(36.502+348.300) 2 6 1 9 3

3 5 1 - -

4 6 1 - -

4 6 1 - -

c) 2, 3, 350 385.190

1 5 1 4 1

2 6 2 5 4

2 6 1 6 5

2 6 1 8 8

(36.159+349.031) 3 5 1 9 1

4 6 1 - -

4 6 1 - -

d) 2, 3, 450 475.124

1 5 1 4 1

2 3 2 5 2

2 6 6 6 7

2 6 1 7 2

(38.000+437.124) 2 6 1 9 1

3 5 1 - -

4 6 1 - -

4 6 1 - -
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Table A.3: Candidate generators related to IEEE 118-bus test system.

Gen. Bus
Power capacity O&M cost Investment cost

(MW) (e/MWh) (Me)
55 1 90 15.2 120

56 4 50 17.8 50

57 4 70 17.5 80

58 4 40 17.5 40

59 6 100 17.1 110

60 10 180 15.3 184

61 14 100 17.0 110

62 14 90 15.2 120

63 18 150 16.0 145

64 20 50 17.6 50

65 20 50 17.6 50

66 20 60 15.4 55

67 21 130 16.5 135

68 22 200 15.0 198

69 27 80 15.9 90

70 38 110 16.7 123

71 39 200 15.1 200

72 50 90 17.0 118

73 51 150 16.6 153

74 62 110 16.8 103

75 75 110 16.9 147

76 80 170 16.0 164

77 88 200 14.9 198

78 93 100 17.0 110

79 94 200 15.0 198

80 96 140 16.3 158

81 101 170 15.2 180

82 114 190 15.5 191

83 116 110 16.6 112

84 118 90 17.3 102
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Table A.4: New generators for IEEE 118-bus test system.

Gen. Bus Period Gen. Bus Period

56 4 22 73 51 1

63 18 1 74 62 1

64 20 1 76 80 1

65 20 2 77 88 1

66 20 3 79 94 1

71 39 1 82 114 1
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Figure A.1: Trilevel structure of the robust DTNRGEP problem.
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Figure A.2: Garver’s 6-bus test system.
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