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Abstract

In the highway development process, the first planning stage is that of selecting

a corridor along which the highway is to pass. Highway corridor selection repre-

sents a multicriteria decision process in which a variety of social, enviromental and

economic factors must be evaluated and weighted for a large number of corridor

alternatives. This paper proposes a demand-based approach to provide a set of po-

tential corridors. The problem is formulated as a continuous location model which

seeks a set of optimal corridors with respect to the demand of potential users while

satisfying budget constraints. This model uses geographical information in order

to estimate the length-dependent costs (such as pavement and construction cost)

and the cost of earth movement. A procedure for finding the best local minima
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of the optimization model is proposed. This method is tested using the Particle

Swarm Optimization algorithm, two algorithms of the Simulated Annealing type

and the Simplex Nedelmar method. An application using the Castilla-La Mancha’s

geographic database is presented.

Keywords: Highway corridor location - Demand covering - Heuristics.

Introduction

Highway corridor location takes up a huge amount of resources but provides important

savings in cost and high improvements in performance of these elements, which are ex-

pected to provide the best possible service for the geographical distribution of demand.

The location of highway corridors is a fundamental part of any highway design project

and has produced important tools and studies over the years.

In this paper the problem of determining highway corridors in a geographical region

including rural or mixed rural-urban areas is addressed. It is assumed that the level

of congestion is negligible. The uncongested highway design and planning consists of

three successive stages as shown in Figure 1. In the highway corridor selection stage

several potential corridors are generated and analyzed in terms of user’s benefits, regional

development benefits, environmental and social benefits, costs, etc. The generation of

these alternatives requires analytic tools which allow these corridors to be located in space

in accordance with difficult to deal with factors like potential demand in the geographical
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area studied, and the available budget, from which an evaluation of the economic effects on

the region, the environmental effects and the community concerns can be made. Following

this stage is the Highway Alignment Optimization stage (HAO), whose input data are the

highway endpoints and the estimated demand between the endpoints. These inputs are

used at this stage to calculate the alignment which minimizes a certain combination of

costs, such as the operator costs plus the user costs for the estimated demand, satisfying

design and operational constraints in a bounded search space. As a result, a polygonal is

obtained which defines the initial route on which bridges, junctions and other important

elements are located. Finally, in the geometric design stage this polygonal is adjusted to

satisfy all current highway construction laws and associated constraints.

We have reviewed a large collection of papers in the existing literature addressing

the highway design and planning problems regardless of congestion. Table 1 shows some

examples of these studies. The papers reviewed depending on the problem being addressed

are grouped according to the different categories shown in Figure 1.

This paper belongs to the first group, i.e. it deals with the highway corridor selecting

problem for uncongested networks. Existing combinational optimization models, such as

([Solanki et al., 1998]; [Petersen, 2002]; [Drezner and Wesolowsky, 2003]; [Kim et al., 2008];

[Zhu et al., 2010]) calculate an optimal sequence and timing of improvements for a high-

way corridor, subject to the budget constraints. These models optimize the highway

network layout and the roadway configurations of an initial existing corridor. In this

paper we describe a model for locating new highway corridors so as to maximize demand

3



capture for a construction cost lower than the available budget. This problem is formu-

lated as a continuous location model and allows a great flexibility in the definition of

the costs involved in the alignment. The Geographic Information Systems (GIS) permits

to measure specific costs in the study area which represent the construction costs as a

function of the geological characteristics of the terrain, the cost of land purchase, earth

movement and/or the need to include junctions or bridges. From these estimates the

model works with a bivariate linear interpolation function and defines the costs as the

curvilinear integral with respect to the interpolated cost function. The results obtained

with this model are essentially the data required by the HAO, such as the endpoints of

the highway and an estimate of the traffic demand to be served, which is necessary to

define the user costs in a later planning stage. Due to the complexity of the HAO, high-

way planners often deal with this problem using a two-stage approach to select a highway

route. In the first stage, they solve the horizontal alignment problem and in the sec-

ond stage they design the vertical alignment based on the horizontal resulting alignment

(see [Parker, 1977]; [Cheng and Lee, 2006]). In the existing literature, other models have

appeared in which the three-dimensional (3D) alignment (horizontal and vertical) pro-

blem is solved directly (see, for example, [Chew et al., 1989]; [Jong and Schonfeld, 2003];

[Cheng and Lee, 2006]; [Kang et al., 2009]). As it can be seen in Table 1, most of the

works dealing with the HAO problem are solved by means of genetic algorithms and

Geographic Information Systems (GIS). These studies have been sequencially improved

by their authors, by considering more and more factors. This has permited better solu-
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tions as a consequence of the substantial improvement of computational tools and power.

