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Abstract. To be able to understand the motion of non-rigid objects,
techniques in image processing and computer vision are essential for
motion analysis. Lateral interaction in accumulative computation for ex-
tracting non-rigid blobs and shapes from an image sequence has recently
been presented, as well as its application to segmentation from motion.
In this paper we show an architecture consisting of five layers based
on spatial and temporal coherence in visual motion analysis with ap-
plication to visual surveillance. The LIAC method used in general task
”spatio-temporal coherent shape building” consists in (a) spatial coher-
ence for brightness-based image segmentation, (b) temporal coherence for
motion-based pixel charge computation, (c) spatial coherence for charge-
based pixel charge computation, (d) spatial coherence for charge-based
blob fusion, and, (e) spatial coherence for charge-based shape fusion. In
our case, temporal coherence (in accumulative computation) is under-
stood as a measure of frame to frame motion persistency on a pixel,
whilst spatial coherence (in lateral interaction) is a measure of pixel to
neighbouring pixels accumulative charge comparison.

1 Introduction

There has been a great deal of research interest in motion tracking [I,[2],[3]
because of its great applicability in a wide variety of applications. Vision is
probable the most powerful source of information used by man to represent a
monitored scene. Visual information is composed of a great deal of redundant
sets of spatial and temporal data robustly and quickly processed by the brain.
There has also been much work carried out on the extraction of non-rigid shapes
from image sequences. In general, all papers take advantage of the fact that the
image flow of a moving figure varies both spatially and temporally.

Little and Boyd [4] found it reasonable to suggest that variations in gaits
are recoverable from variations in image sequences. There have been several
attempts to recover characteristics of gait from image sequences. Polana and
Nelson [5] characterize the temporal texture of a moving figure by summing the
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energy of the highest amplitude frequency and its multiples. Their more recent
work [6] emphasizes the spatial distribution of energies around the moving figure.
Bobick and Davis [7] introduced the Motion Energy Image (MEI), a smoothed
description of the cumulative spatial distribution of motion energy in a motion
sequence. Yang and Ahuja [§] segment an image frame into regions with similar
motion. The algorithm identifies regions in each frame comprising the multiscale
intraframe structure. Regions at all scales are then matched across frames. Affine
transforms are computed for each matched region pair. The affine transform pa-
rameters for region at all scales are then used to derive a single motion field that
is then segmented to identify the differently moving regions between two frames.
Olson and Brill [9] propose a general purpose system for moving object detection
and event recognition where moving objects are detected using change detection
and tracked using first-order prediction and nearest neighbour matching.

Behind all of these papers one can guess the idea of grouping spatially andf
temporally coherent image pixels into regions based on a common set of features.
Coherence is defined as logical and orderly and consistent relation of parts.
Spatial coherence describes the correlation between a set of features at different
points in space. Temporal coherence describes the correlation or predictable
relationship between those (or other) features observed at different moments
in time. Spatial coherence is described as a function of distance (a measure or
a metric), and is often presented as a function of correlation versus absolute
distance between observation points. The same operation can be performed in
time. It is well known that temporal and spatial coherence are involved in the
promotion of perceptual binding.

The goal of this paper is to present our method for spatio-temporally shape
building taking advantage of the inherent motion present in image sequences. In
an indefinite succession of images, our motion-based algorithms allow to obtain
the shape of the moving elements. Somehow, the method is bound to the generic
behaviour of the permanency memories [10]. Specifically, we will say that the
observer is unable to discern any object unless it starts moving. In other words,
the system only acts on those image pixels where some change in the grey level
is detected between two consecutive frames.

