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Hybrid mode matching and method of moments
method for the full-wave analysis of arbitrarily

shaped structures fed through canonical waveguides
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Angel Belenguer,Member, IEEE,Héctor Esteban,Member, IEEE,Vicente E. Boria,Senior Member, IEEE,
Carmen Bachiller,Member, IEEE,and José V. Morro,Member, IEEE

Abstract—A new hybrid mode matching and method of mo-
ments formulation based only on electric currents is presented
in this paper. The use of only one equivalent current allows the
introduction of a new set of unknowns. The chosen new unknowns
are the weights related to the scattered modes that emerge from
the ports to the waveguides that feed the problem. Applying
this new formulation, the matrices that must be inverted are
smaller and the generalized scattering matrix can be obtained
directly from the solution of the resulting system of equations, so
that no additional projection is needed to obtain the scattering
parameters, as happens with traditional approaches with two
equivalent currents. As a result, certain efficiency improvement
is obtained, as can be seen when this technique is applied to the
solution of H plane problems in rectangular waveguide.

Index Terms—Electromagnetic scattering, mode matching
methods, moment methods, rectangular waveguides.

I. I NTRODUCTION

One of the most common techniques employed in devel-
oping hybrid formulations is mode matching (MM). MM
analyzes discontinuities which separate regions whose modes
are known analytically: rectangular waveguides and cavities,
circular waveguides and cavities, etc., so that its generality is
very limited. However, these structures are very common in
microwave devices, and this technique is intensively employed
for analyzing a wide range of microwave devices [1]–[4]. MM
is very efficient but not general. On the other hand, the general
methods, such as the method of moments (MoM), are not as
efficient as MM. If we manage to combine MM and MoM we
will be able to solve a wide range of problems more efficiently
than using MoM alone.

The MM and MoM hybrid formulations are widely used
to analyze horns as in [5], where the inner problem is solved
using MM and the outer problem is solved by means of MoM.
They can also be employed in the solution of resonant cavities
of arbitrary geometry when they are fed through several ports
[6]–[10]. Traditionally, the problem is discretized by means of
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MoM, and then it is solved to find certain equivalent currents,
~J and ~M , that model the problem ports. Once the currents
have been obtained, the emergent modes from the problem
through these ports are computed by means of projecting the
current distribution over the modes associated to each port.

The numerical efficiency of these hybrid methods can be
improved if we manage to include the weights of the modes
in the equations, so the last projection could be avoided.

In order to accomplish this objective, the ports must be
represented using only a set of unknowns:~J or ~M . That
forces us to eliminate one current in the port characterization,
which can be done if the equivalence theorem is applied.
Once the port is characterized by means of a single current,
it is possible to include the desired weights as unknowns
in the system of equations. This has been done in the new
technique presented in this paper using only electric currents.
The accuracy and efficiency of this new technique has been
successfully tested with the analysis of H plane problems in
rectangular waveguides.

II. EQUIVALENCE

We need to prove that an arbitrary electromagnetic problem,
like the one in the left side of Fig. 1, can be successfully
characterized outsideV using only electric current densities
or only magnetic current densities. This fact has been already
used in [11], [12], but we include a proof here to increase the
readability of the text.

Applying the equivalence principle, the fields outside an
imaginary closed surface,S, which in turn encloses certain
volume,V , can be obtained by placing suitable electric and
magnetic current densities overS, see Fig. 1.

The problem is equivalent only outsideS, because the
equivalent sources produce the original fields,~E2 and ~H2,
only outsideS. The fields ~E and ~H of Fig. 1 are different
from the originals~E1 and ~H1 [13].

We can freely choose a solution for the Maxwell equations,
~E and ~H inside S, to construct an equivalent problem [13].
From the uniqueness theorem [13] we know that any possible
solution of the Maxwell’s equations insideV is unambigu-
ously determined by the tangential component of~E, or the
tangential component of~H over S.