For example, [Jha and Schonfeld, 2003] add to previous work ([Jha and Schonfeld, 2000b];

[Jha and Schonfeld, 2000a]; [Jha et al., 2001]; [Jha, 2001]; [Jha, 2003];) the maintenance

costs. [Kim et al., 2004a] and [Kim et al., 2004b] improve previous studies by taking into

account the intersection costs. [Jha and Kim, 2004] consider the traffic demand in the

optimization problem. [Kim et al., 2005] add to the construction cost other factors, such

as the topography, socio-economical data of the area being studied, geological and ecolo-

gical data and the type of terrain. [Kang et al., 2009] centre mainly on the computation

time and the quality of the optimal solution. These models search for the optimal so-

lution by minimizing a total cost function having alignment-sensitive cost components

and satisfying design, environmental, and other geographic constraints. A comprehensive

revision of the different costs involved in the objective function of the HAO problems is

given by [Kang, 2008] and the many references contained therein. Although these models

have acquired a high level of sophistication they all assume that the endpoints of the

highway and the demand are already known. To carry out a review of this subject is

beyond the scope and aims of this paper and interested readers may consult the paper

[Kim et al., 2005].

The rest of the paper is organized as follows. Section 2 presents a continuous loca-

tion model and explains the building cost function and the corridor selection criterion.

Section 3 proposes four heuristic algorihtms for solving the location model. In Section 4,

computational experiments are carried out on a real case study. The last section of the
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paper provides some conclusions.

A continuos location model for selecting a highway

corridor

Traditionally, the highway agencies use construction costs, users’ costs, economic effects

on the region, environmental effects and community concerns as criteria for the selection

of highways.

Government agencies invest in new highways as a means of stimulating economic

growth and increasing competitiveness in a particular region. These goals should be

guided by analytical tools which allow us the impact of the new transport infrastructures

to be measured. A key aspect of social utility to be measured is the demand they will

bear. A perspective adopted in many public highway agencies is to select the highway

which can be undertaken with the available budget in such a way as to maximize the

use of the new infrastructure. This is the main perspective taken in this paper. In this

section we describe an optimization model with this objective. Firstly we introduce a

procedure for estimating the construction costs of a highway, then we design a procedure

for estimating the highway demand as a function of its location, and finally we incorporate

both methods into an optimization model.
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Building the cost function

A corridor is represented by a rectangle (see Figure 2) which is completely defined by

points A, B and the width δ. Points A and B are key elements since they determine

the endpoints of the highway for the HAO problem while the width of the rectangle, δ,

may be chosen ad hoc, taking a width sufficient to enclose the optimal alignment. We

consider that the segment linking points A and B is an approximation to the alignment

it is intended to build.

In order to choose the best location for the new corridors, in addition to other factors,

we need to consider the cost of land, the cost of bridges, and the type of soil in the

different areas involved. In this section we explain how to incorporate all these factors to

build the total cost function. The costs involved in the construction of a highway vary

discontinuously with the terrain. Towns and cities, rivers, roads, and mountains appear

and must be taken into account. Geographic Information Systems provide the necessary

information to estimate the construction costs of a linear unit of road at each point (x, y)

of the region in question. Suppose we have a sample of points {(x̂i, ŷi)}ni=1 in the study

area and that with the help of these GIS we have estimated the construction costs per

linear unit of highway at each point Ĉi = Ĉ(x̂i, ŷi) con i = 1, · · · , n. These costs will be

the sum of the purchase of land, paving, earth movement, building junctions if there are

roads and building bridges if there are rivers. Furthermore, the cost function Ĉ(x̂i, ŷi),

by means of penalty costs, can incorporate information about especial or forbidden areas
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such as national parks, etc.

The problem described is solved by using heuristic algorithms based on assessments

of the objective function, which allows the GIS information to be included in the cost

assessment. Instead of using the GIS information directly in the model to evaluate the

cost function it has been used to construct a piecewise linear function for interpolating

the cost function. This has been done to reduce the computational burden. The model

uses a bivariate interpolation function of the construction costs, indicated by C(x, y),

built from the scattered positional data {(x̂i, ŷi, Ĉi)}ni=1 in the following way. Firstly a

triangularization of the study region based on the sample has been done (see Figure 3 left).

To calculate the cost C(x, y), we consider the vertices P1, P2, P3 of the triangle containing

the point (x, y). Then we express the point (x, y) as a linear convex combination of the

vertices, i.e, (x, y) =
∑3
i=1 βiPi with βi ≥ 0 with i = 1, 2, 3 and β1 + β2 + β3 = 1. Finally,

we get C(x, y) =
∑3
i=1 βiCi.

