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Oxidative stress represents a challenge during sperm manipulation. We have tested the 

effect  of  increasing  hydrogen peroxide  (H2O2)  levels  on red deer  spermatozoa after 

cryopreservation,  and the  role  of  male-to-male  variation  in  that  response.  In  a  first 

experiment, eight thawed samples were submitted to 0, 25, 50, 100 and 200 µM H2O2 

for 2 h at 37 °C. Intracellular ROS (H2DCFDA-CM) increased with H2O2 concentration, 

but we only detected a decrease in sperm function (motility by CASA and chromatin 

damage by SCSA) with 200 µM. Lipoperoxidation (TBARS) increased slightly with 50 

µM H2O2 and above. In a second experiment, samples from 7 males were submitted to 0 

and 200 µM H2O2 for 2 h, triplicating the experiment within each male. Males differed 

at thawing and regarding their response to incubation and H2O2 presence. We found that 

the kinematic parameters reflected male-to-male variability, whereas the response of the 

different  males  was  similar  for  lipid  peroxidation  and  viability.  A multiparametric 

analysis showed that males grouped differently if samples were assessed after thawing, 

after incubation without H2O2, or after incubation with H2O2. Red deer spermatozoa are 

relatively  resilient  to  H2O2 after  thawing,  but  it  seems  to  be  a  great  male-to-male 

variability  regarding  the  response  to  oxidative  stress.  The acknowledgement  of  this 

individual  variability  might  improve  the  development  of  optimized  sperm  work 

protocols.

Key words: Red deer, reproductive technology, oxidative stress, hydrogen peroxide, 

individual variability.
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Introduction

Oxidative stress is one of the major threats to sperm functionality, both in vivo 

and  in  vitro.  Reactive  oxygen  species  (ROS)  have  a  fundamental  role  in  sperm 

physiology, but in excess they can damage spermatozoa (Agarwal and Saleh, 2002). 

During sperm work, ROS can be detrimental even within physiological levels, since 

they may trigger early capacitation and irreversible events, such as acrosome reaction 

(Hsu et al., 1999). Researchers generally use external sources of ROS to study oxidative 

stress on spermatozoa such as hydrogen peroxide (H2O2), a potent membrane-permeable 

oxidizing species (Oehninger et al., 1995). Armstrong et al. (1999) found that hydrogen 

peroxide was not only responsible for the loss of motility, but also it caused the loss of 

mitochondrial membrane potential.  Moreover, ROS, including H2O2, have dual effects 

on mammalian sperm. Low concentrations of ROS exogenously added are believed to 

play a stimulatory role in sperm capacitation (Rivlin et al., 2004), hyperactivation (de 

Lamirade  and Gagnon,  1994),  acrosome reaction  (Griveau et  al.,  1995)  and sperm-

oocyte fusion (Aitken et al., 1995). However, excessive levels of ROS are linked to 

impaired  sperm  function  and  infertility  (Sharma  et  al.,  2004).  ROS  can  be  also 

detrimental to sperm DNA integrity  (Baumber et al., 2003;Dominguez-Rebolledo et al., 

2010).

We have previously reported that different reactive oxygen species generators 

affected  quality  parameters  differently  in  red  deer,  showing that  hydrogen peroxide 

(H2O2)  was  more  cytotoxic  to  red  deer  spermatozoa  than  Fe2+/ascorbate  (Martinez-

Pastor et al., 2009a). Moreover, motility and mitochondrial membrane potential were 

quickly decreased by H2O2  (1 mM and 100 µM), and only H2O2  (1 mM) was able to 

reduce sperm viability. Thus, the present study was designed to deepen on our previous 

results, analysing a broader range of H2O2 concentrations.
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Moreover,  between-male  variability  represent  a  challenge  for  sperm 

cryopreservation, since that variability can affect spermatozoa cryosurvival (Soler et al., 

2003) and fertility (Gomendio et al., 2006;Malo et al., 2005). That is probably due to 

differences regarding sperm biochemistry and metabolism (Loomis and Graham, 2008), 

rooting in the genetic variability of individuals. The male-to-male variability could also 

affect the resistance of spermatozoa to oxidative stress, for instance through changes in 

the  composition  of  sperm  membranes  (Waterhouse  et  al.,  2006).  In  fact,  high 

polyunsaturated  fatty  acids  levels  have  been related  to  higher  vulnerability  to  ROS 

(Ollero et al., 2001), and previous studies have shown that fatty acid profiles could be 

modified in deers exposed to heavy metals (Castellanos et al., 2010). 

Thus, in the present study we used thawed epididymal spermatozoa of Iberian red deer 

(C. elaphus hispanicus) to test the hypothesis that increasing concentrations of H2O2 

affected differently to sperm characteristics, seeking for endpoints in which H2O2 could 

noticeably affect spermatozoa. It is well known that  epididymal spermatozoa are not 

exposed to the complex secretions of the accessory sex glands (seminal plasma), which 

are recognised as the prime source of antioxidant protection (Chen et al., 2003). In this 

respect,  it  is  needed  a  better  understanding  of  the  spermatozoa  behaviour  against 

oxidative  damage,  since  this  damage  represents  a  serious  challenge  for  these 

unprotected  cells  when  they  are  outside  the  epididymal  environment.   Moreover, 

spermatozoa might be submitted to stressing situations during in vitro procedures (IVF 

or sorting), which could increase ROS and other oxidative species. Therefore, this study 

could  be  useful  to  simulate  the  response  of  epididymal  red  deer  spermatozoa  to 

oxidative stress in vitro, allowing to explore procedures to alleviate it.
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We also tested if male-to-male variability reflects on the spermatozoa response 

to H2O2, expecting to observe this effect when submitting samples from different males 

to  oxidative  stress.  Being  a  wild  species,  we  have  the  advantage  of  working  with 

samples coming from unselected populations, thus allowing us to better analyse that 

kind of variability (Garde et al., 2006).

