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This paper considers the problem of constructing optimal approximate designs when an independent
variable might be censored. The problem is which design should be applied in practice to obtain the best
approximate design when a censoring distribution is assumed known in advance. The approach for finite or
continuous design spaces deserves different attention. In both cases, equivalent theorems and algorithms
are provided in order to calculate optimal designs. Some examples illustrate this approach for D-optimality.
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1. Introduction

In the classical theory of optimal experimental design for linear models, it is usually assumed that
the experimenter can perform an experiment at any precise value of the independent variables
within the whole design space. Nevertheless, in many areas of application it is common to find an
independent variable that may be censored during the process. For example,Varela et al. [1] applied
an exercise test to obtain more information to predict surgery complications in the treatment of
lung cancer. The test consists in riding a static bicycle using a medical protocol. There are several
independent variables, but the exercise time in minutes is the only one that can be controlled by
the experimenter. In practice, a target exercise time is assigned to a patient, but he or she may
stop the exercise before the time is over. Here, it is supposed that the stopping reasons are non-
informative for the prediction. It will be assumed that the censoring of this variable has a known
distribution. This means that the experimental design for this variable will be ‘censored’. In this
case the experiment must be designed taking into account the information given by the censoring
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2 J. López-Fidalgo and S. Garcet-Rodríguez

distribution. This particular problem deserves more theoretical and practical research since apart
from the exercise time there is a mixture of two types of uncontrolled variables. For instance, the
physician may take into account the ‘expired volume of air in 1 s (respiratory function)’, measured
as a percentage of the expected values for sex, age and height. Values under 25th percentile are
usually considered pathological for the investigation purposes. Another type of variable to be
considered is the ‘oxygen desaturation during the test’. Both variables are assumed binary in the
medical context. López-Fidalgo and Garcet-Rodríguez [2] computed optimal designs assuming
the patient always reaches the target time cycling. They used a design with two possible times: 12
and 18 min. A logistic model for the cardio-respiratory morbidity as the response variable predicts
the complications after surgery. Because of all these types of variables, this problem exceeds the
scope of the paper, and needs further research. In this paper, a simpler case will be considered to
introduce the theoretical results.

Another real motivating problem is described in what follows. The influence of temperature
on the rate of kinetic processes is usually interpreted in terms of what is known as the Arrhenius
equation k(t) = A eB/t . Such a relation represents the temperature dependence of the rates of
chemical reactions, conductivity coefficients and viscosity or diffusion phenomena. Experimental
designs may be computed for this model [3]. In practice, it is not uncommon that a particular fixed
temperature for an experiment cannot be reached exactly, that is, there is potential censoring. A
typical use of the Arrhenius equation is a chemical reaction of atmospheric interest: NO + O3 →
NO2 + O2. The temperature considered in the laboratory for this experiment typically goes from
212 to 422 with nominal values of the parameters A = 3.0 × 10−12 and B = 1500 [4]. This case
needs a slight correction to the approach of this paper since trying temperature t1 = 212 means
getting in practice a temperature before the design interval.

In both problems the censoring is from above in the sense that the target experimental condition
is never overtaken. This is the case considered in this paper.

Some work has been done in optimal experimental design for some kind of potentially failing
in the response. Hackl [5] provided a criterion based on D-optimality and obtained optimal exact
uniform designs for possible missing observations in the quadratic model. Imhof et al. [6,7] pro-
vided general procedures to compute approximate designs. Recently Ortega-Azurduy et al. [8]
provided an insight into the effect of dropout on D-optimal designs for linear mixed models.
Garcet-Rodrìguez et al. [9] dealt with the problem of obtaining optimal approximate designs
for a linear model when the values of some independent variables are potentially censored
according to a known probability distribution function. They considered the problem for a dis-
crete space. The continuous case needs a different approach, which is treated in this paper.
Appropriate algorithms are provided for computing optimal designs in both the discrete and
the continuous cases.

Let a linear model be E[y] = βTη(t), var(y) = σ 2, t ∈ χ, with ηT(t) = (η1(t), . . . , ηm(t))

continuous linearly independent known functions defined in a compact design space χ and βT =
(β1, . . . , βm), the unknown parameters to be estimated.

If the conditions of the experiment t are under the control of the practitioner, a design of the
experiment can be made in advance.An exact design will be a sequence of experimental conditions
t1, . . . , tN from a design space χ , while an approximate design [10] will be any probability
distribution ξ . The information matrix associated to a design ξ is defined as follows:

M(ξ) =
∫

χ

η(t)ηT(t)ξ(dt).

