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Abstract—In this paper a novel technique for cascad-
ing generalized scattering matrices based on a Krylov’s
iterative solver is presented. This new technique is fully
general, since it can be applied to solve the connection
of an arbitrary number of networks, each one with an
arbitrary number of ports, and it is easy to implement.
This technique is able to compute, not only the modal
spectra at the free ports of the global network, but also
the modal spectra at the connected ports, so that the
field inside the full network can be computed for an
arbitrary incidence. In addition, this technique can also
be used to evaluate the scattering parameters of the
global network.

Indexr Terms—Cascade circuits and systems, mi-
crowave devices, scattering matrices.

I. INTRODUCTION

HE traditional approach for the cascade connection
T of generalized scattering matrices (GSM) [1], [2] was
first studied by the late fifties and early sixties. First, the
cascade of two two-port devices was solved and, almost
at the same time, Redheffer [3] developed a special mat-
rix product (in non-standard notation), known as “star”
product, which can be used to cascade the GSMs of two
2N-port devices connected through N ports. Next, Kaplan
and Stock [4], [5] demonstrated that this “star” product
was useful to solve the general case, that is, the cascade
connection of two devices with an arbitrary number of
ports, for example N and M respectively, and also an
arbitrary number of connections, for example K. Besides,
there are other ways of computing the cascade connection
of two multiport devices other than this “star” product.
For instance, one can use methods based on signal flow
analysis [6], or one can force the equality between reflected
and incident waves at the connected ports [7], a technique
that we will use in this paper to pose the initial system
of equations which we will then solve by using a Krylov’s
iterative solver [8], [9]. A short review of these approaches
can be read in [10]. Moreover, some efforts have been

E. Diaz Caballero and H. Esteban are with the Departamento de
Comunicaciones, Universidad Politécnica de Valencia, 46022 Valen-
cia, Spain (e-mail: eldiaca@iteam.upv.es; hesteban@dcom.upv.es).

A. Belenguer, A. L. Borja and J. Cascon are with the Departa-
mento de Ingenieria Eléctrica, Electrénica, Automaética y Comu-
nicaciones, Escuela Universitaria Politécnica de Cuenca, Univer-
sidad de Castilla-La Mancha, Campus Universitario, 16071 Cuenca,
Spain (e-mail: angel.belenguer@uclm.es; alejandro.lucas@uclm.es;
joaquin.cascon@uclm.es).

recently made in order to be able to connect S-parameter
networks in a multilayer printed circuit board [11].

The cascade connection of GSMs has been and is still
widely applied to the efficient modeling of high frequency
devices. These devices are divided into simple building
blocks (steps, resonators, lines, etc.), and then the GSMs
of each building block are obtained. Next, the cascade
connection of the GSMs of all the building blocks is
iteratively calculated by pairs so that the GSM of the
whole structure is finally found. Recent examples of the
practical application of this procedure can be read in [12]-
[14]. This cascading procedure will be briefly summarized
in the next section, and if we take a look at expressions
(3)-(6), it has a cost of O(N3 ) operations, where N,,0q
the number of modes considered for each port. This cost
is very low, and this is the reason why this technique
is commonly employed in the characterization of a wide
range of microwave devices.

Unfortunately, the traditional cascading approach ig-
nores the connected ports. Once the cascading is complete,
the modal response at the connected ports cannot be
obtained. Or in other words, the connected network is
completely characterized from the outside but the inside
is now unknown. However, under many circumstances, it
is desirable to know the internal response of the device.
This could be of great interest, for example, if undesirable
effects, like multipactor or corona discharge, have to be
studied. In this case, if the internal response of the network
was known, the fields could be recovered inside the connec-
ted network and these undesirable effects characterized.

Therefore, in this work, we propose an efficient strategy
to compute the GSM of the general cascade connection of
an arbitrary number of devices with an arbitrary number
of ports and connections, which is, at the same time, able
to provide, for an arbitrary incidence, the modal weights,
not only at the free ports, but also at the connected
ones. This technique is comparable, in efficiency, to the
traditional cascading-by-pairs approach due to the fact
that we have used a Krylov’s iterative solver to find the
solution and, besides, it can be used to compute the field
inside the connected network for an arbitrary incidence.