Materials and Methods

 Reagents and media

CM-H2DCFDA,  YO-PRO-1  and  TO-PRO-3  were  purchased  from Invitrogen 

(Barcelona, Spain). Flow cytometry equipment, software and consumables (including 

the sheath fluid, BD FACSFlow) were purchased from BD Biosciences (San Jose, CA, 

USA).  Acridine  orange  (chromatographically  purified)  was  purchased  from 

Polysciences  Inc.  (Warrington,  PA,  USA).  Other  fluorescence  probes  and chemicals 

(high grade) were obtained from Sigma Chemical Co. (Madrid, Spain). Stock solutions 

of the fluorescence probes were as follows: propidium iodide, 7.5 mM in water; CM-

H2DCFDA,  0.5  mM in  DMSO; YO-PRO-1 and  TO-PRO-3,  50  µM in  DMSO. All  

solutions were stored at -20 ºC and in the dark until needed, except oxidant working 

solutions, which were prepared the same day. Preparation and staining of samples for 

flow cytometric analysis were performed by flow cytometer PBS (BD FACSFlow; BD 

Biosciences).

Animals, spermatozoa collection and cryopreservation
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For this study, we used spermatozoa recovered from the epididymides of mature 

stags (age > 4.5 years, weight > 130 kg)  that were legally culled and hunted  in their 

natural habitat during the rutting season (September-October). Gamekeepers collected the 

complete male genitalia and provided the hour of the death.  Hunting was in accordance 

with the  harvest  plan  of  the  game reserve,  which  made following  Spanish  Harvest 

Regulation,  Law  2/93  of  Castilla-La  Mancha,  which  conforms  to  European  Union 

Regulation.

Immediately upon removal, the testes with attached epididymides were placed 

into  plastic  bags  and  transported  to  the  laboratory  at  ambient  temperature 

(approximately 22 ºC) within 2 h after being removed. The samples were processed as 

soon as they arrived at the laboratory. The elapsed time between animal death and sperm 

recovery ranged from 3 to 6 hours, which is an adequate and reliable time interval for 

evaluating sperm parameters, as decreases in the quality of sperm traits begin to take 

place 12 hours after the death of a male (Soler and Garde, 2003). For the collection of 

epididymal spermatozoa, the testes and epididymides were removed from the scrotal 

sac. The cauda epididymides, which included 5–10 cm of the proximal ductus deferens, 

were separated and transferred to 35-mm plastic dishes (Nunc, Roskilde, Denmark).

Spermatozoa were collected from the distal portion of the epididymis as described 

by Soler et al. (2003). Epididymal contents from both testicles of the same male were 

pooled  for  processing.  Then,  the  sperm mass  was diluted  to  a  sperm concentration 

~400×106 sperm/mL in fraction A of a Tris- Citrate-Fructose (TCF: Tris 27.0 g/L, citric 

acid 14.0 g/L, fructose 10.0 g/L, and 20% clarified egg yolk) (Fernandez-Santos et al., 
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2006). Then, the sperm was further diluted with the same volume of Fraction B of the 

extender (12%, v/v of glycerol), at ambient temperature (22 °C).  Samples were cooled 

down to 5 °C and, after 2 h of equilibration, were loaded into 0.25 ml plastic straws 

(IMV, L´Aigle Cedex, France) and frozen in liquid nitrogen vapor (4 cm above liquid 

nitrogen; -120ºC) for 10 min. The straws remained for a minimum period of 1 year in 

liquid nitrogen (-196ºC). Thawing was carried out by immersing straws in a water bath 

at 37 ºC for 30 s. 

Experimental Design

Experiment  1.  Effects  of  increasing  doses  of  H2O2 on  thawed  epididymal 

spermatozoa from red deer.

Experiment 1 was designed to explore the effect of several H2O2 concentrations 

on sperm parameters after thawing, and to evaluate the relation of  H2O2 with sperm 

parameters. Thawed semen was washed in TCF (300×g, 5 min), and diluted in the same 

medium to 30×106 spermatozoa/mL. The sperm solution was split among 5 aliquots in 

microtubes.  One of them was left  untreated as the control.  The other aliquots were 

subjected to oxidative stress by adding  H2O2 in four concentrations (25 µM, 50 µM, 

100 µM and 200 µM). With this approach we seeked to expand the study initiated 

previously (Martinez-Pastor et  al.,  2009a),  exploring concentrations between 10 µM 

(which had no negative effects in that study) and 1 mM (which was patently cytotoxic). 

All treatments were split into two aliquots. One of them was incubated with 0.5 µM 

H2DCFDA (for assessing ROS production) and the other was used to evaluated the rest 
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of sperm parameters. The microtubes were incubated at 37 ºC and analyzed 120 min 

after  starting  the  incubation  (the  control  was  analyzed  at  0  and  120  min).  This 

experiment was replicated 8 times with samples from 8 different males (one straw per 

male).

 

Experiment  2.  Individual  male-to-male  variation  in  the  response  to  oxidative 

stress.

This experiment evaluated the presence of male to male individual differences 

on the effect of oxidative stress. Thawed semen was washed in TCF (300xg, 5 min.) and 

diluted in the same medium to 30x106 spermatozoa/mL. The sperm solution was split 

among 2 aliquots in microtubes. One of them was left untreated as control and the other 

was incubated with 200 µM H2O2 at 37 °C, evaluating the samples after 120 min. The 

experiment was replicated with samples from 7 males, with triplicates within each male, 

using a different cryopreserved straw each time.

