
Expert Systems with Applications 39 (2012) 6982–6993
Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Human activity monitoring by local and global finite state machines

Antonio Fernández-Caballero a,b,⇑, José Carlos Castillo b, José María Rodríguez-Sánchez b

a Departamento de Sistemas Informáticos, Escuela de Ingenieros Industriales de Albacete, Universidad de Castilla-La Mancha, 02071 Albacete, Spain
b Instituto de Investigación en Informática de Albacete (I3A), Universidad de Castilla-La Mancha, 02071 Albacete, Spain

a r t i c l e i n f o
Keywords:
Video
Moving objects
Human activities
Visual surveillance
0957-4174/$ - see front matter � 2012 Elsevier Ltd. A
doi:10.1016/j.eswa.2012.01.050

⇑ Corresponding author at: Departamento de Siste
Ingenieros Industriales de Albacete, Universidad de
Albacete, Spain. Tel.: +34 967 599200; fax: +34 967 5

E-mail address: Antonio.Fdez@uclm.es (A. Fernánd
a b s t r a c t

There are a number of solutions to automate the monotonous task of looking at a monitor to find
suspicious behaviors in video surveillance scenarios. Detecting strange objects and intruders, or tracking
people and objects, is essential for surveillance and safety in crowded environments. The present work
deals with the idea of jointly modeling simple and complex behaviors to report local and global human
activities in natural scenes. Modeling human activities with state machines is still common in our days
and is the approach offered in this paper. We incorporate knowledge about the problem domain into an
expected structure of the activity model. Motion-based image features are linked explicitly to a symbolic
notion of hierarchical activity through several layers of more abstract activity descriptions. Atomic
actions are detected at a low level and fed to hand-crafted grammars to detect activity patterns of inter-
est. Also, we work with shape and trajectory to indicate the events related to moving objects. In order to
validate our proposal we have performed several tests with some CAVIAR test cases.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Many techniques and methods have been used so far in human
activity recognition and understanding (Huang, Lee, Kuo, & Lee,
2010). In human activity understanding, four broad classes can
be identified (Dee & Hogg, 2009): learning patterns of activity
within a scene (e.g. (Liu & Yuen, 2010; Makris & Ellis, 2005;
Stauffer & Grimson, 2000)); modeling the interactions between
agents (e.g. (Oliver, Rosario, & Pentland, 2000)); hand-crafting
models of particular activities of interest (e.g. (González, Rowe,
Varona, & Roca, 2009; Jan, Piccardi, & Hintz, 2002)); and
intentional systems (e.g. (Liao, Patterson, Fox, & Kautz, 2007; Bui,
Venkatesh, & West, 2002)).

In close relation to finite state machines theory, Ayers and Shah
(2001) describe a system which automatically recognizes human
actions from video sequences taken of a room. These actions
include entering a room, using a computer terminal, opening a
cabinet, picking up a phone, etc. The system recognizes these
actions by using prior knowledge about the layout of the room.
Indeed, action recognition is modeled by a state machine, which
consists of ‘states’ and ‘transitions’ between states. The transitions
from different states can be made based on a position of a person,
scene change detection, or an object being tracked. Hongeng,
ll rights reserved.

mas Informáticos, Escuela de
Castilla-La Mancha, 02071

99224.
ez-Caballero).
Nevatia, and Bremond (2004) model scenario events from shape
and trajectory features using a hierarchical activity representation,
where events are organized into several layers of abstraction, pro-
viding flexibility and modularity in modeling scheme. An event is
considered to be composed of action threads, each thread being
executed by a single actor. Amer, Dubois, and Mitiche (2005) pro-
pose a real-time system to detect context-independent events in
video shots. The authors test it in video surveillance environments
with a fixed camera. They assume that objects have been seg-
mented (not necessarily perfectly) and reason with their low-level
features, such as shape, and mid-level features, such as trajectory,
to infer events related to moving objects. The authors classify
events into four types: primitive, action, interaction, and compos-
ite. Fernández, Baiget, Roca, and González (2011) present an
ontology-based methodology that guides the identification, step-
by-step modeling, and generalization of the most relevant events
to a specific surveillance domain. Gómez-Romero, Patricio, García,
and Molina (2011) propose a computer vision framework aimed at
the construction of a symbolic model of the scene by integrating
tracking data and contextual information.

Modeling human activities with state machines is still common
in our days. A recent system (Arens, Gerber, & Nagel, 2008) aims at
an encompassing conceptual description of video sequences. This
ultimately culminates in the generation of encompassing natural
language textual descriptions of a scene observed by a computer
vision system. Also Hamid et al. (2009) investigate modeling activ-
ity sequences in terms of their constituent subsequences that we
call event n-grams. Exploiting this representation, the authors

http://dx.doi.org/10.1016/j.eswa.2012.01.050
mailto:Antonio.Fdez@uclm.es
http://dx.doi.org/10.1016/j.eswa.2012.01.050
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


A. Fernández-Caballero et al. / Expert Systems with Applications 39 (2012) 6982–6993 6983
propose a computational framework to automatically discover the
various activity-classes taking place in an environment. Our ap-
proach is closely related to the works of Ivanov and Bobick
(2000) and Hongeng et al. (2004), in the sense that the external
knowledge about the problem domain is incorporated into the ex-
pected structure of the activity model. Motion-based image fea-
tures are linked explicitly to a symbolic notion of hierarchical
activity through several layers of more abstract activity
descriptions. Atomic actions are detected at a low level and fed
to hand-crafted grammars to detect activity patterns of interest.
Our inspiration also is close to the paper by Amer et al. (2005),
as we work with shape and trajectory to indicate the events related
to moving objects.

The rest of the paper is organized as follows. Section 2 intro-
duces the theoretical aspects of our proposal based in the descrip-
tion of local and global activities. In Section 3 the specification of
simple and complex behaviors are described in detail. Then, Sec-
tion 4 offers the data and results for several problems with scene
analysis taken with surveillance video cameras. Lastly, in Section
5 some conclusions are offered.
2. Description of local and global activities

The last part of the automatic analysis of video sequences is the
interpretation of the different behaviors present in the sequence
Gascueña and Fernández-Caballero (2011). To do so, we start from
the input data generated by the previous analysis processes,
namely, segmentation (e.g. Fernández-Caballero, López, & Saiz-
Valverde, 2008; López, Fernández-Caballero, Fernández, Mira, &
Delgado, 2006; López-Valles, Fernández, & Fernández-Caballero,
2007) and tracking (e.g. (Fernández-Caballero, Gómez, &
López-Lápez, 2008; López, Fernández-Caballero, Fernández, Mira,
& Delgado, 2007)). Therefore, analyzing a video scene entails two
large sections. On the one hand, we have the first phase in object
detection. This phase consists of capturing images, analyzing them
for shape interpretation and afterwards, recognizing them through-
out the scene. On the other hand, we have the part this work focuses
on, namely, scene interpretation (context recognition), made up of
basic actions interpretation, global behavior interpretation and final-
ly, interpretation of the scene on a global scale. The quality of the
result will depend greatly on the quality of the geometric analysis,
that is, on the quality of the shape analysis in the video scene. Thus,
incorrect input date would hinder good scene interpretation.

These objects are not fixed in the scene and can move over time
in each frame. These objects are called dynamic or mobile objects.
They perform the actions within the scene, whether individually or
as a group. Similarly, other type of passive objects can intervene in
a scene. These objects are always in the scene and do not move
overtime. These are called, static objects. These objects can also
be considered areas within a scene. Many times, dynamic objects
interact with static objects, approaching them, placing themselves
on them and using them. Some examples of static objects are a
seat, a door a wastebasket or a relevant area in the scene in which
we wish to analyze whether the dynamic objects are approaching
it or placing themselves in it.