In this paper the highway corridor is defined by a segment with endpoints (x0, y0)

and (x1, y1) (see Figure 3 left). Figure 3 (right hand figure) shows the function g(λ) =

C((1 − λ)x0 + λx1, (1 − λ)y0 + λy1) with λ ∈ [0, 1] which represents the construction

cost for each linear unit at each point of the highway. The mean cost of the highway is

calculated by the integral
∫ 1
0 g(λ)dλ. Finally, we can evaluate the cost of a corridor by

multiplying the total length by the mean construction cost of each linear unit, which gives

the following expression:
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B(x0, y0;x1, y1) =
√

(x1 − x0)2 + (y1 − y0)2
1∫

0

C((1− λ)x0 + λx1, (1− λ)y0 + λy1)dλ, (1)

where B(x0, y0;x1, y1) is the corridor cost.

Corridor selection criterion

The main idea in selecting a corridor is to define what we understand as the best corridor,

i.e. in which sense we say that a given corridor is the best possible among all possible

selections. In this paper we consider that the best corridor is the one maximizing the

served flow given a fixed budget. So, we need to define a function to evaluate the served

flow.

In order to determine the flow served by each corridor, we need to know the flow

intensities (number of potential users per Km2) at each point and their directions, due to

each OD pair i. To this end, we start by assigning to each OD flow a tubular Gaussian

intensity function of the form

fi(x, y) = ti exp

[
−di(x, y)

2σ2
i

]
, (2)

where ti is the corresponding OD pair flow, di(x, y) is the distance of point (x, y) to the

segment which joins the origin and destination of pair i, and σi is a distance, associated

with the standard deviation of the normal distribution, that measures the width of the

tube (see Figure 4).
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The maximum of this function is ti, i.e. proportional to the ith OD flow, and is

attained all along the segment joining the origin and destination points of this OD pair.

This function decreases when the point (x, y) moves apart from this segment, following

a Gaussian law with standard deviation σi, which means that moving 2σi any side from

this segment practically reduces the probability of finding a user of the corresponding OD

pair to a very small value (0.025).

Some examples of functions belonging to this family are shown in Figure 4. They

refer to the particular examples included in this paper and show the corridors: Ciudad

Real-Puertollano, Talavera-Toledo and Albacete-Guadalajara. Since the maxima of these

functions are reached at the segment points (wave crest) joining the centers of these cities,

if the only flow were that associated with a single pair of cities, the corridors would be

located exactly at these segments. However, when several OD flows are considered, the

optimal corridors do not exactly align with the straight lines joining cities.

The flow intensity at each point (x, y) of the region is the sum of all the flow intensities

generated by all the OD pairs in the study region, that is,

f(x, y) =
nOD∑
i=1

ti exp

[
−di(x, y)

2σ2
i

]
. (3)

An example of this function is shown in Figure 5, where the flow intensity can be

seen independently of its direction, and where some OD pairs can be easily identified

by the almost parallel nature of the level curves, as is the case of the OD pairs Ciudad

Real-Puertollano, Talavera-Toledo, Albacete-Guadalajara, Toledo-Ciudad Real, Toledo-

10



Albacete, Ciudad Real-Albacete, Guadalajara-Albacete and Guadalajara-Toledo. It is

interesting to see how this graph, in spite of dealing with only total flow at each point,

still exhibits this directional information.

Thus, the intensity function due to all demands associated with a given corridor c

becomes

fc(x, y) =
nOD∑
i=1

ri(c)ti exp

[
−di(x, y)

2σ2
i

]
, (4)

where ri(c) is a correction factor due to direction, defined in the range [0, 1] and nOD is

the number of origin-destination pairs.

The proposed model in (4) assumes that the contribution of point (x, y) to the OD i

flow served by corridor c depends on two factors: (a) the distance di(x, y) in Eq. (3) and

the degree in which corridor c allows the users of the OD i to reach their destinations

in a direct way. The model measures this degree by means of a correction factor ri(c)

that is based on the angle between the segment joining the origin and destination of the

OD i and the corridor c alignment. The ri(c) function considers that the corridor serves

only OD flows whose directions are “close” to the corridor direction, and the fact that

the closer the directions the larger the flow proportions served.

In summary, a corridor will serve a given OD pair flow if it is close to the corresponding

segment and at the same time both directions are coincident or close. Otherwise, the

corridor is not useful to that OD pair.