Sperm evaluation

Sperm motility

Sperm  motility  was  assessed  using  a  computer-assisted  motility  analyzer 

(SCA2002, CASA system; Microptic, Barcelona, Spain) coupled to an optical phase-

contrast  microscope  (Nikon  Eclipse  80i),  equipped  with  negative  phase-contrast 

objectives,  a  warming  stage  at  37  ºC  and  a  Basler  A302fs  camera  (Basler  Vision 

Technologies, Ahrensburg, Germany). A pre-warmed Makler counting chamber (10 µm 
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depth) was loaded with 5  L of sample and analyzed. The parameters used in this 

study  were:  percentage  of  motile  spermatozoa  (total  motility,  TM,  %),  velocity 

according to  the actual  path (VCL, µm/s),  linearity  (LIN,  %) and amplitude of  the 

lateral  displacement  of the sperm head (ALH, µm). Sample acquisition  rate was 25 

images/s, and motile spermatozoa were defined as those with VCL>10 µm/s. At least 

five fields per sample were recorded and analysed afterwards. 

Sperm viability

Viability was assessed by the monomeric cyanine nucleic acid stain YO-PRO-1. 

Samples were diluted down to 106 spermatozoa/mL in flow cytometry PBS with 0.1 μM 

YO-PRO-1 and 10  μM PI. After 20 min in the dark, the samples were run through a 

flow cytometer.  Labelling  cells  with  the  apoptotic  marker  YO-PRO-1 yielded  three 

subpopulations: viable (unstained: YO-PRO-1-/PI-), apoptotic-like membrane changes 

(YO-PRO-1+/PI-),  and  non-viable  (membrane  damaged:  PI+).  Hoechst  33342  was 

included at 5.1 µM.

 Detection of Reactive Oxygen Species (ROS)

The derivative  of  fluorescein,  CM-H2DCFDA, was  used  for  the detection  of 

ROS. Oxidation of this  probe is detected by monitoring the increase in fluorescence 

with a flow cytometer, using excitation sources and filters appropriate for fluorescein 

(green fluorescence).  This fluorescence probe was combined with TO-PRO-1, a red-

fluorescence analogue to YO-PRO-1. Stock solutions of the fluorescence probe were 

prepared as CM-H2DCFDA 0.5 mM in DMSO, TO-PRO-3 50 µM in DMSO, to give a 

final concentration of 0.5 µM of CM-H2DCFDA and 0.1 µM of TO-PRO-1.  Hoechst 

33342 was included at 5.1 µM.
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 Flow Cytometry Analyses

We used a Becton Dickinson LSR-I flow cytometer (BD Biosciences, San José, CA, 

USA), furnished with a 325 nm He-Cd (excitation for Hoechst 33342), a 488 nm Ar-Ion 

laser  (excitation  for  YO-PRO-1 and  PI)  and  a  633 nm He-Ne laser  (excitation  for 

Mitotracker  Deep  Red).  Hoechst  33342  fluorescence  was  read  with  the  FL5 

photodetector  (424/44BP filter),  YO-PRO-1  and  CM-H2DCFDA fluorescences  were 

read with the FL1 photodetector (530/28BP filter), and PI and TO-PRO-1 fluorescences 

were read with the FL3 photodetector  (670LP filter).  FSC/SSC signals and Hoechst 

fluorescence were used to discriminate spermatozoa from debris. Fluorescence captures 

were controlled using the Cell Quest Pro 3.1 software (BD Biosciences, San José, CA, 

USA). All the parameters were read using logarithmic amplification. For each sample, 

5000 spermatozoa were recorded at 200 events/s, saving the data in flow cytometry 

standard (FCS) v. 2 files. The analysis of the flow cytometry data was carried out using 

WEASEL v. 2.6 (WEHI, Melbourne, Australia). The YO-PRO-1/PI stain was analyzed 

as  previously described for red deer  (Martinez-Pastor  et  al.,  2008).  From this stain, 

viability was defined as the percentage of membrane intact spermatozoa (PI–) and the 

"apoptotic" ratio, as the relation among the YO-PRO-1+/PI– and PI– (YO-PRO-1–/PI– 

plus YO-PRO-1+/PI– spermatozoa) subpopulations, expressed as percentage. This ratio 

estimated the proportion of spermatozoa with apoptosis-like membrane changes within 

the PI– subpopulation.

 Sperm chromatin assessment

 Chromatin  stability  was  assessed  following  the  SCSA  (Sperm  Chromatin 

Structure  Assay),  based  on  the  susceptibility  of  sperm  DNA  to  acid-induced 
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denaturation in situ and on the subsequent staining with the metachromatic fluorescent 

dye acridine orange (Evenson et al., 1980). Acridine orange (AO) fluorescence shifts 

from green (dsDNA; double strand) to red (ssDNA; single strand) depending on the 

degree of DNA denaturation. Samples were diluted in TNE buffer (0.01 M Tris-HCl, 

0.15 M NaCl, 1 mM EDTA, pH 7.4) to a final sperm concentration of 2x106 cells/mL in 

cryotubes. Samples were frozen in liquid nitrogen and stored in an ultracold freezer at 

-80  ºC  until  needed.  For  analysis,  the  samples  were  thawed on  crushed  ice.  Acid-

induced  denaturation  of  DNA in  situ  was  achieved  by  adding  0.4  mL of  an  acid-

detergent solution (0.17% Triton X-100, 0.15 M NaCl, 0.08 N HCl, pH 1.4) to 200 µL 

of sample. After 30 seconds, the cells were stained by adding 1.2 mL of an acridine 

orange solution (0.1 M citric acid,  0.2 M Na2HPO4,  1 mM EDTA, 0.15 M NaCl,  6 

μg/mL acridine orange pH 6.0). The stained samples were analyzed by flow cytometry 

exactly at 3 minutes after adding the acridine orange solution.