In our proposal, the purpose of activity description is to reason-
ably choose a group of motion words or shout expressions to report
activities of moving objects or humans in natural scenes. Generat-
ing semantic description is the final goal of human motion analysis
(Ji & Liu, 2009).
2.1. Objects of interest

These input data will consist of a series of objects detected in
the scene, which should be properly classified. It is necessary to
define, from within the possible objects, a series of categories
which will help us to identify the activities carried out in a scene.
Of course, the objects of interest can be static or dynamic and the
latter will perform the actions in the scene. Inspired in ETISEO clas-
sification (http://www-sop.inria.fr/orion/ETISEO/index.htm), four
categories will be established for dynamic objects and two for sta-
tic objects. As for the first, we will distinguish between a person, a
group of people (made up of two or more people), a portable object
(such as a brief case) and other dynamic objects (able to move on
its own), classified as moving object. As for static objects, we will
distinguish between areas and pieces of equipment. The latter can
be labeled as a portable object if a dynamic object, people or group
interact with it and it starts to move. We should explain that an
area is defined as a non-dynamic object in the scenario where peo-
ple or dynamic objects are likely to interact. For instance, an auto-
matic cash point has an area people will approach to interact.

Before proceeding to list the activities, we should clarify which
we are interesting in addressing. Specifically, and once again ana-
lyzing ETISEO’s property classification, we will focus on those re-
lated to kinematics of objects, leaving those related to size and
shape for subsequent works. It is also necessary to clarify that for
our testing purposes, the type of dynamic objects we are interest-
ing in detecting are people or groups of people.

2.2. Description of local activities

In order to generalize the detection process for complex behav-
ior patterns as much as possible, we will start with small function-
alities which, individually, detect simple actions of the active
objects in the scene. Using these functions, we will build behavior
patterns much more complex and suited for each video surveil-
lance system’s aims. These small actions are defined by action
indicative queries about the actions performed by an active object.
The queries should be enough to describe most of the behavior pat-
terns of the dynamic objects.

Therefore, several types of queries are defined for the detection of
the basic actions of the active objects in the scene. Other queries are
linked to the interaction between an active object and the scenario
and the interaction between the dynamic objects in the scene.
Approaches to activity modeling have been mostly relied upon seg-
mentation and tracking of objects in the scene (e.g. (Haritaoglu,
Harwood, & Davis, 2000; Stauffer & Grimson, 2000)) after
efficient motion detection (e.g. Martínez-Cantos, Carmona,
Fernández-Caballero, & López, 2008; Mira, Delgado, Fernández-
Caballero, & Fernández, 2004). This is due to the fact that activities
have traditionally been considered to be discriminated by the trajec-
tories of object motion, modeled either statically as templates or
dynamically as state machines (Xiang & Gong, 2006).

2.2.1. Object-like actions
We first develop the most basic actions of each object, which do

not entail environment interaction and which only depend on the
object itself to be analyzed. Next, we show some possible basic ac-
tions detectable by a video surveillance system:

� Object speed. The speed of an object (in displacement units per
second, for instance) makes it possible to define if an object is
still, walking, running, going at great speeds, etc. In order to
determine real object speed in the scene, it is necessary to mit-
igate possible lens distortion and to interpret the real positions,
depending on the distance from the camera. The data taken as
input are obtained from a video camera and, therefore, only
contain two-dimensional information.
� Object trajectory. Apart from speed, we can obtain the direction

and moving direction of an object. Let us assume that a road is
being analyzed. The speed of a moving vehicle is very useful but

http://www-sop.inria.fr/orion/ETISEO/index.htm


6984 A. Fernández-Caballero et al. / Expert Systems with Applications 39 (2012) 6982–6993
without calculating the trajectory, it is not possible, for
instance, to know if the vehicle is going the wrong way. It is also
important to detect an abrupt change in direction.

2.2.2. Actions of environment interaction
Basic actions are very important when determining what is

happening in a scene. But in order to interpret more complex
behaviors, it is also necessary to analyze the interaction between
dynamic objects and the scenario. To interpret environment inter-
action, it is essential to create a small model of the environment.
The areas where objects interact with the scenario are defined in
each scenario in particular. These areas can be doors, wastebaskets,
cash points, and so on. Furthermore, the parameters associated to
the interaction objects in the scenario are activated, such as the
place where they are located or their size, as well as any informa-
tion necessary to enable behavior detection in which these areas or
static objects intervene. Some possible scenario interaction behav-
iors might be:

� Direction. The system must determine if a person is approaching
a specific area of the scenario. By taking the object’s speed and
trajectory as reference, the object’s ultimate goal is inferred.
� Position. By knowing the important areas of the scenario, the

system is capable of determining the relative position of
dynamic objects. This way, it can detect if a person is standing
in one of the areas. For example, it is possible to know if a per-
son is sitting on a bench or when analyzing traffic flow, if a car is
parked in a pedestrian crossing. We also know the distance
from the objects to these areas, thus determining if the object
is near these passive elements or areas of the scenario.

2.2.3. Actions involving object interaction
With what we have seen so far, it is possible to identify object

behavior in the scene that has to do with the condition of the ob-
ject itself and its interaction with the scenario; however, it is not
possible to interpret interaction between the active objects them-
selves. To be able to interpret interaction between people, a video
surveillance system has to detect behaviors such as:

� Proximity. The system must detect the distance between
objects. This way, we can determine whether an object is near
or far away from the rest. If time is also taken into account,
we can determine whether a specific object is getting closer
to or moving away from another one.
� Orientation. By taking into account the direction of objects, the

system determines whether an object is approaching another
or whether they are both approaching each other. These data
also help to determine whether the objects have the intention
of joining or, on the contrary, moving away.
� Grouping. The system uses the parameters generated in the two

previous points to detect object grouping. By taking into
account its proximity and direction, the system can interpret
whether an object is with another. For example, it can detect
whether two objects are going to the same place together.

2.3. Description of global activities

Interpreting a visual scene is a task which in general resorts to a
large body of prior knowledge and experience of the viewer
(Neumann & Möller, 2008). Through the actions or queries de-
scribed in the previous section, we can find out basic patterns, such
as whether an object is moving quickly or slowly, whether or not it
is going towards a specific place, etc. We usually wish to detect
more complex patterns, such as the theft of a purse or of a car in
a parking lot. In this type of more complex events, several dynamic
objects that interact with each other or with other static objects
usually participate. These complex behavior patterns will vary in
each scenario according to the type of event you wish to detect.
Thus, you will want to detect different behaviors in a parking lot
from those in a bank. Therefore, it is essential to define the behav-
ior pattern desired in each situation, by using the basic actions or
queries from the previous section. For each specific scene, a state
diagram and a set of rules are designed to indicate the patterns.

In many cases, it is not only necessary to detect the individual
behavior of an object, but it is also of great interest to discover pat-
terns for the whole set of objects in the scene. More than one object
participates in the global behavior patterns. For instance, you
might want to detect if a group of people are running around a
public square. In this case, a single person running may not be of
interest but if one-hundred people are running, something serious
has likely happened. To interpret these situations in a scene, the
system takes into account the individual behavior of each object,
as well as the interaction between objects and between the objects
and the scene.

2.4. Alarm system

A great deal of patterns can be detected in a scene but they are
not all necessarily dangerous or require special attention. For in-
stance, if a person is walking, behavior ‘‘Walking’’ has to be de-
tected by the scene interpretation application, although it does
not require special attention. Detecting behavior patterns will
not be useful without a system to select those patterns and rule
out the most common and harmless. A smart video surveillance
system must consider those patterns by assigning a level of alarm
to each of the possible behaviors in the scene. Different alarm
thresholds will be used to filter out suspicious patterns. Thus, the
system alerts the user when it detects a behavior with an associ-
ated alarm level greater than the allowed threshold.

