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Abstract. A method for characterizing the magnetoelastic dependence of both
Young’s modulus and damping on the magnetic field is presented. It is based on
laser Doppler vibrometry and free longitudinal vibration in soft ferromagnetic rods
and wires, and offers a broad range of improved features including accuracy, lack of
interaction with the sample, speed of measurement, full automation, high resolution,
and the possibility of stress-dependence studies. All these allow samples to be perfectly
characterized in the full magnetic field range, estimating the behaviour of the specimen
as different magnetization curves are followed and discovering critical points that had
been overlooked in previous works. As an example, the magnetoelastic characterization
of nickel rods is described, and excellent results are obtained which are consistent with
the hysteresis loop of nickel and the theory of magnetic domains in ferromagnetic
materials.
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1. Introduction

The elastic characterization of magnetic materials requires knowledge of their state of

magnetization, since this influences the elastic behaviour of the solid [1]. The main

objective of the present work was to develop an experimental set-up which is able to

improve the characterization of important magnetoelastic effects relative to existing

techniques. Specifically, the effects studied are the dependence of both the elastic

modulus and damping on the applied magnetic field, i.e., the so-called ∆E-effect and

magnetomechanical damping (∆Ψ-effect for symmetry in nomenclature), respectively.

When tension is applied to any ferromagnetic sample, two different types of

deformation appear: elastic (εll), fully described by Hooke’s law, and magnetoelastic

(εml), an additional strain caused by the magnetic state of the sample and the

constitution of its magnetic domains [1, 2]. Hence, the existence of an applied magnetic

field causes the apparent Young’s modulus to differ from its value in the demagnetized

state. It is known that stress can also alter the magnetic domain structure but for a low

stress level within the specimen such influence can be neglected. The Young’s modulus

for a specific applied magnetic field will be called EH, so the complete ∆E-effect is

described in terms of the ratio:

∆E

E
=

ES − ED

ED

=
εml

εll

(1)

with ED and ES being the demagnetized and saturated Young’s moduli, respectively.

Also, when materials are set in vibration some of the elastic energy is converted

into heat, which leads to the extinction of the oscillation. As in the case of Young’s

modulus, the damping of elastic waves in ferromagnetic materials behaves differently

when the material’s magnetic domains are altered. Nevertheless, unlike elastic modulus,

stress-dependence of damping in ferromagnetic materials cannot be neglected especially

in the demagnetized state [2, 3], so domain motion is caused by the existence of both

magnetic and stress interaction. This effect, commonly known as magnetomechanical

damping, is studied in terms of the specific damping capacity Ψ, and hence our use

of the term ∆Ψ-effect in the present work. Precisely, the specific damping capacity is

defined as the ratio between the energy dissipated per cycle ∆W and the maximum

energy of the system W , and can be also obtained from of the logarithmic decrement

δ which is the natural logarithm of the ratio between the amplitude of two consecutive

free oscillations Ai and Ai+n:

Ψ =
∆W

W
= 2δ = 2 ln

(
Ai

Ai+1

)
= 2

1

n
ln

(
Ai

Ai+n

)
(2)

The specific damping capacity for a specific applied magnetic field and stress will be

called ΨH,σ. So, for symmetry in expressions, the ∆Ψ-effect can be described in terms

of the ratio:

∆Ψ

Ψ
=

ΨS,σ −ΨD,σ

ΨD,σ

(3)
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with ΨD,σ and ΨS,σ being the demagnetized and saturated specific damping capacity for

a constant stress σ.

A summary of the methods used to measure these effects is given by Squire in

[4]. For the ∆E-effect measurement in particular, some of the techniques described

are based on the use of electromagnetic sensors and actuators. Two examples are the

resonance and antiresonance method [5] and the ultrasonic wave velocity technique [6],

both of which, however, present certain drawbacks. The former is unable to estimate the

Young’s modulus over the whole range of applied field, and in the latter the influence of

the electromagnetic actuator may modify the magnetic state of the sample [4]. Other

methods involve the sample’s vibration. An example is the vibrating reed technique [7],

where the sample is excited by an alternating electric field, and the resulting vibration

is measured via capacitive or optical detectors. Again, the exciting electric field may

become a non-negligible source of error. A later work has developed a method based

on the longitudinal free vibration of the specimen and the measurement technique of

heterodyne-speckle interferometry [8]. This system not only ensures that the vibration

can be measured while avoiding contact with the sample but also provides a stress

pulse which does not influence the sample’s magnetic state. With respect to the

characterization of magnetomechanical damping or ∆Ψ-effect, the different methods are

distinguished by the technique they use to measure the damping [9]: measurement of the

attenuation of a stress pulse travelling through the material, estimation of the bandwidth

which appears in the resonance curve of forced vibration, or determination of the decay

of the free vibration time-response. Especially important is the torsional pendulum

method [4, 10], which is used to measure both internal friction and shear modulus,

and the aforementioned technique of heterodyne-speckle interferometry, which has been

successfully tested in ∆Ψ-effect characterization simultaneously with measurement of

the ∆E-effect [11].