The set of approximate designs, �, and the set of the information matrices, M, are convex.
Moreover, if χ is compact then M is also compact. The inverse of the information matrix is
proportional to the covariance matrix of the least-square estimates. Thus, an experimental design
‘minimizing’, in some sense, the inverse of the information matrix should be found.
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Statistics 3

A function � defined on M will define an optimality criterion if it is non-decreasing in the
Loewner sense. The most popular criterion is D-optimality, which looks for the maximum deter-
minant of the information matrix, �D(M) = det(M)−1/m. If a �-optimal design is denoted
by ξ�, a measure of the goodness of a particular design ξ with respect to this criterion is the
efficiency,

eff�[M(ξ)] = �[M(ξ�)]
�[M(ξ)] .

For a more detailed introduction of the theory of optimal design, there are a number of books, for
instance [11,12].

2. Approach to the problem

Throughout this paper, a time variable is used for the explanatory variable as an illustrative and
typical case for this problem, but all the results may be applied to any kind of variable. Let t be a
particular time to be completed during the experiment. Assume this time; is not always reached
and let t ′ be the actual time attained. In this approach, only censoring from above, is considered,
so the target time t is never overtaken (t ′ ≤ t). Thus, t ′ may be considered as a random variable
depending on the target time t . Let T be a theoretical random variable, which measures the time;
a chosen experimental unit is going to stop given no prior limitation in time from above. In the
real case mentioned above, T would be the time a patient stops if he or she starts to ride the
bicycle without any time limit imposed in advance. Note that this is just a theoretical time. In this
approach, only the probability of a patient to reach the target time or stopping before matters. Let
f (t) and F(t) be the probability density function (pdf) and the cumulative distribution function
(cdf) of T , respectively. A particular, but typical, case may be a censoring distribution on [0, ∞)

with the design space contained in it, for example, χ = [0, b]. Summarizing, if a target time t is
fixed for the experiment the final time reached will be t ′ = t if T ≥ t or t ′ = T if T ≤ t and an
observation y = y(t ′) will be available at this censored time.

There are always three associated designs: the design to be tried in practice (ξ̆ ), the actual
censored design realized at the end of the experimentation (ξ ) which is not known when design-
ing the experiment and has to be estimated by the expected censored design (ξ̂ ). Therefore, an
approximate design ξ̆ with finite support should be found such that the expected censored design
ξ̂ will be optimal among all possible expected designs. Note that the set of all possible expected
designs is only a subset of �,

�R = {ξ̂ | ξ̂ is the expected design of some finite design ξ̆}.
We will call an optimal design ξ̆ �

R with this constraint, a censoring restricted (CER) optimal design.
The associated expected design, ξ̂ �

R , will be called the expected censoring restricted (ECER)
optimal design. Sometimes it is possible to find ξ̆ such that the expected design ξ̂ will be optimum
according to the criterion without censoring, but usually this is not the case and a restricted search
has to be performed.

Whittle [13] provided a general equivalence theorem for the general theory. In a similar
way, Theorem 1 of López-Fidalgo and Garcet-Rodríguez [2] stated an equivalence theorem for
restricted optimality. For that, the definition of a directional derivative of � at M in the direction
of N is needed,

∂�(M, N) = lim
ε→0

�[(1 − ε)M + εN ] − �(M)

ε
.
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4 J. López-Fidalgo and S. Garcet-Rodríguez

Theorem 1 (Equivalence theorem) If � is a convex function, then the following statements are
equivalent:

(1) �[M(ξ̂�
R)] = inf ξ̂∈�R

�[M(ξ̂)], where ξ̂ �
R is the ECER �-optimal design.

(2) infN∈MR
∂�[M(ξ̂�

R), N ] = supξ̂∈�+
R

infN∈MR
∂�[M(ξ̂), N ], where MR = {M(ξ̂) | ξ̂ ∈ �R}

and �+
R is the set of the designs with non-singular information matrices.

(3) infN∈MR
∂�[M(ξ̂�

R), N ] = 0.

The objective is then to find

ξ̂ �
R = arg min{�[M(ξ̂)] | ξ̂ ∈ �R}.

Only in a few cases this programming problem can be solved analytically. Usually, an algorithm
will be needed.

