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Abstract

In this dissertation, the dynamics of homogeneous parallel and sequential dy-
namical systems on maxterm and minterm Boolean functions are analyzed.

In particular, for parallel and sequential dynamical systems over undirected
graphs, the dynamics are described completely, while some advances are provided
for such systems over directed graphs.

Speci�cally, for the case of homogeneous parallel dynamical systems on max-
term or minterm Boolean functions over undirected graphs, it is proved that they
can present only two kinds of periodic orbits: �xed points and 2-periodic orbits.
Furthermore, it is demonstrated that �xed points and 2-periodic orbits cannot co-
exist. In addition, uniqueness results of such periodic orbits are provided. Finally,
the study of the periodic structure of such systems is completed by showing optimal
upper bounds for the number of �xed points and 2-periodic orbits, and examples
where these bounds are attained.

The dynamics of non-periodic orbits are also studied for this kind of systems,
by solving the classical predecessor problems (existence, uniqueness, coexistence
and number of predecessors), obtaining a characterization of the Garden-of-Eden
con�gurations and an optimal bound for the number of them. Additionally, it is
provided a characterization of attractors and a method to obtain their basins of
attraction. Finally, optimal upper bounds for the transient in such systems are
shown.

In the case of homogeneous sequential dynamical systems on maxterm or minterm
Boolean functions over undirected graphs, it is demonstrated that they can present
periodic orbits of any period. Besides, it is proved that periodic orbits with di�erent
periods greater than or equal to 2 can coexist, but when these systems have �xed
points, periodic orbits of other periods cannot appear. Finally, as in the parallel
update case, the study of the periodic structure of such systems is completed by
showing optimal upper bounds for the number of �xed points and periodic orbits of
period greater than 1, and examples where these bounds are attained.
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In this case, the dynamics of non-periodic orbits are also studied, by solving
the same problems as in the case of parallel dynamical systems on maxterm or
minterm Boolean functions over undirected graphs. Indeed, the classical predecessor
problems (existence, uniqueness, coexistence and number of predecessors) are solved,
providing a characterization of the Garden-of-Eden con�gurations and an optimal
bound for the number of them. A characterization of attractors and a method to
obtain their basins of attraction are shown, also providing optimal upper bounds for
the transient in such systems.

Finally, for homogeneous parallel and sequential dynamical systems on maxterm
or minterm Boolean functions over directed graphs, it is proved that periodic or-
bits of any periods can appear and coexist, even �xed points and periodic orbits
with greater periods. Also, a solution to the predecessor problems is provided, so
extending the results given for systems over undirected graphs. Consequently, a
characterization of the Garden-of-Eden states is achieved, providing the best bound
for the number of them.



Chapter 1

Introduction

A (mathematical) model is the mathematical formalization of a real phenomenon.
Therefore, in its formulation, it is necessary to include, on one hand, the elements
involved in the phenomenon and, on the other hand, the relationships among them
that determine their evolution. Thus, the elements (or more precisely their states)
are represented in the model using variables, and the relationships among them that
determine their evolution are expressed through equations, functions, logical oper-
ators, etc., trying to formalize the laws or principles that govern the phenomenon
in the reality (technological principles, laws of physics, biological principles, etc.).
The evolution of the states of the elements can be in�uenced by certain (quanti�-
able/estimable) conditions that are incorporated into the mathematical model as
parameters.

Mathematical models are useful in sciences and engineering, especially in the
study of the dynamics or evolution of phenomena from the real world in which it
is very costly or it is not possible to experiment with real elements. In such cases,
the (mathematical) analysis of the model allows to know the asymptotic behavior
of the phenomenon under consideration, providing a very useful tool for evaluating
decisions in relation to the phenomenon as well as their possible consequences.

Studying the dynamics of a model has as main objectives: the knowledge of their
periodic and non-periodic states, as well as attractiveness and repellent relations
among them. These are the objectives that we achieve with this dissertation for
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di�erent models coming from electronics or computation, which have also turned
out useful for other sciences as physics, biology, chemistry, mathematics, etc.

Network models are the natural way to formalize any phenomenon involving
cells, gens, entities or any kind of distinct elements which interact among them.
In particular, network models where the states of the elements have Boolean states
([39]) and the functions determining their evolution are Boolean functions, are called
Boolean network models (BN).

The emergence of the concepts of Cellular Automata (CA) [94] and Kau�man
Networks (KN) [78], in the late 1960s, for the formalization of computational pro-
cesses and genetic regulation respectively, supposed a �rst step in the modeling
of evolutionary phenomena through Boolean networks (BN). This type of models
has proved to be useful not only for computational processes or genetic regulation,
but also to solve several problems coming from other sciences, such as chemistry
(see [83, 84, 99]), mathematics (see [40, 43, 46, 47, 51, 57, 76, 93]), physics (see
[41, 42, 44, 48]), biology (see [1, 5, 53, 78, 79, 61, 86, 90, 105, 106, 113]), ecology (see
[54, 72, 73]), or even social sciences such as psychology or sociology (see [2, 70, 82]),
among others. Moreover, this new paradigm has served as a basis to establish other
new concepts, as Graph Turing Machines, which can be seen as the in�nite version
of such models (see [3]).

The �rst CA consisted of a grid of cells, where each cell could have a state
belonging to the set {0, 1}, which evolved synchronously at (discrete) intervals of
time, giving rise to (discrete) iterations [38]. The update of the state of each cell
was carried out according to a Boolean (local) function, the same for all the cells,
depending only on the cell to be updated and the cells surrounding it. That is, in a
one-dimensional CA, if xti was the state value of the cell i at time t, its state value at
the instant t+1, xt+1

i , was obtained by applying the local (common) Boolean function
to the state values xti−1, x

t
i and x

t
i+1. Thus, CA were the �rst mathematical model

to capture the essential characteristics of digital systems: synchronicity, regular
distribution and locally dependent iterations.

Although CA were �rstly introduced in the works of Ulam and von Neumann
[94], they did not arouse a great interest until 1970, when Martin Gardner [59, 60]
published in Scienti�c American an explanation of the so-called �Game of Life� by
John Conway [49]. However, it was not until 1983, when Wolfram [117] established
the �rst results on its complexity, despite its simple construction. In fact, in 1984, as
a result of further investigation [118], he suggested that most CA can be classi�ed,
according to their dynamic behavior, into four types: the �rst three ones, exhibiting
a behavior similar to �xed-point systems, and the fourth one, with unpredictable
asymptotic properties. In later years, Wolfram continued his research (see [119, 120,
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121]), which was �nally collected in [122]. During this same period, other works
helped to develop the theory of CA (see [110, 111, 112]) which was well presented
later, for instance, in [74, 77, 100].

On the other hand, the �rst KN of size n and connectivity k, (n, k)-networks,
consisted of n interconnected vertices so that each one was connected to another k
vertices. In this case, the dependency graph was considered directed, the states of
the vertices belonged to the set {0, 1} and the local update Boolean functions could
be di�erent for each vertex. It follows that the �rst CA could be considered as a
particular case of (n, 2)-networks.

The KN as said above, appeared for the �rst time in the work carried out by
Kau�man [78], as models applied to the simulation of genetic networks in which
genes had an on-o� behavior that could be formalized, respectively, as 1 and 0.
Kau�man's results suggested that, if each gene is a�ected or in�uenced by only 2 or
3 genes, then the system seems to behave stably. The most of the results obtained on
this model during the last quarter of the 20th century were published by Kau�man
in his book [79].

These �rst BN models have evolved in recent years, giving rise to the paradigm of
(discrete) dynamical systems on graphs and Boolean functions (GDS), �rstly coined
in [28]. Nevertheless, its origins can be situated in a series of papers by Barret,
Mortveit and Reydis entitled Elements of a theory of computer simulation I, II,
III, IV at the very beginning of this century [33, 34, 35, 36]. This new concept,
whose denomination emphasizes its deterministic character, generalizes the previous
ones in the sense that it contemplates the possibility that the relations among the
elements of the system can be arbitrary. Alternatively, this kind of models was
named Boolean �nite dynamical systems (BFDS) in the recent works [80, 81], what
evoques their principal features of deterministic Boolean models involving a �nite
number of elements. In this dissertation, we focus on the study of the dynamics of
this kind of models.

For these new models, the relationships among the elements of the system can
be represented by a graph called dependency graph that could be arbitrary. In
this sense, the smallest aggregation units of the phenomenon are now called nodes
(or vertices), in relation to their belonging to the dependency graph, relieving the
term of cells in CA and entities in KN, although we will use all of them along this
document. Thus, the relationship between two elements is represented by an edge
between them or by an arc if the relationship is not bidirectional. In this last case,
the dependency graph is directed.

Likewise, each vertex i of the graph has assigned a variable, xi, representing its
state which is called state variable of the vertex i. In this kind of systems, these
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variables usually take values in the (Boolean) set {0, 1} to indicate the deactivated
or activated state of the corresponding vertex. However, it is possible that they take
values in a more general Boolean algebra (see [22, 23]).

The evolution of the system is implemented through local (Boolean) functions,
which generally come from the restriction of a (global) Boolean function to each
vertex and its adjacent ones in the graph. In this case, the system is said to be
homogeneous. Nevertheless, there exists the possibility of considering independent
local functions to update the state of each vertex (see, for example, [19, 25, 115]).
Observe that, once the local functions are de�ned, they (automatically) determine
the dependency graph of the system and this is why the word graph is usually
avoided in their denomination. However, in models emerging from experimental
phenomena, it is natural to determine �rstly the relationships among the entities
and, subsequently, how the relations interfere in the evolution of their states.

The evolution of the state of all the nodes of the system can occur synchronously
or asynchronously. In the �rst case, the models are called parallel dynamical systems
(PDS) or, alternatively, synchronous dynamical systems (SyDS) ([6, 8, 17, 18, 19,
20, 21, 22, 23, 28, 123]). In the second case, they are called sequential dynamical
systems (SDS) or, alternatively, asynchronous dynamical systems (AsyDS) ([7, 29,
30, 33, 34, 35, 36, 50, 51, 91, 92, 95]). In view of them, a mixed situation could be
contemplated by considering that some of the nodes update at the same time in a
asynchronous scheme of updating. This last models are known as semi-synchronous
or mixed dynamical systems (MDS) [62, 65].1

In addition, since the beginning of the present century, another generalization
of BN models is being developed by considering the possibility of non-determinism
or stochasticity. This generalization has lead to the concept of stochastic or prob-
abilistic Boolean networks [69, 103, 104]. The stochastic character arises when any
of the fundamental elements (dependency graph, Boolean state set, local functions,
updating scheme) is chosen randomly, usually from a �nite set of them, iteration
by iteration. They are often called random Boolean networks (RBN), although this
term is also used for deterministic ones to indicate that the dependency graph is
arbitrary [62, 65].

Regarding the possible generalizations of BN, it is worth mentioning the (pi-
oneer) works by Gershenson [62, 65], where classi�cations of the most important
generalizations of this kind of models are established. In this line, other interesting
works by the same author on RBN are ([63, 64, 66, 67]).

1The abbreviations GDS, PDS, SyDS, SDS, AsyDS, MDS, CA, BN and GOE will be written
along this document for the singular and plural forms of the corresponding terms, since it seems
better from an aesthetic point of view.
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Both deterministic an non-deterministic BN can be classi�ed depending on the
type of fundamental elements which constitute them: the dependency graph, the
(Boolean) set of states of the entities, the (Boolean) evolution operator and the
update scheme. That is, they can be classi�ed depending on whether: the depen-
dency graph is undirected or directed; the set of states is the basic Boolean algebra
{0, 1} or a more general one; the local (Boolean) functions are all inferred from a
general one or they are independent; the updating of all the entities is synchronous,
semi-synchronous (mixed) or asynchronous. In this sense, di�erent classi�cations of
systems, which are transversal among them, can be established.

In this dissertation, we focus on deterministic BN over an (arbitrary) undirected
or directed dependency graph (which is not loop-free, although for convenience the
loops are not drawn); with the basic Boolean algebra {0, 1} as set of states of the
entities; whose evolution operator is homogeneous, induced by a Boolean function
of the type maxterm or minterm; and with parallel or sequential update scheme
according to a permutation.

The main objective in the study of the dynamics is to get to know the (asymp-
totic) behavior of all the orbits of the system [85]. The graphical representation
of the dynamics of the system is called its phase portrait. In our context, it is also
named phase diagram or transition diagram, since it is a directed graph representing
the transit from each state to its corresponding successor, according to the evolution
of the system.

In the methodology to study the dynamics of a system, a �rst step is to study
the structure of its periodic orbits. Speci�cally, as pointed out in [52], it means to
determine the length and number of coexisting periodic orbits. Thus, the method-
ology for the study of the periodic structure of these systems consists in solving the
following problems:

• Periodic orbits existence (POE): It consists in determining what periods can
exist.

• Periodic orbits coexistence (POC): It consists in determining which periods
can coexist and, in this case, if a period determines the existence of others.

• Periodic orbits uniqueness (POU): It consists in determining if a certain peri-
odic orbit is the unique one in the system.