2 Lateral Interaction in Accumulative Computation
(LIAC)

Lateral interaction in accumulative computation has recently been introduced
[11],[12], as well as its application to segmentation from motion [13]. For it,
a generic model based on a neural architecture was presented. We shall now
remind of the most important characteristics of this model. The proposed model
is based on accumulative computation function followed by a set of cooperating
lateral interaction processes. These are performed on a functional receptive field
organised as centre-periphery over non-linear and temporal expansions of their
input spaces. A lateral interaction model consists of a layer of modules of the
same type with local connectivity, such that the response of a given module
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does not only depend on its own inputs, but also on the inputs and outputs
of the module’s neighbors. From a computational point of view, the aim of the
lateral interaction nets is to partition the input space into three regions: centre,
periphery and excluded. The following steps have to be done: (a) processing over
the central region, (b) processing over the feedback of the periphery zone, (c)
comparison of the results of these operations and a local decision generation,
and, (d) distribution over the output space.

We also incorporate the notion of double time scale present at sub-cellular
microcomputation. So, the following properties are applicable to the model. (a)
Local convergent process around each element, (b) semiautonomous functioning,
with each element capable of spatio-temporal accumulation of local inputs in
time scale T, and conditional discharge, and, (¢) attenuated transmission of these
accumulations of persistent coincidences towards the periphery that integrates
at global time scale t. Therefore we are in front of two different time scales: (1)
the local time 7', and, (2) the global time ¢, (¢t = n-T'). Global time is applicable
to steps (a) and (d) of our neuronal lateral interaction model, whereas steps (b)
and (c) use local time scale T

3 LIAC for Spatio-Temporal Coherent Shape Building

In first place, and in the following figure, the complete structure chosen as the
modular computational solution to apply the model to spatio-temporal shape
building is presented.

In Figure [ five layers can be appreciated that form the architecture of the
lateral interaction in accumulative computation method.

@eral Interaction in Accumulative Computation

1. Spatial Coherence — Brightness-based Image Segmentation

2. Temporal Coherence — Motion-based Pixel Charge Computation

[3. Spatial Coherence — Charge-based Pixel Charge Computation

4. Spatial Coherence — Charge-based Blob Fusion

\Utkekese)

[5. Spatial Coherence — Charge-based Shape Fusion
\ [k

&

Fig. 1. LIAC architecture for coherent shape building
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Now we are going to explain the role of each of these five layers devoted to
shape building. As it will be easy to appreciate, in each of these layers seeking for
coherence is the main objective. In effect, layers 1, 3, 4 and 5 are based on spatial
coherence, whereas layer 2 is a typical application of temporal coherence. The
consistency of the LIAC method for spatio-temporal coherent shape building
lays on motion-based grouping of pixels and blobs.

3.1 Spatial Coherence — Brightness-Based Segmentation

This layer covers the possibility to segment the image into a predefined group of
n grey level bands just from the brightness of each input image pixel. This layer
enables to smoothening the transitions among neighbouring pixels of the input
image. This may be considered a first step that contributes to spatial coherence.

Let GL(x,y,t) be the input grey level value at element (x,y) at time ¢, and
let GLS(k, z,y,t) be the presence or absence of grey level k at element (x,y) at
time ¢. Then

. GL[z,y,
1, if —GLW—[G%EMH +1=kVke[0,n—1]

GLS(k t) = 1
(k2,9 1) {—1,otherwise (1)

where n is the number of grey level bands, and, k is a particular grey level
band.

In other words, we are determining in which grey level band a certain pixel
falls. So, we are not evaluating, at this level, if there is motion in a grey level
band for a given pixel, but a brightness-based spatially coherent segmentation
is performed. Coherence, in this case, has to be understood as the relation of
belonging to a same grey level band.

It must be clear that one, and only one, of the outputs of all the detecting
modules of the grey level bands can be activated at a given instant. This fact,
although obvious, is of a great interest at the higher layers of the architecture,
since it will avoid possible conflicts among the values offered by the different
grey level bands. Indeed, only one grey level band will contain valid values.

3.2 Temporal Coherence — Motion-Based Pixel Charge
Computation

This layer has been designed to obtain the permanence value PM (k, z,y,t) [10],
[11] on a decomposition in grey level bands basis. We will have n sub-layers
and each one of them will memorise the value of the accumulative computation
present at global time scale ¢ for each element. Lateral interaction in this layer is
thought to reactivate the permanence charge of those elements partially loaded
and that are directly or indirectly connected to maximally charged elements. The
permanence charge of each element will be offered as the input of the following
layer.