In magnetic materials, due to the previously mentioned reciprocal dependence

between magnetic and mechanical properties [1], the stress applied to a material may

have influence on the measurement of field-dependent E and Ψ. So, some methods based

on forced vibration are centred on studying this influence up to stresses near the fatigue

limit [3, 12, 13, 14]. In methods which use free vibrations, like the torsional pendulum

method, it is very difficult to keep the stress amplitude uniform enough to avoid its

influence on the results, but Atalay [10] shows one way to consider and minimize this

effect.

In short, it seems at present that only the heterodyne-speckle interferometry

technique can provide simultaneous and accurate measurements of both the ∆E-effect

and the ∆Ψ-effect over the full range of applied magnetic fields and without interacting

with the mechanical or magnetic state of the sample. Nevertheless, as in all the

above experimental techniques, not only significant but even critical improvements are

possible. In particular, the present work describes an approach to full automation

of the experimental process, sharply reduced characterization times, high-resolution

characterization curves without loss of information and a more careful treatment of the
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stress level interaction.

In order to attain these goals, new excitation and measurement techniques were

developed. For the excitation, we designed a fast, automatic process of free longitudinal

vibration which does not interact with the specimen while it oscillates, and allows

characterization over the full range of magnetization. For the measurement system, we

chose a recently improved instrumentation system based on laser Doppler vibrometry

(LDV).

This choice of LDV merits further explanation [15]. The first LDV models showed

limited sensitivity, low signal-to-noise ratio (SNR), and poor applicability to non-

diffusive surfaces. But developments since the early 1990s have greatly enhanced their

measurement capabilities with respect to traditional sensors such as accelerometers and

strain gauges, and even other interferometric techniques such as electronic speckle

pattern interferometry (ESPI). Specifically, they allow remote, non-intrusive, high

spatial resolution measurements with short testing times and improved performance

(high-frequency bandwidth, greater linearity, broad velocity range, and high resolution

in displacement and velocity measurements). Furthermore, they are able to measure

usually difficult surfaces such as those with tight radii of curvature, edges, or very

small structures, and even under difficult working conditions such as on hot parts or

through glass windows or fluids. LDV has been applied to many areas of engineering and

science, from mechanical engineering to biomedicine, micro- and nano-electromechanical

systems (MEMS and NEMS), artworks, archaeology, and, of course, the characterization

of smart materials. In particular, some authors have recently developed experimental

systems based on non-contact laser vibrometry for determining vibration and sound

fields [16, 17], for detecting fatigue cracks [18] or for estimating mechanical properties

of different materials [19, 20]. In the specific field of magnetoelastic characterizations,

measurements of Young’s modulus and damping have been carried out successfully by

Morales in [21].

The basic idea behind the improvement of the characterization of the magnetoelastic

effects in ferromagnetic materials is to take advantage of the particular features of

the specially designed automatic excitation system and the LDV-technology-based

instrumentation.

2. Theoretical background

Before describing the experimental set-up and the data processing used to estimate the

∆E-effect and ∆Ψ-effect from the acquired signals, we shall give a brief overview of the

theory of the damped longitudinal propagation of a stress wave through an elastic and

ferromagnetic material, the details of which may be found in [1]. The stress acting on

a section is given by the sum of three terms: an elastic term proportional to strain,

a dissipative viscous term proportional to the temporal variation of the strain, and a

magnetoelastic term related to the applied magnetic field. The resulting wave equation
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governing propagation is [1, 11]:

∂2uz

∂z2
=

ρ

EH

∂2uz

∂t2
− η

EH

∂3uz

∂z2∂t
+

λsχ

Ms

∂Hz

∂z
(4)

where ρ is the material density, η the structural damping loss factor, EH the Young’s

modulus for the magnetic field Hz, λs and Ms the saturation magnetostriction and

magnetization, respectively, χ the magnetic susceptibility, and uz the longitudinal

displacement. In this case the longitudinal variation of the magnetic field is neglected

since the field is assumed to be uniform over the entire length of the ferromagnetic

specimen. This simplifies the wave equation which, with separation of variables, has the

solution [11]:

uz(z, t) = [A cos(kz ) + B sin(kz )] [C cos(ωdt) + D sin(ωdt)] exp
(
−γ

2
t
)

(5)

with k being the wave number, ωd the damped longitudinal angular frequency, γ
2

the

attenuation constant, and A, B, C, and D constants which depend on the initial and

boundary conditions. The jth damped longitudinal frequency can be calculated by

applying the free-end conditions, with the following result [11]:

fd,j = 2πωd,j =

[
j2

4L2

(
EH

ρ

)
− γ2

16π2

]1/2

(6)

where L and ρ are the length and density of the rod, and j is an integer associated with

each longitudinal mode.