• Maximum number of orbits of a certain period (#n-PO): It consists in deter-
mining the number of periodic orbits of a certain period.
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In this sense, in [28], the POE and POC problems were solved for homogeneous
PDS and SDS when the evolution operator is one of the simplest Boolean functions,
that is, for OR (resp. AND) and NAND (resp. NOR). In [34], the authors demon-
strated that the �xed points of a SDS induced by symmetric Boolean functions as
PAR, MAJ, MIN and XOR are independent of the order of updating. Later, the POE
problem was solved, in a more general context, for homogeneous PDS on maxterm
and minterm Boolean functions over undirected dependency graphs [17] and over
directed ones [18]. Likewise, the POE problem was also solved for non-homogeneous
PDS when the independent local functions belong to {AND, OR, NAND, NOR} in
[19]. Finally, the results were generalized, solving the POE problem for homoge-
neous PDS on maxterm an minterm Boolean functions where the state set is any
Boolean algebra [22]. The POE and POC problems for SDS on bi-threshold func-
tions over non-uniform networks (where the threshold parameters depend on each
vertex) have been recently studied in [123], proving that the presence of �xed points
excludes the existence of other periodic orbits.

Regarding the last problem, some recent related works prove that it is com-
putationally intractable even in the case of �xed points for a certain class of non-
homogeneous systems (see [25, 115]). Actually, only upper bounds for the number of
�xed points are provided. In the case of SDS, in [29], it was proved that this problem
is NP-complete even for some simple cases, although, in the case of SDS on linear
or monotone local updating functions, the problem can be solved e�ciently. Later,
in [114] , it was con�rmed that the problem of counting �xed points is computa-
tionally intractable even when the local updating functions are symmetric Boolean
functions or when every node has a number of adjacent vertices bounded by a small
constant. Nevertheless, in [50], the problem of enumerating periodic points is solved
for certain SDS, namely [Cn, parity3, id] and [Cn, (1 + parity)3, id].

Once the periodic structure of a system is known, the next step in the study
of the dynamics is to analyze the asymptotic behavior of non-periodic orbits. In
particular, in this context, it means to determine which di�erent non-periodic states
arrive in the same periodic orbit. In the case of GDS, each non-periodic orbit
converges to a periodic one. In such a case, it is said that the non-periodic orbit
is in the basin of attraction of the periodic orbit. The number of iterations needed
by the non-periodic point to reach the corresponding periodic orbit is known as its
transient. The maximum of the transients is called the transient or width of the
system. The methodology for the analysis of the behavior of non-periodic orbits is
carried out through the study of predecessors, which allow us to determine towards
which periodic orbits they converge and, at the same time, to infer their basins
of attraction, as well as the width or transient of the system. In particular, the
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non-existence of predecessors makes possible to identify the (non-periodic) GOE
states of the system (which are the heads of the branches constituting the basins
of attraction), the width of the system and the attractive periodic orbits can be
established. Speci�cally, the methodology for the study of predecessors consists in
solving several problems similar to the previous ones:

• Predecessors existence (PRE): It consists in determining which states have at
least a predecessor.

• Predecessors coexistence (PREC): It consists in determining when there exists
more than one predecessor for a state.

• Predecessors uniqueness (PREU): It consists in determining when the prede-
cessor of a state is unique.

• Maximum number of predecessors of a certain state (#PRE): It consists in
determining the number of predecessors of a certain state.

The study of predecessors, which leads to �nd out the corresponding GOE at
the same time, has been treated by several researchers in this �eld in di�erent
environments related to Boolean network models [29, 30, 31, 32]. In [33], results
for GOE states existence are given in relation to the invertibility of the systems.
Speci�cally, the invertibility of a system characterize the non-existence of GOE.

So far, the resolution of these problems has been mainly faced from the point of
view of its computational complexity [29, 30, 31, 32], as previously done in [109] and
[68] for CA. In particular, it was shown that the PRE problem is NP-complete for
some restricted classes of SDS. On the other hand, polynomial time algorithms are
given for the PRE problem for SDS on the simplest maxterm OR (resp. minterm
AND) and symmetric Boolean operators, which can be extended to the correspond-
ing PDS. In the recent works [80, 81], the authors study the computational com-
plexity of generalized t-predecessor problems an t-GOE for some particular cases of
PDS corresponding to a variety of sets of local functions.

The study can be performed computationally, by �brute force�, when the number
of entities of the system is not excessively large, using computer algorithms such as
those in [20] or [45], or speci�c software such as [65]: DDLab, http://www.ddlab.
com, which allows to simulate the dynamics for synchronous RBN and CA; RBNLab,
http://rbn.sourceforge.net, which is able to simulate RBN with di�erent update
schemes; or BN/PBN Toolbox for Matlab, https://code.google.com/archive/p/
pbn-matlab-toolbox/downloads, which allows to simulate both deterministic and
probabilistic Boolean networks.
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In this dissertation, in contrast with this numerical studies, we have applied alge-
braic methods and techniques coming from graph theory, combinatorics and discrete
mathematics to give analytical proofs of our results. Actually, for an arbitrarily large
number of entities, the solution needs to involve these methods and techniques. In
this sense, the results are obtained through the combinatorial analysis of the pos-
sibilities of evolution of the states. Likewise, these methods and techniques are
di�erent from those usually employed in other kinds of dynamical systems, such
as those ones de�ned over (in�nite) metric spaces through continuous functions or
di�erential equations.

As a result of this dissertation, we complete the analysis of the dynamics of PDS
and SDS on maxterm and minterm Boolean functions over undirected dependency
graphs, and provide some important advances in the case of directed dependency
graphs, denoted by PDDS and SDDS respectively. Speci�cally, regarding the study
of periodic orbits, we prove that in this kind of PDS only �xed points and 2-periodic
orbits can appear, while SDS can present periodic orbits of any period. In both
cases, we demonstrate that �xed points and periodic orbits of greater periods cannot
coexist. However, periodic orbits of any period greater than 1 can coexist in SDS.
Furthermore, we prove that PDDS and SDDS can present periodic orbits of any
period which can coexist in any case, even �xed points and periodic orbits of greater
periods.

Additionally, in the case of PDS and SDS, we give results on the uniqueness and
maximum number of periodic orbits, distinguishing the cases of �xed points and
periodic orbits of period greater than 1.

Concerning the study of non-periodic orbits, we deal with the classical predeces-
sor problems (existence, uniqueness, coexistence and maximum number or predeces-
sors) in PDS, SDS, PDDS and SDDS, providing a characterization and upper bounds
for the GOE states of the systems. Moreover, in the case of PDS and SDS, we give
a characterization of attractors and a method to obtain their basins of attraction,
showing optimal upper bounds for the transient of these systems.

This thesis provides not only several new results in the �eld but also some new
ideas and tools to extend them. Thus, from this approach, a further progress in
some future research directions can be expected. The main future research directions
correspond to extension of these results to other kinds of models, according to the
classi�cations shown before. Speci�cally, generalizations on the set of states of
the entities, the dependency graph, the local update functions and the evolution
schedule of deterministic BN models can be considered as a natural continuation of
this research work, as well as the analysis of non-deterministic models. Additionally,
from this complete theoretical study, a direct application of these results to models
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coming from sciences, engineering or real-word situations seems to be feasible.

This dissertation is organized as follows. In Chapter 2, we include the most
important notation and basic concepts to understand the results in the rest of the
chapters.

In Chapter 3, the study of the dynamics in homogeneous PDS on maxterm and
minterm Boolean functions over undirected dependency graphs is performed. The
�rst section of this chapter is dedicated to the analysis of the dynamics of periodic or-
bits, showing that these systems can present, as periodic orbits, only �xed point and
2-periodic orbits. Besides, we prove that periodic orbits with di�erent periods can-
not coexist, which implies that a kind of Sharkovsky's order is not valid for this class
of dynamical systems. Additionally, we provide conditions to obtain a Fixed-Point
Theorem and a 2-Periodic-Orbit Theorem in this context, based on the uniqueness
of these periodic orbits. Finally, the study of the periodic structure of such systems
is completed by showing upper bounds for the number of �xed points and 2-periodic
orbits. Actually, we provide examples where these bounds are attained, demonstrat-
ing that they are the best possible ones. This section provides a relevant advance
in the knowledge of the dynamics of such systems. Moreover, the ideas developed
here help to obtain similar results for other related systems. In the second section
of this chapter, we study the dynamics of non-periodic orbits. Firstly, we solve the
classical predecessor problems for PDS on maxterm and minterm Boolean functions.
Actually, we solve analytically the predecessor existence problem by giving a char-
acterization to have a predecessor for any given con�guration. As a consequence,
we also get a characterization of the Garden-of-Eden (GOE) con�gurations of these
systems and an optimal bound for the number of them. Moreover, the structure of
the predecessors found out allows us to give a solution to the unique predecessor
problem, the coexistence of predecessors problem and the number of predecessors
problem. Later in this section, we give a characterization of attractors in PDS,
which evolve by means of maxterm or minterm Boolean functions, and provide a
method to obtain their basins of attraction. This makes possible to obtain a detailed
description of their phase diagrams. Furthermore, we state necessary and su�cient
conditions to know when a �xed point or a 2-periodic orbit is globally attractive.
Besides, we provide optimal upper bounds for the transient in such systems, i.e., for
the maximum number of iterations required to reach a periodic orbit. In order to
do that, we distinguish the two possible cases: attractive �xed points and attractive
2-periodic orbits. Moreover, we establish patterns that allow us to obtain a PDS on
a maxterm or minterm Boolean function for which any given optimal upper bound
for the transient is reached.

In Chapter 4, the study of the dynamics in homogeneous SDS on maxterm
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and minterm Boolean functions over undirected dependency graphs is performed.
According with the methodology established, as in the previous chapter, the �rst
section is dedicated to the study of periodic orbits in this kind of systems. We show
that sequential systems with (Boolean) maxterms and minterms as global evolution
operators can present orbits of any period, so breaking the pattern found in the
parallel case. Besides, we prove that periodic orbits with di�erent periods greater
than or equal to 2 can coexist. Nevertheless, when an SDS has �xed points, we
demonstrate that periodic orbits of other periods cannot appear. Additionally, we
provide conditions to obtain a Fixed-Point Theorem and an m-Periodic-Orbit The-
orem (m > 1) in this context, based on the uniqueness of these periodic orbits.
Finally, we give an upper bound for the number of �xed points and periodic or-
bits of period greater than 1, so completing the study of the periodic structure of
such systems. We also demonstrate that these bounds are the best possible ones,
providing examples where they are attained. In the second section of this chapter,
we analyze the dynamics of non-periodic orbits. To do that, we deal with the pre-
decessor problems. In particular, we solve algebraically such problems in SDS on
maxterm and minterm Boolean functions. We also provide a description of the GOE
con�gurations of any system, giving the best upper bound for the number of GOE
points. On the other hand, we show how to determine attractors in SDS on maxterm
and minterm Boolean functions and their corresponding basins of attraction, mak-
ing possible to obtain a detailed description of the phase diagrams. Furthermore,
we study when an attractor is globally attractive. As another interesting result,
upper bounds for the transient in such systems are provided. In order to do that,
we distinguish two possible scenarios again: �xed points and periodic orbits with
period greater than 1.

In Chapter 5, the study of the dynamics in homogeneous PDDS and SDDS
on maxterm and minterm Boolean functions over directed dependency graphs is
introduced, showing some results obtained directly from the previous ones related
to PDS and SDS. As in the previous chapters, the �rst section is dedicated to the
analysis of periodic orbits. In this case, we study the existence and coexistence of
periodic orbits in PDDS and SDDS. We prove that periodic orbits of any periods can
appear and coexist in such systems, even �xed points and periodic orbits with greater
periods, so breaking the patterns shown in the case of undirected dependency graphs.
Thus, in this case of dynamical systems over directed dependency graphs, no order,
as the one provided by Sharkovsky, applies. Also, the simplest maxterm and minterm
Boolean functions are analyzed, showing that PDDS and SDDS on the maxterm OR
(resp. minterm AND) only present �xed points as periodic orbits, while PDDS and
SDDS on the maxterm NAND (resp. minterm NOR) can present periodic orbits of
any period, except �xed points. In the �rst case of �xed points as periodic orbits,
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the con�gurations with all the entities activated and all the entities deactivated are
always some of them, but with the possibility of other alternatives, so breaking
again the pattern shown in PDS and SDS. In the second section of this chapter, we
study the dynamics of non-periodic orbits in this kind of systems. We solve all the
predecessor problems in PDDS and SDDS, so extending the results given for systems
over undirected graphs. In this same sense, we provide a characterization to have at
least one predecessor for any given state and, consequently, a characterization of the
GOE states. Furthermore, we solve the unique predecessor problem, the coexistence
of predecessors problem and the number of predecessors problem, providing the best
bounds for such a number and for the number of GOE con�gurations.

Finally, we summarize the most important conclusions of this thesis and show
the future research directions which appear as a natural continuation of this work.