Samples were run through the LSR-I flow cytometer described above. Green 

fluorescence was detected using the FL-1 photodetector and red fluorescence with the 

FL-3 photodetector. Data were collected from 10000 events at 200 events/s for further 

analysis with Cell-Quest software (Becton Dickinson). A tube with 0.4 mL of detergent-

acid solution and 1.2 mL of acridine orange solution was run through the system before 

running any samples and between samples. At the beginning of each session, a standard 

semen sample was run through the cytometer, and settings were adjusted in order that 

mean fluorescence values (0-1023 linear scale) for FL-1 and FL-3 were 475 and 125, 

respectively. Results of the DNA denaturation test were processed to obtain the ratio of 

red fluorescence to total intensity of the fluorescence (red/[red+green]×100), called DFI 

(DNA fragmentation index; formerly called αt) for each spermatozoa, representing the 

shift  from  green  to  red  fluorescence.  High  values  of  DFI  indicate  chromatin 
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abnormalities. Flow cytometry data was processed to obtain %DFI (% of spermatozoa 

with  DFI>25)  and  HDS  (High  DNA  Stainability:  %  of  spermatozoa  with  green 

fluorescence higher than channel 600, of 1024 channels).

 TBARS assay for quantification of lipid peroxidation (LPO)

 The susceptibility of the spermatozoa to lipoperoxidation (LPO) was estimated by the 

thiobarbituric  acid  reactive  substance  (TBARS)  method according to  Ohkawa et  al. 

(1979). Samples of 100  μL were thoroughly mixed with 200  μL of a stock solution 

containing 15% (w/v) trichloroacetic acid, 0.375% (w/v) thiobarbituric acid and 0.25 M 

HCl. This mixture was heated at 90 °C for 15 min, and then the reaction was stopped by 

placing the tubes in ice-cold water for 5 min. The tubes were centrifuged at 1500×g for 

15 min to pellet the precipitate, and the clear supernatant was collected and transferred 

to  wells  (200  μL/well)  in  a  96-well  flat  bottom transparent  plate  (Nunc,  Roskilde, 

Denmark).  The  plate  was  completed  with  a  calibration  curve  prepared  from  a 

malondialdehyde (MDA) stock (1,1,3,3-tetramethoxypropane).  Sample absorbance  at 

532  nm  was  read  on  a  multipurpose  microplate  reader  (Synergy  HT,  BIO-TEK, 

Winooski, Vermont, USA). MDA concentration was calculated from a standard curve. 

The lipid peroxidation index was calculated as nmol of MDA per 108 sperm. This assay 

was duplicated for each sample.

Statistical analysis

Statistical  analyses  were  carried  out  using  the  R  statistical  package  (http://www.r-

project.org). For the analysis of H2O2 (Experiment 1),  data were analyzed using linear 

mixed-effects models, treating the male effect as the random part of the model, and time 

or H2O2 concentration as the fixed part of the model. For the analysis of the male-to-

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299



male variability (Experiment 2), results were arc sine (proportions) or log-transformed 

(other variables), and male, treatment (values at 0 h, 2 h and 2 h with 200 µM of H2O2) 

and their interaction were analyzed by ANOVA. For the graphical analysis of the data, 

we used interaction plots and principal component analysis (with TM, VCL, LIN, ALH, 

LPO and viability). Unless otherwise stated, results are presented as mean±SEM, and 

statistical significance was accepted for P<0.05.

Results

 Experiment  1.  Effects  of  increasing  doses  of  H2O2 on  thawed  epididymal 

spermatozoa from red deer

We  evaluated  how  increasing  H2O2 concentration  affected  sperm  quality 

parameters,  looking after  H2O2 concentrations  that  might  induce critical  changes  on 

sperm quality  during incubation.  Intracellular  ROS (Fig.  1)  spontaneously increased 

from 0 to 2 h (210±12 at 0 h and 309±9 at 2 h, in mean fluorescence units; P<0.001). 

When  H2O2 was  added  to  the  samples,  ROS  concentration  increased  with  H2O2, 

comparing with incubation without H2O2 (25 µM: 379±13, P=0.011; 50 µM: 413±27, 

P<0.001; 100 µM: 428±22, P<0.001; 200 µM: 521±37, P<0.001).

The effect of H2O2 on incubated spermatozoa is  showed in Figure 2 as effect sizes 

respect  to  the  Control  at  2  h  (0  µM  H2O2).  In  general,  only  the  highest  H2O2 

concentration (200 µM) showed an effect in this experiment. Total motility decreased 

with  the  incubation  (from  36.6±5.7%  to  28.6±8.4%  at  2  h;  P=0.031).  It  did  not 

decreased further with H2O2 (effect size not significant; Fig. 2a), except for 200 µM, 
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which  decreased  motility  down  to  21.4±7.5%  (P=0.037).  While  linearity  neither 

changed with incubation nor H2O2 treatments (Fig. 2c), velocity and ALH decreased 

after 2 h of incubation (101.2±6.2 µm/s to  88.5±6.1 µm/s, P<0.031; 4.1±0.2 µm to 

3.6±0.2 µm, P<0.020). Their values when they were incubated with 200 µM H2O2 were 

72.7±9.1  µm/s  and  3.0±0.2  µm (P=0.020 and  P=0.009,  respectively),  not  changing 

significantly with other H2O2 treatments (Figures 2b and 2d).