Hence, the Young’s modulus for any given applied magnetic field EH can be

estimated as a function of the measured first damped longitudinal frequency fd,1 and

its corresponding logarithmic decrement δ by the expression:

EH = 4L2ρf 2
d,1

(
1 +

δ2

4π2

)
(7)

whereas the specific damping capacity for the same magnetic field ΨH deserves a further

explanation.

Basically, two problems have been detected when measuring magnetomechanical

damping by means of logarithmic decrement in free vibration:

(i) High stress-dependence of magnetomechanical damping

(ii) Measurement of an averaged logarithmic decrement along the full bar

The first problem is inherent to free decay measurement since the attenuation of

oscillations leads to reduced stresses. Some works which are also based on free decay

measurement, like torsional pendulum methods, have solved this problem by calculating

the logarithmic decrement using a short portion of the signal [10]. Then, the estimated

value can be associated to a particular applied stress.

The second problem is a bit more complex. Due to the fact that the logarithmic

decrement is measured at the end section of the bar, the value obtained represents
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the averaged sum of every section of the bar, which may differ from the real value.

Taking into account Lazan’s work, mechanical losses can be written as an exponential

stress-dependence [24]:

∆WH,σ = Jσn (8)

and the expression for the averaged specific damping capacity is given by:

ΨH,σ|bar =
∆WH,σ|bar

WH,σ|bar

=

∫ L
0 JAσn sinn

(
πx
L

)
dx

∫ L
0

Aσ2

2EH
sin2

(
πx
L

)
dx

= 2δH,σ|bar (9)

where A is the cross section area of the bar and parameters J and n for ferromagnetic

materials are not constant but depend on both applied stress and magnetic field [3]. So,

the averaged estimation of ΨH,σ|bar (through δH,σ|bar measurement) for different applied

stresses and magnetic fields can be used to fit both J and n, and then use Lazan’s

expression in order to obtain the desired ΨH,σ as follows:

ΨH,σ =
∆WH,σ

WH,σ

=
Jσn

σ2

2EH

= 2EHJσn−2 (10)

3. Experimental set-up

Figure 1 shows a general scheme of the experimental arrangement used in the present

work. One may distinguish four parts constituting the full set-up. A PC equipped

with a data acquisition system automatically controls the required procedure, which

consists of magnetizing a ferromagnetic specimen, exciting it longitudinally, and finally

measuring its vibration.

The ferromagnetic samples are magnetized by a solenoid in whose inner space

the specimen is placed. In order to generate the magnetic field necessary to achieve

the desired magnetization throughout the sample, a DC supply feeds the appropriate

current intensity. The particular DC supply used is a Delta Elektronika SM400-AR-8

which provides 1600 W, i.e., up to 4 A between 0 V and 400 V, and is equipped with

RS232 connectivity.

The magnetizing solenoid must be carefully designed in order to achieve the critical

goals of sufficient magnetization capacity and great homogeneity of the applied magnetic

field. These two requirements were met by combining two different contributions: a

straight solenoid which gives high values of the magnetic field, and a pair of Helmholtz

coils which compensate the inhomogeneity of the straight component. Some further

important constraints had to be taken into account for a satisfactory design, because

at maximum power of the DC supply the Joule effect losses can lead to a dangerously

high temperature inside the coil. The final optimized design was a solenoid of 250 mm

in length and 35 mm in inner diameter. As expected, the experimental results shown

in Figure 2 for the magnetic field due to the Helmholtz coils, the straight solenoid, and

both together confirmed that this last was the best configuration. The device can reach
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up to 2400 Oe, high enough to magnetize ferromagnetic materials such as nickel even

when the demagnetizing field is considered [2, 22], and it provides a notable 140 mm

band of homogeneity in which the magnetic field is within 2% of its central value. This

characterization was carried out with a Walker Scientific MG-4D gaussmeter in vertical

position and a micrometric table, and the measurements were normalized with regard

to the vertical Earth’s magnetic field. With respect to its thermodynamic response, the

coil reaches nearly 50◦C after working at maximum power for 5 minutes. This does not

represent a real problem, however, because most trials are performed at considerably

below maximum power; and since the increase in temperature is exponentially slower

as the power decreases, the coil can be safely used for longer times.