Chapter 3 corresponds to our articles [6, 8, 9, 13]; Chapter 4 corresponds to
our papers [7, 11, 14, 15]; and Chapter 5 corresponds to our works [10, 12, 16]. In
particular, six of these eleven articles were published in Q1-JCR journals.
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Chapter 2

Preliminaries

In our context, a system consists of several entities and each entity has a (Boolean)
state at any given time (see [33, 34, 35, 36]). Entities are related and they get in-
formation from their associated ones. As done in this dissertation, every entity is
usually represented by a vertex of an undirected graph and two vertices are adja-
cent if their states in�uence each other in the update of the system. Such a graph
is said to be the (undirected) dependency graph of the system (see [28]). However,
in the last chapter at the end of the thesis, we present some generalizations of the
previous results in which the entities are vertices of a directed dependency graph,
representing asymmetrical in�uence of the states of the entities.

In the case of symmetrical in�uence, we denote the dependency graph by G =
(V,E) while, in the asymmetrical situation, by D = (V,A), being V = {1, . . . , n}
the vertex set, E the edge set and A the arc set. Along this dissertation, we will
assume that G (resp. D) is connected (resp. weekly connected) because, otherwise,
the results can be generalized simply by working on each connected component.

For every entity i ∈ V , it is de�ned its state value, xi ∈ {0, 1}, to indicate if
the entity i is deactivated, xi = 0, or activated, xi = 1. Nevertheless, it is possible
to have state values in a more general Boolean algebra (see [22, 23]). A vector
constituted by the state values of the entities, x = (x1, . . . , xn), is denominated a
(global) state or con�guration of the system. There are two special con�gurations,
the one with all the entities activated and the one with all of them deactivated,
which will be denoted by I and O respectively.
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Since the general situation in this dissertation is the study of systems with sym-
metrical in�uence of the states of the entities, hereinafter in this chapter, the con-
cepts will be de�ned for undirected dependency graphs. Anyway, all the de�nitions
here can be easily translated to the case of digraphs. They will be shown explicitly
where appropriate in the last chapter at the end of the thesis.

For every entity i ∈ V , subset U ⊆ V or subgraph G0 = (V0, E0) of G, in the
case of symmetrical in�uence, we consider all the vertices that interfere with them
in their updating process:

AG (i) = {j ∈ V : {i, j} ∈ E} ∪ {i},

AG (U) =
⋃
i∈U

AG (i).

For our purposes, later on this dissertation, we will also need to consider these
other sets:

AG (i) = {j ∈ V : {i, j} ∈ E},

AG (U) =
⋃
i∈U

AG (i) ,

AG (G0) = AG (V0) ,

A∗G (U) = AG (U) \ U.

We will denote the complementary set of any of them as usual. That is, for
instance, AG (U)

c
will denote the subset of entities in V which are not in AG (U), or

equivalently the subset of entities which are neither in U nor in A∗G (U).

The update or evolution of the system is performed by local functions. Thereby,
to update the state of an entity i, the corresponding local function acts only on
AG (i). As the states of the entities are Boolean, the local function are Boolean too.

The state of the entities can be updated in a synchronous way or in an asyn-
chronous or sequential manner. In this last case, a permutation on V , π = π1| . . . |πn,
which settles the order of updating is usually considered, being π1 the �rst entity
whose state updates, π2 the second one, and so on. In each step, the updated states
of the entities are involved in the following evolution of the state of the other vertices.

De�nition 2.1. Let G = (V,E) be an undirected graph on V = {1, . . . , n} and a
map

F : {0, 1}n → {0, 1}n, F (x1, . . . , xi, . . . , xn) = (y1, . . . , yi, . . . , yn) ,
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where yi is the updated state value of the entity i by applying a local function fi over
the state values of the entities in AG (i). They constitute a discrete dynamical system
called parallel dynamical system over G, which will be denoted by [G,F ]− PDS or
F − PDS when specifying the dependency graph is not necessary.

Accordingly with this de�nition, in this dissertation, generical PDS with a max-
term MAX (resp. minterm MIN) as evolution operator will be denoted by MAX−
PDS (resp. MIN− PDS).

Let us illustrate this de�nition with the following example:

Example 2.1. Let G = (V,E) be the graph de�ned by V = {1, 2, 3} and E =
{{1, 2}, {2, 3}} (see Figure 2.1).

1 2 3

Figure 2.1: Graph G = ({1, 2, 3}, {{1, 2}, {2, 3}}).

The adjacency set associated to each vertex i ∈ V , AG (i), is: AG (1) = {1, 2},
AG (2) = {1, 2, 3} and AG (3) = {2, 3}.

Let us consider the following local functions {fi}3i=1 de�ned over the states of
the entities belonging to each set AG (i):

• f1 (x1, x2) = x′1 ∨ x′2,

• f2 (x1, x2, x3) = x′1 ∨ x′2 ∨ x3,

• f3 (x2, x3) = x′2 ∨ x3.

They constitute the evolution operator F : {0, 1}n → {0, 1}n,

F (x1, x2, x3) = (f1 (x1, x2) , f2 (x1, x2, x3) , f3 (x2, x3)) = (y1, y2, y3) .

These elements de�ne a PDS which is denoted by [G,F ]− PDS.

In this case, a state x = (x1, x2, x3) ∈ {0, 1}3 evolves to other state y =
(y1, y2, y3) ∈ {0, 1}3 if y = F (x). For instance, the state x = (0, 0, 0) evolves to
y = F (0, 0, 0) = (1, 1, 1). In Figure 2.2, a phase diagram with the successor of each
con�guration can be seen.
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Figure 2.2: Phase portrait of the system [({1, 2, 3}, {{1, 2}, {2, 3}}) , (x′
1 ∨ x′

2, x
′
1 ∨ x′

2 ∨ x3, x
′
2 ∨ x3)]−

PDS.

De�nition 2.2. Let G = (V,E) be an undirected graph on V = {1, . . . , n}, π =
π1| . . . |πn a permutation on V and a map

[F, π] = Fπn ◦ · · · ◦ Fπ1 : {0, 1}n → {0, 1}n,

[F, π] (x1, . . . , xi, . . . , xn) = (y1, . . . , yi, . . . , yn) ,

where Fπi : {0, 1}n → {0, 1}n updates the state value of the entity πi ∈ V from xπi
to yπi considering the state values of the entities belonging to AG (πi) and keeping
the other states unaltered, i.e., Fπi = (id1, . . . , fπi , . . . , idn), being idj the identity
function over the entity j and fπi : {0, 1}n → {0, 1} the local function which performs
the update for the entity πi. They constitute a discrete dynamical system called
sequential dynamical system over G, which will be denoted by [G,F, π] − SDS or
F − SDS when specifying the dependency graph is not necessary and the updating
order can be implicit in this context of sequential evolution.

As in the case of PDS, in this dissertation, generical SDS with a maxterm MAX
(resp. minterm MIN) as evolution operator will be denoted by MAX − SDS (resp.
MIN− SDS).

Again, let us illustrate this de�nition with the following example:

Example 2.2. Consider G and {fi}3i=1 as in Example 2.1 and let π = 1|2|3 be a
permutation on V . In terms of De�nition 2.2, let us consider:

• F1 (x1, x2, x3) = (x′1 ∨ x′2, x2, x3),

• F2 (y1, x2, x3) = (y1, y
′
1 ∨ x′2 ∨ x3, x3),
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• F3 (y1, y2, x3) = (y1, y2, y
′
2 ∨ x3).

They constitute the evolution operator [F, π] : {0, 1}n → {0, 1}n,

[F, π] (x1, x2, x3) = F3 ◦ F2 ◦ F1 (x1, x2, x3) = (y1, y2, y3) .

These elements de�ne an SDS which is denoted by [G,F, π]− SDS.

In this case, a state x = (x1, x2, x3) ∈ {0, 1}3 evolves to other state y =
(y1, y2, y3) ∈ {0, 1}3 if y = [F, π] (x). For instance, the state x = (0, 0, 0) evolves to
y = [F, π] (0, 0, 0) = (1, 1, 0). In Figure 2.3, a phase diagram with the successor of
each con�guration can be seen.
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Figure 2.3: Phase portrait of the system [({1, 2, 3}, {{1, 2}, {2, 3}}) , F3 ◦ F2 ◦ F1 (x1, x2, x3) , 1|2|3]−
SDS.

Every fi is usually the restriction of a global Boolean function1 f : {0, 1}n →
{0, 1} acting only over the states of the entities in AG (i), as we are going to suppose
in this dissertation. In this case, since the Boolean function f originates F , along
this thesis we will identify f and F . If all the local functions are the restriction
of a global one, then the system is called homogeneous. Nevertheless, such local
functions could be independent (see [19]).

In Examples 2.1 and 2.2, each local function fi, i = 1, 2, 3, is originated as the
restriction of the global function f : {0, 1}n → {0, 1}, f (x1, x2, x3) = x′1 ∨ x′2 ∨ x3,
over the states of the entities in AG (i).

1A Boolean function on n (Boolean) variables can be understood as a function f : {0, 1}n →
{0, 1}, where the evaluation f (x1, . . . , xn) is computed from the values x1, . . . , xn ∈ {0, 1} using the
logical operators AND (∧), OR (∨), NOT (′) as a propositional formula. For further information
about general Boolean functions and their properties, [89] can be consulted.
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As said before, throughout this dissertation, the local functions of the systems
under study will be given by Boolean functions, which describe how to determine a
Boolean output from some Boolean inputs. Special cases of Boolean functions are
the maxterms and the minterms [17]. Recall that a maxterm (resp. minterm) of n
variables x1, . . . , xn is a Boolean function f such that

f (x1, . . . , xn) = z1 ∨ . . . ∨ zn (resp. f (x1, . . . , xn) = z1 ∧ . . . ∧ zn),

where zi = xi or zi = x′i. Minterm is the dual concept of maxterm, changing the
disjunction operator for the conjunction one.

The simplest maxterm is the one where each variable appears once in its direct
form:

OR (x1, . . . , xn) = x1 ∨ · · · ∨ xn.

Similarly, we have the maxterm NAND, considering all the variables in their
complemented form:

NAND (x1, . . . , xn) = x′1 ∨ · · · ∨ x′n.

On the other hand, the simplest minterm is the one where each variable appears
once in its direct form:

AND (x1, . . . , xn) = x1 ∧ · · · ∧ xn.

Similarly, we have the maxterm NOR, considering all the variables in their com-
plemented form:

NOR (x1, . . . , xn) = x′1 ∧ · · · ∧ x′n.

The great importance of this special class of Boolean functions is that (see [24,
37, 98]) any Boolean function, except F ≡ 1 (resp. F ≡ 0) can be expressed in a
canonical form as a conjunction (resp. disjunction) of maxterms (resp. minterms).
Thus, it is natural to start with the study of the dynamics for this kind of Boolean
functions, as we do in this dissertation. For this reason, all the dynamical systems
in this thesis, PDS or SDS (PDDS or SDDS in the context or directed dependency
graphs), will be named dynamical systems over graphs (GDS) on maxterm (resp.
minterm) Boolean functions.

Since in this dissertation the evolution operator of each system will be given by
a unique maxterm (resp. minterm), each variable of the system will be named direct
or complemented variable, as it appears in the associated maxterm (resp. minterm),
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and respectively its associated entity/vertex will be called direct or complemented
entity/vertex.

According to [85, 116], understanding a dynamical system means knowing its
orbit structure and, consequently, its phase portrait. That is, the partitioning of the
state space into its orbits, which provides a complete visual idea of the asymptotic
behavior of the whole system. This is the main aim of this thesis, which gives a
complete study of the dynamics in PDS and SDS.

De�nition 2.3. The orbit of an F −PDS or F −SDS starting at x = (x1, . . . , xn) ∈
{0, 1}n is the subset of the state space {0, 1}n given by

Orb = (x) {y = (y1, . . . , yn) ∈ {0, 1}n : F t (x) = y, ∀t ∈ N ∪ {0}} ⊆ {0, 1}n,

being F t = F ◦
t)
· · · ◦ F .

An orbit is said to be a periodic orbit, if each con�guration x belonging to it
satis�es that there exists t ≥ 1 such that F t (x) = x. A state belonging to a periodic
orbit is named periodic point. When a periodic orbit consists of a unique state, it
is named �xed point, while in other case, the orbit is named cycle. In contrast, an
orbit is said to be non-periodic, if there is a con�guration x of the orbit such that
F t (x) 6= x, ∀t ∈ N. A non-periodic orbit that reaches a periodic point (resp. �xed
point) after a �nite number of iterations is said to be an eventually periodic orbit
(resp. eventually �xed point), and the states of such an orbit are named eventually
periodic points (resp. eventually �xed points). Since the set of states is �nite, in our
context, every non-periodic orbit is eventually periodic (or eventually �xed).

Example 2.3. In Example 2.1, the phase portrait of the system is described in Fig-
ure 2.2. Thus, Orb (1, 1, 1) = Orb (0, 1, 1) = {(1, 1, 1) , (0, 1, 1)} is the only periodic
orbit of the system, while, for instance, Orb (0, 0, 0) = {(0, 0, 0) , (1, 1, 1) , (0, 1, 1)}
and Orb (0, 1, 0) = {(0, 1, 0) , (1, 1, 0) , (0, 0, 0) , (1, 1, 1) , (0, 1, 1)}.