Then, the first particular solution that we propose,~E(1) and
~H(1) (see Fig. 2), is the solution of the Maxwell’s equations
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Fig. 1. Equivalence theorem

unambiguously determined by a tangential component of the
electric field overS, n̂ × ~E(1), equal ton̂ × ~E(1) = n̂ × ~E2.
In this case, if we apply the general equivalence principle of
Fig. 1, we get these particular equivalent sources,~M

(1)
S =

−n̂×( ~E2−
~E(1)) = 0 and ~J

(1)
S = n̂×( ~H2−

~H(1)). Therefore,
it is possible to find an equivalent problem outsideS replacing
the original sources by a single electric current density onS.
In this case, the fields insideV are completely unknown and
depend on the fields we are trying to synthesize outsideV .
We only know that these fields exist and could be calculated,
but that is enough to conclude that the equivalence is possible.

Traditionally, the Love’s equivalence [13] is developed
under the assumption that we are not interested in what
happens in the unwanted region (V ), and maybe this premise
could confuse us. Since the Love’s equivalence requires two
independent sources, one can think that when we are interested
in one region we also need two currents to achieve the
equivalence. However, in fact, when we apply the Love’s
equivalence, we are interested in what happens in the unwanted
region, unless mathematically speaking, since we force the
fields in this region to be zero. That is the reason why the
Love’s equivalence requires two currents.

Another solution could be the fields,~E(2) and ~H(2), unam-
biguously determined by a tangential component of the mag-
netic field overS, n̂× ~H(2), equal ton̂× ~H(2) = n̂× ~H2. Now
~M

(2)
S = −n̂× ( ~E2 −

~E(2)) and ~J
(2)
S = n̂× ( ~H2 −

~H(2)) = 0.
Then, it is also possible to find an equivalent problem in terms
of a single magnetic current density defined onS (see Fig. 2).
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Fig. 2. Equivalences outsideV in terms of a single current

Following the same procedure, it is easily shown that an
equivalent problem insideS can be expressed in terms of a

single electric current density, or in terms of a single magnetic
current density, overS.

III. PROBLEM REFORMULATION

In this section an arbitrarily shaped closed cavity fed
throughA canonical waveguides is analyzed (see Fig. 3).
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ŷ3

n̂
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx
xxxxxxxxxxxxx

Sc

I

I

I

II

Fig. 3. Example of an arbitrarily shaped closed cavity fed through A = 3
canonical waveguides

The medium II is closed, so the equivalence theorem
guarantees us that it can be fully characterized by means of a
surface electric current density over its limiting surface, that
is, Sa ∪ Sc, whereSa is the surface of all the accessing ports
(Sa = S1

a∪S2
a∪· · ·∪SA

a ) andSc is the surface of the metallic
boundary of the closed cavity (see Fig. 3). That means that the
accesses can be fully characterized using a single current,let
us say~J = ~Ja + ~Jc, where ~Ja is the surface current defined
over Sa and ~Jc is the surface current defined overSc.

In order to obtain~J , we only need to force that the field that
this current density produces in the closed mediumII satisfies
the corresponding boundary conditions (uniqueness theorem).

The first boundary condition is that the tangential compo-
nents of the fields have to be continuous overSa. The second
boundary condition is that the tangential electric field over Sc

must vanish. Forcing these boundary conditions the following
set of equations is obtained

~EI
inc,Si

a

+

Ni
∑

n=1

bi
n~ei

n,Si
a

= ~EII
Si

a

( ~Ja + ~Jc), i = 1, 2, . . . , A

~HI
inc,Si

a

−

Ni
∑

n=1

bi
n
~hi

n,Si
a

= ~HII
Si

a

( ~Ja + ~Jc), i = 1, 2, . . . , A

~EII
Sc

( ~Ja + ~Jc) = 0
(1)

where

• bi
n is the weight of then-th regressive mode in thei-th

accessing port, and~ei
n,Si

a

and~hi
n,Si

a

are the values of the
electric and magnetic eigen-vectors for that mode atSi

a.
• Ni is the number of guided modes considered for analysis

in the i-th port.
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•
~EI

inc,S and ~HI
inc,S are the incident electric and magnetic

fields tangential to the surfaceS in the mediumI over
any point ofS.