II. CASCADING-BY-PAIRS APPROACH

At this point we will briefly summarize the traditional
approach for the cascade connection of two devices with
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an arbitrary number of ports.

Let us suppose that we have an arbitrary device, for
example device n, with A™ ports, ¢™ of whom will be
connected to other devices. Considering NZ-(”) modes for
the i-th port of this device, the total number of modes
studied for device n would be N = Zf:(;) N,

This device can be completely characterized if its gen-
eralized scattering matrix (GSM), S (™ is found. This
matrix, whose size is N x N(") | relates the weights of
the incident modes to the weights of the reflected modes

1]
(1)

where @ (™ and b(™ are the weights of the incident and
reflected modes respectively.

First of all, it is necessary to reorder the rows and
columns of the GSM so that we can distinguish two sets
of parameters, those belonging to the free ports and those
belonging to the connected ports. After doing that, we can
divide the GSM of device n into four blocks and expression
(1) can be rewritten:

()= (85 28) ()
n n n n
be Scr Sco ac

where ggl) and bgl) are, respectively, the incident and

reflected modal weights at the free ports and whose size
is Zf:(:)fc(n) Ni(n); and Q(c?) and Q(Cn) are, respectively,
the incident and reflected modal weights at the connected
ports and whose size is 224:(2)(")70(") Ni(n).

If, similarly, we reorder and group the parameters for
a second device, for example device m, the blocks of the
cascade connection of devices n and m can be computed

applying [5], [10]

pm = gy ™
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III. KRYLOV’S BASED CASCADING PROBLEM

Considering that we have an arbitrary device n, charac-
terized by its GSM (1), some auxiliary matrices are going
to be defined. If I (ny, or I n), is an identity matrix of
size N x N, and 0 (57, n) & null matrix of size M x N, we
can define the two following auxiliary matrices for that
device n

IM =T nm) (8)
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The auxiliary matrix [ g") is very useful, because it can
be used to get the modes of the i-th port easily

LIIYRY Qv oy
o | =LPa™ | b | =1
Q(N,fi’,n Q(N,ff,l)
(10)
where a'™ y 5™ are the weights of the incident and

reflected modes through the i-th port respectively.

Let us suppose that another device exists, for example
the device m, and that we have considered the same
number of modes for the i-th port of device m as for the
j-th port of device n, that is Ni(m) = NJ("). In this case,
the following auxiliary matrix will be very useful

0 v vy 0 v vy 0 uem) ain
=N Ny Z(N N (N N )

i Pt Pt
L = v (m) (n) 4 (m) (n) U (m) (n)
L =™ Ny (N N = (N N

Q(N;Z”,Nj(ﬁ)) Q(N;r),N;”)) Q(Njf),N;’j)

11)
This matrix, whose size is N(™ x N(") | can be used to get
the modal weights of the j-th port of device n and place
them in a vector of size N("™ x 1 in the position of the
modal weights of the i-th port of device m.

Finally, let us suppose that we connect the i-th port of
device m to the j-th port of device n. By connecting both
ports, the reflected modes of the i-th port of device m will
become the incident modes of the j-th port of device n,

and vice versa. So the following equations can be written

IMam =y (12)

=(i,4) =

=(4,1)

However, we have to carefully analyze these equalities.
We will be able to interchange the modal weights if, and
only if, the reference system used to expand the modes is
the same for both connected ports. If the reference systems
are not the same, we must change one weight set so that
we obtain new weights in terms of the proper reference
system. Unfortunately, this is the most common situation.
When the GSM of a given device, for example device
m, is computed, the most extended criterion is to choose
progressive waves (towards Z propagation) for the incident
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waves, a (™), and regressive waves (towards —2 propaga-

tion) for the reflected waves, (™) Tt is clear that when
two ports are connected, e.g. the i-th port of device m
and the j-th port of device n, both waveguides become the
same (see Fig. 1). In this case, we can say that ggm) and
Qé.") are modes propagating towards the same direction

inside the same waveguide. However, the modes of a( m)
are formulated in terms of progressive waves, towards 2
propagation, while the modes of ng are formulated in
terms of regressive waves, towards —Z propagation. The
conclusion is then clear: 2 for the modes of @ Em) is different
from 2 for the modes of bg"). In short, the reference
systems used to expand the modes are different, so we

cannot directly compare both modal sets (see Fig. 1).