Incubation  decreased  the  proportion  of  viable  spermatozoa  (55.2±4.4%  to 

46.1±5.1%; P=0.018), tended to increase the apoptotic ratio (47.9±5.3% to 52.5±5.9%; 

P=0.060) and slightly increased the lipid peroxidation of the samples, as estimated by 

the LPO by-product  malondialdehyde,  but  not significantly (3.8±0.7 nmol MDA/108 

spermatozoa to 3.9±0.6 nmol MDA/108 spermatozoa; P=0.051). Addition of H2O2 did 

not modify the proportion of viable spermatozoa or the apoptotic ratio, comparing with 

2 h incubation without H2O2 (Figures 2e and 2f). LPO levels did not increase in any 

H2O2 treatment  comparing with the incubation without  H2O2 (Fig.  3a);  nevertheless, 

when comparing with the results at 0 h, 50 µM H2O2 and above significantly increased 

MDA concentration (effect  sizes of +0.4±0.1 for 50 µM, +0.5±0.1 for 100 µM and 

+0.4±0.1 for 200 µM, indicating increases above the 0 h levels, P<0.05; the effect size 

of 2 h incubation without H2O2 was +0.3±0.1, P=0.051).

The SCSA test revealed that incubation alone did not cause significant changes 

to chromatin stability (%DFI: 4.9±1.5% at 0 h and 3.2±0.6% at 2 h, P=0.353; HDS: 

2.7±0.8% at 0 h and 4.1±1.3% at 2 h, P=0.198). Only 200 µM H2O2 increased %DFI 

significantly, up to 10.3±2.9% (Fig. 3b), not having effect on HDS (Fig. 3c).
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Experiment 2. Individual male-to-male variation in response to oxidative stress.

In this  experiment,  we tested the effect of male-to-male  variation during the 

incubation, including the response to oxidative stress caused by the higher dose of H2O2. 

In general, males differed at thawing (P<0.01 for TM, VCL, ALH and viability). Three 

groups  were  differentiated  (see  group  at  0  h  in  Fig.  4):  males  1,  2  and  6  were 

characterized by higher motility (TM: 40.9±3.0%; VCL: 104.7±5.3 µm/s; ALH: 4.1±0.2 

µm) and viability (64.3±2.2%); males 3 and 4 were characterized by low motility (TM: 

18.9±2.2%; VCL: 66.7±6.5 µm/s;  ALH: 3.0±0.2 µm) while  maintaining a  relatively 

high viability (54.1±2.4%); and males 5 and 7 were characterized by low motility (TM: 

16.8±1.4%), while maintaining high kinematic parameters (VCL: 94.9±2.0 µm/s; ALH: 

4.0±0.1 µm) and lower viability (40.7±2.8%).

Considering the whole experiment,  male-to-male variability did not disappear 

after  incubation with or without H2O2,  but it  was a significant  factor for all studied 

parameters  (P<0.001  for  TM,  VCL,  ALH and viability;  P<0.01  for  apoptotic  ratio; 

P<0.05  for  LIN  and  LPO).  What  is  more  important,  that  variability  affected  how 

samples  from  different  males  responded  to  the  incubation  and  oxidative  stress 

(male±treatment  interaction).  We  found  that  interaction  significant  for  VCL 

(F12,27=3.036, P=0.007), LIN (F12,27=3.107, P=0.007) and ALH (F12,27=2.662, P=0.017). 

These  differences  throughout  treatments  can  be  appreciated  in  the  interaction  plots 

showed in the Figure 4. It is clear that the behaviour of the samples was similar in the 

case of LPO and viability (Fig. 4e and 4f, change during incubation and little difference 

among 2 h and 2 h plus H2O2), whereas most of the variability was showed in motility 
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parameters. Total motility (Fig. 4a) suggested some degree of male-to-male variability 

on the response to treatments, but not reaching significance (F12,27=1.838, P=0.092).

Therefore, most of the variability concerning treatment response was expressed 

on the kinematic  parameters.  For  VCL (Fig.  4b),  males  1,  3  and 5 underwent  little 

change after incubation,  but  dropped if  H2O2 was included in the medium, whereas 

males 2, 6 and 7 were affected by incubation without H2O2 (and in a higher degree, 

specially for 6, in presence of H2O2), and male 4 was little affected by the treatments. A 

similar pattern was detected for ALH (Fig. 4d). For LIN (Fig. 4c), a different grouping 

developed. In a first group (males 2, 4 and 5), LIN was little affected by incubation or 

oxidative stress. Contrarily, LIN dropped during incubation in the samples of males 6 

and 7, whereas it did not decrease during incubation in the samples of 1 and 3 (in fact,  

increased for 3), but decreased (considerably for 1) in presence of H2O2.

A principal component analysis of averaged results for each male and treatment 

allowed  to  show  these  results  in  the  bidimensional  space  defined  by  the  first  two 

principal  components  extracted  (Figure  5a).  The  male-to-male  variability  (initial 

characteristics, after incubation characteristics —either in presence or absence of H2O2

— and the response to the treatments) are displayed in the Figure 5b. In that plot it is 

made clear that samples from different males behaved differently,  as showed by the 

different  directions  and  lengths  of  the  vectors  joining  the  points  for  each  sample. 

According to the direction of change after incubation without H2O2,  males could be 

grouped in three groups: one grouping males 1 and 3, other with males 2 and 7 and a 

third one with males 4, 5 and 6. When H2O2 was included, male 2 was just affected by 

the  effect  size,  while  maintaining  the  same  direction.  Others  showed  a  different 
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response (males 4, 5 and 7), but only in one or two parameters and not too large; male 6 

could be included in this group, although the differences were much larger for that male.  

Finally, males 1, 3 showed a dramatically different response if incubated in absence or 

presence of H2O2.