In the following subsections we analyze the effects of distances di(x, y) and directions

ri(c) separately.
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Effect of distance on the served OD flows

In this subsection we propose a closed formula for di(x, y). Let (xio, y
i
o) and (xid, y

i
d) be

the coordinates of the origin and the destination of the OD pair i. Then, the value of

di(x, y) measures the distance of a given point (x, y) to the segment defined by the origin

and destination of pair i, and is the minimum of the following quadratic program:

Minimize Q = (x− xio(1− λ)− xidλ)2 + (y − yio(1− λ)− yidλ)2

λ

(5)

subject to:

−λ ≤ 0 : µ1 (6)

λ− 1 ≤ 0 : µ2 (7)

The Karush-Khun-Tucker (KKT) optimality conditions (see [Castillo et al., 2002] and

[Conejo et al., 2006]) for this problem are:

Gradient condition:

0 = 2(x− xio(1− λ)− xidλ)(xio − xid) + 2(y − yio(1− λ)− yidλ)(yio − yid)− µ1 + µ2 (8)

Primal feasible conditions:

−λ ≤ 0 (9)

λ− 1 ≤ 0 (10)

Complementary slackness conditions:

µ1λ = 0 (11)
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µ2(λ− 1) = 0 (12)

Dual feasibility conditions:

µ1 ≥ 0 (13)

µ2 ≥ 0. (14)

Let us define

λ = −(x− xio)(xio − xid) + (y − yio)(yio − yid)
(xio − xid)2 + (yio − yid)2

. (15)

The solution to the problem (5)-(7) is achieved in one of the following cases:

Case 1. µ1 = µ2 = 0. In this case we have 0 ≤ λ ≤ 1 and

Q∗1 =
√

(x− xio(1− λ)− xidλ)2 + (y − yio(1− λ)− yidλ)2. (16)

Case 2. µ1 = 0; µ2 ≥ 0⇒ λ = 1. In this case we have:

Q∗2 =
√

(x− xid)2 + (y − yid)2. (17)

Case 3. µ1 ≥ 0; µ2 = 0⇒ λ = 0. In this case we have:

Q∗3 =
√

(x− xio)2 + (y − yio)2. (18)

and then, the value di(x, y) becomes

di(x, y) = min{Q∗1, Q∗2, Q∗3}. (19)
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Effect of direction on the served OD flows

In order to consider the direction of flow, we have included in formula (4) the function

ri(c), defined as

ri(c) =


cos(αθic) if |θic| ≤ π

2α

0 otherwise

(20)

where α is a factor that limits the maximum angle capturing flow (see Figure 6), and θic

is the angle between the OD segment and the corridor.

If (xio, y
i
o) and (xid, y

i
d) are the endpoints of the OD pair segment, and (x0, y0) and

(x1, y1) are the endpoints of the corridor, the angle θic is evaluated as

θic =


θ̃ic if θ̃ic ≤ π/(2α)

0 otherwise.

(21)

where θ̃ic = arccos

 (xid − xio)(x1 − x0) + (yid − yio)(y1 − y0)√
((xid − xio)2 + (yid − yio)2)((x1 − x0)2 + (y1 − y0)2)

 .
The value of ri(c) ranges inside the interval [0, 1], with ri(c) = 1 when both directions

coincide, and ri(c) = 0 when the angle formed by both segments is θic ≥ π/(2α). This

means that the parameter α limits the angle above which the corridor does not serve a

given OD pair.

Some examples of the family of functions used to take into account the direction of

the corridor for α = {1, 2, 3, 4, 5, 6, 7, 8, 9} are shown in Figure 7, where it can be seen

that this set of values permits a wide range of possibilities.
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The corridor served flow function

If, as before, (x0, y0) and (x1, y1) are the endpoints of the corridor, the function fc(x, y)

gives the flow intensity at each point (x, y) of the corridor. The mean flow in the corridor

is given by the integral
1∫
0
fc((1− λ)x0 + λx1, (1− λ)y0 + λy1)dλ, and multiplying by the

length of the corridor gives the corridor served flow function:

F (x0, y0;x1, y1) =
√

(x1 − x0)2 + (y1 − y0)2
1∫

0

fc((1−λ)x0+λx1, (1−λ)y0+λy1)dλ, (22)

where F (x0, y0;x1, y1) is the total flow served by the corridor.

The model

Given the above, our problem can be stated as

Maximize F (x0, y0;x1, y1)

x0, y0;x1, y1

(23)

subject to: B(x0, y0;x1, y1) ≤ B0, (24)

where B0 is the available budget.

Resolution of the corridor problem

In this Section we analyze the characteristics of the proposed problem and consider several

heuristic methods for solving it.
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Reformulation of the model

The computational methods available to solve the proposed problem (23)-(24) may pro-

duce instability when the search leaves the domain of the cost function B(x0, y0;x1, y1).