The orbits of PDS, SDS, PDDS and SDDS are ordered sequences of con�gura-
tions that can be enumerated by increasing integers. In this context, it is worthwhile
to recall that, given a discrete dynamical system with evolution operator F and an
initial state x, y = F (x) is said to be the successor of the state x. Since a dy-
namical system is deterministic, there exists exactly one successor for each state,
but a con�guration could be the successor of more than one state, which are called
its predecessors. If there is not a state x such that F (x) = y, then y is said to
be a Garden-of-Eden (GOE) point of the system. That is, y is a state without
predecessors. The set of GOE states of the system is denoted by GOE [F ].
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In our particular case, as the state space of the system is �nite, every orbit
is either periodic or eventually periodic. This means that the evolution from any
initial state always reaches a periodic orbit, named an attractor [71]. If the attractor
consists of one state, this periodic orbit is called an attractor point, whereas if
it consists of two or more states, it is said to be an attractor cycle. Each state
belonging to an attractor is a periodic point.

A periodic point x belonging to a cycle satis�es that there exists an integer p > 1
such that F p (x) = x. Also, if for any integer 0 < t < p, F t (x) 6= x, then p is called
the period of the orbit of x.

At this point, the following concepts related to orbits arise naturally:

De�nition 2.4. In a F − PDS or F − SDS, an attractive periodic orbit is an orbit
such that there exists a state of the system which is not part of the periodic orbit,
but reaches it. Contrarily, a repulsive periodic orbit is an isolated periodic orbit,
non-reachable from any external state.

De�nition 2.5. In a F−PDS or F−SDS, we call basin of attraction of an attractive
periodic orbit to the set of states that reach such a periodic orbit.

De�nition 2.6. The time (number of iterations) that a state needs to reach an
attractor is denominated as its transient.

Given a generic [G,F ]−PDS or [G,F, π]−SDS and a con�guration y, we de�ne
the following subsets of V and subgraphs of G, which will be useful throughout this
thesis:

Let W ⊆ V (resp. W ′ ⊆ V ) be the set of entities such that the corresponding
variables appear in the maxterm or minterm generating the evolution operator F in
direct (resp. complemented) form. These sets W and W ′ are such that W ′ = W c.

Additionally, let us consider the following two subsets of W ′:

W ′
D = {i ∈ W ′ : AG (i) ∩W 6= ∅},

W ′
C = {i ∈ W ′ : AG (i) ∩W = ∅}.

Each element of W ′
D must be subclassi�ed according to the following condition:

if all its adjacent complemented vertices are adjacent to a direct vertex or not.
Speci�cally, we consider the following sets:

W ′α
D = {i ∈ W ′

D : AG (i) ∩W ′ ⊆ W ′
D},

W ′β
D = {i ∈ W ′

D : AG (i) ∩W ′
C 6= ∅}.
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Let G1, . . . , Gp be the connected components which result from G when we re-
move all the vertices in W ′ and the edges adjacent to those vertices. On the other
hand, let C1, . . . , Cq be the connected components which result from G when we
remove all the vertices in W ∪W ′

D and the edges adjacent to those vertices. Addi-
tionally, let G∗ be the graph which results from G when we remove all the vertices
in W ′

C and the edges which are incident to those vertices.

For our purposes, sometimes, we will need to consider the subsystem restricted
to one of these subgraphs or restricted to the union of some of them. Let S be a
subgraph of G. Then, the subsystem restricted to S will be denoted as

[
S, F|S

]
−PDS

in the case of parallel update and
[
S, F|S , π|S

]
−SDS in the case of sequential update,

where F|S is the restriction of F to the vertices in S and π|S is the restriction of π
to the vertices in S.

It should be pointed out that this subgraph S may not be connected (as is, in
general, G∗). Therefore,

[
S, F|S

]
− PDS and

[
S, F|S , π|S

]
− SDS may be understood

as a set of independent PDS and SDS, respectively, in the sense that the evolution
in each one only depends on the restriction of F (and π in the case of sequential
update) to the connected component of S over which it is de�ned.

We will say that a vertex i ∈ W ′ and a connected component Gj are adjacent if
i is adjacent to any vertex of Gj. In this context, we de�ne the subsets W ′

1 and W
′
2

of W ′:

W ′
1 = {i ∈ W ′ : there exists a unique j, 1 ≤ j ≤ p, such that i is adjacent to Gj},

W ′
2 = W ′ \W ′

1.

For a con�guration y = (y1, . . . , yn), we will consider the split of V into the
following sets:

V0 = {i ∈ V : yi = 0},

V1 = {i ∈ V : yi = 1}.

Namely, V0 (resp. V1) is the set of deactivated (resp. activated) entities of y.
Although, such sets are associated with the con�guration y and could be denoted
by V0(y) and V1(y), for simplicity, we avoid to include y in the notation.

Additionally, only in the context of SDS, let us consider the following sets con-
tained in AG (V0):

P0 = {i ∈ V : ∃j ∈ V0 such that {i, j} ∈ E, i = πr, j = πs and s < r},

Q0 = {i ∈ V : ∃j ∈ V0 such that {i, j} ∈ E, i = πr, j = πs and s > r}.
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In other words, each element i belonging to P0 (resp. Q0) is adjacent to a vertex
j ∈ V0 which is updated, according the order expressed in π, before (resp. after) i.
As in the case of V0 (resp. V1, we will avoid to include y in the notation of P0 (resp.
Q0).

Similarly for V1, we consider the sets P1 and Q1 contained in AG (V1):

P1 = {i ∈ V : ∃j ∈ V1 such that {i, j} ∈ E, i = πr, j = πs and s < r},

Q1 = {i ∈ V : ∃j ∈ V1 such that {i, j} ∈ E, i = πr, j = πs and s > r}.

Once all these subsets of V and subgraphs of G have been de�ned, for the sake
of clarity, let us illustrate all these de�nitions with an example:

Example 2.4. Let G = (V,E) be the graph de�ned by V = {1, . . . , 8} and E =
{{1, 2}, {2, 4}, {3, 4}, {3, 5}, {4, 6}, {4, 7}, {7, 8}} (see Figure 2.4).

1

2 3

4

5

6 7

8

Figure 2.4: Graph G = ({1, . . . , 8}, {{1, 2}, {2, 4}, {3, 4}, {3, 5}, {4, 6}, {4, 7}, {7, 8}}).

Let us consider the identity permutation over 8 elements, π = id, as updating
order, and the maxterm:

MAX = x1 ∨ x2 ∨ x3 ∨ x′4 ∨ x′5 ∨ x′6 ∨ x′7 ∨ x′8.

Let [G,MAX, π] − SDS be the sequential dynamical system over G associated
with the maxterm Boolean function MAX.

From MAX, we obtain the sets of entities whose associated variables are direct
(W ) or complemented (W ′): W = {1, 2, 3} and W ′ = {4, 5, 6, 7, 8}. Inside W ′,
the set of entities which are adjacent to a vertex associated to a direct variable is
W ′
D = {4, 5}, while W ′

C = {6, 7, 8} is the set of entities not satisfying this condition.
Finally, inside W ′

D, 4 is adjacent to 6, which is adjacent only to complemented
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vertices, and 5 do not have adjacent vertices satisfying this condition, so W ′α
D = {5}

and W ′β
D = {4}.

In this case, there are p = 2 connected components, subgraphs of G, which
result when we remove all the vertices in W ′ and the edges adjacent to them: G1 =
({1, 2}, {{1, 2}}) and G2 = ({3}, ∅); and q = 2 connected components, subgraphs of
G, which result when we remove all the vertices in W ∪W ′

D and the edges adjacent
to them: C1 = ({6}, ∅) and C2 = ({7, 8}, {{7, 8}}).

The subsystems restricted to these subgraphs are, respectively:

[({1, 2}, {{1, 2}}) , x1 ∨ x2, id]− SDS,

[({3}, ∅) , x3, id]− SDS,

[({6}, ∅) , x′6, id]− SDS,

[({7, 8}, {{7, 8}}) , x′7 ∨ x′8, id]− SDS.

Additionally, the graph G∗ = ({1, 2, 3, 4, 5}, {{1, 2}, {2, 4}, {3, 4}, {3, 5}}), being[
G∗,MAX|G∗ , π|G∗

]
− SDS the system de�ned over this graph G∗ on a maxterm

MAX|G∗ = x1 ∨ x2 ∨ x3 ∨ x′4 ∨ x′5 and order relationship π|G∗ = 1|2|3|4|5.
Knowing W ′, G1 and G2, we have that the only vertex belonging to W ′ adjacent

to a unique Gj generates W ′
1 = {5}, and the others in W ′ form the set W ′

2 =
{4, 6, 7, 8}.

Lastly, let us consider the con�guration y = (0, 1, 1, 0, 0, 1, 1, 1). The set of
entities activated is V1 = {2, 3, 6, 7, 8} and deactivated is V0 = {1, 4, 5}. Thus,
1 ∈ Q1 because {1, 2} ∈ E, 2 ∈ V1 and 2 updates after 1; 2 ∈ P0 because of 1, and
2 ∈ Q0 because of 4; 3 ∈ Q0 because of 4 (and 5); 4 ∈ P1 because of 2 (and 3),
and 4 ∈ Q1 because of 6 (and 7); 5 ∈ P1 because of 3; 6 ∈ P0 because of 4; 7 ∈ P0

because of 4, and 7 ∈ Q1 because of 8; and 8 ∈ P1 because of 7. So, P0 = {2, 6, 7},
Q0 = {2, 3}, P1 = {4, 5, 8} and Q1 = {1, 4, 7}.

As last appreciations in terms of notation, when a max or
∑

expression appears
along this dissertation acting over an empty set, we will consider 0 as default value
in this situation.

Finally, in this thesis, the results will be expressed (and proved) in terms of
evolution operators generated from general maxterms. That way, the dual results
in terms of minterms (obtained by interchanging OR (∨) by AND (∧) and the
elements 0's (resp. 1's) by 1's (resp. 0's)) become automatically proved by the
duality principle in Boolean algebras (see [24, 98]).
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Chapter 3

Advances in Parallel Dynamical

Systems

In this chapter, we perform a complete analysis of the dynamics in parallel dy-
namical systems on maxterm and minterm Boolean functions over undirected depen-
dency graphs. The study is divided into two sections according to the methodology
of research: dynamics of periodic orbits and dynamics of non-periodic orbits.

3.1 Dynamics of periodic orbits

In this section, the dynamics of periodic orbits are analyzed, solving the problems
of existence and coexistence of them in MAX−PDS and MIN−PDS, and obtaining
an upper bound for their number. We specially focus on that cases in which there
is a unique periodic orbit, which acts as the unique (global) attractor for the rest of
orbits of the system.

3.1.1 Existence of periodic orbits

As a starting point in the study of the dynamics of periodic orbits in PDS, we
begin by analyzing the orbital structure of a PDS on a general maxterm or minterm
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as evolution operator. Speci�cally, we study the type of periodic orbits that such a
system can present.

Some previous works (see, for example, [28]) deal with this topic in the case of
the simplest maxterm or minterm functions. Also, a generalization of these previous
studies is given in [17], where it is shown that the only periodic orbits of a PDS on a
general maxterm or minterm Boolean function are �xed points and periodic orbits
of period 2.

Theorem 3.1 (Periodic structure of MAX−PDS). Let [G,MAX]−PDS be a parallel
dynamical system over a dependency graph G = (V,E) associated with the maxterm
MAX. Then, all the periodic orbits of this system are �xed points or 2-periodic orbits,
while the rest of the orbits are eventually �xed points or eventually periodic orbits.

Proof. See [17].

Remark 3.1. The proof of Theorem 3.1 provides information about asymptotic be-
havior of the entities in a MAX − PDS, which will be essential throughout this
dissertation:

• Each i ∈ W �xes its state value after a certain number of iterations.

• When a periodic orbit is reached, each i ∈ W ′
D has state value 1.

• The period comes from the evolution of the vertices belonging to W ′
C .

Dually, we have the following theorem also proved in [17].

Theorem 3.2 (Periodic structure of MIN−PDS). Let [G,MIN]−PDS be a parallel
dynamical system over a dependency graph G = (V,E) associated with the minterm
MIN. Then, all the periodic orbits of this system are �xed points or 2-periodic orbits,
while the rest of the orbits are eventually �xed points or eventually periodic orbits.

As a direct consequence of these theorems, the following results for some special
classes of maxterm and minterm Boolean functions can be established [17].

Corollary 3.1. Let [G,OR]−PDS be a parallel dynamical system over a dependency
graph G = (V,E) associated with the maxterm OR. Then, all the periodic orbits of
this system are �xed points. In fact, there are exactly two �xed points, namely, I
and O.
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Corollary 3.2. Let [G,NAND]−PDS be a parallel dynamical system over a depen-
dency graph G = (V,E) associated with the maxterm NAND. Then, all the periodic
orbits of this system are 2-periodic orbits.

Dually, we have the following results.