From the definition of the directional derivative, the inequality ∂�(M, N) ≤ �(N) − �(M)

holds. Using this inequality and the formula ∂�(M, N) = tr[∇�(M) (N − M)] for a dif-
ferentiable criterion �, the following result provides an important lower bound for the
efficiency.

Corollary 1 Under the above conditions

eff�(M) ≥ 1 + infN ∂�(M, N)

�(M)
.

For more details in what has been setup in this section see [9], where an optimal restricted
design was computed directly in a simple example. As pointed above, this is usually not possible,
for instance, when the design space is large, and some kind of algorithm for the computation of
optimal designs is needed.

In what follows, the two possible cases with either a finite (Section 2.1) or a continuous (Section
3) design space will be considered. In Sections 2.1 and 4, algorithms for the computation of these
designs will be provided.

2.1. Finite design space

This case has been considered in detail in [9]. A brief review is provided in this section. Let a finite
design space be χ = {t1, t2, . . . , tn}, where t1 < · · · < tk < · · · < tn. The censoring distribution
of T will be considered as a discrete distribution on χ . The cdf will be F(t) =∑k

i=1 f (ti),
tk ≤ t < tk+1, k = 1, . . . , n − 1, where f (ti) = P(T = ti), i = 1, . . . , n. Then, F(t) = 0, t < t1
and F(t) = 1, t ≥ tn. If there would not be any fixed time to stop the experiment, then f (tk) would
be the probability to stop exactly at time tk , that is, completing all the stages until k and then stop.
But if the experiment has to be performed by a particular individual just until tk , then it may stop
the experiment at either t1, t2, . . . or tk according to the censoring distribution. Then the probability
to stop exactly at tk is f (tk) + · · · + f (tn).

If a proportion ξ̆ (tk) of experiments are tried at tk , then some of them will reach the target tk
while the rest will be distributed at tk−1, . . . and t1. Thus, when a design ξ̆ is tried in practice an
expected censored design ξ̂ will be performed [9]:

ξ̂ (tk) = (1 − Fk−1)ξ̆ (tk) + f (tk)(1 − �̆k), k = 1, . . . , n, (1)

where Fk ≡ F(tk); �̆k ≡∑k
i=1 ξ̆ (ti), k = 1, . . . , n; F0 ≡ F(t0) = 0 and �̆0 ≡ 0, being t0 any

point less than t1, just for consistency of notation.
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Statistics 5

Working ξ̆ out from the previous formula is possible if and only if the ratio ri = (1 − �̂i)/(1 −
Fi) is non-increasing for i = 0, . . . , n − 1. Thus, the convex set of all the possible expected designs
is then �F = {ξ̂ |ri is non-increasing, i = 0, . . . , n − 1}. Let MF be the set of the information
matrices associated with these designs.

The information matrix associated with an expected design ξ̂ , obtained from Equation (1), is

M(ξ̂) =
n∑

k=1

ξ̆ (tk)

[
k−1∑
i=0

f (ti)η(ti)η
T(ti) + (1 − Fk−1)η(tk)η

T(tk)

]
. (2)

If the criterion function is differentiable, the directional derivative is linear on the second
argument and therefore the equivalence theorem has to be checked only in the direction of the
generators of the set of the information matrices of the ECER designs,

k−1∑
i=0

f (ti)η(ti)η
T(ti) + (1 − Fk−1)η(tk)η

T(tk), k = 1, . . . , n.

These matrices come from the CER designs

{
t1 · · · tk−1 tk

f (t1) · · · f (tk−1) 1 − F(tk)

}
, k = 1, . . . , n.

Therefore, a condition to check the optimality for differentiable criteria may be given as follows.

Corollary 2 Under the hypotheses of Theorem 1, if � is a differentiable function then ξ̂ �
R is an

ECER �-optimal design if and only if

ψ(ξ̂ �
R, t) ≥ 0, t ∈ χ,

where for k = 1, . . . , n,

ψ(ξ̂ , tk) = tr

{
∇�[M(ξ̂)]

[
k−1∑
i=0

f (ti)η(ti)η
T(ti) + (1 − Fk−1)η(tk)η

T(tk) − M(ξ̂)

]}
.