This experimental set-up can be used to make measurements on ferromagnetic

specimens of a wide range of shapes and sizes. In particular, it is possible to measure

constant cross-section wires and bars up to 30 mm in diameter, with a limit of 140

mm length for the sample to be considered uniformly magnetized. Note that it is

also unfeasible to use short specimen lengths due to the high demagnetizing field they

generate [22], and due to their longitudinal resonance frequencies [23] being too high for

the measurement devices. The set of pieces responsible for fixing the sample inside the

solenoid consists of an opened ring to act as a clip, and a flanged cylinder to hold the

ring in place inside the solenoid (Figure 3a). A screw joining the ring’s opened surfaces

is used to tighten it around the specimen rod, and rod and ring are inserted into the

inner cylindrical space of the solenoid until they come to rest against a ledge machined

into the inner surface of the solenoid at the appropriate position about halfway down.

The flanged cylinder is then inserted into the solenoid on top of the ring and screwed into

place in order to hold the ring in its correct position, avoiding its vertical displacement.

Finally, the requirement of free longitudinal vibration requires locating the optimal

position on the sample at which to hold it in the ring. For the first longitudinal mode,

the vibrational node is at the centre of the rod, which is where the ring has to be placed

in order to simulate the absence of constraints.

The excitation of the sample will also induce vibrations of the entire mechanical

contraption used to hold the sample. Strictly speaking, the measured resonance

frequency is not the actual longitudinal resonance frequency of the bar, but that of

the entire mechanical system. Nevertheless, the influence of the mechanical fixture is

negligible. In order to quantitatively prove this statement, the resonance frequencies of

the entire mechanical system were compared to the resonance frequencies of bars tested

with free boundary conditions (simulated by resting the rod on a little rubber block

placed under its central zone). The averaged variation between the real free resonance

and that measured with the mechanical contraption is low enough (less than 0.045%)

as to be within the limits of measuring uncertainty.

The excitation system is responsible for generating a free longitudinal oscillation in

the specimen. The main characteristic required of this system is the ability to generate

a suitable longitudinal excitation while avoiding or minimizing undesired modes such as

torsion and bending. It should also permit the full control and automation of sequences



Automatic measurement of field-dependent E and Ψ by LDV 8

of excitations.

A scheme of the excitation system used is shown in Figure 1. It consists of a

barrel in which a lead pellet is placed, while a 2/2 way valve and a relay regulate

the necessary compressed air flow for the shot. The main dimensions and internal

shape of the barrel are shown in Figure 3b. With the magnetizing solenoid placed

vertically, the funnel-shaped end of the barrel collects the rebounding pellet and directs

it downwards to the starting point under gravity. With this arrangement, there is full

control and automation of the perpendicular impacts on the base of the specimen causing

its vibration. Automation in a horizontal set-up would require the implementation of a

complex mechanical magazine.

To obtain a useful longitudinal time-response, a calibration procedure was followed

to optimize the triggering impact, determining the most appropriate values of the gap

between the narrowest cross-section of the funnel and the base of the specimen rod,

and of the range of compressed-air pressures. The final values were 30 mm for the gap

providing the greatest number of successful impacts, and 3.5 to 4 bar for the range of

shooting pressures.

The basis of the measuring system is a Polytec compact laser vibrometer. This

consists of a CLV-1000 laser module and a CLV-700 sensor head. It is an example

of a ‘laser Doppler vibrometer’, an optical instrument which employs laser technology

to measure the out-of-plane velocity of single points of a vibrating object [15]. In the

present device, a 70 MHz He-Ne laser beam strikes a point on the vibrating surface and

the light reflected travels back to the sensor head. The back-scattered light shows a

Doppler-shifted frequency proportional to the vibration velocity.

This particular vibrometer can measure up to 1250 mm/s in a bandwidth of 250

MHz, which is broad enough to detect the frequencies expected according to the Nyquist

theorem. The measurement resolution (the RMS signal amplitude at which the signal-

to-noise ratio is 0 dB in a 10 Hz spectral resolution) does not exceed 2 µm/s under any

circumstances.

Input and output signals are handled with National Instruments acquisition devices

which are controlled by a generic laptop. In this instance, we used a generic laptop

connected to a series of National Instruments data acquisition and signal conditioning

devices. In particular, these were a DAQCard 6062E with 500 kS/s and PCMCIA

connectivity, and an SCC2345 multiplexer connecting the following modules: an SCC-

AO10 sending the necessary analog voltage to set the desired current in the DC supply,

an SCC-RLY01 which functions as a relay controlling the compressed air shots, and an

SCC-FT01 to receive the raw analog signal from the laser.