DEVICE m x# DEVICE n
PORT i Tm ;| PORT j
Figure 1. Connection of two ports and their reference systems.

However, if we take a look at Fig. 1, we can see that
when the waveguide is symmetric along Z, as it is in
the picture, the modes are also symmetric along this
dimension. The rectangular waveguide is a good example
where all the modes have even or odd symmetry with
respect to . When the symmetry is even (i.e. TE,, and
TM,, with odd p), the modes are identical no matter
which reference system of Fig. 1 is used. In this case, the
modal weights can be directly assigned. On the contrary,
if the symmetry is odd (i.e. TE,, and TM,, with an even
p), the modes are also identical but with opposite sign in
each reference system. Therefore, equations (12) and (13)
need to be rewritten for a rectangular waveguide, in order
to adjust one of the modal sets, for example b.

For a rectangular waveguide, a diagonal conversion
matrix can be defined, whose elements will be —1 if the
corresponding modal weight belongs to a mode with an
even p and 1 otherwise. Equations (12) and (13) should
be then rewritten as
L pmp®

=g = =

L7 p mp (m)
=(j,i) = =

1Ma™ = (14)

(15)

(n) (n) _
Ij a =

where D (™) and D (™ are the diagonal matrices already
mentioned. These diagonal matrices are identity matrices
in case the lines feeding the device to be connected are
asymmetric and the polarity of the modes appropriately
defined.

Now, since the GSMs of each device are known, we have
that

b =S (Mg (M) — g (S(" )~ 1y (n) (16)
and
b = 5 g (m) — 4 (M) — (g (m)y=1p (m) (17)
Equation (16) for device n can also be written as
(n) _ )y, () (M) () — (g (m))=1p (n)
(L L;7)a™ +1;7a™ =(5")7b (18)

and then, applying (15) to (18), we obtain

(é(n)_gn))g(n) = (§™)~lp(m (”m)D(m)b(m) (19)

The same can be done for device m and expressions (17)
and (14)

(l (m) _ lgm) )Q (m) + lgm)g (m) _ (§ ('m))—lb (m)

(20)

+(§(m))flb(m)
B (21)
Equations (19) and (21) form a matrix system that
can be used to find the weights of the reflected modes
at every port, even at the connected ones, for a given

incidence. Furthermore, we can simplify these equations if
we multiply (19) and (21) by S () and S (m) respectively

n n (n) n) __ n (n,m) m
i( )(i(),ij )Q()fb()*s(ﬂ) D (m)p (m) (22)
(m)(7(m) _ 7(m)y_ (m) _ _ g (mn)p(n)y(n) (m)
S (£ I; a = §( H L D"p\™ +b (23)
where
. ﬁgn 7)71) §(")I§n T)n) is a matrix of size N x N(m)

whose elements are

St
S = Qe w855 O (v nemy | (24)
(n)
Sy
S (m n) =85my (m "™ is a matrix of size N(™) x N(®

Wthh can be computed applying (24) if 7 and j and,
at the same time, m and n, are interchanged.

Finally, at this point, a completely general situation can
be analyzed. We will consider N devices, n = 1,2,... N,
every device connected to others through one or more
ports. In this case, we could define C™ as the set of
connected ports for device n. We could also define the set
of connections C'™™), composed by the pairs (4, 7) which
satisfy that the j-th port of device n is connected to the
i-th port of device m. By using both sets, a generalization

of (22) can be written as
- Z S (mm)p (m)

m#n

g(n) — b(") (25)
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where
Q(”) — i(n) i(n) _ Z égn) Q(n) (26)
ieC(n)
0 (N Nm)y if 0(mm) =
S (n,m) _
- Z ég;l;)n)g (m) " otherwise
(j,i)yeC(nm)
(27)

Solving eq. (25) for all the devices will allow us to obtain
not only the response of the whole connection for a given
incidence, but also the response or modal weights at the
connected ports.

IV. COMPUTATIONAL COST

The system of equations obtained from (25) can be
written in matrix form as
b (28)

e =

I

where the matrix of coefficients is a highly sparse matrix,

I -5 12 —§@N)
_sen 1@ ... _geNn
M= - - ~. (29)
_gW _g(N2) )

because the main diagonal blocks are also diagonal
matrices and the rest of blocks, S (™) are mainly null
matrices and, the few which are not null are highly sparse
(see egs. (24) and (27)).