Based on the equivalence theorem and the results given above, the following general algorithm
may be stated for a differentiable criterion �:

(1) Set a non-singular initial design ξ̆ (0) to be tried in practice.
(2) Let ξ̆ (r−1) be the design obtained at step r − 1 and ξ̂ (r−1) the corresponding expected design

after the experimentation. Compute the point

t (r) = arg min
k=1,...,n

tr

{
∇�[M(ξ̂ (r−1))]

[
k−1∑
i=0

f (ti)η(ti)η
T(ti) + (1 − Fk−1)η(tk)η

T(tk)

]}
.

(3) The new design at step r will be

ξ̆ (r) = (1 − αr)ξ̆
(r−1) + αr ξ̂t(r) ,

where either αr = minα∈[0,1] �{M[(1 − α)ξ̆ (r−1) + αξ̂t(r) ]} or αr = 1/(r + 1).
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6 J. López-Fidalgo and S. Garcet-Rodríguez

(4) The algorithm will stop as soon as an appropriate bound for the efficiency will be reached:

1 +
mink=1,...,n tr

{
∇�[M(ξ̂ (r))]

[∑k−1
i=0 f (ti)η(ti)η

T(ti) + (1 − Fk−1)η(tk)η
T(tk)

]}
�[M(ξ̂ (r))]

−
tr
{
∇�[M(ξ̂ (r))]M(ξ̂ (r))

}
�[M(ξ̂ (r))] .

Last formula comes from Corollary 1 after some algebra. Taking into account that
∇�D[M(ξ̂)] = −1/(m|M(ξ̂)|1/m)M−1(ξ̂ ) for D-optimality, then

t (r) = arg max
k=1,...,n

[
k−1∑
i=0

f (ti)η
T(ti)M

−1(ξ̂ (r−1))η(ti) + (1 − Fk−1)η
T(tk)M

−1(ξ̂ (r−1))η(tk)

]

and the bound for the D-efficiency will be

2 −
maxk=1,...,n

[∑k−1
i=0 f (ti)η

T(ti)M
−1(ξ̂ (r−1))η(ti) + (1 − Fk−1)η

T(tk)M
−1(ξ̂ (r−1))η(tk)

]
m

.

An example is considered now in order to clarify and motivate the procedure.

Example 1 In a company the commercial travellers are going to take 10 group therapy sessions
during a quarter in order to evaluate whether the number of sessions will influence proportionally
the sales or not. The model considered is a simple linear regression model,

E(y) = β1 + β2t, Var(y) = σ 2, t ∈ χ = {0, 1, 2, . . . , 10}.

The sessions are independent and equivalent since they deal with the situation of the participants
at that particular moment. A fix number of sessions is assigned to each commercial. For different
reasons it is likely that not all of them are going to complete their numbers. Assume there is a
geometric censoring distribution on χ with a probability of failure (in this case) θ = 0.2, that is,

f (k) = 0.8k0.2, k = 0, 1, . . . , 9; f (10) = 1 − f (0) − f (1) − · · · − f (9).

The algorithm was tried using the D-optimal unrestricted design as initial design,

ξD ≡
⎧⎨
⎩

0 10

1

2

1

2

⎫⎬
⎭,

and the design

ξ̆R ≡
⎧⎨
⎩

0 10

3

38

35

38

⎫⎬
⎭

was obtained with efficiency near 100%. This means that about 100(41/58) = 70.7% of the
commercials would have to attend all the sessions and the rest would attend none of them. If the
unrestricted D-optimal design ξD is tried, the expected design will not be optimal as is the case
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Statistics 7

of the expected design from ξ̆R . Comparing both determinants the restricted D-efficiency of the
expected design from ξD is in this case

(
det M[ξ̂D]
det M[ξ̂R]

)1/2

= 0.889,

meaning an efficiency of more than 10% is lost if the unrestricted optimal design is used instead
of the restricted one.

3. Continuous design space

Let χ = [0, b] be the design space. In this section, a continuous censoring distribution defined
on the set [0, ∞) is considered. Let f (t) be an upper continuous version of the pdf and F(t)

the corresponding cdf. Let ξ̆ be the design that is going to be applied in practice, supported at
points t1 < · · · < tk < · · · < tn with weights ξ̆ (ti), i = 1, . . . , n. Let t0 = 0 for the convenience
of notation. Eventually, t1 = t0 = 0.