•
~EII

S ( ~J) and ~HII
S ( ~J) are the electric and magnetic fields

tangential to the surfaceS produced by an electric current
density ~J in the mediumII over any point ofS.

In order to simplify the notation it is more convenient to
treat all the ports as a single entity. That allows to suppress the
indexi that refers to the port number in all the port-dependent
parameters. Proceeding in this way, we define the following
parameters:

b = [b1
1, · · · , b1

N1
, b2

1, · · · , b2
N2

, · · · , bA
1 , · · · , bA

NA
] (2)

~e = [~e1
1, · · · , ~e1

N1
, ~e2

1, · · · , ~e2
N2

, · · · , ~eA
1 , · · · , ~eA

NA
] (3)

~h = [~h1
1, · · · ,~h1

N1
,~h2

1, · · · ,~h2
N2

, · · · ,~hA
1 , · · · ,~hA

NA
] (4)

whereb, ~e and~h are vectors ofN =
A

∑

i=1

Ni elements.

To discretize the equations of (1) we will use MoM and we
will expand the currents as a weighted sum of certain basis
functions

~Jc ≈

Q
∑

q=1

Iq
~Jq ; ~Ja ≈

A
∑

i=1

Pi
∑

p=1

Ia
pi

~Ja
pi =

P
∑

p=1

Ia
p

~Ja
p (5)

where Pi is the number of basis functions considered for
the i-th port, P is the number of basis functions for all the
accessing ports, andQ the number of basis functions along
the conducting surface of the cavity.

The application of MoM is completed by projecting the
equations over several sets of test functions.

In order to discretize the last equation of (1) the test
functions~ωr (r = 1, 2, . . . R, R = Q) uniformly placed along
Sc are used.

The first two equations of (1) force the tangential field
continuity overSi

a. To discretize these equations we project the
tangential electric field at thei-th port overSi test functions
(~ui

s, s = 1, 2, . . . Si) and the tangential magnetic field over
Ti test functions (~vi

t, t = 1, 2, . . . Ti). We have consideredNi

modes to represent the field in the mediumI and we have
decomposed the current as a sum ofPi basis functions, so we
force thatSi = Ti = Ni = Pi. To sum up, we are considering
S = N test functions to evaluate the electric field continuity
(~us, s = 1, 2, . . . S) andT = N test functions to evaluate the
magnetic field continuity (~vt, t = 1, 2, . . . T ) across all ports.

When the equations of (1) are projected over these sets
of test functions, a system of equations is obtained. The
construction of this matrix system is detailed in the appendix.
The solution of this system providesbn, Ia

p andIq.





Z 11 Z 12 Z 13

X 21 X 22 X 23

Z 31 = 0 Z 32 Z 33









b

I a

I c



 =





E i

H i

0



 (6)

IV. SCATTERING PARAMETERS

A. Iterative solution

The solution of the matrix system of (6) directly provides
the amplitudes of all the regressive modesbi

n. So, in order
to compute thesij

nm scattering parameter, we have to excite
exclusively the j-th port with the m-th mode of unitary
amplitude, that is,amj = 1.

~EI
inc,Sa

=

{

~emk(Sk
a) if k = j

0 rest
(7)

~HI
inc,Sa

=

{

~hI
mk(Sk

a ) if k = j

0 rest
(8)

and with this excitation

sij
nm = bi

n, ∀i, n (9)

In addition, an iterative solver [14]–[18] such as biconjugate
gradients, biconjugate gradients stabilized, generalized mini-
mal residual, etc., in conjunction with a grouping strategysuch
as fast multipole method or multilevel fast multipole algorithm
[18]–[24] could be used to accelerate the product of





Z 12 Z 13

X 22 X 23

Z 32 Z 33





(

I a

I c

)

(10)

The remaining products of (6) are not worth accelerating
sinceZ 11 and X 21 are block-diagonal andZ 31 is equal to
zero.