Once we have detected the state of the objects, it is time to find
out if any of them deserve special attention on the part of the sur-
veillance system operators. To do this, the guards will have an
associated alarm level which weighs out the significance of each
likely state of the object and scene. It can have different values
(e.g. from I to V) and it is directly associated to each of the vertices
in the state machines for local pattern as well as global pattern
detection.

To sum up, the proposed video surveillance system will be able
to detect simple actions or queries and adapt to a great deal of sit-
uations. Also, it will be configured to detect the behavior patterns
necessary in each case and associate an alarm level to each one
which will enable them to be filtered and have a priority associated
to them.

3. Specification of simple and complex behaviors

3.1. Simple behavior specification

As anticipated, the system should be able to respond to a series
of queries intended to find out behavior patterns of objects in the
scene. These queries are defined as functions and return a logical
value, which will be true if they are fulfilled for a specific object.
They are represented in the following format:

queryðparameter1;parameter2; . . . ; parameternÞ;

where query is the name of the action or behavior to be tested and
parameteri are the possible parameters necessary to specify what
we want to analyze.

3.1.1. Movement-based queries
Next, we will number the basic queries the system recognizes,

the parameters needed, how they were resolved and the data



A. Fernández-Caballero et al. / Expert Systems with Applications 39 (2012) 6982–6993 6985
and hypothesis necessary in each case. To identify them, we use
the object speed hypothesis.

� hasSpeedBetween (min,max). It is fulfilled if the object moves at
a speed within the range [min,max].
� hasSpeedGreaterThan (speed). It is fulfilled if the object moves at

a speed greater than that indicated in the parameter speed.

3.1.2. Orientation-based direction queries
To analyze these queries, we use the displacement angle of ob-

jects hypothesis.

� hasDirection (staticObject). It is fulfilled if the object is headed
towards staticObject, being staticObject a static object in the
scene.
� isFollowing (). It is true if a dynamic object is following a non-

dynamic object. To know whether an object in the scene is fol-
lowing another one, we use the displacement angle. This way
we can calculate if the target is another dynamic object.

3.1.3. Location-based queries
This type of queries is based on the location of objects in the

scene. To analyze them, we use the location in each frame obtained
directly from the input data.

� isInsideZone (staticObject). It is true if a dynamic object is on the
static object staticObject.
� isCloseTo (distance,staticObject). It is fulfilled if the object is clo-

ser than distance from the static object staticObject.
� enterInScene (). It is fulfilled when the object appears in the

scene for the first time.

3.2. Complex behavior specification

On the one hand, the behavior patterns at a local level have
been defined, which focus on the behavior of objects in the scene
at each time instant; and patterns at a global level, used to analyze
the scene from a general point of view without focusing on any
specific object. This last specification will be used to detect pat-
terns where more than one object intervenes.

3.2.1. Local complex behaviors
Objects in the scene are associated to a state machine that indi-

cates the state they are in (what they are doing at that time in-
stant). This diagram is the same for all objects in the scene and it
will depend on the target of the analysis in the video scene. This
state machine can be seen as a directed graph where the vertices
are the possible states of the object and the edges are the basic
functions or queries previously discussed. This graph will be simi-
lar for all objects but each object can be found in a different state
independently. The source of the objects is a vertex, which will
be the initial state (Initial). More than one edge can come in and
out of each vertex and there is no destination vertex. An object can-
not be in several states at the same time.

An edge has at least one associated outcome of the assessment
of a query with the parameters previously defined, indicating an
action of object, query qi. These assessments can be true or false.
Thus, for some transitions to come about, certain actions will not
be fulfilled. For an object to change states, many times one query
is not enough. It needs to fulfill several of them to go on to the fol-
lowing state. Therefore, an edge can have more than one query
associated to it. For an edge with several actions to be fulfilled,
all the associated queries have to be fulfilled. The following type
of nested rules can be associated to this type of edges:

IF ðq1 AND q2 AND . . . qkÞ; THEN transit to vertexX
where q1 . . .qk are the possible queries associated to a vertex and
vertexX where the state transits to.

If a more complex rule is needed, where disjunctions also ap-
pear so that an object changes states, as the following:

IF ((q1 AND q2 AND . . . qn) OR
(qn+1 AND qn+2 AND . . . qn+m)),

THEN transit to vertexX
the rule must be divided into two edges that come from the same
vertex and get to vertexX. The first one will be associated to actions
q1. . .qn and the second one to actions qn+1. . .qn+m. When dividing the
rule into two, we get a disjunction, since if one is fulfilled the object
goes onto the following state.

Fig. 1 shows, as an example, the local state machine in a simple
scene where we attempt to find out if any object is close to a cash
point. Notice that the objects in the scene can be walking, standing
still, approaching the cash point or be at the cash point. These are
the different states the object goes through by means of the state
machine. When an object appears in the scene for the first time,
it is in the Initial state. If ‘‘hasSpeedGreaterThan (1)’’ is fulfilled,
i.e., the speed of the object is greater than one meter per second,
then it will go on to the Walking state. The object changes states
according to its behavior, following the same procedure. In the
edge that goes from vertex 4 to vertex 3, there is more than one
query. As explained above, both actions must be fulfilled, in this
case, in order to change states. Later on, we will see more complex
cases and how they were solved.

3.2.2. Global complex behaviors
Unlike in local behavior patterns, more than one object inter-

venes in a global behavior pattern. To detect these patterns, more
than just the local state machine from the previous section is
needed since only the state of each object in that machine is re-
flected separately.

To represent this type of patterns, global state machines are
used. These state machines are made up of vertices. Each vertex
represents a possible state in the scene. Just like in the local state
machine, the edges are made up of a series of queries that must
be fulfilled at a certain time for the scene to change states. These
types of queries do not make reference to a single object but to
all of them. Next, we will list the queries used for detecting this
type of patterns:

� isTimeInState (state, time). It is fulfilled when an object remains
in the same state longer than what is suggested in time.
� areObjectsInState (state,min,max). It is fulfilled if the number of

objects in state is between min and max.
� areMoreObjectsInState (state,number). It is true if the number of

objects is greater than number in the state.

Just like in local behaviors, queries can be used using negation.
Next (see Fig. 2), we will see a simple global state machine that de-
tects if someone approaches someone else while he/she is at a
cashpoint. If it is necessary to detect several global behavior pat-
terns simultaneously in a video scene, we must create several spe-
cialized state machines to detect each of those patterns. Thus, a
scene could have several global state diagrams, each one focusing
on detecting one type of behavior pattern.

4. Data and results

In the following section, we will present several problems with
scene analysis taken with surveillance video cameras and their res-
olution with the proposed system. We have opted for working with



Fig. 1. Local state diagram.

Fig. 2. Global state diagram.

Table 1
Data provided in the CAVIAR web site.

Point (column, row) in pixels (x,y) in cm

1 (64,88) (0,671.5)
2 (211,40) (1116,670)
3 (349,184) (1545,190)
4 (39,187) (0,0)

6986 A. Fernández-Caballero et al. / Expert Systems with Applications 39 (2012) 6982–6993
the ground truth of manually labeled images, frame by frame,
whereby errors in data entry will be null. Therefore, we have used
the test cases that CAVIAR (coming from the EC Funded
CAVIAR project/IST 2001 37540, found at URL: http://homepag-
es.inf.ed.ac.uk/rbf/CAVIAR/) makes available for researchers. This
is a usual approach (e.g. (Blunsden & Fisher, 2009), where the detec-
tion and classification of fighting and pre and post fighting events
when viewed from a video camera is investigated). For the tests,
we have used specific videos recorded for project CAVIAR recorded
with a wide angle camera in the lobby of INRIA Labs in Grenoble,
France. In these scenes, there are different people interacting with
the environment and with each other. They are videos recorded
with video surveillance cameras supported with manual labeling
of the objects in each frame and with estimations about the state
of each one of them. These input data are in XML format and they
include the objects that makeup the frames in the video scene, their
position, size and a label to find them in subsequent frames.