Discussion

Oxidative stress has an important role in sperm physiology. In this study, we 

have studied this topic on cryopreserved epididymal spermatozoa, therefore, we must to 

point out that results might be different in fresh or ejaculated doses. Cryopreservation 

not  only  reduces  sperm quality,  but  also induces  oxidative  stress  and decreases  the 

antioxidants  in  semen  (Aisen  et  al.,  2005;Peris  et  al.,  2007),  and  epididymal 

spermatozoa  have  not  contacted  with  seminal  plasma,  which  contributes  to  the 

antioxidant defence of semen. Furthermore, male-to-male variability also affects to the 

resistance to cryopreservation-derived damage (Esteso et al., 2006;Loomis and Graham, 

2008),  possibly  enhancing post-thawing differences  among males.  These  facts  were 

considered when planning this study, and therefore our analysis and conclusions are 

within the context of cryopreserved epididymal spermatozoa.

In our previous study on  oxidative agents (Martinez-Pastor et  al., 2009a), we 

found that 10 µM H2O2 did not affect thawed spermatozoa,  but 100 µM and 1 mM 

depressed motility within 1 h of incubation (in fact, 1 mM abolished sperm motility 

almost immediately after adding it to the sample). We determined that a similar effect of 

xanthine oxidase/hipoxanthine was in fact caused by H2O2 generation. In our study, the 

only significant effects of H2O2 were caused by 200 µM, not by 100 µM. Apart from 

some differences on the experimental design (Dominguez-Rebolledo et al., 2009), it is 
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possible  that  the  limit  above  which  H2O2 causes  a  detectable  effect  (regarding  our 

experimental tests) would lay in the order of magnitude of 10-4 M. Individual males 

might  present  a  different  sensitivity  to  H2O2 within  that  order  of  magnitude,  as 

suggested by the male-to-male variability experiment. In our previous study, we used 

samples from other set of males, which could be the source of the observed differences.

Although addition of H2O2 increased intracellular ROS, no other effects  were 

observed below 200 µM. We found that even 10 µM H2O2 could increase intracellular 

ROS above Control (Martinez-Pastor et al., 2009a), but this increase did not result in a 

noticeable  change  of  motility  or  sperm  physiology.  However, Peris  et  al.  (2007), 

working with fresh ram sperm, found that 50 µM H2O2 decreased motility in only 1 h of 

incubation.  Nevertheless,  these  authors  did  not  observe  capacitation-related  changes 

(chlortetracycline  stain)  among  different  H2O2 concentrations  (0,  50  and  150  µM), 

except  for  300  µM,  which  caused  a  significant  increase  in  acrosome-reacted 

spermatozoa at 1 h of incubation (but not after 4 or 24 h). In the present study, H 2O2 did 

not induce changes in the apoptotic ratio of the samples, a parameter depending on YO-

PRO-1 stain, putatively related to membrane condition and possibly connected to the 

physiological status of the sperm cell (Martinez-Pastor et al., 2008;Peña et al., 2007). 

Previous  studies  have  highlighted  the  role  of  ROS  on  the  modulation  of  sperm 

physiology, and their  role activating capacitation (Awda et  al.,  2009;Baumber et  al., 

2003;O'Flaherty et al., 1999). For instance, Roy and Atreja (2008) induced capacitation 

and associated tyrosine phosphorilation in buffalo spermatozoa by incubating with 50 

µM H2O2. More detailed studies, such us analysis of tyrosine phosphorilation of specific 

proteins, should be performed in small ruminants, in order to determine if H2O2 induces 

physiological changes beyond those reported by Peris et al. (2007) and us. The detection 
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of  these  changes  is  of  capital  importance,  since  they  might  be  unnoticed,  affecting 

sperm functionality farther in sperm work protocols.

Agreeing  with  previous  studies  (Aitken  et  al.,  1993;Armstrong  et  al., 

1999;Martinez-Pastor  et  al.,  2009a;Peris  et  al.,  2007),  sperm motility  was the  most 

sensitive parameter to H2O2. Motility loss by H2O2 has been primarily attributed to the 

inactivation  of  glycolytic  enzymes,  leading  to  energetic  draining  in  the  flagellum 

(Armstrong et al., 1999;Baumber et al., 2000). However, the sensitivity of spermatozoa 

to H2O2 varies dramatically among studies. Ramos and Wetzels (2001) found an almost 

total  loss of motility  after  incubating 5 min human spermatozoa with 25 µM  H2O2. 

Bilodeau et al. (2002), testing a wide range of  H2O2 concentrations on bovine semen, 

found that 75 µM of H2O2 immediately decreased sperm motility, and that just 12.5 µM 

H2O2 decreased motility after 1 h of incubation. This might imply that small ruminant 

spermatozoa might be more resilient to this effect, as we suggested in a previous study 

(Martinez-Pastor et al., 2009a). 

We observed a non-significant increase of MDA with time, which seemed to be 

accelerated by H2O2 presence. This increase on LPO was unrelated to motility changes. 

These observations suggest that red deer sperm might be little prone to H2O2-induced 

lipoperoxidation.  Peris  et  al.  (2007)  did  not  found  increasing  LPO  levels  when 

submitting the samples to H2O2 levels up to 300 µM, but after incubating their samples 

for 24 h.  However,  these authors found correlations among MDA concentration and 

other sperm parameters, which was not noticed in our study. It seems that there are 

between  species  differences  regarding  susceptibility  and  consequences  of  lipid 

peroxidation. For instance,  Alvarez and Storey (1989) could increase LPO and loss of 
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motility in human and mouse sperm by adding H2O2 (1 and 5 mM), whereas the same 

concentrations of H2O2 were insufficient to induce LPO in rabbit sperm. Similarly, we 

could detect an increase on LPO using the TBARS technique in deer spermatozoa after 

incubating  with  1  mM  H2O2,  but  we  could  not  detect  a  significant  increase  when 

applying 100 µM H2O2 (Domínguez-Rebolledo et al. 2010) 

Subjecting thawed spermatozoa to oxidative stress can affect chromatin integrity,  

and the SCSA test can be used to detect it  (Fernandez-Santos et  al., 2009;Martinez-

Pastor  et  al.,  2009b).  Sperm  chromatin  integrity  was  affected  by  200  µM  H2O2. 