We now set out the procedure for avoiding this phenomenon. We first limit the space in

which the corridor may be located to the rectangleR defined by the endpoints (xmin, ymin),

(xmin, ymax), (xmax, ymin) and (xmax, ymax), the endpoints being defined by:

xmin = min
c∈O

xc, xmax = max
c∈O

xc, ymin = min
c∈O

yc, ymax = max
c∈O

yc

where O is the set of cities, and (xc, yc) their UTM-coordinates. We assume that the

corners of the rectangle are included in the sampling {(x̂i, ŷi)}ni=1 of the cost function

with values that penalise their location. In this way we can define the cost function

B(x0, y0;x1, y1) over the rectangleR which contains the study region. This new constraint,

that the corridor be contained in the rectangle R, does not affect the optimal solution to

the problem since the space eliminated does not attract additional demand.

The next step is to transform the initial problem into an unconstrained optimiza-

tion problem. This is necessary because the function of B(x0, y0;x1, y1) is complicated

to handle mathematically. For this reason we penalise the budget constraint in the ob-

jective function and make use of a biunivocal transformation of IR2 on the rectangle

R = [xmin, xmax]× [ymin, ymax] in order to eliminate the constraint that the corridor must

be contained in the rectangle R.
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To this end, we can use the following change of variables

xi = g(ui) = xmin + (xmax − xmin)
(

arctanui
π

+ 1/2
)

(25)

yi = h(vi) = ymin + (ymax − ymin)
(

arctan vi
π

+ 1/2
)

(26)

and its inverse

ui = g−1(x) = tan
[
π
(

xi − xmin
xmax − xmin

− 1/2
)]

(27)

vi = h−1(v) = tan

[
π

(
yi − ymin
ymax − ymin

− 1/2

)]
, (28)

where the new variables ui and vi are unrestricted, while xmin ≤ xi ≤ xmax and ymin ≤

yi ≤ ymax.

With this change of variable and using a high weight value ρ > 0, our optimization

problem (23)-(24) can be stated as

Maximize F (g(u0), h(v0); g(u1), h(v1))− ρmax{0, (B(g(u0), h(v0); g(u1), h(v1))−B0)}2,

u0, v0;u1, v1

(29)

and once solved we calculate x0, y0, x1 and y1 using (25)-(26) to return to the initial

coordinates.

Resolution methods

Corridor selection is a multi-objective decision problem in which it is necessary to evaluate

not just the demand to be satisfied but also other environmental and social benefits. The

method used should, therefore, locate, as well as the optimal corridor with regard to the
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demand to be served, a set of corridors which reach a satisfactory level of demand. These

corridors coincide with global and local minima of the proposed optimization model. To

illustrate this matter consider Figure 8. It shows several local optima of the real problem

used as a case study in the numerical trials. These figures represent various corridors

present in the study zone, each serving different sets of origin-destination pairs. These

local minima satisfy the condition that small changes in the location de not improve the

objective function. The solution method should identify these corridors and locate them

optimally in the area.

Due to the nature of the problem, the proposed solution method consists of generating

local optima by means of a heuristic algorithm and choosing those solutions which are no

more than a given percentage away from the best solutions found. The choice of a heuristic

algorithm to obtain the local optima should be based on the following characteristics of

the model:

- Unconstrained nonlinear optimization and using derivative-free. Problem (29) is

an unconstrained nonlinear optimization model. Obtaining closed formulae for the

derivatives of functions F (g(u0), h(v0); g(u1), h(v1)) and B(g(u0), h(v0); g(u1), h(v1))

is a complicated task, or they do not exist and so a choice should be made from

among the unconstrained nonlinear optimization derivative-free methods.

- Computational cost. The computational cost of assessing the budget constraint

B(g(u0), h(v0); g(u1), h(v1)) is high as it is based on evaluating the two-variable
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interpolation function, and this should be borne in mind. This means that the speed

of convergence is an important parameter in the choice of an heuristic algorithmn.

With regard to these considerations, in this paper we have worked with four heuristic

algorithms.

- Simulated Annealing method (SA, [Kirpatrick et al., 1983]). This algorithm has

properties of global convergence which allows the generation of an optimal corridor

with respect to the corridor served flow function (23). The SA is a probabilistic

search method which allows the process to be repeated to generate multiple local

optima.

- Modified Simulated Annealing method (MSA, [Vanderbilt and Louie, 1984]). This

algorithm introduces an improvement of the SA algorithm which involves obtaining

search directions by taking into account the progress achieved in the previous stages.

This modification accelerates the convergence of the SA as has been reported in the

works of ([Friesz et al., 1992] and [Garćıa and Maŕın, 2002]).

- Particle Swarm Optimization. (PSO, [Kennedy and Eberhart, 1995]). This method

is now being applied in many fields with considerable success. The reason for choo-

sing this algorithm is that it is a very robust method for finding the global optimum

of an optimization problem.

- Nelder-Mead method (NM, [Nelder and Mead, 1965]). This method has very pro-

nounced local convergence. The reason for working with this method is to be able

19



to generate multiple local optima.