Firstly, at global time scale ¢, permanence memory charge or discharge due
to motion detection is performed. This information, given as input from the
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previous layer, is associated to sub-layer k of layer 1 (grey level band k). The
accumulative computation equation may be formulated as

lais, if GLS(k,z,y,t) = —1
lsat, if GLS(k,x,y,t) = landGLS(k,x,y,t — At) = —1
max(PM (k,x,y,t — At) — dy, lais),
if GLS(k,z,y,t) = landGLS(k,z,y,t — At) =1
(2)

where l4;5 is the discharge or Minimum permanence value, lsq¢ is the saturation
or Maximum permanence value, and, d,, is the Discharge value due to motion
detection.

Note that ¢ determines the sequence frame rate and is given by the capacity
of the model’s implementation to process one input image. At each element (z, y)
we are in front of three possibilities: (1) The sub-layer does not correspond to
the grey level band of the image pixel. The permanence value is discharged
down to value lg4;5. (2) The sub-layer corresponds to the grey level band of
the image pixel at time instant ¢, and it didn’t correspond to the grey level
band at the previous instant ¢ — At. The permanence value is loaded to the
maximum of saturation lsq. (3) The sub-layer corresponds to the grey level
band of the image pixel at time instant ¢, and it also corresponded to the grey
level band at the instant ¢ — /At. The permanence value is discharged by a value
d, (discharge value due to motion detection); of course, the permanence value
cannot get off a minimum value lg;s . The discharge of a pixel by a quantity
of d, is the way to stop maintaining attention to a pixel of the image that had
captured our interest in the past. Notice that we really are in front of a temporal
coherence mechanism, where coherence depends on the comparison between the
grey level bands of each pixel at two consecutive time instants (two sucessive
frames).

PM(k,x,y,t) =

3.3 Spatial Coherence — Charge-Based Pixel Charge Computation

Obviously, if a pixel is not directly or indirectly bound by means of lateral
interaction mechanisms to a maximally charged pixel (I54¢), it goes down to the
total discharge with time. That is why, secondly, an extra charge r, (Recharge
value due to neighbouring) is added to the permanence memory in those image
pixels that receive a stimulus from a maximally charged element almost [; pixels
far away in any of four directions. This recharge can only happen one time, and
provided that none neighbour element up to the maximally charged element is
discharged. [ is called Number of neighbours in accumulative computation.
This recharge mechanism allows maintaining attention on those pixels directly
or indirectly connected to maximally charge pixels. This mechanism is even able
to reinforce the permanence memory value if the r, > d,.

PM(k,x,y,t) = min(PM(k,z,y,t) + € - 1y, lsat) (3)
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where

1, i 36 < W)V < j <)

(PM(k,x+i,,t)) = Lt (N(PM (k.2 + j,y.1)) # lais U
(PM(k,x —i,y,t)) = sat N(PM(k,x = j,y,t)) # lais U

e=q (PM(ka,y+i,0)) = lsa (N(PM (K, 2,y +5,1)) # lais U (4)
(PM(kvxvy )) - lsat ﬂ(P (kv'rvy .]7 )) 7é ldzs)

0, otherwise

Lastly, back at global time scale ¢, the permanence value at each pixel (z,y)
is threshold (1) and sent to the next layer.

PM(k,z,y,t), if PM(k,z,y,t) > 61

PM(k,z,y,t) = { 0, otherwise (5)

In order to explain the central idea of this layer, we will say that the activation
toward the lateral modular structures (up, down, right and left) is again based
on coherence, this time spatial coherence. Spatial coherence is related to the
permanence memory values of neighbouring pixels up to a distance of [;. The
algorithm looks for coherent permanency value paths.