The expected design at the end of the experimentation will be a mixture of a continuous
distribution pdf and discrete probabilities (‘weights’) at points t1, . . . , tn. It is computed in a
similar way as in the discrete case [9]:

(1) A proportion of ξ̆ (t1) experiments are tried at time t1. Taking into account the censoring
distribution, this proportion of times will be distributed on the interval [0, t1) according to
density ξ̆ (t1)f (t), t ∈ [0, t1) and the rest ξ̆ (t1)[1 − F(t1)] will reach the challenged time t1.
Note that if t1 = 0, then ξ̆ (0)[1 − F(0)] = ξ̆ (0).

(2) Similarly, a proportion of ξ̆ (t2) experiments are tried at time t2. The actual times attained will
be distributed on the interval [0, t2) according to density ξ̆ (t2)f (t), t ∈ [0, t2) and the rest
ξ̆ (t2)[1 − F(t2)] will actually reach t2.

Following a similar argument for the rest of the points, the final expected design will be

ξ̂ (t) =
⎧⎨
⎩
∑n

i=k ξ̆ (ti)f (t), if tk−1 < t < tk,

ξ̆ (tk)[1 − F(tk)], if t = tk,
k = 1, . . . , n. (3)

The information matrix of the expected design ξ̂ is then

M(ξ̂) =
n∑

k=1

∫ tk

tk−1

ξ̂ (t)η(t)ηT(t) dt +
n∑

k=1

ξ̂ (tk)η(tk)η
T(tk),

=
n∑

k=1

∫ tk

tk−1

n∑
i=k

ξ̆ (ti)f (t)η(t)ηT(t) dt +
n∑

k=1

ξ̆ (tk)[1 − F(tk)]η(tk)η
T(tk),

=
n∑

k=1

ξ̆ (tk)[G(tk) + η(tk)η
T(tk)[1 − F(tk)]],

where G(t) = ∫ t

0 f (s)η(s)ηT(s) ds. A criterion function of the information matrix should be used
to obtain the optimal design ξ̆ .

Let �F be the set of all the expected designs when a design with finite support on a continuous
design space χ is tried. A finite support is assumed since this is a practical design to be tried in
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8 J. López-Fidalgo and S. Garcet-Rodríguez

practice. It can be easily proved that the set �F is convex and Theorem 1 can be used here again.
If the criterion function is differentiable, then the directional derivative is linear in the second
argument and therefore the equivalence theorem needs to be checked only in the direction of the
generators of the set of the information matrices of ECER designs,

G(t) + [1 − F(t)]η(t)ηT(t), t ∈ [0, b].
Corollary 3 If the criterion function � is differentiable, then a design ξ̆ �

R is CER �-optimal if
and only if

ψ(ξ̂ �
R, t) ≥ 0, t ∈ χ = [0, b],

where ξ̂ �
R is the expected design of ξ̆ �

R and

ψ(ξ̂ , t) = tr
{
∇�[M(ξ̂)]

[
G(t) + [1 − F(t)]η(t)ηT(t) − M(ξ̂)

]}
, t ∈ χ = [0, b].

The proof of this corollary is based on the well-known formula for the directional derivative of
a differentiable function, ∂�(M, N) = tr[∇�(M) (N − M)].

For D-optimality, the condition to be checked is

ψ(ξ̂ , t) = m − tr{M−1(ξ̂ ) [G(t) + [1 − F(t)]η(t)ηT(t)]} ≥ 0, t ∈ χ = [0, b].
The following example will illustrate the procedure.

Example 2 The efficacy of a mixture of an additive in the gasoline wants to be measured. Let t

be the percentage of the additive in the mixture and let y be the kilometres per litre of gasoline.
The design space is from 0% to 1% of the additive. The model to be checked is then

E(y) = β1 + β2t, Var(y) = σ 2, t ∈ χ = [0, 1].
There is always some proportion of the additive which is not absorbed. This means the fixed pro-
portion for a particular experiment is going to be censored. An exponential censoring distribution
was assumed on χ , f (t) = e−t , F (t) = 1 − e−t , t > 0. Then,

G(t) =
∫ t

0
η(s)ηT(s)f (s) ds =

∫ t

0

(
1 s

s s2

)
e−s ds,

=
(

1 1
1 2

)
− e−t

(
1 1 + t

1 + t 2 + 2t + t2

)
.

The expected information matrix is

M(ξ̂) =
n∑

k=1

ξ̆ (tk)[G(tk) + e−tk η(tk)η
T(tk)].