The system was controlled and synchronized in the Matlab R© environment,

which, as well as being compatible with the National Instruments hardware, provides

comprehensive data processing and decision making tools with a user-friendly graphical

user interface.
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4. Parameter estimation and data processing

The data processing will be described next in detail in order to show how EH and ΨH,σ

are estimated.

(i) Data processing starts after storing the longitudinal vibration velocity time-

response of a ferromagnetic rod through which a stress pulse is made to travel.

Figure 4a shows an example of a signal acquired from the laser at a sampling rate

of 100 kS/s for 0.1 s (resulting in a length of 10000 samples).

(ii) The next step is to use a frequency technique such as the Fast Fourier Transform

(FFT) to determine the longitudinal vibration frequencies of the samples. A typical

result of this process is shown in Figure 4b, where the first and second longitudinal

modes clearly stand out.

(iii) Once the damped frequency corresponding to the first longitudinal mode has

been successfully detected, one needs a filter to remove the contributions from

undesired modes and noise. With this aim, several digital passband filters such

as Butterworth, Bessel and Chebyshev were tested with admisible results, but a

little noise contribution still remained on the signal. So, a novel non-parametric

technique used in the analysis of time series and based on principles of multivariate

statistics was used: the Singular Spectrum Analysis (SSA) [25]. The conditioned

time-response signal which is obtain by means of SSA filtering is shown in Figure

4c.

(iv) This conditioned signal is finally subjected to a fitting procedure, not only to

estimate an averaged attenuation constant γ
2

in accordance with equation (5) but

also to ensure the quality of the acquired data and consequently the accuracy of the

estimate. Two exponentials are fitted to the signal (Figure 4d), one to the positive

part of the envelope, and another to the negative part. The fitting curve with the

greater R2 statistical parameter is chosen to be the better fit. The R2 statistic also

serves as a rejection criterion, with the acquisition being rejected if R2 is less than

99.9%.

(v) Once the best envelope has been chosen, the value of EH is estimated through the

averaged δ and fd,1 as shown in expression (7).

(vi) Next, the stresses corresponding to the chosen envelope are estimated by the

following expression (see [26]):

σH(z, t) = EH
∂uz(z, t)

∂z
(11)

in order to calculate δH,σ|bar within intervals in which the attenuation is lower than

20% and the mean stress can be assumed constant as in Atalay’s method [10].

(vii) Taking δH,σ|bar for each mean stress, the losses per cycle can be estimated as follows:

∆WH,σ|bar = 2δH,σ|barWH,σ|bar (12)
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(viii) By linearly fitting the curve log (∆WH,σ|bar) vs. log (σ) (also shown in Figure 4d),

the variable index n can be estimated, while the variable J can be determined from

expression (9) as follows:

J =
2δH,σ|bar

∫ L
0

Aσ2

2EH
sin2

(
πx
L

)
dx

∫ L
0 Aσn sinn

(
πx
L

)
dx

=
δH,σ|barLσ2−n

2EH

∫ L
0 sinn

(
πx
L

)
dx

(13)

The integral must be computed numerically since the primitive only exists for

positive natural values of index n.

(ix) Finally, the estimated J and n parameters of Lazan’s expression allow us to

calculate the real specific damping capacity at any given magnetic field and stress

within our working interval thanks to equation (10).

The desired ∆E and ∆Ψ effects are easily estimated by repeating the previous data

processing while the magnetic field is gradually increased.

5. Experimental results

The experimental set-up and procedure described in previous sections was tested by

applying it to the magnetoelastic characterization of bulk ferromagnetic specimens

represented by 9 nickel 201 rods of 10 mm diameter and 110 mm length. These

dimensions were chosen so as to remain within the 2% band of uniform magnetic field.

Metallographic analysis gave a purity of (99.90± 0.10)% and a density of 8912 kg/m3.

The manufacturing process was cold rolled and the material was used as received from

manufacturer (INCO Alloys International).

The experimental magnetic hysteresis loop of nickel, shown in Figure 5, was used

to estimate useful magnetic magnitudes such as the coercive field Hc and the saturation

magnetization Ms [2]. The results are coherent with the typical shape of a magnetic

hysteresis loop, with the following significant points being clearly identifiable: point

(a) represents the demagnetized state, (b) and (c) the positive and negative magnetic

retentivities after an irreversible magnetization, and (d) and (e) the positive and negative

states of magnetic saturation.