Previously (Martinez-Pastor et al., 2009a), we could not identify such chromatin insult, 

possibly because of the different set of males used. Again, it is possible that individual 

sample quality (different stocks of semen doses) could have a role, although we cannot 

discard variations in the experimental protocol (lack of sperm washing in our previous 

study). In fact, we found that washed samples were more vulnerable to oxidative stress 

than unwashed ones  (Dominguez-Rebolledo et  al.,  2009). Other studies have shown 

apparently lower chromatin damage susceptibility in similar species. For instance, Peris 

et al. (2007) reported that SCSA showed that 150 and 300 µM H2O2 increased the %DFI 

on ram spermatozoa, but only after 24 h incubation. In human spermatozoa, Ramos and 

Wetzels (2001) did not detect DNA damage when sperm from normospermic men were 

incubated for 1 h in the presence of 25 µM of H2O2, but damage was observed after 24 h 

(using TUNEL), alerting that low levels of ROS can be damaging given long incubation 

times.  Another  study  (Hughes  et  al.,  1996),  using  the  COMET assay,  showed  that 

applying 100 and 200 µM H2O2 for only one hour caused an important increase on DNA 

damage, and that only 40 µM H2O2 was required to cause a small increase of DNA 

damage in asthenozoospermic samples (although baseline levels were similar to those of  
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normozoospermic  samples).  This  study  highlights  the  importance  of  previous 

susceptibility to oxidative stress and the importance of between sample heterogeneity, 

regarding ROS resistance.

In  the  second  part  of  our  study,  we  aimed  at  studying  the  male-to-male 

variability on the response to H2O2.  Although we worked with a limited number of 

males, it was evident that male-to-male variability had an effect, not only regarding the 

resilience to oxidative stress, but also to incubation without oxidants. In other studies, 

we have reported that sperm male-to-male variability  seems to be high in  red deer,  

possibly due to the unselected nature of the populations from which we obtained our 

samples (Garde et al., 2006). In fact, working with those wild populations allows us to 

easily  detect  and  study  male-to-male  variability,  which  would  be  harder  to  detect 

working with animals submitted to strong human selection. We have previously showed 

that  red  deer  present  evident  male-to-male  differences  in  sperm characteristics  and 

fertility (Malo et al., 2005) and in sperm sensitivity to cryopreservation (Soler et al., 

2003). Moreover, we have proposed that that variability could even reflect in biased sex 

ratios, depending on the fertility of different males (Gomendio et al., 2006).

In the present study, motility parameters were affected by incubation in some 

males, whereas in others motility was maintained almost unaltered for the duration of 

incubation,  being  only  affected  if  oxidative  stress  was  present.  Contrarily,  although 

individual  variability  was evident  considering  initial  MDA concentration  and sperm 

viability, it did not affect the changes on these variables after incubation with or without 

oxidative stress. It is known that many factors can affect membrane composition, among 

them  individual  variability,  and  that  its  composition  influences  its  resistance  and 
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susceptibility to oxidative stress (Lenzi et al., 2002). It is possible that the small increase  

of LPO observed after incubation and H2O2 might have prevented us from detecting the 

interaction among males and treatments. Another reason could be that the high dilution 

and the freezing-thawing of the cryopreserved samples would have dimmed membrane-

related  differences,  a  hypothesis  that  could  be  tested  in  another  study  using  fresh 

spermatozoa. It is important to consider that in vivo studies (Reglero et al., 2009) have 

showed no differences on LPO between deer living in areas contaminated with heavy 

metals and other living in uncontaminated areas, but the same study found differences 

among deer living in different estates. These findings suggest that some oxidative stress 

markers, such as LPO, could indeed depend more on the male than on environmental 

stressors.

Motility can be affected by multiple factors, and therefore it is a good candidate 

to  detect  variability  among males or samples  (Malo et  al.,  2005).  The resistance of 

sperm samples to incubation was apparently not dependent on their initial quality. Thus, 

male  1  and 6 had  similar  initial  motility,  but  whereas  male  1  maintained the  same 

motility  after  incubation  and  it  was  halved  when  H2O2 was  present,  it  dropped 

dramatically for male 6, and it was abolished by H2O2. This example not only shows the 

impact of between male differences, but also that the initial quality of a sample (just 

after thawing, in this case) might be not informative of its real potentiality. Therefore, 

sperm "freezability" (comparison of the pre-freezing and post-thawing quality) might 

not suffice when characterizing samples from a male in the lab, being necessary to test 

the  real  resistance  of  spermatozoa  by  challenging  them  in  physiological  and  non-

physiological conditions (Roth et al., 1999;Soler et al., 2008). Furthermore, molecular 
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techniques  may  be  used  to  predict  the  performance  of  spermatozoa  beyond 

cryopreservation (Grunewald et al., 2008;Thurston et al., 2002).

In summary, we conclude that oxidative stress caused by H2O2 clearly affected 

kinematic parameters of cryopreserved red deer spermatozoa, but only at relatively high 

concentrations (considering previous studies, at a magnitude of 10-4 M). It did not seem 

to influence sperm viability or apoptotic markers (as defined with YO-PRO-1). This 

may be a consequence of membrane resilience to oxidative stress, but also to the effect 

of cryopreservation, which might have already removed susceptible spermatozoa from 

the samples. We have to point out that we utilized only epididymal spermatozoa, and 

that results might vary when using ejaculated samples. In a previous study on red deer 

(Martínez-Pastor et al., 2006)), we that cryopreservation conditions of epididymal and 

ejaculated  samples  might  vary.  These  differences  could  also  affect  the  response  of 

oxidative stress of ejaculated samples.