Thus, the application obtains a series of objects in each frame in
the XML file. However, the static objects are not included in the
CAVIAR XML file. Moreover, they will be different in each scene
so they will have to be specified in each case, indicating their posi-
tion and size, just like for dynamic objects. On the other hand, with
the data read from the XML in CAVIAR, we have information about
the objects in each scene, their position and size; however, to carry
out the analysis and meet the goals set, we will need other data not
included. These are speed and direction of objects. The system
takes the initial data and infers the new data geometrically.

We begin by showing the configuration common to all case
studies to avoid repeating it in each section. Next, the case studies
carried out will be listed, beginning with the basic cases where the
running and usefulness of each query is shown individually and
separately and continuing with the more complex cases where
two or more queries are required.

4.1. Image preprocessing

We select the first frame in any scene as backdrop image to
make the placement of control points and fixed objects easier.
4.1.1. Creation of point maps
Ideally, placing control points is done manually, by directly

measuring the scenario where the camera is placed but to speed
up the process, the data in the CAVIAR web site are used and the
points that do not appear are approximated. Table 1 shows the
data provided in the CAVIAR web site:

The rest of the positions are interpolated using these data as a
guide. Enough points have been placed to cancel image distortion
caused by the perspective and camera lens. Fig. 3a shows where
these position points have been placed.

4.1.2. Specification of fixed objects in the scene
After creating the point map, we point out the fixed objects in the

scene that will interact with the dynamic objects (Fig. 3b). As we can
see, the entrances to the scenario and the most relevant objects,
such as a cashpoint, wastebasket or seats have been tagged in the
image. A list of objects tagged in the scene can be seen in Table 2,
along with their positions and sizes.

Once the static objects in the scene and the control point maps
are stored in the configuration file, the next step is the creation of
state diagrams to complete the configuration in the scene.

4.2. Motion detection

We design a configuration capable of detecting when someone
starts walking and he/she stops. With this first case, we show the
performance of the queries ‘‘hasSpeedBetween’’ and ‘‘hasSpeedGr-
eaterThan’’, which make reference to the movement of people. In
this case, we do not wish to detect a pattern for which it is

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/


Fig. 3. Test environment for CAVIAR (a) position point maps. (b) Fixed objects in the scene (c) Labeling of a static object in the scene (d) Labeling of a dynamic object in the
scene.

Table 2
Fixed objects.

Object (column, row) in pixels (width, height) in pixels

Cashpoint (327,102) (32,57)
Entry 1 (71,68) (57,25)
Entry 2 (280, 280) (120,9)
Entry 3 (27,131) (30,89)
Entry 4 (288,9) (80,16)
Wastebasket (155,181) (40,25)
Seats (59,130) (30,46)
Awnings (61,241) (80,70)
Room 1 (145,35) (70,44)
Leaflets (193,36) (40,40)

A. Fernández-Caballero et al. / Expert Systems with Applications 39 (2012) 6982–6993 6987
necessary to check the global state in the scene. We can see how
detecting a person in a scene creates a state machine with an initial
state in the Initial state. If the system detects that a person is
stopped the transition is to vertex Stopped. If it detects motion,
it will enter Walking state. The object will change states depend-
ing on whether it starts moving or it stops. Table 3 shows all the
details of the automaton.

For queries ‘‘hasSpeedBetween’’ and ‘‘hasSpeedGreaterThan’’,
the input parameters indicate how many kilometers per hour the
object travels. To consider a person to be in motion, his speed must
be greater than 1 km per hour and to consider him stopped, his
speed must be 0. This has been designed this way to avoid false
positives that can take place when a person opens his arms or
makes a gesture with his body, which can be interpreted as motion.

If we analyze the first few frames in scene Walk1 (series Walk-
ing, test case One person walking - straight line) we get the results
shown in Table 4.
Table 3
Local state diagram, motion detection.

Action Origin vertex Destination vertex

Stationary Initial Stopped
Walks Initial Walking
Stops Walking Stopped
Starts Stopped Walking
4.3. Speed detection

In this case, we do not just detect if a person is in motion or not.
We also detect if the person starts running or moves slowly. To do
this, we use the same queries as in the previous case, ‘‘hasSpeedBe-
tween’’ and ‘‘hasSpeedGreaterThan’’, but a more complex local
state diagram is necessary.

When a person appears on the scene, the system enters Initial
state. From here, he/she can move straight into any other state.
However, if the person is stopped, he/she will first have to go
through Wandering, before going into any other state. Likewise,
if he/she is running, he/she will first have to walk slowly before
stopping. This way, we avoid illogical and unlikely leaps, such as
a person going from stopped to running and vice versa. Table 5
shows every detail of the automaton. In this case, we use a higher
alarm level for the Running state. Thanks to this, the data provided
to the user can be filtered so that it will only signal when some-
body starts running.

Table 5 shows that a person is considered to be stopped if his
speed is 0, to be walking slowly if his speed is between 1 and 2
kilometers per hour, to be walking at a normal pace if his speed
is between 4 and 10 km per hour and to be running if his speed
is over 10 km per hour. As in the previous case, to change states
we have kept a margin to prevent getting too many false positives.

When adjusting the alarm level to I and analyzing scene
Browse2 (series Browsing, case Person browsing and reading for a
while), we get the output shown in Table 6.

If the alarm level is adjusted to II and scene Fight_RunAway1
(series Two people fighting, test case Two people meet, fight and
run away) is analyzed, we get Table 7 as output. As shown, the
application has detected the time the two people started running.
Associated verbs Alarm level

hasSpeedBetween (0,0) I
hasSpeedGreaterThan (1) I
hasSpeedBetween (0,0) I
hasSpeedGreaterThan (1) I



Table 4
Results of motion detection in scene ‘‘Walk1’’.

Time Object State Alarm

0:00:01 0 Walking I
4 Stopped

0:00:02 5 Stopped I
0:00:03 4 Walking I
0:00:04 0 Stopped I

5 Walking
0:00:05 0 Walking I
0:00:06 4 Stopped I

5 Stopped
5 Walking

0:00:07 5 Stopped I
0:00:09 1 Stopped I
0:00:10 1 Walking I
0:00:11 4 Walking I
0:00:12 5 Walking I

4 Stopped
5 Stopped

0:00:17 5 Walking I
0:00:18 5 Stopped I

5 Walking
0:00:19 1 Stopped I

5 Stopped

Table 5
Local state diagram, speed detection.

Action Origin
vertex

Destination
vertex

Associated verbs Alarm
level

Stationary Initial Stopped hasSpeedBetween
(0,0)

I

Wanders Initial Wandering hasSpeedBetween
(1,3)

I

Walks Initial Walking hasSpeedBetween
(4,10)

I

Runs Initial Running hasSpeedGreaterThan
(10)

II

Starts Stopped Wandering hasSpeedGreaterThan
(1)

I

Accelerates
and walks

Wandering Walking hasSpeedGreaterThan
(3)

I

Accelerates
and runs

Walking Running hasSpeedGreaterThan
(10)

II

Decelerates
and walks

Running Walking SpeedLessThan (8) I

Decelerates
and
wanders

Walking Wandering SpeedLessThan (2) I

Stops Wandering Stopped hasSpeedBetween
(0,0)

I

Table 6
Results of speed detection in scene ‘‘Browse2’’.