Corollary 3.3. Let [G,AND]− PDS be a parallel dynamical system over a depen-
dency graph G = (V,E) associated with the minterm AND. Then, all the periodic
orbits of this system are �xed points. In fact, there are exactly two �xed points,
namely, O and I.

Corollary 3.4. Let [G,NOR]− PDS be a parallel dynamical system over a depen-
dency graph G = (V,E) associated with the minterm NOR. Then, all the periodic
orbits of this system are 2-periodic orbits.

3.1.2 Coexistence of periodic orbits

In Theorem 3.1 (resp. Theorem 3.2) of Subsection 3.1.1, it has been shown that
the periodic orbits of a MAX − PDS (resp. MIN − PDS) are �xed points or 2-
periodic orbits. Moreover, when the maxterm MAX (resp. minterm MIN) has all
the variables in its direct form, then only (eventually) �xed points can appear, while
if it has all the variables in its complemented form, then only (eventually) 2-periodic
orbits are possible.

However, some important questions remained open. One of them consists in
studying the coexistence of periodic orbits with di�erent periods in the same sense
of Sharkovsky's Theorem [102, 108] for PDS with general maxterm (resp. minterm)
functions as evolution operators. In other words, it consists in guessing whether the
existence of certain periods implies the appearance of other ones in a similar way to
Sharkovsky's order. Concerning this question, next, we demonstrate that periodic
orbits with di�erent periods cannot coexist.

In order to do that, we describe the structure that a PDS must have in order
to admit (eventually) �xed points. We will outline the reasonings for the case of a
MAX− PDS, although all of them can be dually rewritten for a MIN− PDS.

Theorem 3.3. Let [G,MAX] − PDS be a parallel dynamical system over a depen-
dency graph G = (V,E) associated with the maxterm MAX. Then, all the periodic
orbits of this system are �xed points if, and only if, W ′

C = ∅.
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Proof. In the case W ′ = ∅, the system has only two �xed points: I and O (see
Corollary 3.1 in Subsection 3.1.1 and [28]). Let us analyze now the general case
when W ′ 6= ∅:

First, assume that all the periodic orbits of this system are �xed points. Take
x̂ = (x̂1, . . . , x̂n) a �xed point, where x̂i represents the (�xed) value of the vertex
i ∈ V . Note that, for all i ∈ W ′, it must be x̂i = 1. Otherwise (i.e., if x̂i = 0), it
would change to 1 after the following iteration.

Suppose that there exists i ∈ W ′
C . In such a case AG (i) ⊆ W ′ and so, for every

j ∈ AG (i), x̂j = x̂i = 1. But this is not possible, since in the following iteration the
value of i would change to 0, which is a contradiction.

To prove the converse implication, let us suppose that for all i ∈ W ′, it is
W ∩ AG (i) 6= ∅. We will write xki to indicate the state value of the entity i after k
iterations of the evolution operator MAX. Thus, let us consider an arbitrary initial
value for the variables (x01, . . . , x

0
n). Since the dependency graph is �nite (and so is

the state space), note that after a certain number of iterations, let us say r ∈ N, the
states of all the vertices belonging toW become �xed (see Remark 3.1 in Subsection
3.1.1). Let us take i ∈ W ′ and let us prove that xr+1

i = 1. In fact, let us suppose
that xr+1

i = 0 and take j ∈ W ∩ AG (i). Then, it would be xr+2
j = 1 = xrj (since

we are assuming that the value of j is �xed from the iteration r). But then, since
xrj = 1, it must be xr+1

i = 1, which is a contradiction. Thus, xr+1
i = 1 for all i ∈ W ′

and these state values do not change, as can be easily inferred from the reasoning
above.

Therefore, all the variables of the system become �xed after r+ 1 iterations and
the proof �nishes.

Dually, we have the following theorem.

Theorem 3.4. Let [G,MIN]−PDS be a parallel dynamical system over a dependency
graph G = (V,E) associated with the minterm MIN. Then, all the periodic orbits of
this system are �xed points if, and only if, W ′

C = ∅.

In view of Theorems 3.3 and 3.4, we will call �xed-point PDS to a PDS which
only presents �xed points as periodic orbits.

Since all the periodic orbits of the system are �xed points or 2-periodic orbits
(see Theorem 3.1 of Subsection 3.1.1), as a consequence of Theorem 3.3 we have the
following result.

Theorem 3.5. Let [G,MAX] − PDS be a parallel dynamical system over a depen-
dency graph G = (V,E) associated with the maxterm MAX. Then, all the periodic
orbits of this system are 2-periodic orbits if, and only if, W ′

C 6= ∅.
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Proof. First, assume that all the periodic orbits of this system are 2-periodic
orbits. If the theses were not true, that is, if for all i ∈ W ′ it is W ∩ AG (i) 6= ∅,
then from Theorem 3.3 we have that all the periodic orbits of this system are �xed
points, which is a contradiction.

Conversely, let us suppose that there exists i ∈ W ′ such that W ∩ AG (i) = ∅.
If the system has a �xed point, reasoning as in the proof of Theorem 3.3, we get
that every complemented entity is adjacent to a direct one, which is a contradiction.
Hence, all the periodic orbits of the system must be 2-periodic orbits.

Dually, we have the following theorem.

Theorem 3.6. Let [G,MIN]−PDS be a parallel dynamical system over a dependency
graph G = (V,E) associated with the minterm MIN. Then, all the periodic orbits of
this system are 2-periodic orbits if, and only if, W ′

C 6= ∅.

In view of Theorems 3.5 and 3.6, we will call 2-Periodic PDS to a PDS which
only presents periodic orbits of period 2.
Remark 3.2. Note that the cases when the evolution operator of the system is AND,
OR, NAND and NOR, studied in [28], can be immediately obtained as particular
cases of these theorems.

As a direct consequence of Theorems 3.3 and 3.5, we get the main result of this
subsection.

Corollary 3.5 (Coexistence of periods in MAX−PDS). Let [G,MAX]−PDS be a
parallel dynamical system over a dependency graph G = (V,E) associated with the
maxterm MAX. Then, (eventually) �xed points and (eventually) 2-periodic orbits
cannot coexist.

And its dual version.

Corollary 3.6 (Coexistence of periods in MIN − PDS). Let [G,MIN] − PDS be
a parallel dynamical system over a dependency graph G = (V,E) associated with
the minterm MIN. Then, (eventually) �xed points and (eventually) 2-periodic orbits
cannot coexist.

3.1.3 Uniqueness of �xed points

Our main objective in this subsection is to obtain a Fixed-Point Theorem for PDS
on maxterm and minterm Boolean functions. Observe that, although �xed points
and 2-periodic orbits cannot coexist, there are PDS whose state spaces contain more
than one �xed point, as shown in the following example.
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Example 3.1. Let us consider the graph G = (V,E) with V = {1, 2, 3} and E =
{{1, 2}, {2, 3}}, and let us take the evolution operator given by the maxterm

MAX = x1 ∨ x′2 ∨ x3.

The �xed points of this PDS are (1, 1, 0), (0, 1, 1), and (1, 1, 1).

Thus, it would be desirable to �nd conditions to assure that the system has a
unique �xed point. In order to do that, assume that the MAX−PDS has at least a
�xed point, that is, W ′

C = ∅ (see Theorems 3.3, 3.5 and Corollary 3.5 in Subsection
3.1.2).

Let x̂ = (x̂1, . . . , x̂n) be a �xed point of the system. As we have commented in
Remark 3.1 in Subsection 3.1.1, for all i ∈ W ′, x̂i = 1.

Furthermore, if j, 1 ≤ j ≤ p, is such that AG (Gj) ∩W ′
1 6= ∅, then for all i ∈ W

in Gj, x̂i = 1. In order to see that, note that in the �xed point x̂ all the vertices in
Gj must be either activated or deactivated. Let us take k ∈ AG (Gj)∩W ′

1. Then, if
x̂i = 0 for all i ∈ W in Gj, and since x̂i = 1 for all i ∈ AG (k) ∩W ′, then the state
of k will change to 0 after the next iteration, which is a contradiction.

Therefore, if for every j, 1 ≤ j ≤ p, AG (Gj) ∩W ′
1 6= ∅, then the system has a

unique �xed point: I.
On the other hand, if for a j, 1 ≤ j ≤ p, AG (Gj) ∩W ′

1 = ∅, then in a �xed
point two situations are possible: either all the vertices in Gj are activated or all of
them are deactivated. Regarding this last comment, we must point out that given
i ∈ W ′

2, if Gi1 , . . . , Gil(i) , 2 ≤ l (i) ≤ p, are the connected components adjacent to i,
then not all these components can be deactivated simultaneously in the �xed point;
otherwise, the value of xi would change from 1 to 0 in the following iteration.

In view of the explanations above, we have proved the following result.

Theorem 3.7 (Fixed-Point Theorem for MAX− PDS). Let [G,MAX]− PDS be a
parallel dynamical system over a dependency graph G = (V,E) associated with the
maxterm MAX. Assume that W ′

C = ∅. Then, this PDS has a unique �xed point if,
and only if, for every j, 1 ≤ j ≤ p, AG (Gj) ∩W ′

1 6= ∅. In this situation, the unique
�xed point is I, and all the orbits converge to this �xed point.

Dually, we have the following theorem.

Theorem 3.8 (Fixed-Point Theorem for MIN − PDS). Let [G,MIN] − PDS be a
parallel dynamical system over a dependency graph G = (V,E) associated with the
minterm MIN. Assume that W ′

C = ∅. Then, this PDS has a unique �xed point if,
and only if, for every j, 1 ≤ j ≤ p, AG (Gj) ∩W ′

1 6= ∅. In this situation, the unique
�xed point is O, and all the orbits converge to this �xed point.
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3.1.4 Uniqueness of 2-periodic orbits

In Theorems 3.3, 3.5 and Corollary 3.5 of Subsection 3.1.2, it has been shown
that all the periodic orbits of a MAX − PDS are 2-periodic orbits if, and only if,
W ′
C 6= ∅, i.e., there exists i ∈ W ′ such that W ∩ AG (i) = ∅.
Next, we look for conditions to assure the uniqueness of a 2-periodic orbit in a

MAX−PDS. In order to do that, we will use the following result where the particular
case MAX = NAND is analyzed. As usual, we denote by Kn the complete graph of
n vertices.

Proposition 3.1 (2-Periodic-Orbit Theorem for NAND−PDS). Let [G,NAND]−
PDS be a parallel dynamical system over a dependency graph G = (V,E) associated
with the maxterm NAND. Then, there is a unique 2-periodic orbit if, and only if, G
is a complete graph. In this situation, the unique 2-periodic orbit is {O, I}, and all
the orbits of the system converge to this 2-periodic orbit.

Proof. Firstly, note that according to the results quoted above (and independently
of the graph G), the only periodic orbits of a NAND − PDS are 2-periodic orbits
(see Corollary 3.2 in Subsection 3.1.1). Also, observe that the alternation of the
con�gurations I/O is always a 2-periodic orbit of the system. We will call this
orbit the activated/deactivated 2-period. Thus, the proof consists in proving that
the activated/deactivated 2-period is the unique 2-periodic orbit if, and only if, G
is complete.

First, let us assume that G = Kn. We will denote by xki the state value of the
vertex i after k iterations of the evolution operator. Let us consider an arbitrary
initial value for the variables (x01, . . . , x

0
n).

• If x0i = 1 for all i ∈ V , then x1i = 0 for all i ∈ V and we get the acti-
vated/deactivated 2-period.

• Otherwise, if x0j = 0 for any j ∈ V , then x1i = 1 for all i ∈ V and, again, we
get the activated/deactivated 2-period.

To prove the converse implication, we will show that if G 6= Kn, then there exists
a 2-periodic orbit di�erent from the activated/deactivated 2-period. Thus, assume
that G 6= Kn (which in particular implies that n ≥ 3) and choose i ∈ V such that
AG (i) 6= V .

Let us consider the following initial values for the variables:
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x0j = 1 for all j ∈ AG (i), and

x0j = 0 for all j /∈ AG (i).

Then, we have

x1j = 0 for all j ∈ V such that AG (j) ⊆ AG (i), and

x1j = 1 for all j ∈ V such that AG (j) * AG (i).

And �nally,

x2j = x0j for all j ∈ V .

Thus, we have found a 2-periodic orbit di�erent from the activated/deactivated
2-period, which ends the proof.

Dually, we have the following result.

Proposition 3.2 (2-Periodic-Orbit Theorem for NOR−PDS). Let [G,NOR]−PDS
be a parallel dynamical system over a dependency graph G = (V,E) associated with
the minterm NOR. Then, there is a unique 2-periodic orbit if, and only if, G is a
complete graph. In this situation, the unique 2-periodic orbit is {I,O}, and all the
orbits of the system converge to this 2-periodic orbit.

Let us take [G,MAX]−PDS a PDS over a dependency graph G = (V,E) associ-
ated with the maxterm MAX, and let us assume W ′

C 6= ∅, which means that all the
periodic orbits of the system are 2-periodic orbits. For a 2-periodic orbit reached
after r0 iterations (see Remark 3.1 in Subsection 3.1.1):

• If i ∈ W , then xri = xr0i for all r ≥ r0. In other words, the direct vertices do
not change their state (activated or deactivated) from the r0-th iteration on.
Moreover, in each connected component Gj, 1 ≤ j ≤ p, either all the variables
associated with the vertices in Gj have state value 1 or all of them have state
value 0.