Magnetic domain theory is necessary to understand the different mechanisms of

magnetization and their relation to the measured results [27]. When low magnetic fields

are applied, domain walls start to move in order to increase the size of those domains

which have a net magnetization parallel to the external field lines. If applied magnetic

field continues increasing, domain boundaries obtain enough energy to go through crystal

imperfections or residual microstresses, which leads to irreversible displacements and

the retentivities (b) or (c) when the applied field is removed. Finally, if the magnetic

field becomes still more intense, magnetic domains will rotate in order to form a single

domain, which means that the saturated points (d) or (e) are achieved, and the material

behaves like a non-magnetic material.

Given the dimensions of these samples and the described magnetization curve of

nickel, the demagnetizing effect cannot be neglected. This effect is due to the appearance
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of a pair of magnetic poles inside the ferromagnetic rod when an external magnetic

field is applied. As a result, an internal demagnetizing field is created in the opposite

direction to the applied field. The strength of this demagnetizing field is a function

of both the magnetization state of the material and the geometrical dimensions of the

sample [22]. The effective magnetic field Heff which really acts within the test specimen

can be estimated by the expression:

Heff = Hs −Hd = Hs −NdM (14)

where Hs is the field generated by the solenoid, Hd the demagnetizing field, Nd the

demagnetizing factor, and M the magnetization of the material. The experimental

magnetic hysteresis loop of nickel (Figure 5) was obtained and used to estimate the

magnetization of the specimen, and the demagnetizing factor for a ferromagnetic rod

can be calculated in terms of the ratio r between its length and its diameter [22].

In the present case, the estimated saturation magnetization is 496 emu/cm3, and the

demagnetizing factor is found to be Nd = 0.2201, which leads to a demagnetizing field

at saturation equal to 109.2 Oe.

Clearly, the magnetization state of a ferromagnetic sample notably influences its

behaviour because of the different magnetization curves that a specimen can follow

[2]. In what follows, these curves will be described with reference to the points

marked on Figure 5. In particular, there are three possibilities: magnetization from

the demagnetized state (curve a-d), magnetization from a point of positive retentivity

(curve b-d), and magnetization from a point of negative retentivity (curve c-d). Note

that the first curve can only be followed the first time that the material is magnetized

or after demagnetization, which can be achieved by heating the material to above its

Curie temperature or by applying a high-frequency magnetic field to the specimen.

All three possibilities were considered in order to determine the influence of

the sample’s initial magnetization state on the ∆E-effect and ∆Ψ-effect results. In

particular, each specimen was tested three times: the first for the a-d curve, the second

for the b-d curve, and the third for the c-d curve. In each of these tests, a mesh of

45 different magnetic values was programmed, with much finer separation in the low

magnetic field range where the main information is to be found. The test procedure

was repeated 4 times at every point in order to attain sufficient statistical precision.

By programming a waiting time of 2 seconds between consecutive triggers, and with a

typical 80% success rate of excitation impacts, we were able to perform each test of 180

points in only 11 minutes. Figure 6 shows the ∆E-effect and ∆Ψ-effect curves obtained

for the aforementioned three cases by statistically averaging the 9 samples tested.

With respect to the evolution of the Young’s modulus shown in Figure 6a, two zones

can be detected in the three cases studied: an initial stage of rapid growth which belongs

to the low magnetic field range (less than 150 Oe), and a second stage of slow growth

until saturation. These results agree with the magnetic domain theory. Low magnetic

fields lead to easy displacements of domain walls whereas high ones imply the saturation

of the sample in a single magnetic domain and the appearance of an upper limit which
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corresponds to the value of Young’s modulus if the material were non-magnetic [1].

The main differences appear in the initial value of Young’s modulus. Obviously, if the

specimen has a retentivity due to a previous magnetization, the initial value of the

Young’s modulus will be greater, but after a process of domain reorganization [27] the

three curves follow the same trend and reach the same value at saturation.

Again one observes two different zones in the specific damping capacity curve

of Figure 6b: an initial rising stage which corresponds to the low applied magnetic

field range (less than 150 Oe), and a second declining stage until saturation. This

special trend can be again explained thanks to the magnetic domain structure of

ferromagnetic materials. In the first stage of magnetization the damping increases as

domain boundaries move irreversibly, whereas the second declining stage starts when the

applied field is strong enough to suppress domain walls (by means of domain rotations)

and make the specimen behave like a non-magnetic material [1]. The main differences

are also attributable to the initial state of magnetic retentivity, since the initial value

of the specific damping capacity will be greater when the specimen has been previously

magnetized. Indeed, in this case the influence of the positive or negative retentivity is

far more noticeable: when the specimen follows the c-d curve, the magnetic domains

are mainly oriented initially in the direction opposite to the applied magnetic field in

accordance with domain theory [27]. They should thus flip their orientation quickly as

the field is applied, with the result that the curve has a local minimum which is rapidly

rectified followed by convergence with the other curves.