Time Object State Alarm

0:00:00 0 Stopped I
1 Stopped
1 Wandering

0:00:01 1 Walking I
0:00:04 1 Wandering I
0:00:05 1 Stopped I

1 Wandering
0:00:06 1 Walking I
0:00:07 2 Walking I

2 Wandering
2 Stopped

0:00:09 1 Wandering I
2 Wandering

0:00:12 3 Walking I
3 Wandering

0:00:13 3 Walking I
0:00:14 3 Wandering I
0:00:15 3 Walking I
0:00:21 3 Wandering I
0:00:22 3 Stopped I
0:00:30 3 Wandering I

3 Walking
0:00:33 3 Wandering I

3 Stopped

1 For interpretation of colour in Fig. 4, the reader is referred to the web version of
is article.

6988 A. Fernández-Caballero et al. / Expert Systems with Applications 39 (2012) 6982–6993
4.4. Direction detection

Continuing with simple case studies, in this section, a configu-
ration is designed to detect when someone goes to the cashpoint.
To do this, we use query ‘‘hasDirection’’ which is able to detect
when a dynamic object approaches a static object. The designed
graph is very simple, having only two vertices and two edges. This
diagram could get more complex if we were to add motion detec-
tion because for someone to go to a place, he/she first has to be
moving. This situation will be analyzed in the section of complex
case studies, where the combinations of different types of queries
will be studied. The details of the automaton are described in
Table 8 where the name of the static object referred to is used as
the parameter for query ‘‘hasDirection’’.

The test is carried out with scene Browse2, obtaining the out-
put shown in Table 9, where the application has detected when
an object goes towards a cashpoint. Furthermore, Fig. 4 shows
the video output where the hypothesis of a person’s direction
has been tagged with a red line.1

4.5. Position detection

When detecting object position in an image, it is necessary to
design a configuration with which to analyze a person’s relative
position to the static objects in the scenario. To do this, queries
‘‘isInsideZone’’ and ‘‘isCloseTo’’ are used. The configuration de-
signed is able to detect when a person is in the seats area, when
he/she is in the awning area, when he/she is close to the leaflets
or when he/she is near the cashpoint. Obviously, the automaton
can be widened to cover all areas and static objects in the scenario.
Table 10 shows the details of this automaton.

As shown in Table 10, in this case, we have used query ‘‘isInsi-
deZone’’ to locate people inside certain areas (seats) and query
‘‘isCloseTo’’ to detect if the person is next to a static object in the
scenario, such as the cashpoint, the leaflets and the wastebasket.
The numerical parameter of ‘‘isCloseTo’’ is the maximum distance
in pixels to be considered close. Somewhat of a safety margin has
been kept to avoid false positives when considering whether an ob-
ject is close or not to the cashpoint and the leaflets.

Next, three different scenes will be analyzed to check the results
from position detection. When analyzing scene Browse2 we get
Table 11 as output. Scene Browse3 (series Browsing, test case Per-
son browsing and reading with back turned) was also analyzed and
yielded Table 12. Finally, after analyzing scene Rest_InChair
(series Resting, slumping or fainting, test case Person resting in chair)
we get Table 13.

The results show how the application has detected when a per-
son has placed himself in the different position selected in the
configuration.

4.6. Following detection

Using query ‘‘isFollowing’’, it is possible to detect whether a
person is following another one (see Table 14). To detect a tracking
th



Table 7
Results of speed detection in scene ‘‘Fight_RunAway1’’.

Time Object State Alarm

0:00:15 7 Running II
0:00:16 6 Running II

Table 8
Local state diagram, direction detection.

Action Origin
vertex

Destination
vertex

Associated
verbs

Alarm
level

Walks to the
cashpoint

Initial GoingTowards
(cashpoint)

hasDirection
(cashpoint)

I

Wanders Initial Wandering hasSpeedBetween
(1,3)

I

Does not
walk to
the cashpoint

GoingTowards
(cashpoint)

Initial :hasDirection
(cashpoint)

I

Table 9
Results of direction detection in scene ‘‘Browse2’’.

Time Object State Alarm

0:00:16 3 GoingTowards (cashpoint) I

Fig. 4. Detected target.

Table 10
Local state diagram, position detection.

Action Origin vertex Destination
vertex

Associated verbs Alarm
level

Is close to the
seats

Initial InsideZone
(seats)

isInsideZone
(seats)

I

Is not close to the
seats

InsideZone
(seats)

Initial :isInsideZone
(seats)

I

Is close to the
wastebasket

Initial CloseTo
(wastebasket)

isInsideZone
(wastebasket)

I

Is not close to the
wastebasket

CloseTo
(wastebasket)

Initial :isInsideZone
(wastebasket)

I

Is close to the
cashpoint

Initial CloseTo
(cashpoint)

isCloseTo (25,
cashpoint)

I

Is not close to the
cashpoint

CloseTo
(cashpoint)

Initial :isCloseTo (30,
cashpoint)

I

Is close to the
leaflets

Initial CloseTo
(leaflets)

isCloseTo (25,
leaflets)

I

Is not close to the
leaflets

CloseTo
(leaflets)

Initial :isCloseTo (30,
leaflets)

I

Table 11
Results of position detection in scene ‘‘Browse2’’.

Time Object State Alarm

0:00:21 3 CloseTo (cashpoint) I

Table 12
Results of position detection in scene ‘‘Browse3’’.

Time Object State Alarm

0:00:20 1 CloseTo (leaflets) I

Table 13
Results of position detection in scene ‘‘Rest_InChair’’.

Time Object State Alarm

0:00:16 1 InsideZone (seats) I
0:00:31 1 InsideZone (seats) I

Table 14
Local state diagram, following detection.

Action Origin
vertex

Destination
vertex

Associated
verbs

Alarm
level

Pursues Initial Following isFollowing () III
Does not pursue Following Initial :isFollowing () I

A. Fernández-Caballero et al. / Expert Systems with Applications 39 (2012) 6982–6993 6989
situation, it would be ideal to be able to specify who is participat-
ing; however, since they are dynamic and not static objects, we
have opted for only indicating whether there is tracking or not in
the scene. Thus, the designed configuration indicates if someone
is headed towards another person. This is useful when detecting
interaction between people.

Scene Fight_RunAway1 was used for the tests and the alarm
level was set on III. The results in Table 15 show that when two
people are about to meet, they walk towards each other.

4.7. Appearance detection

In this case, we have designed a configuration able to detect
when an object appears on the scene by using query ‘‘enterIn-
Scene’’. In this case, only one query is used, although as we will
see in the compound case section, by using this query along with
others (forming more complex diagrams), we can detect the
appearance of suspicious objects in the scene. The state machine
is provided in Table 16. In this case, only one edge was used be-
cause the objects can only appear in the scene once.

Scene Walk1 was used for the tests, obtaining Table 17 as out-
put, which shows the time every object appears on the scene.
4.8. Number of objects in the same state

It is possible to use the system to detect whether more than one
person is walking or is stopped in the scene. To do this, we use
rules with queries ‘‘areObjectsInState’’ and ‘‘areMoreObjectsIn-
State’’ to analyze the number of objects found in a certain state
in the scene. Up to now, configurations that make reference to
the individual state of the objects participating in the scene have
been designed, but in this case, a more global vision to analyze



Table 15
Results of following detection in scene ‘‘Fight_RunAway1’’.

Time Object State Alarm

0:00:14 6 Following III
0:00:11 7 Following III

Table 16
Local state diagram, appearance detection.

Action Origin
vertex

Destination
vertex

Associated
verbs

Alarm
level

Appears Initial NewObject enterInScene () I

Table 17
Results of appearance detection in scene ‘‘Walk1’’.

Time Object State Alarm

0:00:00 0 NewObject I
0:00:01 4 NewObject I
0:00:02 5 NewObject I
0:00:09 1 NewObject I

6990 A. Fernández-Caballero et al. / Expert Systems with Applications 39 (2012) 6982–6993
objects in the scene from a higher level is necessary. To detect
whether more than one person is walking in the scene, we have
the configuration provided in Table 18.

We have used query ‘‘areMoreObjectsInState (Walking, 1)’’,
which is fulfilled when there is more than one object in state
Walking of the local state diagram, and query ‘‘:areMoreObjects-
InState (Walking, 2)’’, which is fulfilled if there are fewer than 2 ob-
jects in state Walking.