The SA, MSA and NM algorithms start from an initial corridor while the PSO starts

from a set of initial solutions. The convergence of these methods depends on the initializa-

tion. In this paper we use the SA, MSA and NM methods with ten different initializations

and choose the best solution generated. The PSO algorithm uses as its initial set the ten

previous initializations and will be run just once. The way in which these initializations

are generated is a key task in the overall behaviour of the algorithm. For this reason we

have analyzed three different ways of generating the initial set.

- Uniform distribution. The initial corridors are generated in such a way that they

are uniformly distributed throughout the feasible region (rectangle R).

- Random. The initial corridors are generated randomly by a uniform distribution in

the rectangle R.

- Heuristic Method. We have designed a process in which we first evaluate the im-

portance of each city with respect to the travel flow, which is measured as the sum

of the input and output flows associated with each city, so that

Ii =
n∑
i=1

n∑
j=1

(ODi,j +ODj,i), (30)

where Ii is the importance of city i and ODi,j is the number of users traveling from

origin i to destination j.
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We need to select the best solution, that is, the one maximizing the total flow

subject to the budget constraint. To this end, we proceed using the algorithm given

in Figure 9.

Numerical experiments

Description of the test problem

The region of Castilla-La Mancha (Spain) has an area of 79, 226 square kilometres. We

have considered the 67 towns with the highest populations and worked with the demands

among these towns, as estimated by the INE (National Institute of Statistics). In the

study problem 1, 626 Origin-Destination pairs have been considered, using the objective

function defined in Eq. (22) and two cost functions B have been analysed:

(B1): Interpolation formula. The model used is set out in Subsection 2.1, where a

linear interpolation function is formed from the input data. In this case the input

data has n = 9718 points which represent the construction costs in hundreds of

millions of euros (because of rivers, mountains, soil types, etc.) for the region of

Castilla-La Mancha. Firstly a triangularization of the study region is carried out,

generating 19325 triangles as shown in Figure 10. From these data the piecewise

linear interpolation function is obtained via the expression (1) of Subsection 2.1.

Let this function be called B1.
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(B2): The land cost. We now consider a second test problem consisting of the same OD

matrix as the previous case, that is the users wish to travel as before, but different

construction costs are assumed.

The land cost is an important part of the total cost of highways and corridors, due

to its relative importance with respect to the cost of infrastructure and other costs.

Thus, the important differences between rural and urban areas play a decisive role

when deciding between different possible new corridor or highway locations. To

insert a highway inside a city is on the one hand highly convenient, because it

facilitates user access to the city centers, but on the other hand it has very high

associated costs, so that a trade-off is required. On the other hand, the cost of land

in rural areas is low. This justifies and explains the tendency to move important

highways sufficiently far from the city in order to attain an affordable total cost.

Consequently, the cost of land is one of the main ingredients that cannot be ignored

in a corridor location selection process.

In order to consider the increase of land cost with the distance to the center of

the cities, we use a model that takes this into account. We use a sum of Gaussian

kernels for each city of the type

C2(x, y) = C1 +
n∑
j=1

Cj
max exp

[
−(x− x0j)2 + (y − y0j )2

2σ2
j

]
, (31)

where n is the number of cities, Cj
max is the land cost at the city center, (x0j , y

0
j ); j =

1, 2, . . . , n are the city center coordinates, C1 is a constant of the construction whose
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value in all trials is 0.002 and σj is the standard deviation value, which represents

half of the distance where city j has some relevant influence on the land cost.

Finally, the cost B2 of a corridor with co-ordinates (x0, y0) and (x1, y1) is given by:

B2(x0, y0;x1, y1) =
√

(x1 − x0)2 + (y1 − y0)2
1∫

0

C2((1−λ)x0+λx1, (1−λ)y0+λy1)dλ,

(32)

where B2(x0, y0;x1, y1) is the corridor cost.

To illustrate, we present in Figure 11 (left hand figure) the resulting land cost

function for the case of the Castilla-La Mancha region, where the cost of land in the

cities is shown to be related to the city sizes. The corresponding level curves of this

function are shown in Figure 11 (right hand figure).

As we shall see later, this cost function produces a displacement of the optimal

corridor locations outside the city centers. In other words, optimal cost corridors

tend to move outwards from the city centers, but not too much in order to serve

more users during their longest possible journey distances.

Comparative of heuristics

The SA, MSA and, PSO and NM algorithms were codified in MATLAB ([MathWorks, 2004])

and run on a Pentium computer with a 2.66 GHz Intel (R) microprocessor Core(TM) 2

Quad CPU Q9450 with 4 GB of RAM. The penalty parameter ρ of problem (29) was taken

as ρ = 10000 in all trials. The SA and MSA algorithms use the parameters α (maximum
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length of movement) and β (cooling parameter). The values α = 0.04 and β = −2.75

were used (see [Kirpatrick et al., 1983]). The MSA algorithm has an additional parame-

ter M which shows the number of correct solutions after which the Choleski method is

used to update the direction generation method (see [Vanderbilt and Louie, 1984]). In

the numerical trials the value M = 20 was taken.