B. Direct solution

An alternative to using an iterative solver or an acceleration
procedure to find the solution of (6) is to obtain the generalized
scattering matrixS directly. That can be done if we define

Z ac = −Z −1
33 Z 32 (11)

Z G = Z −1
11 (Z 12 + Z 13Z ac)

X G = X −1
21 (X 22 + X 23Z ac)

(12)

and we take into consideration thatE i = −Z 11a andH i =
X 21a . Then the generalized scattering matrix is

S = −

{

I + 2Z G

[

X G − Z G

]

−1
}

(13)

In order to obtain the field inside the mediumII produced
in response to any kind of incidence, we could calculate the
currents

I a = 2
[

X G − Z G

]

−1
a (14)

I c = 2Z ac

[

X G − Z G

]

−1
a (15)

wherea contains the amplitudes of the incident guided modes.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available athttp://dx.doi.org/10.1109/TMTT.2010.2040353

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



4

V. EFFICIENCY ANALYSIS

In order to assess the efficiency of the new technique
the number of matrix products (table I) and the number of
matrix inversions (table II) required by the new technique are
presented in this section and compared with the traditional
approach of hybrid MM and MoM formulations with two
equivalent currents. It can be observed that the number of
operations required to perform the matrix products is the same
with the one and two current approaches, but in the case of
the matrix inversions the number of operations is smaller with
the one current approach.

Moreover, the new technique avoids the projection over the
guided modes associated to each port in order to obtain the
scattering parameters of the structure, and it also allows the
use of an iterative solver and a grouping strategy to accelerate
the solution of (6).

TABLE I
MATRIX PRODUCTS AND TOTAL NUMBER OF OPERATIONS REQUIRED

Two currents One current

Prod. Size Prod. Size

1 (N + Q) × (N + Q) × N 1 Q × Q × N
1 N × (N + Q) × N(N × N × N) 2 N × Q × N
1 N × N × N 3 N × N × N

Oper. Q2N + 2QN2 + 3N3 Q2N + 2QN2 + 3N3

TABLE II
MATRIX INVERSIONS AND TOTAL NUMBER OF OPERATIONS REQUIRED

Two currents One current

Inv. Size Inv. Size

1 (N + Q) × (N + Q) 1 Q × Q
1 N × N 2 N × N (bloq. diag.)

1 N × N

Oper. O(Q3 + 3QN2 + 3Q2N + 2N3) O

(

Q3 +

(

1 +
2

A2

)

N3

)

VI. PARTICULARIZATION FOR H PLANE PROBLEMS IN

RECTANGULAR WAVEGUIDE

A. Election of basis and test functions

We have applied the general MM and MoM method pre-
sented in this paper to the analysis of H plane problems.

Since H plane problems in rectangular waveguides are
invariant in height, and assuming the incidence of the fun-
damentalTE10 mode, onlyTEm0 modes are needed for a
full wave analysis of the structure. As a consequence only the
ŷ polarization of the electric current is needed (see Figure 3).

As basis functions we choose~Ja
p = Ja

p ŷ and ~Jq = Jq ŷ,
whereJq andJa

p are rectangular pulses uniformly distributed
alongSc andSa.

As test functions we choose~ωr = ωr ŷ, with ωr equal to
Dirac’s delta functions uniformly distributed alongSc, and
~us = usŷ and~vt = vtx̂i, with us and vt also Dirac’s delta
functions uniformly distributed alongSa.