Analogously, it is possible to detect whether there are more
than one object in state Stopped of the local state diagram by using
query ‘‘areMoreObjectsInState (Stopped, 1)’’. Query ‘‘:areMoreOb-
jectsInState (Stopped, 2)’’, which is fulfilled if there are fewer than
2 objects in state Stopped, takes you back to state Initial. A level II
of alarm was assigned to the vertices of the two previous graphs to
filter out the alarms of the local state diagram and be able to listen
only to the new added verifications. The configuration provided in
Table 19 was used to detect whether there is more than one person
stopped in the scene.

When analyzing scene Browse_WhileWaiting1 (series Brows-
ing, test case Person browsing while waiting short), using both auto-
mata simultaneously, we get the output shown in Table 20.
4.9. Position and direction analysis

A configuration was designed for these purposes, which is able
not only to analyze the position of people in a scene, but also to
Table 18
Global state diagram, objects in motion.

Action Origin vertex Destinatio

Two or more objects are moving Initial TwoOrMo
Less than two objects are moving TwoOrMoreObjectsMoving Initial

Table 19
Global state diagram, stopped objects.

Action Origin vertex Destination

Two or more objects are still Initial TwoOrMore
Less than two objects are still TwoOrMoreObjectsStill Initial
predict if someone is headed towards a specific position. Queries
‘‘isInsideZone’’ and ‘‘isCloseTo’’ are used to detect position and
query ‘‘hasDirection’’ in order to generate a direction hypothesis.
This type of configuration is useful to detect things such as some-
one entering a private area, since the behavior can be detected be-
fore it happens. If it does happen, we can trigger an alarm with
more priority which will, for example, make the security officers
intervene. Table 21 shows the automaton that detects if someone
is headed towards or is at the wastebasket, the leaflets, the seats
or the cashpoint. As shown, it is logical that in order for someone
to be in a place, he/she has to head towards it first. Thus, we create
several loops of the type:

Initial ? GoingTowards (X) ? InsideZone (X) ? Initial

or

Initial ? GoingTowards (X) ? CloseTo (X) ? Initial

A greater level of alarm was assigned to the vertices related to
position than to those related to direction to be able to filter them
when you only want to know when someone is situated some-
where. Also, notice that to consider that an object is headed to-
wards an area, it is not enough for query ‘‘hasDirection’’ to be
fulfilled, but also for ‘‘hasSpeedGreaterThan (1)’’ to be fulfilled;
that is, for its speed to be greater than 1 km per hour. This guaran-
tees that for a person to go to a place, he/she first has to be moving.

Tests on three different scenes have been run: from the analysis
of scene Rest_InChair, we get the results found in Table 22; from
the analysis of scene Browse2 we get Table 23; and after analyzing
scene Browse3 we get the output shown in Table 24.

There are false positives in the last two tests. They are in the
14th second of test case Browse2 and in the 15th second of test
case Browse3. Indeed, object 3 was not going to the wastebasket
but the direction of the object at that time made it seem like it
could be going there. To avoid this, we could add another rule to
edge direction to avoid predicting a possible target if the object
is too far away. We could add an ‘‘isCloseTo’’ query to act along
with queries ‘‘hasDirection’’ and ‘‘hasSpeedGreaterThan’’.

4.10. Possible cashpoint holdup detection

It is also possible to design configurations able to detect suspi-
cious behaviors. Here is an example pertaining to a cashpoint. First,
a local state diagram is created to detect the different ways of get-
ting to the cashpoint. With this graph, we will be able to know is
someone is going to the cashpoint, how fast he/she is going and
if he/she is already next to the cashpoint. In Table 25, more impor-
tance has been attached to the fact that a person is walking slowly
or running to the cashpoint than when he/she is walking at a nor-
mal pace. This is so in order to confront more suspicious behaviors.
n vertex Associated verbs Alarm level

reObjectsMoving areMoreObjectsInState (Walking, 1) II
:areMoreObjectsInState (Walking, 2) I

vertex Associated verbs Alarm level

ObjectsStill areMoreObjectsInState (Stopped,1) II
:areMoreObjectsInState (Stopped,2) I



Table 20
Results of objects in the same state in scene ‘‘Browse_WhileWaiting1’’.

Time Object State Alarm

0:00:06 Scene TwoOrMoreObjectsMoving II
0:00:09 Scene TwoOrMoreObjectsStill II
0:00:11 Scene TwoOrMoreObjectsMoving II
0:00:18 Scene TwoOrMoreObjectsStill II
0:00:20 Scene TwoOrMoreObjectsMoving II
0:00:22 Scene TwoOrMoreObjectsStill II
0:00:24 Scene TwoOrMoreObjectsStill II
0:00:25 Scene TwoOrMoreObjectsMoving II

Table 22
Results of position and direction analysis in scene ‘‘Rest_InChair’’.

Time Object State Alarm

0:00:13 1 GoingTowards (seats) II
0:00:16 1 InsideZone (seats) III

Table 23
Results of position and direction analysis in scene ‘‘Browse2’’.

Time Object State Alarm

0:00:14 3 GoingTowards (wastebasket) II
0:00:16 3 GoingTowards (cashpoint) II
0:00:21 3 CloseTo (cashpoint) III

Table 24
Results of position and direction analysis in scene ‘‘Browse3’’.

Time Object State Alarm

0:00:15 3 GoingTowards (cashpoint) II
0:00:20 3 GoingTowards (leaflets) II
0:00:20 3 CloseTo (leaflets) III

A. Fernández-Caballero et al. / Expert Systems with Applications 39 (2012) 6982–6993 6991
Once the local state diagram has been created, we go onto
behavior pattern specification at global level in the scene. We want
to detect suspicious behaviors, such as when there is someone at
the cashpoint and someone else approaches him slowly. It can also
detect if there is someone at the cashpoint and one or more people
run towards him. Lastly, it can detect possible vandalism at the
cashpoint. It will detect if one or more people run to the cashpoint
and there is no one using it. We have decided to use high alarm lev-
els because of the relevance of those patterns (see Table 26).
Depending on what you want to analyze, the alarm level displayed
will be adjusted to II, for example, to see all changes of state or to V
to see only the alarms related to possible assaults to the cashpoint.
4.11. Suspicious objects

This section shows the design of a configuration able to detect
the appearance of potentially suspicious objects in the scene. It de-
tects when someone leaves something on the floor and later picks
it up (the objects stops being suspicious). These types of patterns
can be used, for example, to warn security officers that someone
might have left an explosive device in a public place. The local state
diagram described through Table 27 will detect if an object is sus-
picious (by having been placed near the cashpoint or next to the
wastebasket), if it is a bag on the floor (because it has not been
moved since it was placed there) or if it is simply someone who
was motionless.

There are no loops in Table 27. Once an object gets to vertex
MovingObject it stops drawing attention because it is not a static
object but a person. To consider an object to be very dangerous, it
cannot move after appearing. If the object appears next to the
Table 21
Global state diagram, position and direction analysis.

Action Origin vertex Destin

Walks to the seats Initial Going

Does not walk to the seats GoingTowards (seats) Initia
Is in the zone of seats GoingTowards (seats) Inside
Is not in the zone of seats InsideZone (seats) Initia
Walks to the wastebasket Initial Going

Does not walk to the wastebasket GoingTowards (wastebasket) Initia
Is close to the wastebasket GoingTowards (wastebasket) Close
Is not close to the wastebasket CloseTo (wastebasket) Initia
Walks to the cashpoint Initial Going

Does not walk to the cashpoint GoingTowards (cashpoint) Initia
Is close to the cashpoint GoingTowards (cashpoint) Close
Is not close to the cashpoint CloseTo (cashpoint) Initia
Walks to the leaflets Initial Going

Does not walk to the leaflets GoingTowards (leaflets) Initia
Is close to the leaflets GoingTowards (leaflets) Close
Is not close to the leaflets CloseTo (leaflets) Initia
cashpoint or to the wastebasket, it will automatically be consid-
ered suspicious, and very suspicious, if it remains there for more
than 30 seconds. If the object appears anywhere else, it will have
to remain still for 30 s to be considered suspicious and 60 to be
considered very suspicious (see Table 27).