The computational results obtained are shown in Tables 2 and 3. These tables show

the value obtained for F , the corridor cost, and the CPU time used (measured in seconds).

All these data are shown for the three initializations, for all the algorithms and for the

two cost functions B1 and B2.

It can be seen that working with the interpolation function B1 increases the CPU time

by 50− 100 times that required for an analytic function B2. In spite of this, however, the

results show that the computational costs of all the heuristics are acceptable for this type

of problem and therefore they allow the flexibility of B1 to be used to include costs.

With respect to the initialization it is seen that the uniform initialization gives the

best results, as, if a global optimization is desired it is better to complete explore the

entire feasible solution space. Heuristic initialization tends to locate local optima while

random initialization does not consider the whole region.

To understand better the behaviour of the algorithms, Figure 12 shows the best solu-

tion obtained with each of the algorithms for cost B1 (left figure in Figure 12) and for cost

B2 (right figure in Figure 12). For the problem associated with B1 there are two corridors

with very similar values of the objective function. The MSA and SA algorithms converge
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to one of these solutions and the PSO and NM algorithms to the other. For problem B2

the NM gets stuck in a local optimum. The results given by the PSO algorithm are not

as expected for cost B2, since they don’t improve those given by SA and MSA. It can be

used to identify the corridor but not to locate it optimally. We have confirmed that this

is due to the number of initial particles, 10 being insufficient. Several additional trials

have been carried out with initial particle numbers n = 20, 30, 40, 50, 60, 70, 90 and 100

and it is found that for values higher than n = 30 it locates the corridor optimally, in a

CPU time in the range 200− 1000 seconds.

The results suggest that the MSA algorithm improves the SA algorithm with respect

to the computational cost CPU and the objective function, which was to be expected

based on previous studies including [Garćıa and Maŕın, 2002]. The results obtained with

the NM algorithm for this problem are not satisfactory as they converge to local optima.

A case study

The location of a corridor is a multi-objective decision problem which depends on hard

factors like demand to be serviced and construction costs and other soft factors. The

model described is a tool which allows the corridors which attract most demand for a

given budget to be identified automatically. From this candidate set the final choice of

a corridor will be made after assessing the candidates with regard to the soft criteria.

In this section we illustrate how the model is used taking a case study in the region of

Castilla-La Mancha (Spain) (see Figure 10).
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The objective sought is to identify a set of good corridors with respect to demand

satisfied. The method used to generate this set was to solve the model ten times and to

select those corridors which are at most 10% worse than the best corridor found. The

numerical experiment in Subsection 4.2 shows that the MSA algorithm, together with

the uniform initialization is a good strategy for solving the problem. We have solved the

problem for the cost functions B1 and B2 and for three different budgets. The results are

shown in Figure 13. In the first and second columns the results are given respectively for

the cost functions B1 and B2. The best corridor is shown as a continuous segment while

the other good corridors appear as dashed segments.

These results show the effect of the budget on the location of the corridor. An increase

in the budget does not only affects the number of kilometers it is possible to build, and

the location of the endpoints but also in the placing of the corridor itself. Depending on

the available budget the model identifies one corridor or another.

Figure 14 shows the three corridors found and the flow intensity through them (Right

hand figure). These three alternatives need to pass a further decision process, based

on criteria different from the attraction of demand, which determines the final corridor

choice.

The continuous location model determines the endpoints of the corridor and the poten-

tial demand for a given budget. These output data are used in the next stage of Highway

Alignment Optimization to determine highway alignment. For illustrative purposes, the

existing highways in the region of Castilla-La Mancha have been added in Figure 14 (Left
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hand figure). These highways may be considered as examples of the ouput at the HAO

stage.

Figure 15 shows the flow captured by each of the corridors seen in Figure 14 for each

value of λ.

Conclusions

The location of highway corridors obeys certain hard factors, like demand and construction

costs, and soft factors. It is crucial to have analytical tools to generate a set of alternatives

which can be assessed with respect to all these criteria. In this paper a continuous location

model is described which automatically generates a set of optimal corridors with the aim

of maximizing the attraction of demand. The model, when considering the performance

of a given corridor, takes into account the direction and distance with respect to all

the origin-destination pairs in the study region. Furthermore, the model works with an

interpolation based cost function which makes it highly flexible and allows a very accurate

consideration of many factors involved in the cost of a highway such as the purchase of

land, earth movement, location of bridges and intersections etc.