This high sparsity is the reason why we will solve
this equation system using an Krylov’s iterative method
[8], [9] instead of other traditional methods for solving
equation systems [15]. These iterative solvers can find the
solution of (28) by applying an algorithm which iteratively
converges to the wanted solution, where the most time-
consuming operation in every iteration is the product of
the coefficients matrix (M ) by an arbitrary vector (b) of
appropriate size. So this will be the key operation in order
to estimate the cost of solving (28). In this work, a null
vector has been used as initial guess for vector b.

First, we will try to evaluate the cost of multiplying
a row of M, for example row n, by a certain unknown
vector b. This cost will depend directly on the number of
connected ports. For every connected port, for example the
j-th port, a matrix of size N x N;n must be multiplied
by a vector of size N;n) x 1 (see (24)). This product
represents a cost equal to N N ;n) operations.

Therefore, if we define ¢,, as the number of connected
ports of device n, the full cost of computing the product of
the n-th row of M by the corresponding unknown vector
will be equal to ¢,, N (N, g operations, where the number
of modes of each port has been supposed to be the same,
i.e. Nyoa = N\, ¥n, j.
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Now, considering the rest of devices, we can say that the
cost of computing the target matrix-vector product will be

N
Coroa = Y cnN™ Ny (30)
n=1
Then, if we replace N by AN, 4, we get
N
Corad = Ny 3 cn A o)

n=1
Finally, using the biconjugate gradients stabilized me-
thod (Bi-CGSTAB) [16], [17] to solve (28), the cost of
solving it is

N
Oiter = 2Nite7'N1—2nod Z an(n)

n=1

(32)

where Njie,r is the number of iterations required by the
Bi-CGSTAB to converge to the wanted solution. We have
also considered that this algorithm computes the analyzed
matrix-vector product twice per iteration.

We can conclude that the cost remains around a reas-
onable value. On the one hand, the traditional approach,
i.e. a recursive cascade of the GSMs by pairs [3]-[5],
[10], would have a cost of O(N?3 ) operations (see eqs.
(3)-(6)). On the other hand, the computational cost for
the technique presented in this paper (see eq. (32)) is
NitcrO(anod). Therefore, for a reasonable value of Ny,
the technique proposed can be comparable to the mul-
timodal implementation of the traditional approach, or
even faster, but with the advantage of having the network
fully characterized also in the connected ports.

V. RESULTS

In this section, a particular multiport network is studied
so that the new method is verified. An H-diplexer, whose
dimensions can be found in [18], has been chosen for this
verification task. The layout of the H-diplexer is shown in
Fig. 2.

Port 2

Filter 1

H-plane T-junctions

n
Port 1 |I

(Input)
A

Waveguide
width

Filter 2

a
Port 3

Figure 2. Layout of the studied H-diplexer.

In order to perform the whole analysis of the H-diplexer,
first the GSM of each building block has been obtained,
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and then the whole connection has been performed with
the new iterative cascading method. The individual GSMs
of the waveguide sections have been analytically calcu-
lated, those of the steps have been obtained using mode-
matching [19], and, finally, the GSMs of the T-junctions
have been found using a mode matching analysis tech-
nique for arbitrarily shaped structures [20]. Considering 20
modes at each port and analyzing 301 frequency points,
49.8548 s have been necessary to obtain the GSMs of
all the building blocks of the H-diplexer, and just 2.8222
s to perform the whole connection 301 times (one per
frequency point). Since the whole network has 51 ports
(3 free + 48 connected ports), we can approximate that
the computational cost of the cascading method is 183.85
us per port and per frequency point.

Furthermore, Fig. 3 shows the comparison between the
global S-parameters obtained by the new iterative cascad-
ing method and the ones obtained by the FEST3D com-
mercial software [21], which is a very efficient commercial
software for the accurate analysis of passive components
based on waveguide technology, and we see that both
responses match almost perfectly.

0O

—10

—20

-30

|S-parameters|(dB)

—40

—50
10 11 12 13

Frequency (GHz)

Figure 3. Scattering parameters of the H-diplexer found by the new
method (solid + marks) vs. simulation with FEST3D (dashed).