Note that under this framework a one-point design is possible if the expected design will have
more points in its support. It is worth to mention that a singular design is also possible for the
finite case. The one-point D-optimal design is concentrated at t1 = 1. If the one-point design is
tried, the following theoretical experimental design is expected:

ξ̂ (t) = e−t , 0 ≤ t ≤ 1.

Thus, if for instance N = 30 experiments are tried at t1 = 1, then about 11 (≈ e−1 × 30)
experiments are expected to succeed while the 19 remaining will be distributed according to the
distribution given by e−t on the interval [0, 1].
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The determinant of the information matrix associated with the expected design is 0.129.
The two-point D-optimal design is

ξ̆R =
{

0 1
0.339 0.661

}
.

This design means that 33.9% of the experiments have no additive at all and the rest 1% of
additive. In order to verify that this is a CER optimal design, the following condition has to be
satisfied (Corollary 3):

et − 1 − t (e − 1) ≤ 0, t ∈ χ = [0, 1].
This function is convex and attains the value 0 at the boundaries of the interval [0, 1], therefore
the inequality is satisfied.

When this design is tried in practice, for example, for N = 30 experiments, then 10 (≈ 0.339 ×
30) will be made at t1 = 0, about 7 (≈ 0.661 × [1 − F(1)] × 30) at t2 = 1 and the rest will be
located on (0, 1) according to the distribution density 0.661 e−t .

The efficiency of the expected design from the unrestricted D-optimal design

ξD =
{

0 1
1/2 1/2

}

with respect to the expected censored D-optimal design is now 97.0%, which is very high in this
particular case.

4. Algorithm for the continuous case

Based on the equivalence theorem, an algorithm may be stated for a differentiable criterion � in
a similar way as in Section 2.1 exchanging

∑k−1
i=0 f (ti)η(ti)η

T(ti) + (1 − Fk−1)η(tk)η
T(tk) with

G(t) + [1 − F(t)]η(t)ηT(t) appropriately:

(1) Set a non-singular initial design ξ̆ (0) to be tried in practice.
(2) Let ξ̆ (r−1) be the design obtained at step r − 1 and ξ̂ (r−1) be the corresponding expected

design after the experimentation. Let

t (r) = arg min
t∈[0,b] tr

{
∇�[M(ξ̂ (r−1))] [G(t) + [1 − F(t)]η(t)ηT(t)

]}
.

(3) The new design at step r will be

ξ̆ (r) = (1 − αr)ξ̆
(r−1) + αr ξ̂t(r) ,

where either αr = minα∈[0,1] �{M[(1 − α)ξ̆ (r−1) + αξ̂t(r) ]} or αr = 1/(r + 1).
(4) The algorithm will stop as soon as an appropriate bound for the efficiency will be reached,

1 +
mint∈[0,b] tr

{
∇�[M(ξ̂ (r−1))] [G(t) + [1 − F(t)]η(t)ηT(t)

]}
�[M(ξ̂ (r))]

−
tr
{
∇�[M(ξ̂ (r))]M(ξ̂ (r))

}
�[M(ξ̂ (r))] .

Last formula comes from Corollary 1 after some algebra.
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For D-optimality,

t (r) = arg max
t∈[0,b] tr

{
M−1(ξ̂ (r−1))

[
G(t) + [1 − F(t)]η(t)ηT(t)

]}
,

and the bound for the D-efficiency will be

2 −
maxt∈[0,b] tr

{
M−1(ξ̂ (r−1))

[
G(t) + [1 − F(t)]η(t)ηT(t)

]}
m

.

Example 3 There is a debate of what should be the proportion of discussions with exercises and
theoretical lectures in a first course of Algebraic Geometry. It is supposed there is a maximum
at some middle point. An experiment is going to be conducted in several universities in order to
find this optimal proportion. Let t be the proportion of discussions and y be the performance of
the students. A quadratic model is assumed,

E(y) = β1 + β2t + β3t
2, Var(y) = σ 2, t ∈ χ = [0, 1].