• If i ∈ W ′
D (note that if MAX 6= NAND and W ′

C 6= ∅, then W ′
D 6= ∅), it follows

that xri = 1 for all r ≥ r0. In fact, suppose that there exists i ∈ W ′
D such

that (after the r0-th iteration) xi alternates the values 1 and 0, and assume
(without loss of generality) that xr0i = 0. Since i ∈ W ′

D, there exists a direct
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vertex j adjacent to i. Observe that it must be xr0j = 1. Otherwise (i.e., if
xr0j = 0), it would be xr0+1

j = xr0+1
i = 1, which is not possible (we are assuming

that the variables of all the direct vertices do not change their value after the
r0-th iteration). Then, being xr0j = 1, we get that xri = 1 for all r > r0, which
contradicts our initial assumption.

• The restriction of the system to each connected component Cj performs as a
NAND− PDS.

In view of this, it should be pointed out that, as commented in Chapter 2 about
G∗, this graph is not, in general, connected. Therefore, MAX − PDS|G∗ may be
understood as a set of independent PDS, in the sense that the evolution in each
one only depends on the restriction of MAX to the connected component of G∗ over
which it is de�ned. In this setting, by saying that MAX−PDS|G∗ has a unique �xed
point, we mean that all of these independent PDS over the connected components
of G∗ (if more than one) have a unique �xed point.

Then, we have the following theorem.

Theorem 3.9 (2-Periodic-Orbit Theorem for MAX− PDS). Let [G,MAX]− PDS
be a parallel dynamical system over a dependency graph G = (V,E) associated with
the maxterm MAX. Then, this system has a unique 2-periodic orbit if, and only if,
the following conditions are simultaneously satis�ed:

i) W ′
C 6= ∅.

ii) The subgraph of G generated by W ′
C is complete.

iii) Either MAX = NAND or MAX− PDS|G∗ has a unique �xed point.

Proof. In Proposition 3.1, we have already demonstrated the result when MAX =
NAND. Thus, let us assume that MAX 6= NAND.

Under this assumption, let us suppose that the MAX − PDS has a unique 2-
periodic orbit. First, note that, from Theorems 3.3, 3.5 and Corollary 3.5 in Sub-
section 3.1.2, there exists i ∈ W ′ such that W ∩ AG (i) = ∅, i.e., W ′

C 6= ∅.
Moreover, we know that, once the 2-period has been reached, the restriction of

the system to each connected component Cj, 1 ≤ j ≤ q, performs as a NAND−PDS.
Then, as the system has a unique 2-period, it must be q = 1. Consequently, from
Proposition 3.1, C1 (which coincides with the subgraph of G generated byW ′

C) must
be a complete graph.
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Finally, let us see that MAX − PDS|G∗ has a unique �xed point. Note that for
the system MAX− PDS|G∗ over G

∗, the subset of direct vertices coincides with the
one of MAX − PDS, W . On the other hand, the subset of complemented vertices
in MAX − PDS|G∗ is W

′
D. In particular, since in G∗ every complemented vertex is

adjacent to a direct vertex, all the periodic orbits of MAX−PDS|G∗ are �xed points.

Observe that, given a �xed point of MAX−PDS|G∗ , we can construct a 2-periodic
orbit of MAX−PDS by �xing the values of the variables associated with the vertices
inW∪W ′

D as in such �xed point, and considering the activated/deactivated 2-period
for the variables associated with the vertices in W ′

C . Hence, since MAX− PDS has
a unique 2-periodic orbit, it follows that MAX− PDS|G∗ has a unique �xed point.

Conversely, assume that W ′
C 6= ∅, the subgraph of G generated by W ′

C is com-
plete, and MAX− PDS|G∗ has a unique �xed point.

Firstly, since W ′
C 6= ∅, the only periodic orbits of MAX − PDS are 2-periodic

orbits (see Theorems 3.3, 3.5 and Corollary 3.5 of Subsection 3.1.2). On the other
hand, we know that the restriction of MAX to the subgraph of G generated by W ′

C

performs as a NAND − PDS once the 2-periodic orbit has been reached. Then,
since such a subgraph is complete, from Proposition 3.1, we get that the restric-
tion of a 2-periodic orbit of the system MAX − PDS to this subgraph is the acti-
vated/deactivated 2-period. We also know that in a 2-periodic orbit of MAX−PDS,
all the variables associated with the vertices in W ′

D �x their values to 1. To �nish
the proof, we will see that if MAX − PDS|G∗ has a unique �xed point, then in a
2-period of the system MAX−PDS all the variables associated to the vertices in W
�x their values to 1.

Observe that the connected components which result in G∗ when we remove all
its complemented vertices (i.e., the vertices inW ′

D) and the edges which are incident
to those vertices coincide with the ones for G, i.e., they are G1, . . . , Gp.

Since MAX− PDS|G∗ has a unique �xed point, from Theorem 3.7 in Subsection
3.1.3, we have that, for every j, 1 ≤ j ≤ p, there exists ij ∈ AG∗ (Gj) ∩W ′

D such
that ij /∈ AG∗ (Gk) for k 6= j.

Reasoning by reduction to the absurd, suppose that for a 2-periodic orbit of
MAX − PDS there exists a vertex i ∈ W whose variable �xes its value to 0. Let
Gj be the connected component containing i, and take ij ∈ AG∗ (Gj) ∩ W ′

D such
that ij /∈ AG∗ (Gk) for k 6= j. In particular, since ij ∈ W ′

D, its associated variable
�xes its value to 1 in the 2-periodic orbit. Regarding the variables associated with
the vertices in Gj, all of them �x their values to 0 in the 2-periodic orbit. Recall
also that the variables associated with the vertices in W ′

C alternates the states: all
of them activated/all of them deactivated. In particular, for an iteration in which
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all the variables associated with the vertices in W ′
C are activated, we have that

the variables associated with direct vertices adjacent to ij are deactivated, and the
variables associated with complemented vertices adjacent to ij are activated. But
it implies that the value of the variable xij would change from 1 to 0 in the next
iteration, which is a contradiction. Therefore, all the variables associated with the
vertices in W �x their values to 1 in the 2-periodic orbit and the proof �nishes.

Dually, we have the following result.

Theorem 3.10 (2-Periodic-Orbit Theorem for MIN − PDS). Let [G,MIN] − PDS
be a parallel dynamical system over a dependency graph G = (V,E) associated with
the minterm MIN. Then, this system has a unique 2-periodic orbit if, and only if,
the following conditions are simultaneously satis�ed:

i) W ′
C 6= ∅.

ii) The subgraph of G generated by W ′
C is complete.

iii) Either MIN = NOR or MIN− PDS|G∗ has a unique �xed point.

3.1.5 Maximum number of �xed points

In Theorems 3.3, 3.5 and Corollary 3.5 of Subsection 3.1.2, it has been proved
that all the periodic orbits of a MAX−PDS are �xed points if, and only if, W ′

C = ∅,
i.e., W ∩AG (i) 6= ∅ for all i ∈ W ′. Moreover, from Theorem 3.7 in Subsection 3.1.3
we know that there is a unique �xed point if, and only if, AG (Gj) ∩W ′

1 6= ∅ for all
j, 1 ≤ j ≤ p.

Throughout this subsection, we will deal with a MAX−PDS over a dependency
graph G such that W ∩ AG (i) 6= ∅ for all i ∈ W ′, i.e., such that its periodic orbits
are only �xed points. Our aim is to �nd an upper bound for the number of �xed
points, taking into account the adjacency structure of G and the maxterm MAX.

In the simplest case, whenW ′ = ∅ (i.e., MAX = OR), there are two �xed points:
I and O (see Corollary 3.1 in Subsection 3.1.1 and [28]).

Hence, let us assume that W ′ 6= ∅. Recall that, if x̂ = (x̂1, . . . , x̂n) is a �xed
point, where x̂i represents the (�xed) state value of the vertex i ∈ V , then x̂i = 1 for
all i ∈ W ′ (see Remark 3.1 in Subsection 3.1.1 for the details). Moreover, for each
j, 1 ≤ j ≤ p, two situations are possible: either all the vertices in Gj are activated
or all of them are deactivated in the �xed point. Regarding this last comment, note
that not all the vertices in W can be deactivated simultaneously; otherwise, the
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values of the variables associated to the vertices in W ′ would change from 1 to 0 in
the following iteration.

At this point, we have the following theorem.

Theorem 3.11. Let [G,MAX]−PDS be a parallel dynamical system over a depen-
dency graph G = (V,E) associated with the maxterm MAX. Then:

• If W ′ = ∅ (i.e., MAX = OR), there are exactly two �xed points: I and O.

• If W ′ 6= ∅ and W ∩ AG (i) 6= ∅ holds for all i ∈ W ′ (i.e., the periodic orbits
are only �xed points), then there are at most 2p − 1 �xed points, being p the
number of connected components which result from G when we remove all the
vertices in W ′ and the edges which are incident to those vertices.

Dually, we have the following result.

Theorem 3.12. Let [G,MIN]− PDS be a parallel dynamical system over a depen-
dency graph G = (V,E) associated with the minterm MIN. Then:

• If W ′ = ∅ (i.e., MIN = AND), there are exactly two �xed points: O and I.

• If W ′ 6= ∅ and W ∩ AG (i) 6= ∅ holds for all i ∈ W ′ (i.e., the periodic orbits
are only �xed points), then there are at most 2p − 1 �xed points, being p the
number of connected components which result from G when we remove all the
vertices in W ′ and the edges which are incident to those vertices.

Next, we construct a PDS associated with a particular maxterm MAX where the
upper bound obtained in Theorem 3.11 is attained. A dual example of a MIN−PDS
can be similarly constructed where the upper bound obtained in Theorem 3.12 is
attained.

Example 3.2. Let us consider the star graph G = (V,E) with V = {1, . . . , n},
n = p + 1 ≥ 2, and E = {{1, i} : i = 2, . . . , n}, and take the PDS over G whose
evolution operator is the maxterm:

MAX = x′1 ∨ x2 ∨ · · · ∨ xn.

For this system, W ′ = {1} and there are n − 1 = p connected components
Gj = {{j + 1}, ∅}, 1 ≤ j ≤ p. It can be easily checked that this system has 2p − 1
�xed points which result by �xing x1 = 1 and taking whichever combination for the
values of the variables xi, 2 ≤ i ≤ n, except the one with x2 = · · · = xn = 0.
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3.1.6 Maximum number of 2-periodic orbits

In this subsection, we establish an upper bound for the number of 2-periodic
orbits of a PDS with a Boolean maxterm (resp. minterm) as evolution operator.

To begin with, we analyze the particular case when MAX = NAND (resp. MIN =
NOR).

Proposition 3.3. Let [G,NAND] − PDS be a parallel dynamical system over a
dependency graph G = (V,E) associated with the maxterm NAND. Let P (V ) be the
power set of V and

Θ = {AG (Q) : Q ∈ P (V )}.

Then, the number of 2-periodic orbits of the system is |Θ|/2.

Proof. Let x0 = (x01, . . . , x
0
n) be a con�guration of state values for the variables

associated with the vertices in V = {1, . . . , n}, and consider the sets V0 and V1
associated to x0:

V0 = {i ∈ V : x0i = 0},

V1 = {i ∈ V : x0i = 1}.

We will see that x0 is a 2-periodic point of NAND−PDS if, and only if, V1 ∈ Θ
(i.e., if, and only if, there exists Q ∈ P (V ) such that AG (Q) = V1).

Firstly, assume that x0 is a 2-periodic point of NAND − PDS. Let x1 be the
con�guration after an iteration and take Q = {i ∈ V : x1i = 0}. Then, taking into
account that after another iteration x2 = x0, we have that AG (Q) = V1.

Conversely, assume that for the con�guration x0 there exists Q ∈ P (V ) such
that AG (Q) = V1.

If Q = ∅, then V1 = AG (Q) = ∅, i.e., all the entities are deactivated in x0 and so
it is a 2-periodic point (part of the activated/deactivated 2-period). If Q 6= ∅, after
one iteration:

• If i ∈ V1 = AG (Q), we distinguish two cases:

◦ If i ∈ Q, then x1i = 0 since x0j = 1 for all j ∈ AG (i).

◦ If i ∈ AG (Q) \Q, then
� either x1i = 1, provided that i is adjacent to any vertex j ∈ V0 =
V \ AG (Q),
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� or x1i = 0, provided that AG (i) ∩ V0 = ∅.

• If i ∈ V0, then x1i = 1.

Now, it is straightforward to check that x2i = x0i after another iteration for all
i ∈ V , namely, x0 is a 2-periodic point.

The proof �nishes by observing that every 2-periodic orbit consists of two (dis-
tinct) 2-periodic points.

Dually, we have the following result.