B. Expressions for the fields

The field expressions of the modes of a rectangular waveg-
uide and the solution of a two-dimensional scattering prob-
lem using MoM are very well documented in the literature
[25]–[27]. Using those expressions it is quite straightfor-
ward to obtain all the expressions needed to apply the new
method (~e I

mi(S
i
a), ~hI

mi(S
i
a), ~EII

S ( ~Ja
p ), ~EII

S ( ~Jq), ~HII
S ( ~Ja

p ) and
~HII

S ( ~Jq)).

VII. R ESULTS

In this section we are going to test the accuracy and
efficiency of the new method with the analysis of several
H plane problems: a 90o and a 135o bend, several beveled 90o

bends and a T-junction with and without load. The geometry
and the MoM discretization of all these problems are shown
in Figure 4.

In order to test the performance of the new method with
complex geometries, the rounded corners that appear due to
milling manufacturing have been considered for the loaded
T-junction (Figure 4(e)). A radius ofre = 3 mm has been
considered for the rounded corners.

In all the analysis a density of MoM basis functions equal to
100 pulses per wavelength has been used, and in the accessing
portsPi = 40 basis functions provide accurate enough results.

The results of the new method are compared with results
from the literature in Figure 5. A very good agreement with
results from the literature can be observed.

In Table III the CPU time (Intel Core2Duo with2.16GHz
clock frequency and 2GB of RAM) required by the new
method is shown. These results prove the efficiency of the
new method both for computing the scattering parameters and
for obtaining the field inside the structure.

TABLE III
CPUTIME AND NUMBER OF UNKNOWNS.

Unknowns
S parameters

sec/freq.
point

Ey, Hx andHz

sec/freq. point

90o bend 294 0.08 5.89

135o bend 182 0.03 0.71

Beveled bend
(ab = 0.98a) 260 0.06 4.23

Beveled bend
(ab = a/

√
2) 238 0.05 2.66

T-junction 251 0.06 5.36

Loaded T-junction 264 0.06 8.86

Loaded T-junction
(rounded corners)

329 0.10 15.78

Figure 6 shows the field pattern inside the T-junction loaded
with a cylindrical post and with rounded corners due to milling
manufacturing with the incidence of fundamental modeTE10.

VIII. C ONCLUSIONS

We have developed a new formulation for a hybrid MM
and MoM technique that uses only one current,~J . This new
formulation can be used to solve arbitrarily shaped problems
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Fig. 4. Geometries and MoM discretization of several H planeproblems.δ = 0.1 mm, h = 8, 8 mm, a = 15.799 mm except for the loaded T-junction
(a = 22.86 mm).
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Fig. 5. Comparison of the new method and the literature (re is the radius of the rounded corners of the T-junction).

when they are fed through one or more ports using canonical
waveguides.

Due to the fact that only one kind of current is needed to
characterize the problem ports, we have been able to include,
as unknowns of the resulting MoM system of equations, the
weights associated to the emerging modes through the ports.
Therefore, we are able to compute directly the full generalized
scattering matrix of the problem. Then, it is not necessary to
project the current over the modes of the feeding waveguides.
Moreover, the formulation presented in this paper is suitable
for applying iterative solvers such as biconjugate gradients,
generalized minimal residual, biconjugate gradients stabilized,
etc. and it is also possible to accelerate the solution by means
of these iterative solvers, if a grouping strategy like fast

multipole method or multilevel fast multipole algorithm is
used.

We have successfully applied the new technique to H plane
problems in rectangular waveguides, proving its accuracy and
efficiency with these geometries. However, the formulation
is fully general and valid for any closed cavity accessed by
canonical waveguides. Although we have used only equivalent
electric currents in the accessing ports, a similar formulation
might have been developed using only equivalent magnetic
currents.
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Fig. 6. Field pattern inside a loaded T-junction with rounded corners (re = 3mm, a = 22.86mm, δ = 0.1mm andh = 8, 8mm) with the incidence of the
fundamental mode (f = 11.5GHz) in port 1. a) Transverse electric field, b) Transverselymagnetic field and c) Longitudinal magnetic field.
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APPENDIX

In order to complete the calculation of the system of
equations resulting from the discretization of (1), first weneed
to define the projection operator that will allow us to discretize
the equations

< ~κ,~v(x, y, z) >=

∫∫

S

[~κ · ~v(x, y, z)] dS (16)

where~κ ·~v is the scalar product between the vectors~κ and~v,
S can beSa or Sc, and~κ is any of the vectorial test functions
that we have defined in section III.