Although the working stresses are much reduced, the proposed method is also

able to study the stress-dependence of magnetomechanical damping in ferromagnetic

materials at low stress levels. As it has been detailed in the explanation of data

processing, two or more damping estimations are carried out for each measured signal.

Figure 7 shows field-dependent specific damping capacity subjected to a stress of 1.0

MPa and 0.5 MPa (Ψ1.0MPa and Ψ0.5MPa, respectively), whose results are consistent

with magnetomechanical damping theory [1, 3]. Basically, magnetic domain motions

are achieved by applying both magnetic fields and stresses, so stress-dependent curves

will follow similar trends [3]. Our experimental system involves stress levels which are

low enough not to saturate the samples, but they induce magnetic domain motions that

increase the material damping while magnetization is lower than magnetic saturation.

On the other hand, high magnetic fields make the sample saturate and become

independent of stress because it behaves like a non-magnetic material.

Table 1 presents numerical results of interest for the ∆E-effect. These lie within

the range of values collected by Ledbetter and Reed [28], where the values of Young’s

modulus for demagnetized and saturated state for the more similar test conditions are

206 GPa and 221 GPa, respectively. The differences with our values are lower than 2%,

which can be easily ascribed to the influence of little differences in heat treatment [3, 29],

material composition [3], applied magnetic field or even experimental uncertainties. So,

a better agreement should be expected when comparing results obtained using the same

molten material and the same manufacturing process, like those reported in [11]. In fact,
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they showed a variation of elastic modulus with magnetic field (from demagnetized state

up to saturated state, which corresponds to curve b-d in our Figure 5) of about 2.5%

(with extreme values of 213.0 GPa and 218.4 GPa) which is in really good agreement

with our results. The minute differences (lower than 0.3% in both states) may be caused

by the use of a solenoid which is not compensated with Helmholtz coils and does not

magnetize the sample uniformly along its full length. Furthermore, uncertainties in [11]

are higher than ours (0.54 GPa vs. 0.17 GPa).

Table 2 shows the main numerical results for the ∆Ψ-effect when the applied stress

is 1.0 MPa and 0.5 MPa. Although these stresses are much lower than those in [30]

for a very similar nickel, our results seems to be clearly in accordance with Adams’

estimations, which suggest a specific damping capacity around 0.5% at demagnetized

state and less than 1.5% when a magnetic field is applied. Trémolet de Lacheisserie

[1] and Atalay [31] also reported magnetomechanical damping results using a torsional

pendulum with high purity zone-melted nickel wires as well as with amorphous wires.

These results provide support for the obtained trend in our damping curves, although

the concrete results are not comparable. Unfortunately, the results in [11] (although

obtained for the same material) are not suitable for comparison of damping since they

just measured 5 points obtaining a mere global estimation of damping along the bar.

We finish this section with a brief analysis of uncertainties. The uncertainties

shown in tables were calculated following ISO recommendations [32], with both type

A and type B uncertainties taken into account. Type A uncertainty stems from the

statistical averaging of the specimens and 4 replicates for each point characterized.

Type B uncertainty is related to the equipment and material constants.

According to equation (7), Young’s modulus estimates are affected by type B

uncertainties related to density, geometrical dimensions, frequency, and logarithmic

decrement, where the latter comprises the contributions from the laser Doppler

vibrometer and the data acquisition equipment. The density uncertainty provided by

the manufacturer was 8 kg/m3; the manufacturing precision of the CNC turning centre

used to cut the samples corresponded to a guaranteed maximum variation of 0.02 mm;

the sampling rate of the data acquisition hardware led to a value of 10 Hz for frequency

resolution in the Fourier analysis; and laser resolution and target percent of reading

were 0.5 µm/s and 0.0714%, respectively.

Type B uncertainties have a similar influence in the determination of specific

damping capacity since the Young’s modulus is used to estimate it. In addition, the

contribution of stress, index n and constant J must be taken into account according to

equation (8). The former is considered a constant value in the range of 0.1 MPa, while

n and J are defined by previously described contributions.

6. Conclusions

An improved method for the simultaneous measurement of the magnetoelastic ∆E and

∆Ψ effects has been applied to slender rods of crystalline nickel, also studying the
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influence of the initial magnetization state of the specimen on these effects.

The methodological approach was based on measuring the longitudinal component

of the vibrational velocity of the specimen while an applied magnetic field magnetizes

it from its demagnetized state up to its saturated state. The vibration was detected by

a laser Doppler vibrometer, and excitation was by means of an automatically controlled

compressed air system which repeatedly shoots a pellet against the sample.