When analyzing scene LeftBag (series Leaving bags behind, test
case Person leaving bag by wall), with an alarm filter IV, we get the
output shown in Table 28. Notice that in the 38th second, a suspi-
cious object has been detected. After 15 seconds, in the 53rd sec-
ond, the suspicious object has become very suspicious.

If looking at scene LeftBag_PickedUp (series Leaving bags be-
hind, test case Person leaving bag but then pick it up again), where
someone leaves a bag next to the cashpoint but later picks it up
again is analyzed, we get the output shown in Table 29. When
the bag is left on the floor but not by the cashpoint or the waste-
basket, it is not considered a dangerous object. However, after
being still for more than 15 s, it becomes suspicious at the 35th
second. The person that left the object there picks it up again be-
fore being considered very dangerous.
ation vertex Associated verbs Alarm level

Towards (seats) hasDirection (seats)
hasSpeedGreaterThan (1) II

l :hasDirection (seats) I
Zone (seats) isInsideZone (seats) III

l :isInsideZone (seats) I
Towards (wastebasket) hasDirection (wastebasket)

hasSpeedGreaterThan (1) II
l :hasDirection (wastebasket) I
To (wastebasket) isCloseTo (25,wastebasket) III
l :isCloseTo (30,wastebasket) I
Towards (cashpoint) hasDirection (cashpoint)

hasSpeedGreaterThan (1) II
l :hasDirection (cashpoint) I
To (cashpoint) isCloseTo (25,cashpoint) IV
l :isCloseTo (30,cashpoint) I
Towards (leaflets) hasDirection (leaflets)

hasSpeedGreaterThan (1) II
l :hasDirection (leaflets) I
To (leaflets) isCloseTo (25,leaflets) III
l :isCloseTo (30,leaflets) I



Table 25
Local state diagram, holdup at a cashpoint.

Action Origin vertex Destination vertex Associated verbs Alarm level

Wanders to the cashpoint Initial GoingTowardsSlowly (cashpoint) hasDirection (cashpoint)
hasSpeedBetween (1,3) III

Does not wander to the cashpoint GoingTowardsSlowly (cashpoint) Initial :hasDirection (cashpoint) I
Walks to the cashpoint Initial GoingTowards (cashpoint) hasDirection (cashpoint)

hasSpeedBetween (4,10) II
Does not walk to the cashpoint GoingTowards (cashpoint) Initial :hasDirection (cashpoint) I
Runs to the cashpoint Initial GoingTowardsQuickly (cashpoint) hasDirection (cashpoint)

hasSpeedGreaterThan (10) III
Does not run to the cashpoint GoingTowardsQuickly (cashpoint) Initial :hasDirection (cashpoint) I
Accelerates and walks GoingTowardsSlowly (cashpoint) GoingTowards (cashpoint) hasSpeedGreaterThan (3) II
Decelerates and wanders GoingTowards (cashpoint) GoingTowardsSlowly (cashpoint) SpeedLessThan (2) III
Accelerates and runs GoingTowards (cashpoint) GoingTowardsQuickly (cashpoint) hasSpeedGreaterThan (10) III
Decelerates and walks GoingTowardsQuickly (cashpoint) GoingTowards (cashpoint) SpeedLessThan (8) II
Arrives to the cashpoint wandering GoingTowardsSlowly (cashpoint) CloseTo (cashpoint) isCloseTo (25,cashpoint) IV
Arrives to the cashpoint walking GoingTowards (cashpoint) CloseTo (cashpoint) isCloseTo (25,cashpoint) IV
Arrives to the cashpoint running GoingTowardsQuickly (cashpoint) CloseTo (cashpoint) isCloseTo (25,cashpoint) IV
Is not close to the cashpoint CloseTo (cashpoint) Initial :isCloseTo (30,cashpoint) I

Table 26
Global state diagram, holdup at a cashpoint.

Action Origin vertex Destination vertex Associated verbs Alarm level

Vandalism action Initial Vandalism (cashpoint) areMoreObjectsInState (GoingTowardsQuickly (cashpoint),0)
areObjectsInState (CloseTo (cashpoint),0) V

Nobody runs to cashpoint Vandalism (cashpoint) Initial areObjectsInState (GoingTowardsQuickly (cashpoint),0) I
Assault Initial Assault (cashpoint) areMoreObjectsInState (GoingTowardsQuickly (cashpoint),0)

areObjectsInState (CloseTo (cashpoint),1) V
No assault Assault (cashpoint) Initial areObjectsInState (GoingTowardsQuickly (cashpoint),0)

areObjectsInState (CloseTo (cashpoint),0) V
Possible holdup Initial Holdup (cashpoint) areObjectsInState (GoingTowardsSlowly (cashpoint),1)

areObjectsInState (CloseTo (cashpoint),1) V
Nobody is at the cashpoint Holdup (cashpoint) Initial areObjectsInState (CloseTo (cashpoint),0) I

Table 27
Local state diagram, suspicious objects.

Action Origin vertex Destination vertex Associated verbs Alarm level

Stationary Initial StillObject hasSpeedBetween (0,0)
:isCloseTo (20, cashpoint)
:isCloseTo (20, wastebasket) I

Appears close to the cashpoint Initial SuspiciousObject enterInScene ()
isCloseTo (20, cashpoint) IV

Appears close to the wastebasket Initial SuspiciousObject enterInScene ()
isCloseTo (20, wastebasket) III

Starts StillObject MovingObject hasSpeedGreaterThan (1) I
Starts SuspiciousObject MovingObject hasSpeedGreaterThan (1) I
Is stopped for a long time StillObject SuspiciousObject isTimeInState (Stopped, 30) IV
Is much time suspicious SuspiciousObject VerySuspiciousObject isTimeInState (SuspiciousObject, 30) V

Table 28
Results of suspicious objects in scene ‘‘LeftBag’’.

Time Object State Alarm

0:00:38 4 SuspiciousObject IV
0:00:53 3 VerySuspiciousObject V

Table 29
Results of suspicious objects in scene ‘‘LeftBag_PickedUp’’.

Time Object State Alarm

0:00:35 4 SuspiciousObject IV

6992 A. Fernández-Caballero et al. / Expert Systems with Applications 39 (2012) 6982–6993
5. Conclusions

In this paper, an approach to human activities detection in com-
plex scenarios has been presented. The approach describes two
levels in which activities should be considered: local activities
are necessary to generalize the detection process; and global activ-
ities are used to detect behavior patterns that involve not only a
single object, but also groups of objects (or even the whole set of
objects) in the scene. Some parameters must be inferred from
the objects in the scene, such as speed or direction. The system
takes the initial segmentation to calculate these parameters. Next,
a set of queries are proposed in order to specify simple behaviors
(to detect movement, orientation and location of the objects),
and complex behaviors (where one or several objects intervenes).

The results obtained so far are promising and we are currently
engaged in performing tests after segmenting videos taken from dif-
ferent scenarios with our proper biologically motivated algorithms,
namely accumulative computation and lateral inhibition (Delgado,
López, & Fernández-Caballero, 2010; Moreno-Garcia, Rodriguez-
Benitez, Fernández-Caballero, & López, 2010; Fernández-Caballero,
López, Castillo, & Maldonado-Bascón, 2009).