Now here are the basic ideas underlying lateral interaction at this layer.
(1) All modular structures with maximum permanence value Iz, (saturated)
output the charge toward the neighbours. (2) All modular structures with a not
saturated charge value, and that have been activated from some neighbour, allow
passing this information through them (they behave as transparent structures
to the charge passing). (3) The modular structures with minimum permanence
value l4;s (discharged) stop the passing of the charge information toward the
neighbours (they behave as opaque structures). Therefore, we are in front of
an explosion of lateral activation beginning at the structures with permanence
memory set at lsq¢, and that spreads lineally toward all the addresses, until a
structure appears in the pathway with a discharged permanence memory.

3.4 Spatial Coherence — Charge-Based Blob Fusion

Layer 4 is also formed of n sub-layers, where, by means of lateral interaction,
charge redistribution among all connected neighbours in a surrounding window
of I3 * l5 pixels that hold a minimum charge, is performed. Besides distributing
the charge C(k,x,y,t) in grey level bands, at this level, the charge due to the
motion of the background is also diluted. The new charge obtained in this layer is
offered as an output toward layer 5. Starting from the values of the permanence
memory in each pixel on a grey level band basis, we will see how it is possible
to obtain all the parts of an object (blobs) in movement. A blob concretely
means the union of pixels that are together and in a same grey level band. The
discrimination of each one of the blobs is equally obtained by lateral co-operation
mechanisms. In case of layer 4, the charge will be homogenised among all the
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pixels that pertain to the same grey level band and that are directly or indirectly
united to each other, providing a means towards spatial coherence.

This way, a double objective will be obtained: (1) Diluting the charge due
to the false image background motion along the other pixels of the background.
This way, there should be no presence of motion characteristic of the background,
but we will rather keep motion of the objects present in the scene. (2) Obtaining
a parameter common to all the pixels of the blobs in a surrounding window
of Iy % Iy pixels with a same grey level band. Initially, at global time scale t,
the charge value at each pixel (x,y) and at each sub-layer k is given the value
of the permanence value from the previous layer. After-wards, at local time
scale T', provided that the neighbour input charge values are high enough, the
centre element (z,y) calculates the mean of its value and the partially charged
neighbours in a surrounding window of Is * I3 pixels. o is denominated Number
of neighbours in charge redistribution.

lo Iy
C(k,z,y, T—AT)+ Z Z 5z+i,y+j . C(k, T+ i, Y+ j, T — AT)
C(:Evva) = =izl I3 >
1+ Z 6w+i7y+j
i=—l3

v(i,j) # (0,0)

where
Sus = { 1, if C(k,a, B8, T — AT) > lais 1)

0, otherwise

Again at global time scale ¢, the charge value at each pixel (x,y) is threshold
(f2) and sent to the next layer.

C(k,I,y,t), if C(k,iﬂ,y,t) > 92

C(k7x7y7t) = {927 OtheTwiSS (8)

3.5 Spatial Coherence — Charge-Based Shape Fusion

In each element of layer 5, we have an input from each corresponding element
of the n sub-layers of layer 4. This layer has as purpose the fusion into uniform
shapes of the objects in a surrounding window of I3 x I3 pixels. That is why
it takes the input charges of each one of the grey level bands and performs a
fusion of these values, obtaining uniform parts of all the moving objects of the
original image. Its output is a set of shapes S(x,y,t). Up to now attention has
been captured on any moving objects in the scene by means of co-operative
calculation mechanisms in all grey level bands. Motion due to background has
also been eliminated. It is now necessary to fix as a new objective to clearly
distinguish the motion of the different objects. This discrimination is obtained
equally by lateral cooperation mechanisms. Nevertheless, now we will no longer
work with sub-layers, but rather all information of the n sub-layers of layer 4
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end up in a single layer. In layer 5, we will homogenise the charge values among
all the pixels that contain some charge value superior to a minimum threshold
and that are physically connected to each other in a radius of I3 pixels. This is
again the criteria used for spatial coherence. Firstly, the shape charge value at
each pixel (z,y) is given the charge value of the maximally charged sub-layer k
from the previous layer.