When a professor is asked to adjust the classes to a particular proportion of discussions, in
practice this proportion is not always reached. An exponential censoring distribution is assumed
on χ , f (t) = θe−θt , F(t) = 1 − e−θt , t > 0. Then,

G(t) =
∫ t

0
η(s)ηT(s)f (s) ds =

∫ t

0

⎛
⎜⎝

1 s s2

s s2 s3

s2 s3 s4

⎞
⎟⎠ θ e−θs ds,

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1
1

θ

2

θ2

1

θ

2

θ2

6

θ3

2

θ2

6

θ3

24

θ4

⎞
⎟⎟⎟⎟⎟⎟⎠

− e−θt

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1 + θt

θ

2 + 2θt + θ2t2

θ2

1 + θt

θ

2 + 2θt + θ2t2

θ2

6 + 6θt + 3θ2t2

+θ3t3

θ3

2 + 2θt + θ2t2

θ2

6 + 6θt + 3θ2

t2 + θ3t3

θ3

24 + 24θt + 12θ2t2

+4θ3t3 + θ4t4

θ4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Applying the algorithm for CER D-optimality (θ = 0.1), the design obtained is

ξ̆R =
{

0 0.512 1
0.361 0.149 0.590

}

with efficiency near 100%. When this design is tried in practice the following design is expected
to happen:

ξ̂R(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.361, if t = 0,

0.665 e−0.9t , if 0 < t < 0.512,

0.149 e−0.461, if t = 0.512,

0.531 e−0.9t , if 0.512 < t < 1,

0.590 e−0.9, if t = 1.

The efficiency of the expected design from the unrestricted D-optimal design equally distributed
on {0, 0.5, 1} with respect to ECER D-optimal design is now 94.3%.
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5. Discussion

Two real problems of possible censoring on the variable that has been designed motivated this
paper. The censoring rule is assumed known under a probability distribution and therefore an
expected experimental design may be computed from the design tried in practice. If the censor-
ing distribution is continuous the expected censored design happens to be a distribution with a
continuous part and a discrete part. This work shows how the general theory has to be adjusted to
this approach. In particular, Caratheodory’s theorem may still be used in this context to limit the
support points of the design to be tried in practice to m(m + 1)/2 + 1 points.

Since at the moment of designing the experiment the actual censored design realized in prac-
tice is unknown, there is not any other chance than estimating it. Thus, assuming a censoring
distribution is needed. This is the traditional problem of assuming prior distributions. The typical
life distributions may be used in this context. Instead of using a particular distribution as done
in this paper, a parametric family may be used including new parameters to be added to the
model. This deserves non-trivial further research. Note that the expected design is an estimate of
the actual design that is happening in practice, which is the design actually used to estimate the
parameters.

In the examples, the efficiency of the expected unrestricted optimal design was computed.
Depending on the severity of the censoring much lower efficiencies may be obtained.

Only approximate designs have been considered in this paper. These ideas may be developed for
exact designs in a similar way, except that the equivalence theorem is not true and new algorithms
have to be developed. Moreover, with exact designs a different approach can be given applying
the expectation to the criterion instead of to the design tried in practice. In particular, instead
of optimizing �[M(ξ̂)] = �{M[E(ξ̆ )]} = �{E[M(ξ̆)]}, a different approach is considering the
expectation of the criterion,

E{�[M(ξ̆)]}.

This is an interesting idea for new research.
Under the approach considered in this paper, a singular optimal design to be tried in practice may

appear. But the actual resulting design is expected to be non-singular. For example, in the cycling
exercise a singular design with all tries at 18 min may be considered. Then, because of the censoring
some patients will not reach this target and the resulting actual design will allow the estimation of
the parameters. It is true there is a chance that all of the tries reach the target of 16 min, but it is very
unlikely since an optimal singular design is usually obtained when the probability of censoring
is high. In any case this may be avoided using a regularization procedure in the sense of Fedorov
and Hackl [12] introducing in the algorithm the criterion function �γ (ξ̆ ) = �((1 − γ )ξ̆ + γ ξ̃ )

for an appropriate design ξ̃ and γ ∈ (0, 1).
The algorithms provided in this paper converge to the optimal designs under the conditions

given in the general theory [14] adapted to the restricted case [9, Theorem 3]. In particular,
the convergence applies for D-optimality, which is the criterion considered in this paper. As
regards the choice of αr , it has to satisfy the conditions 0 < αr < 1, limr→∞ αr = 0,

∑∞
r=0 αr =

∞ and
∑∞

r=0 α2
r < ∞ stated in [9] as is the case of the two possible choices suggested in the

algorithms.
A particular design space, [0, b], and a particular survival distribution domain, [0, ∞), have

been used in the outline of the problem. This has been done for a justification of the real problem
considered in this paper. Apart from the difficulties introduced in optimal design with more than
one dimension, a generalization, in a theoretical sense, of this particular approach to more general
spaces may be more straightforward.
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