A. Fernández-Caballero et al. / Expert Systems with Applications 39 (2012) 6982–6993 6993
Acknowledgements

This work was partially supported by the Spanish Ministerio de
Economía y Competitividad / FEDER under project TIN2010-20845-
C03-01, Spanish Ministerio de Industria, Energía y Turismo / FEDER
under project TSI-020100-2010-261, and by the Spanish Junta de
Comunidades de Castilla-La Mancha under projects PII2I09-0069-
0994 and PEII09-0054-9581.
References

Amer, A., Dubois, E., & Mitiche, A. (2005). Rule-based real-time detection of context-
independent events in video shots. Real-Time Imaging, 11(33), 244–256.

Arens, M., Gerber, R., & Nagel, H.-H. (2008). Conceptual representations between
video signals and natural language descriptions. Image and Vision Computing,
26(1), 53–66.

Ayers, D., & Shah, M. (2001). Monitoring human behavior from video taken in an
office environment. Image and Vision Computing, 19(12), 833–846.

Blunsden, S., & Fisher, R. B., 2009. Pre-fight detection – Classification of fighting
situations using hierarchical AdaBoost. In The fourth international conference on
computer vision theory and applications (Vol. 2, pp. 303–308).

Bui, H., Venkatesh, S., & West, G. (2002). Policy recognition in the abstract hidden
Markov model. Journal of Artificial Intelligence Research, 17(45), 451–499.

Dee, H. M., & Hogg, D. C. (2009). Navigational strategies in behaviour modeling.
Artificial Intelligence, 173(2), 329–342.

Delgado, A. E., López, M. T., & Fernández-Caballero, A. (2010). Real-time motion
detection by lateral inhibition in accumulative computation. Engineering
Applications of Artificial Intelligence, 23(1), 129–139.

Fernández, C., Baiget, P., Roca, F. X., & González, J. (2011). Determining the best
suited semantic events for cognitive surveillance. Expert Systems with
Applications, 38(4), 4068–4079.

Fernández-Caballero, A., Gómez, F. J., & López-Lápez, J. (2008). Road-traffic
monitoring by knowledge-driven static and dynamic image analysis. Expert
Systems with Applications, 35(3), 701–719.

Fernández-Caballero, A., López, M. T., Castillo, J. C., & Maldonado-Bascón, S. (2009).
Real-time accumulative computation motion detectors. Sensors, 9(12),
10044–10065.

Fernández-Caballero, A., López, M. T., & Saiz-Valverde, S. (2008). Dynamic
stereoscopic selective visual attention (DSSVA): Integrating motion and shape
with depth in video segmentation. Expert Systems with Applications, 34(2),
1394–1402.

Gascueña, J. M., & Fernández-Caballero, A. (2011). Agent-oriented modeling and
development of a person-following mobile robot. Expert Systems with
Applications, 38(4), 4280–4290.

Gómez-Romero, J., Patricio, M. A., García, J., & Molina, J. M. (2011). Ontology-based
context representation and reasoning for object tracking and scene
interpretation in video. Expert Systems with Applications, 38(6), 7494–7510.

González, J., Rowe, D., Varona, J., & Roca, F. X. (2009). Understanding dynamic scenes
based on human sequence evaluation. Image and Vision Computing, 27(10),
1433–1444.
Hamid, R., Maddi, S., Johnson, A., Bobick, A., Essa, I., & Isbell, C. (2009). A novel
sequence representation for unsupervised analysis of human activities. Artificial
Intelligence, 173(14), 1221–1244.

Haritaoglu, I., Harwood, D., & Davis, L. S. (2000). W4: Real-time surveillance of
people and their activities. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(8), 809–830.

Hongeng, S., Nevatia, R., & Bremond, F. (2004). Video-based event recognition:
activity representation and probabilistic recognition methods. Computer Vision
and Image Understanding, 96(2), 129–162.

Huang, P. C., Lee, S. S., Kuo, Y. H., & Lee, K. R. (2010). A flexible sequence alignment
approach on pattern mining and matching for human activity recognition.
Expert Systems with Applications, 37(1), 298–306.

Ivanov, Y. A., & Bobick, A. F. (2000). Recognition of visual activities and interactions
by stochastic parsing. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(8), 852–872.

Jan, T., Piccardi, M., Hintz, T., (2002). Detection of suspicious pedestrian behavior
using modified probabilistic neural network. In Proceedings of Image and Vision
Computing (pp. 237–241).

Ji, X., & Liu, H. (2009). Advances in view-invariant human motion analysis: a review.
IEEE Transactions on Systems, Man, and Cybernetics, Part C, 40(1), 13–24.

Liao, L., Patterson, D., Fox, D., & Kautz, H. (2007). Learning and inferring
transportation routines. Artificial Intelligence, 171(5-6), 311–331.

Liu, C., & Yuen, P. C. (2010). Human action recognition using boosted EigenActions.
Image and Vision Computing, 28(5), 825–835.

López, M. T., Fernández-Caballero, A., Fernández, M. A., Mira, J., & Delgado, A. E.
(2006). Motion features to enhance scene segmentation in active visual
attention. Pattern Recognition Letters, 27(5), 469–478.

López, M. T., Fernández-Caballero, A., Fernández, M. A., Mira, J., & Delgado, A. E.
(2007). Dynamic visual attention model in image sequences. Image and Vision
Computing, 25(5), 597–613.

López-Valles, J. M., Fernández, M. A., & Fernández-Caballero, A. (2007). Stereovision
depth analysis by two-dimensional motion charge memories. Pattern
Recognition Letters, 28(1), 20–30.

Makris, D., & Ellis, T. (2005). Learning semantic scene models from observing
activity in visual surveillance. IEEE Transactions on Systems, Man and Cybernetics,
35(3), 397–408.

Martínez-Cantos, J., Carmona, E., Fernández-Caballero, A., & López, M. T. (2008).
Parametric improvement of lateral interaction in accumulative computation in
motion-based segmentation. Neurocomputing, 71(4–6), 776–786.

Mira, J., Delgado, A. E., Fernández-Caballero, A., & Fernández, M. A. (2004).
Knowledge modelling for the motion detection task: The lateral inhibition
method. Expert Systems with Applications, 7(2), 169–185.

Moreno-Garcia, J., Rodriguez-Benitez, L., Fernández-Caballero, A., & López, M. T.
(2010). Video sequence motion tracking by fuzzification techniques. Applied Soft
Computing, 10(1), 318–331.

Neumann, B., & Möller, R. (2008). On scene interpretation with description logics.
Image and Vision Computing, 26(1), 82–101.

Oliver, N. M., Rosario, B., & Pentland, A. P. (2000). A Bayesian computer system for
modeling human interactions. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(8), 831–843.

Stauffer, C., & Grimson, E. (2000). Learning patterns of activity using real-time
tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8),
747–757.

Xiang, T., & Gong, S. (2006). Beyond tracking: Modeling activity and understanding
behaviour. International Journal of Computer Vision, 67(1), 21–51.


	Human activity monitoring by local and global finite state machines
	1 Introduction
	2 Description of local and global activities
	2.1 Objects of interest
	2.2 Description of local activities
	2.2.1 Object-like actions
	2.2.2 Actions of environment interaction
	2.2.3 Actions involving object interaction

	2.3 Description of global activities
	2.4 Alarm system

	3 Specification of simple and complex behaviors
	3.1 Simple behavior specification
	3.1.1 Movement-based queries
	3.1.2 Orientation-based direction queries
	3.1.3 Location-based queries

	3.2 Complex behavior specification
	3.2.1 Local complex behaviors
	3.2.2 Global complex behaviors


	4 Data and results
	4.1 Image preprocessing
	4.1.1 Creation of point maps
	4.1.2 Specification of fixed objects in the scene

	4.2 Motion detection
	4.3 Speed detection
	4.4 Direction detection
	4.5 Position detection
	4.6 Following detection
	4.7 Appearance detection
	4.8 Number of objects in the same state
	4.9 Position and direction analysis
	4.10 Possible cashpoint holdup detection
	4.11 Suspicious objects

	5 Conclusions
	Acknowledgements
	References