S(z,y,t) = max(C(k,x,y,t)),Vk € [0,255] (9)

At local time scale, provided that the neighbour input charge values are
high enough, the centre element (x,y) calculates the mean of its value and the
partially charged neighbours in a surrounding window of I3 I3 pixels. I3 is
denominated Number of neighbours in object fusion.

l3 I3
S(‘/E?y7T) = i=—l3 i=—I3 |

I3

L+ Y Gogigrs

i=—l3

v(i, j) # (0,0) 10)

where

Suy = { 1, if S(k, o, 8, T — AT) > la;s (1)

0, otherwise

Back to global time scale ¢, the shape charge value at each pixel (x,y) is
again threshold (63).

S(xvyvt)v if S(kvxvyvt) > 03

03, otherwise (12)

(a0 = {

4 Data and Results

In this section we offer some results of applying our LIAC method in visual
surveillance to the traffic intersection sequence recorded at the Ettlinger-Tor
in Karlsruhe by a stationary camera, copyright 1998 by H.-H. Nagel, Institut
fir Algorithmen und Kognitive Systeme, Fakultat fiir Informatik, Universitat
Karlsruhe (TH), Postfach 6980, D - 76128 Karlsruhe, Germany.

Figure Rlshows two images of the sequence. You may observe the existence of
ten cars and one bus driving in three different directions. At the bottom of the
image there is another car, but this one is still. The parameter values for this
experiment are At = 0.42 seconds, At = 64 x T, l4;s=0, lsq:=255 and d,=32.
Only three frames are needed to obtain accurate segmentation results. Figure 2k
shows the result of applying our model to some images of the traffic intersection
sequence. As you may observe, the system is perfectly capable of segmenting all
the moving elements present on Figure 2l Note that the grey levels of the output
image are consistent with the charge values common to the shapes obtained.
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Fig. 2. Two images of the traffic intersection sequence. (a) Image number 1. (b) Image

number 26. (¢) Result of applying the lateral interaction mechanisms [13].

5 Conclusions

A simple algorithm of lateral interaction in accumulative computation, which is
capable of segmenting all rigid and non-rigid objects in an indefinite sequence of
images in a robust and coherent manner, with application to visual surveillance,
has been proposed in this paper. Our method may be compared to background
subtraction or frame difference algorithms in the way motion is detected. But,
the main difference is that we look for spatial coherence through segmentation
in grey level bands. Then, a region growing technique, based on spatio-temporal
coherence of charge values assigned to image pixels, is performed to define moving
objects. In contrast to similar approaches, no complex image preprocessing has
to be performed, no reference image has to be offered to our model, and, no high-
level knowledge has to be inferred to obtain accurate results. Our model is a 2-D
approach to motion estimation. In these kinds of approaches, motion estimates
are obtained from 2-D motion of intensity patterns. In these methods there is a
general restriction: the intensity of the image along the motion trajectory must
be constant, that is to say, any change through time in the intensity of a pixel is
only due to motion. This restriction does not affect our model at all. This way,
our algorithms are prepared to work with lots of situations of the real visual
surveillance world, where changes in illumination are of a real importance.

The gradient-based estimates have become the main approach in the ap-
plications of computer vision. These methods are computationally efficient and
satisfactory motion estimates of the motion field are obtained. The disadvan-
tages common to all methods based on the gradient also arise from the logical
changes in illumination.

Obviously, a way of solving the former limitations of gradient-based methods
is to consider image regions instead of pixels. In general, these methods are less
sensitive to noise than gradient-based methods. Our particular approach takes
advantage of this fact and uses all available neighbourhood state information as
well as the proper motion information. On the other hand, our method is not
affected by the greatest disadvantage of region-based methods. Our model does
not depend on the pattern of translation motion. In effect, in region-based meth-
ods, regions have to remain quite small so that the translation pattern remains
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valid. We also have to highlight that our proposed model has no limitation in the
number of non-rigid objects to differentiate. Our system facilitates object clas-
sification by taking advantage of the object charge value, common to all pixels
of a same moving element. This way, all moving objects are clearly segmented.
Thanks to this fact, any higher-level operation will decrease in difficulty.
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