Proposition 3.4. Let [G,NOR]−PDS be a parallel dynamical system over a depen-
dency graph G = (V,E) associated with the minterm NOR. Let P (V ) be the power
set of V and

Θ = {AG (Q) : Q ∈ P (V )}.

Then, the number of 2-periodic orbits of the system is |Θ|/2.

Thanks to Proposition 3.3 (resp. Proposition 3.4), we can obtain an upper bound
for the number of 2-periodic orbits of a NAND − PDS (resp. NOR − PDS) over a
dependency graph G = (V,E), which only depends on the number n of vertices of
V .

Proposition 3.5. Let [G,NAND] − PDS be a parallel dynamical system over a
dependency graph G = (V,E) associated with the maxterm NAND. Then, the number
of 2-periodic orbits of the system is, at most, max{1, 2n−2}.

Proof. The cases n = 1 and n = 2 follow directly by observing that G is complete
(see Proposition 3.1 in Subsection 3.1.4) and therefore there is a unique 2-periodic
orbit. Thus, let us assume that n ≥ 3.

Let us take T ∈ Θ, where Θ is the subset of P (V ) de�ned in Proposition 3.3.
Then, there exists Q ∈ P (V ) such that AG (Q) = T .

Let us de�ne Pi = V \AG (i). Namely, a vertex j ∈ V belongs to Pi if j 6= i and
it is not adjacent to i. Then, it can be easily checked that V \T = ∩j∈QPj if T 6= ∅.
For our purposes, we will take ∩j∈∅Pj = V \ ∅ = V .

Consequently, if T belongs to Θ, we de�ne

Ω = {∩j∈QPj : Q ∈ P (V )} 3 V \ T.

Note that |Θ| = |Ω|. Let us see that, for n ≥ 3, |Ω| ≤ 2n−1.
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Since G is connected, there exist i1, i2 ∈ V which are adjacent, and so i1 /∈ Pi2
and i2 /∈ Pi1 .

Let us take Γ = {Q ∈ P (V ) : i1 ∈ Q or i2 ∈ Q}. Then, |Γ| = (3/4) 2n. Moreover,
for Q ∈ Γ, we have that i1, i2 /∈ ∩j∈QPj, which means that

|{∩j∈QPj : Q ∈ Γ}| ≤ 1

4
2n.

Therefore, considering that |P (V ) \ Γ| = (1/4)2n,

|Θ| = |Ω| = |{∩j∈QPj : Q ∈ Γ}|+ |{∩j∈QPj : Q ∈ P (V ) \ Γ}| ≤ 1

4
2n +

1

4
2n = 2n−1.

This inequality, jointly with Proposition 3.3, allow us to get our thesis.

Dually, we have the following result.

Proposition 3.6. Let [G,NOR] − PDS be a parallel dynamical system over a de-
pendency graph G = (V,E) associated with the minterm NOR. Then, the number of
2-periodic orbits of the system is, at most, max{1, 2n−2}.

Next, we construct a NAND−PDS where the upper bound obtained in Proposi-
tion 3.5 is attained. A dual example for a NOR−PDS can be similarly constructed
where the upper bound obtained in Proposition 3.6 is attained.

Example 3.3. Let us consider the start graph G = (V,E) with V = {1, . . . , n},
n ≥ 1, E = {{1, i} : i = 2, . . . , n}, and take the NAND− PDS over V .

This system has max{2, 2n−1} 2-periodic points:

• If n = 1, the con�gurations I and O.

• If n ≥ 2:

◦ Whichever con�guration of values with x01 = 1, except the one with x0j = 0
for all j 6= 1. That is, 2n−1 − 1 con�gurations.

◦ The con�guration with x0j = 0 for all j ∈ V .

Therefore, the system has 2n−2 2-periodic orbits.
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In view of this, we are able to obtain an upper bound for the number of 2-periodic
orbits of a PDS over a dependency graph G = (V,E) associated with an arbitrary
maxterm MAX.

Let nj be the number of vertices of Cj, 1 ≤ j ≤ q. In particular, if p = 0 then
MAX = NAND, q = 1, and we are under the assumptions of Proposition 3.5. Thus,
the number of 2-periodic orbits of the system is, at most, max{1, 2n1−2}.

We also know that, if x0 is a 2-periodic point of the system, then for all i ∈ W ′
D,

x0i = 1 (and so xri = 1 for all r ∈ N). Moreover, the restriction of the system
to each connected component Gj (resp. Cj) performs as an OR − PDS (resp. a
NAND − PDS) once a 2-periodic orbit has been reached. In particular, in each
connected component Gj, 1 ≤ j ≤ p, either all the vertices in Gj are activated or
all of them are deactivated in the 2-periodic point, which leads to 2p combinations.

Finally, observe that the con�guration where all the direct vertices are deacti-
vated and all the complemented vertices are activated is not a 2-periodic point, since
under these assumptions the variables associated with vertices in W ′

D would change
their values to 0 after an iteration, which is not possible as remarked above.

Therefore, using also Proposition 3.5, we have the following theorem proved.

Theorem 3.13. Let [G,MAX] − PDS be a parallel dynamical system over a de-
pendency graph G = (V,E) associated with the maxterm MAX, MAX 6= NAND,
such that W ′

C 6= ∅. Then, all the periodic orbits of the system are 2-periods and its
number is, at most, (

2p
∏q

j=1 max{2, 2nj−1}
2

)
− 1.

Observe that, in Theorem 3.13, we need that the maxterm is di�erent from
NAND, since otherwise p = 0, q = 1 and this upper bound is not available for the
number of 2-periodic orbits of the system (see Proposition 3.5 and Example 3.3).

Dually, we have the following result.

Theorem 3.14. Let [G,MIN]− PDS be a parallel dynamical system over a depen-
dency graph G = (V,E) associated with the minterm MIN, MIN 6= NOR, such that
W ′
C 6= ∅. Then, all the periodic orbits of the system are 2-periods and its number is,

at most, (
2p
∏q

j=1 max{2, 2nj−1}
2

)
− 1.
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To �nish, in the following example, we construct a MAX−PDS where the upper
bound obtained in Theorem 3.13 is attained. A dual example of a MIN−PDS can be
similarly constructed where the upper bound obtained in Theorem 3.14 is attained.

Example 3.4. Let us �x p > 0, q > 0, n1, . . . , nq > 0, and consider the following
sets of vertices:

• W = {d1, . . . , dp}.

• W ′
D = {c1}.

• W ′
Cj

= {cj1, . . . , cjnj} for j = 1, . . . , q.

Then, we take as vertex set of the dependency graph V = W ∪W ′
D∪
(
∪qj=1W

′
Cj

)
.

Regarding the adjacencies among these vertices, we take the edges:

• {di, c1} for all 1 ≤ i ≤ p.

• {cjk, c1} for all 1 ≤ j ≤ q and 1 ≤ k ≤ nj.

• {cj1, cjk} for all 1 ≤ j ≤ q and 1 ≤ k ≤ nj.

All these edges form the edge set E.

Over this dependency graph G = (V,E), we consider the maxterm MAX whose
directed variables are the ones associated with the vertices in W and whose comple-
mented variables are those associated with the vertices in V \W .

In this PDS, we have p connected componentsG1, . . . , Gp, given byGi = {{di}, ∅}
for each i ∈ {1, . . . , p}, and q connected components C1, . . . , Cq, given by Cj =(
W ′
Cj
, {{cj1, cjk} : 1 ≤ k ≤ nj}

)
for each j ∈ {1, . . . , q}.

The system MAX− PDS over G constructed above has exactly(
2p
∏q

j=1 max{2, 2nj−1}
2

)
− 1.

2-periodic orbits, as can be reasoned taking into account that every connected com-
ponent Cj is a star graph like the one described in Example 3.3, and so the restriction
of the PDS to Cj has max{1, 2nj−2} 2-periodic orbits.
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3.2 Dynamics of non-periodic orbits

In this last section of the chapter, we study the dynamics of non-periodic orbits
until a periodic orbit is reached.

Firstly, we study the existence and uniqueness of predecessor, what naturally
leads us to explore the �eld of the Garden-of-Eden con�gurations of the system.

After that, we expose results about attractiveness of periodic orbits, basins of
attraction, and we analyze the maximum number of iterations needed to ensure that
any non-periodic point reaches a periodic one.

3.2.1 Predecessors and GOE con�gurations

The study of predecessors in network models is usually divided into four more
speci�c problems [31, 32]:

• Predecessor existence problem (PRE): Determining whether a predecessor ex-
ists for a given state.

• Unique predecessor problem (UPRE): Determining whether a predecessor is
the unique one for a given state.

• Coexistence of predecessors problem (APRE): Determining whether a prede-
cessor is not unique for a given state.

• Number of predecessors problem (#PRE): Counting the number of predeces-
sors of a given state, in case of non-uniqueness.

In this subsection, we solve the �rst one in the context of PDS on maxterm
and minterm Boolean functions. This allows us to get also a characterization of
the GOE of such systems. These results lead us to describe the structure of the
potential predecessors of a given state, what allows us to give results to solve the
rest of the problems in the mentioned context.

In order to solve the PRE problem, in the next theorem, we provide su�cient
and necessary conditions to know when a certain con�guration y is the successor of
another con�guration x, i.e., when y has at least a predecessor. These conditions
are expressed in simple and direct terms, becoming an agile and fast procedure to
determine whether a speci�c state of the entities has predecessors in a particular
PDS.
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Theorem 3.15. Let [G,MAX]−PDS be a parallel dynamical system over a depen-
dency graph G = (V,E) associated with the maxterm MAX. Then, a con�guration
has a predecessor if, and only if, every activated entity adjacent to a deactivated one
in such a con�guration is also adjacent to an activated entity which is not adjacent
to any deactivated one.

In other words, a con�guration y has a predecessor if, and only if, AG (Ac) = V1,
being A = AG (V0).

Proof. This constructive proof generates a predecessor state x of a current state
y, whenever possible, highlighting those conditions of y under which the existence
of a predecessor x is impossible.

In this case, we can split the set V1 associated to y into two subsets, corresponding
to the vertices adjacent to some vertices in V0, A∗G (V0), and the vertices which are
not adjacent to any vertex in V0, AG (V0)

c
, that is,

V1 = A∗G (V0) ∪ AG (V0)
c
.

Suppose, by reduction to the absurd, that there exists a con�guration y which
has a predecessor x, but one of the (activated) entities k such that yk = 1, which is
adjacent to one of V0, i.e., k ∈ A∗G (V0) is not adjacent to any entity in AG (V0)

c
.

Observe that if i ∈ V0, then for every entity j ∈ AG (i) it must be:

• xj = 0 when j ∈ W , and

• xj = 1 when j ∈ W ′,

since otherwise, yi = 1 and i /∈ V0. In particular, this occurs for every j ∈ AG (V0).

In such a context, since k ∈ A∗G (V0) ⊂ V1 is not adjacent to any entity in
AG (V0)

c
, it would be yk = 0, what is a contradiction.

Reciprocally, if, in a given con�guration y, every activated entity adjacent to a
deactivated one, is also adjacent to an activated entity which is not adjacent to any
deactivated one, then, to get a predecessor, x, of the given con�guration y, it should
be su�cient to take x as follows:

• For every entity j ∈ AG (V0)

◦ xj = 0 when j ∈ W , and
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◦ xj = 1 when j ∈ W ′.

• For every entity j ∈ AG (V0)
c

◦ xj = 1 when j ∈ W , and

◦ xj = 0 when j ∈ W ′.

Remark 3.3. Observe that, in the conditions of existence of predecessors in Theorem
3.15, each activated entity adjacent to a deactivated one acts as an articulation node
between deactivated entities and activated entities which are not adjacent to any
deactivated one. That is, in terms of the proof, the vertices in A∗G (V0) act as
connectors between vertices in V0 and vertices in AG (V0)

c
.

Dually, we have the following theorem.

Theorem 3.16. Let [G,MIN]− PDS be a parallel dynamical system over a depen-
dency graph G = (V,E) associated with the minterm MIN. Then, a con�guration has
a predecessor if, and only if, every deactivated entity adjacent to an activated one
in such a con�guration is also adjacent to a deactivated entity which is not adjacent
to any activated one.

In other words, a con�guration y has a predecessor if, and only if, AG (Ac) = V0,
being A = AG (V1).

Remark 3.4. Dually to the case in Theorem 3.15, in the conditions of Theorem
3.16, each deactivated entity adjacent to an activated one acts as an articulation
node between activated entities and deactivated entities which are not adjacent to
any activated one. That is, in terms of the proof, the vertices in A∗G (V1) act as
connectors between vertices in V1 and vertices in AG (V1)

c
.

Theorems 3.15 and 3.16 solve the PRE problem for PDS on maxterm and
minterm Boolean functions and allow us to establish a characterization of GOE
states of such systems.

Corollary 3.7 (Characterization of GOE in MAX − PDS). Let [G,MAX] − PDS
be a parallel dynamical system over a dependency graph G = (V,E) associated with
the maxterm MAX. Then, a con�guration is a GOE if, and only if, there exists
an activated entity adjacent to a deactivated one in such a con�guration, but not
adjacent to an activated entity which is not adjacent to any deactivated one.