Next, we will present the expression for the resulting system
of equations after applying a MoM discretization process to
(1). In order to do that, first we will organize the unknowns
in a column vectorx

x T = (b1, b2, · · · , bN , Ia
1 , Ia

2 , · · · , Ia
P , I1, I2, · · · , IQ) (17)

Then, we will store the excitation in another column vector,
c inc of sizeB × 1, B = S + T + R = N + P + Q

c inc =















































< ~̃u1, ~EI
inc,Sa

>

< ~̃u2, ~EI
inc,Sa

>
...

< ~̃uS , ~EI
inc,Sa

>

< ~̃v1, ~HI
inc,Sa

>

< ~̃v2, ~HI
inc,Sa

>
...

< ~̃vT , ~HI
inc,Sa

>

0
...
0











R















































(18)

and finally, we will define aB×B matrix,Z , whose elements
can be grouped in the following sub-matrices

Z =





Z 11(S×N) Z 12(S×P ) Z 13(S×Q)

X 21(T×N) X 22(T×P ) X 23(T×Q)

Z 31(R×N) Z 32(R×P ) Z 33(R×Q)



 (19)

where

• Z 11(S×N) also can be divided into blocks






E 11(S1×N1) · · · E 1A(S1×NA)

...
. . .

...
E A1(SA×N1) · · · E AA(SA×NA)






(20)

and only the diagonal blocks will be non-zero. The
elements of a diagonal block,E ii, can be computed

e(ii)
sn = − < ~us, ~en(Si

a) > (21)

with s ∈ port i andn ∈ port i.
• Z 12(S×P )

z(12)
sp =< ~us, ~EII

Si
a

( ~Ja
p ) > (22)

s = 1, 2, . . . S andp = 1, 2, . . . P .
• Z 13(S×Q)

z(13)
sq =< ~us, ~EII

Si
a

( ~Jq) > (23)

s = 1, 2, . . . S andq = 1, 2, . . .Q.
• X 21(T×N), whose elements can also be grouped







H 11(T1×N1) · · · H 1A(T1×NA)

...
. . .

...
H A1(TA×N1) · · · H AA(TA×NA)






(24)

and a block-diagonal matrix is obtained. The elements of
a block in the main diagonal,H ii, can be computed

h
(ii)
tn =< ~vt,~h

I
n(Si

a) > (25)

with t ∈ port i andn ∈ port i.
• X 22(T×P )

z
(22)
tp =< ~vt, ~HII

Si
a

( ~Ja
p ) > (26)

t = 1, 2, . . . T andp = 1, 2, . . . P .
• X 23(T×Q)

z
(23)
tq =< ~vt, ~HII

Si
a

( ~Jq) > (27)

t = 1, 2, . . . T andq = 1, 2, . . .Q.
• Z 31(R×N)=0, because the last equation of (1) does not

depend onbk.
• Z 32(R×P )

z(32)
rp =< ~ωr, n̂Sc

× ~E
T,II
Sc

( ~Ja
p ) > (28)

r = 1, 2, . . . R andp = 1, 2, . . . P .
• Z 33(R×Q)

z(33)
rq =< ~ωr, n̂Sc

× ~E
T,II
Sc

( ~Jq) > (29)
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r = 1, 2, . . . R andq = 1, 2, . . .Q.

Finally, a system of equations can be constructed if we form

Z x = c inc (30)
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