In  conclusion,  cryopreservation  of  gametes  and  embryos  and  the  development  of 

Genetic Resource Banks (GRB) allow us to have a gene resource for an indefinite time 

(Watson  and  Holt.,  2001).  These  assisted  reproductive  technologies  (ART)  are 

potentially  capable  of  improving  the  propagation  and  conservation  of  wild  and 

endangered  species  (Wildt  et  al.,  1997).  Of  the  genetic  material  in  cryobanks,  the 

collection, storage, and subsequent use of spermatozoa has found the most widespread 

application  (Watson  and  Holt.,  2001).  According  to  this,  cryopreservation  of 

spermatozoa combined with artificial insemination (AI) has been the method of ART 

that has been most  extensively applied to deer species (Asher et  al.,  2000).   In the 

present work, male-to-male variability was evident in the response to incubation both 

with and without H2O2. This male-to-male variability is important, since it reflects on 
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fertility  and  in  the  outcome  of  other  artificial  reproductive  techniques  (artificial 

insemination  and  IVF  success).  Thus,  we  must  discriminate  among  samples  from 

different males not only according to their "freezability", but also to their performance 

after thawing and in stressing situations. We must take into account these differences as 

much  to  improve  freezing  protocols  as  in  the  post-thawing  protocols,  considering 

protective  agents  such  as  antioxidants,  and  adjusting  them to  the  characteristics  of 

different  kind  of  samples.  This  is  especially  important  when  dealing  with  valuable 

specimens of endangered animals, which is usual working with wild species. Actually, 

there is a remarkable interest in the use of ART for the management of Iberian deer 

(Cervus elaphus hispanicus) populations. Specifically, ART may play an important role 

for the purpose of ensuring genetic preservation and/or genetic progress. Moreover, our 

results can contribute to the development of adequate protocols for red deer as a farming 

species, and also for other small ruminants.
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Figure Legends

Figure 1.  Representative histograms from samples stained with  CM-H2DCFDA/TO-

PRO-3,  showing  fluorescence  intensity  for  CM-H2DCFDA  in  the  TO-PRO-1– 

subpopulation  (viable  spermatozoa).  A higher  fluorescence  (given  as  fluorescence 

channel number,  1–1024) indicates higher intracellular ROS. The mean fluorescence 

increased from baseline values at 0 h (a) to 2 h (b), and within 2 h, with increasing H2O2 

concentrations [100 µM (c) and 200 µM (d) are showed here].

Figure 2. Effect sizes of the H2O2 treatments, for the CASA analysis and YO-PRO-1/PI 

stain (viability and apoptotic ratio). In each case, the Control value at 2 h (0 µM H2O2) 

was used as the intercept  of the model (mean±SEM showed), effect sizes being the 

relative variation of the parameter from the Control value. For each H2O2 treatment, P 

values are given above of the x-axis (H0:  effect not different from 0). Total  motility 

(TM; a), curvilinear velocity (VCL; b) and the mean amplitude of the lateral movement 

of the head (ALH; d) were significantly reduced after 200 µM H2O2 treatment, whereas 

linearity (LIN; c), viability (e) and the apoptotic ratio (f) were not significantly affected 

by H2O2 addition.

Figure 3.  Model effect sizes of the H2O2 treatments, showed for the lipoperoxidation 

analysis (LPO) and SCSA (DNA damage). In each case, the Control value at 2 h (0 µM 

H2O2) was used as the intercept of the model (mean±SEM showed), and the effect sizes 

are  the  relative  variation  of  the  parameter  from  the  Control  value.  For  each  H2O2 

treatment,  P values  are  given above of  the  x-axis  (H0:  effect  not  different  from 0). 

Neither LPO (a) nor HDS (high DNA stainability; c) were significantly affected by the 

tested  H2O2 concentrations,  but  the  percentage  of  spermatozoa  with  high  DNA 
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fragmentation index (%DFI; b) significantly increased after incubation with 200 µM 

H2O2.

Figure 4. These interaction plots shows the effect of the individual males (1–7) and 

treatments  (0  h,  2  h  incubation  and  2  h  incubation  with  200  µM H2O2)  on  sperm 

parameters  (mean  values  displayed).  Lines  do  not  imply  a  continuity  among  2  h 

incubation and 2 h incubation plus 200 µM H2O2, but they are used to highlight the 

different values and changes, among the treatments, of samples from different males. 

Differences  among  males  are  evident  for  motility  parameters,  while  male-to-male 

differences (regarding different behaviour among treatments)  were minimal for LPO 

and viability.

Figure  5. Representation  of  the  multivariate  data  showed  in  Figure  4  in  the 

bidimensional space resulting from performing a principal component analysis (PCA) 

with TM, VCL, LIN, ALH, viability (V) and LPO (the first two principal components, 

PC1  and  PC2,  were  selected).  Subfigure  (a)  shows  the  variable  loadings  (linear 

relationships among the principal components and the variables), represented by the six 

eigenvectors, in order to help to interpret subfigure (b): for instance, in subfigure (b), 

samples  ”moving”  towards  the  lower-right  quadrant  would  indicate  samples  with 

decreasing  kinematic  parameters,  while  those  “moving”  towards  the  upper-right 

quadrant would have decreasing motility and viability, while increasing LPO. Subfigure 

(b)  presents  the  changes  underwent  by  samples  from  different  males  (1–7)  as 

translations throughout the PC coordinates. Samples at 0 h are represented by circled 

numbers, which are the starting point for vectors representing the change underwent by 

these samples after 2 h of incubation (plain numbers) or 2 h of incubation with 200 µM 
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of  H2O2 (italic-bold  numbers).  The  male-to-male  differences  showed  in  Figure  4, 

regarding treatment effects, are evident in this plot.
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