The optimized characteristics of the experimental set-up endow the method

with notable advantages over other techniques. First, the processes of excitation

and of measurement do not affect the specimen’s magnetization state. This thus

increases the method’s accuracy and allows measurement over the full range of

magnetization. Second, the LDV technology has features which represent clear

improvements in measurement (high accuracy, speed of measurement, and no need for

sample preparation) over traditional or even ESPI sensors [15]. Third, stress-dependence

of magnetomechanical damping can be studied and taken into account during data

processing in order to avoid variations due to stress effects. And fourth, the automation

and integration of the measurement and post-processing stages contributes to rapid, high

resolution processing, making it possible to fully characterize (including post-processing)

a mesh of more than 200 checked points in less than 15 minutes. In contrast, ESPI

systems [11] can only measure (without post-processing) 8 non-checked points in more

than one hour. Note that the difference between checked and non-checked points is

that the former have passed a statistical rejection criterion which ensures their validity,

whereas the latter have not.

Using this method, we obtained simultaneous high resolution curves of the magnetic

field dependence of Young’s modulus and specific damping capacity. This high resolution

allowed us to observe effects that had been overlooked in previous works. First, a

dependence of the ∆E and ∆Ψ effects on the initial magnetization state was found,

which is consistent with the theory of magnetic domains and their irreversible movement

[27]. Second, we detected a maximum value of the specific damping capacity just before

the increment in Young’s modulus starts to decline, which had also been shown by

results based on torsional pendulum [1, 31], but that had gone undetected with lower

resolution techniques as in [11].
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Figure captions

Figure 1. Experimental set-up.

Figure 2. Experimental characterization of the magnetic field applied by the Helmholtz

coils (light grey), the straight solenoid (grey), and both together (dark grey), depending

on length and intensity.

Figure 3. Main dimensions of holder (a) and exciter (b).

Figure 4. Data processing: (a) raw acquired time-response, (b) FFT, (c) filtered time-

response, and (d) curve fitting process and stress-dependence study.

Figure 5. Experimental magnetic hysteresis loop for the nickel specimens studied.

Figure 6. Results for the (a) ∆E-effect and (b) ∆Ψ-effect corresponding to an applied

stress of 1.0 MPa for the first magnetization curve (solid line), the magnetization

curve with positive retentivity (dashed line), and the magnetization curve with negative

retentivity (dotted line).

Figure 7. Results for the ∆Ψ-effect for the magnetization curve with positive retentivity

(a) and negative retentivity (b) corresponding to an applied stress of 1.0 MPa (solid line)

and 0.5 MPa (dashed line).

Tables

Table 1. ∆E-effect results (D-demagnetized, S-saturated).

Table 2. ∆Ψ-effect results corresponding to applied stresses of 1.0 MPa and 0.5 MPa

(D-demagnetized, GM-global maximum, S-saturated).
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Figure 4. Data processing: (a) raw acquired time-response, (b) FFT, (c) filtered
time-response, and (d) curve fitting process and stress-dependence study
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Figure 5. Experimental magnetic hysteresis loop for the nickel specimens studied
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Figure 7. Results for the ∆Ψ-effect for the magnetization curve with positive
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Table 1. ∆E-effect results (D-demagnetized, S-saturated)

Magnetization curve State f1l ± u(f1l) (Hz) E ± u(E) (GPa) ∆f1l (Hz) ∆E(GPa)
a-d D 22055.36± 5.77 209.82± 0.17 476.98 9.17

S 22532.34± 5.77 218.99± 0.17 (2.16%) (4.37%)
b-d D 22190.01± 5.77 212.39± 0.17 341.50 6.59

S 22531.51± 5.77 218.98± 0.17 (1.54%) (3.10%)
c-d D 22182.38± 5.77 212.24± 0.17 348.45 6.72

S 22530.83± 5.77 218.97± 0.17 (1.57%) (3.17%)
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Table 2. ∆Ψ-effect results corresponding to applied stresses of 1.0 MPa and 0.5 MPa
(D-demagnetized, GM-global maximum, S-saturated)

Magnetization curve State Ψ1.0MPa ± u(Ψ1.0MPa) (%) Ψ0.5MPa ± u(Ψ0.5MPa) (%)
D 0.371± 0.033 0.300± 0.024

a-d GM 1.073± 0.089 1.012± 0.076
S 0.080± 0.007 0.074± 0.007
D 0.557± 0.048 0.525± 0.040

b-d GM 1.100± 0.080 1.056± 0.075
S 0.058± 0.005 0.058± 0.005
D 0.551± 0.044 0.510± 0.039

c-d GM 1.055± 0.083 1.018± 0.074
S 0.059± 0.005 0.054± 0.005