The output from the model is aimed at producing the inputs necessary for the HAO

stage such as the endpoints of the alignment and the demand served. This paper, there-

fore, complements a great deal of other work already existing in the literature.

Four heuristic solution methods have been used: PSO, SA, MSA and NM, in order
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to find a quasi-optimal solution to the model. The nature of the problem means that as

well as searching for global optima of the optimization model it is also necessary to find

the best local optima. The numerical results suggest that the MSA is the most suitable

for this feature of the problem, since it is able to save local minima with low demand

attraction and arrive at better solutions with a reduced computational cost.

The methodology has been tested on a case study in the region of Castilla-La Mancha

(Spain); it has been shown to be acceptable and the results have been compared and

contrasted.
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Figure captions list

1. Stages in highway design and planning.

2. Representation of a corridor.

3. Cost function for a highway.

4. Examples of Gaussian demand functions for a pair of cities.

5. Flow intensity independently of its direction with function f(x, y) (3).

6. Effect of direction on the served OD flows.

7. Some examples of the family of functions ri(c) used to take into account the direction

of the corridorr.

8. Local optimal solution.

9. Heuristic initialization.

10. Triangularization of the study region for B1.

11. Cost function showing the influence and level curves of the urban and town areas.

12. Best solutions obtained with each heuristic algorithm for cost B1 and for cost B2.

13. Best solutions with different budgets for cost functions B1 and B2.

14. Corridors found.
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15. Flow in the corridors found.
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Table 2: Results with cost B1

Heuristic
Uniform Initialization Random Initialization Heuristic Initialization

F B1 CPU(sec.) F B1 CPU(sec.) F B1 CPU(sec.)

SA 1318.7 0.2499 7165 1115.0 0.2498 7357 1277.6 0.2499 7310

MSA 1396.8 0.2517 6449 1355.9 0.2531 5618 1446.7 0.2530 5709

PSO 1451.2 0.2509 4368 1016.5 0.2508 3295 976.3 0.2501 3271

NM 453.7 0.2486 4416 294.9 0.2490 3294 1289.0 0.2500 5308

Table 3: Results with cost B2

Heuristic
Uniform Initialization Random Initialization Heuristic Initialization

F B2 CPU(sec.) F B2 CPU(sec.) F B2 CPU(sec.)

SA 1049.4 0.6008 143 1001.9 0.6006 143 751.7 0.6013 172

MSA 1110.4 0.5941 132 1132.6 0.6050 132 911.1 0.5973 142

PSO 865.8 0.6008 100 785.5 0.6005 74 775.4 0.6004 76

NM 584.3 0.6000 23 531.6 0.5999 28 683.9 0.6000 37
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• Benefits Highway Corridor Selection

Highway  Geometric Design

 Start and end points
 Demand

 Highway alignment

 Costs
 Potential demand

 Geometric design

• Traffic safety
• Design standards

• Benefits

• Operator costs
• User costs

Highway Alignment Optimization
• Operator costs
• User costs

• Traffic safety
• Design standards

Figure 1: Stages in highway design and planning

A=(x0,y0)

B=(x1 y1)Corridor

Alignment

Figure 2: Representation of a corridor
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Figure 8: Local optimal solution
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Input. The list of all (n) cities with their coordinates, the list of all (nOD) OD (origin-
destination) and the corresponding flows, and a maximum number Maxsol of initial
solutions to be generated.

Output. A set of nsol initial solutions containing several corridors each if necessary.

Step 0: Initialization. Calculate the traveling levels Ii of all cities and the total flow
ODt

i,j = ODi,j + ODj,i of each OD (both directions), and sort in increasing values
both sets. Let the city index i = n, let done = 0, and nsol = 1.

Step 1: City loop. While i >= 1 and nsol <= Maxsol, choose the most important
city ii in the list, let the OD index j = nOD and continue with Step 2. Otherwise,
stop and provide the output information.

Step 2: OD loop. While j >= 1 and done = 0, choose the highest flow OD jj in
the OD list.

Step 3: Check if OD jj contains city ii. If not, let j = j − 1 and go to Step 2.
Otherwise, continue with Step 4.

Step 4: Check if OD jj contains city ii. Let nsol = nsol + 1, done = 1, i = i − 1,
j = nOD and go to Step 1.

1

Figure 9: Heuristic initialization
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Figure 10: Triangularization of the study region for B1
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Figure 11: Cost function showing the influence and level curves of the urban and town

areas
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Figure 12: Best solutions obtained with each heuristic algorithm for cost B1 and for cost

B2
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Figure 13: Best solutions with different budgets for cost functions B1 and B2
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Figure 14: Corridors found
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Figure 15: Flow in the corridors found
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