But the main advantage of this new cascading method
is that, being accurate and very efficient, not only provides
the response of the whole structure for a given incidence,
but also the modal weights at the connected ports. This
fact enables us to obtain the fields inside the different
blocks of the network as summations of incident and reflec-
ted modes in the different points of a mesh, as seen in Fig.
4, where the electric field magnitude has been obtained
and represented at the central bandpass frequencies of
both filters, respectively.

As mentioned in the introduction, obtaining the field
inside the device is necessary on many occasions, for
instance in order to characterize undesirable effects such
as multipactor. Figure 4 is very helpful to identify the
"hot spots" for multipactor [22]. We see that the three
central cavities of Filter 1 and the two central ones in

800
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- 500

E 4400

Milimeters

F 1300

200

100
-100

-50 0

50 -50 0 50
Milimeters

Figure 4. Representation of the electric field magnitude inside the
H-diplexer at 11.15 GHz (left) and 11.65 GHz (right).

Filter 2 are the main candidates for multipactor discharge
in their respective transmission bands. In this example,
the multipactor analysis! shows that the elements with
lowest multipactor power threshold (critical elements) are
the central cavity of Filter 1, which has a power-handling
capability of 9375 W at the higher frequency of its trans-
mission band (11.37 GHz), and the second cavity of Filter
2, whose power-handling capability is 7875 W at its lower
transmission frequency (11.52 GHz).

A. Studying other cascading possibilities

If we ignore the simplest case of cascading two port
devices [2], [14], the cascading-by-pairs approach is hard
to implement for multimodal and multiport devices since,
after each individual connection, successive mode reorder-
ing procedures are necessary (see Sec. II). Still, we have
also performed this cascading procedure, and it has taken
1.3775 s to perform the whole connection, obtaining ex-
actly the same global S-parameters as in Fig. 3, which
demonstrates the accuracy of the new method. It also
shows that the fact that the new Krylov’s based cascading
approach enables us to reconstruct the field inside the
network does not significantly increase the cascading com-
putational cost.

We have considered yet another cascading possibility: a
modification of the intermediate expressions used in the
cascading-by-pairs approach, so that we could introduce
some new scattering matrices that would allow us to
obtain the modal weights at the connected ports, but
without needing any Krylov’s iterative solver. Briefly, the
definition of three types of matrices is necessary: one to
compute the modes emerging through the connected ports
of one device n in response to an arbitrary incidence
against its free ports, one to compute the emerging modes

1 Analysis perform for aluminum.
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through the connected ports of one device m in response
to an arbitrary incidence against the free ports of other
device n, and one that computes the emerging modes
through the connected ports of device n in response to
an arbitrary incidence against the free ports of device m.
By using these matrices, we can compute the response of
the network inside the connected ports in response to an
arbitrary incidence at the free ports.

This modification of the cascading-by-pairs approach so
that an extended GSM is obtained has been also applied
to the analysis of the H-diplexer. Once again, as expected,
the global response is the same as the one obtained with
the method presented (see Fig. 3), but the cascading time
is ten times higher: 27.5076 s (1.8 ms per port and per
frequency point, against the 183.85 s ms needed with the
iterative procedure here proposed). This is to reinforce the
efficiency of the procedure here presented against other
possibilities, also considered by us, for obtaining the same
kind of results.

VI. CONCLUSION

A technique to efficiently cascade an arbitrary number
of devices with an arbitrary number of ports has been
presented. This technique is fully general and can be
used to compute the response of the connected network
to a given incidence and also to obtain its GSM if the
excitations are properly chosen.

The fact that this procedure allows to obtain the modal
weights also at the connected ports enables us to recon-
struct the field inside the network and, for example, study
undesired effects as multipactor or corona discharge.

It is worth highlighting that the cost remains around an
admissible value. For a reasonable number of iterations,
the technique proposed can be even faster than the mul-
timodal implementation of the traditional approach.

Finally, the precision of the technique has been tested.
In order to do so, in sec. V, an H-diplexer has been ana-
lyzed by solving the cascading of the different constituent
blocks, and successfully compared with results obtained
with commercial software. The efficiency and advantages
of this new procedure have also been proved.
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