In other words, a con�guration y is a GOE if, and only if, AG (Ac) 6= V1, being
A = AG (V0).
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Corollary 3.8 (Characterization of GOE in MIN− PDS). Let [G,MIN]− PDS be
a parallel dynamical system over a dependency graph G = (V,E) associated with
the minterm MIN. Then, a con�guration is a GOE if, and only if, there exists
a deactivated entity adjacent to an activated one in such a con�guration, but not
adjacent to a deactivated entity which is not adjacent to any activated one.

In other words, a con�guration y is a GOE if, and only if, AG (Ac) 6= V0, being
A = AG (V1).

In particular, taking this characterization into account, one can discover partic-
ular cases of GOE, and bounds for the number of them.

Corollary 3.9. Let [G,MAX] − PDS be a parallel dynamical system over a de-
pendency graph G = (V,E), with V = {1, . . . , n} and n ≥ 2, associated with the
maxterm MAX. A state of the system with only one activated entity has no prede-
cessors and, consequently, this con�guration is a GOE. Also, the con�gurations O
and I are never GOE so, the number of GOE points of the system, #GOE, is such
that

n ≤ #GOE ≤ 2n − 2.

Moreover, these bounds are the best possible because they are reachable.

Proof. The classi�cation as GOE or not GOE of these con�gurations is directly
obtained from Theorem 3.15 and Corollary 3.7. Thus, we must only prove that these
bounds are reachable, as it happens in the following example:

Let us consider the only PDS with n = 2 entities over the maxterm NAND. In
this case, there are 4 possible con�gurations: O and I, which are not GOE points
(in fact, they belong to a 2-cycle), and, on the other hand, (0, 1) and (1, 0), which
are GOE points of the system.

And now its dual version.

Corollary 3.10. Let [G,MIN] − PDS be a parallel dynamical system over a de-
pendency graph G = (V,E), with V = {1, . . . , n} and n ≥ 2, associated with the
minterm MIN. A state of the system with only one deactivated entity has no prede-
cessors and, consequently, this con�guration is a GOE. Also, the con�gurations I
and O are never GOE so, the number of GOE points of the system, #GOE, is such
that

n ≤ #GOE ≤ 2n − 2.

Moreover, these bounds are the best possible because they are reachable.
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Remark 3.5. In Corollary 3.9 (resp. Corollary 3.10), n ≥ 2 has been imposed. This
is necessary because a [G,MAX] − PDS (resp. [G,MIN] − PDS) with n = 1 has 2
�xed points, if W ′ = ∅, or one 2-cycle, if W = ∅. That is, all the orbits are periodic
and, consequently, it has not GOE points in any case.

The proof of Theorem 3.15 is constructive and provides information about the
structure of a predecessor of a given state of the system, when it exists. This
information is collected in the following two results.

Corollary 3.11. Let [G,MAX]−PDS be a parallel dynamical system over a depen-
dency graph G = (V,E) associated with the maxterm MAX. If a con�guration y has
a predecessor state x, such a predecessor has the following structure:

• If yi = 0, then, for every entity j ∈ AG (i):

◦ xj = 0 when j ∈ W , and

◦ xj = 1 when j ∈ W ′.

• If yi = 1, then there exists an entity j ∈ AG (i) such that it accomplishes one
of the following conditions:

◦ xj = 1 with j ∈ W , or

◦ xj = 0 with j ∈ W ′.

Proof. We can see it in the constructive process shown to prove Theorem 3.15.

Remark 3.6. In terms of Corollary 3.11, in the case of existence of predecessor for
a state y, there is always a con�guration x corresponding to a predecessor, that we
will call fundamental predecessor of y. This con�guration, which is proposed in the
(second part of the) proof of Theorem 3.15, is as follows:

• If i ∈ AG (V0), then:

◦ xi = 0 when i ∈ W , and

◦ xi = 1 when i ∈ W ′.

• If i ∈ AG (V0)
c
, then:

◦ xi = 1 with i ∈ W , and

◦ xi = 0 with i ∈ W ′.
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Thus, to know if a con�guration y has a predecessor, we only need to verify if
the corresponding con�guration x, candidate to be its fundamental predecessor, is
such that MAX (x) = y.

Dually, we have the following corollary.

Corollary 3.12. Let [G,MIN]−PDS be a parallel dynamical system over a depen-
dency graph G = (V,E) associated with the minterm MIN. If a con�guration y has
a predecessor state x, such a predecessor has the following structure:

• If yi = 1, then, for every entity j ∈ AG (i):

◦ xj = 1 when j ∈ W , and

◦ xj = 0 when j ∈ W ′.

• If yi = 0, then there exists an entity j ∈ AG (i) such that it accomplishes one
of the following conditions:

◦ xj = 0 with j ∈ W , or

◦ xj = 1 with j ∈ W ′.

Remark 3.7. As before, in terms of Corollary 3.12, in the case of existence of prede-
cessors for a state y, there is always a con�guration x corresponding to a predecessor,
that we will call fundamental predecessor of y. This con�guration is as follows:

• If i ∈ AG (V1), then:

◦ xi = 1 when i ∈ W , and

◦ xi = 0 when i ∈ W ′.

• If i ∈ AG (V1)
c
, then:

◦ xi = 0 with i ∈ W , and

◦ xi = 1 with i ∈ W ′.

Thus, to know if a con�guration y has a predecessor, as before, we only need to
verify if the corresponding con�guration x, candidate to be its fundamental prede-
cessor, is such that MIN (x) = y.



52 Advances in PDS

Observe that the entities whose state values are 0 (resp. 1) in the con�guration
y determine univocally their state values and the state values of their adjacent ones
in any predecessor x with respect to MAX − PDS (resp. MIN − PDS), when such
a predecessor exits. Nevertheless, for any entity whose state value is 1 (resp. 0) in
the con�guration y, it is only necessary the existence of an appropriate adjacent one
which provides such a value with the MAX−PDS (resp. MIN−PDS) updating. This
points out how to look for the solution to the UPRE, APRE and #PRE problems
in our context.

The following results are concerned with the determination of the possible pre-
decessors of a given con�guration y, once we know that at least one predecessor
x exists. As a consequence, we solve the UPRE and APRE problems for PDS on
maxterm and minterm Boolean functions.

Theorem 3.17. Let [G,MAX]−PDS be a parallel dynamical system over a depen-
dency graph G = (V,E) associated with the maxterm MAX. Let y be a con�guration
and suppose that it has a predecessor. Then, the predecessor of y is not unique if,
and only if, there exists an activated entity i ∈ AG (V0)

c
such that one of its adjacent

entities also belong to AG (V0)
c
and the rest of its adjacent ones, if any, are also

adjacent to other entities in AG (V0)
c
.

In other words, the predecessor of y is not unique if, and only if, there exists and
entity i ∈ AG (V0)

c
such that AG (Ac \ {i}) = V1, being A = AG (V0).

Proof. First of all, suppose that there exists such an activated entity i ∈ AG (V0)
c

in the con�guration y which is not adjacent to any deactivated one, such that one
of its adjacent entities also belong to AG (V0)

c
and the rest of its adjacent ones, if

any, are also adjacent to other entities in AG (V0)
c
. Remember that, since y has

a predecessor, the entities in AG (V0) at y determine univocally their state values
in any predecessor with respect to MAX − PDS. On the other hand, we can act
similarly as in the (second part of the) proof of Theorem 3.15 and for every entity
j ∈ AG (V0)

c
, j 6= i, to construct a predecessor con�guration, we can take as follows:

• xj = 1 when j ∈ W , and

• xj = 0 when j ∈ W ′.

Now, taking into account that some of the entities which are adjacent to i also
belong to AG (V0)

c
and the rest of its adjacent ones, if any, are also adjacent to other

entities in AG (V0)
c
, i and its adjacent vertices become activated, independently of
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the state value of i. That is, in such a predecessor construction, we can choose either
xi = 0 or xi = 1, so obtaining two di�erent con�gurations which are predecessors of
y.

Reciprocally, suppose that the con�guration y has more than one predecessor.
Again, the entities in AG (V0) in the con�guration y determine univocally their state
values in any predecessor with respect to MAX − PDS. Thus, the discrepancies
should be in the state values of entities belonging to AG (V0)

c
, that is, activated

and not adjacent to any deactivated one. Suppose that there is a discrepancy of
two predecessors in the state values of an entity i ∈ AG (V0)

c
. This means that the

entity i and its adjacent ones become activated in y independently of the state value
of i in such predecessors. Therefore, there should exist activated entities belonging
to AG (V0)

c
which are adjacent to i and its adjacent ones in A∗G (V0) to provide that

all of them have state value equal to 1 in the con�guration y.

Remark 3.8. In terms of Theorem 3.17, given a state y, if the con�guration x de�ned
as in Remark 3.6 is its (fundamental) predecessor, to know if this is its unique
predecessor, we must only verify if y has a predecessor belonging to the following
set:

P = {x̂ ∈ {0, 1}n : ∃ i ∈ AG (V0)
c
such that x̂i 6= xi and x̂j = xj ∀j ∈ V \ {i}}.

This result reduces an initial exponentially-sized problem, that is, the search of
a particular con�guration among the 2n possible states of the system, into another
one in which, at most, n cases must be analyzed. In this case, a short list of possible
candidates is provided and the evaluation of the evolution operator only over the
elements of this set provides the answer to the global problem of existence of a
unique predecessor for the state y.

Dually, we have the following theorem.

Theorem 3.18. Let [G,MIN]− PDS be a parallel dynamical system over a depen-
dency graph G = (V,E) associated with the minterm MIN. Let y be a con�guration
and suppose that it has a predecessor. Then, the predecessor of y is not unique if,
and only if, there exists a deactivated entity i ∈ AG (V1)

c
such that one of its ad-

jacent entities also belong to AG (V1)
c
and the rest of its adjacent ones, if any, are

also adjacent to other entities in AG (V1)
c
.

In other words, the predecessor of y is not unique if, and only if, there exists and
entity i ∈ AG (V1)

c
such that AG (Ac \ {i}) = V0, being A = AG (V1).

Remark 3.9. As for the MAX−PDS case, in terms of Theorem 3.18 for MIN−PDS,
given a state y, if the con�guration x de�ned as in Remark 3.7 is its (fundamental)
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predecessor, to know if this is its unique predecessor, we must only verify if y has a
predecessor belonging to the following set:

P = {x̂ ∈ {0, 1}n : ∃ i ∈ AG (V1)
c
such that x̂i 6= xi and x̂j = xj ∀j ∈ V \ {i}}.

As before, this result reduces the search of a particular con�guration among the
2n possible states of the system to, at most, n cases.

Once the existence of more than one predecessor is known, the following step is
to try to obtain the number of them for any given state. In the next two corollaries,
we explain how to obtain theoretically the set of all of them and, consequently, its
number, in order to solve the classical predecessor problem #PRE.

Corollary 3.13. Let [G,MAX]−PDS be a parallel dynamical system over a depen-
dency graph G = (V,E) associated with the maxterm MAX. Let y a con�guration
and

Pi = {x state : x satisfies the conditions in Corollary 3.11 for yi}.

Then, P =
⋂
i∈V Pi is the set of all the predecessor states of y.

Dually, we have the following corollary.

Corollary 3.14. Let [G,MIN]−PDS be a parallel dynamical system over a depen-
dency graph G = (V,E) associated with the minterm MIN. Let y be a con�guration
and

Pi = {x state : x satisfies the conditions in Corollary 3.12 for yi}.

Then, P =
⋂
i∈V Pi is the set of all the predecessor states of y.

In the case of MAX − PDS (resp. MIN − PDS), the con�guration O (resp. I)
has always a unique predecessor, by Theorems 3.15 and 3.17 (resp. Theorems 3.16
and 3.18). However, the calculus of the number of predecessors for a general state of
the entities di�erent from these ones depends on the connections among the entities
in the particular system. As traditionally done in other contexts, we have been able
to get a bound for the number of predecessors of a general con�guration, which is
given in the following theorem.

Theorem 3.19. Let [G,MAX] − PDS be a parallel dynamical system over a de-
pendency graph G = (V,E) associated with the maxterm MAX. Then, the number
of predecessors of a given con�guration y di�erent from O is upper bounded by

2#AG(V0)
c

− 1. In fact, such a bound is reachable.
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Proof. From Theorems 3.15 and 3.17, it is clear that the possible discrepancies
between predecessors correspond to di�erences in state values of entities in AG (V0)

c
.

Since the state values of any of these entities are either 0 or 1, a �rst bound for the
number of predecessors is 2#AG(V0)

c

.

However, if AG (V0)
c

= ∅, as we are assuming that y 6= O, at least one of the
entities has state value 1 and, by Theorem 3.15, y has not predecessors, while if
AG (V0)

c
6= ∅, a con�guration such that:

• xi = 0 when i ∈ W ∩ AG (V0)
c
, and

• xi = 1 when i ∈ W ′ ∩ AG (V0)
c
,

cannot be a predecessor of y. Thus, in any case, one con�guration must be discarded
from the previous bound.

In fact, such a bound 2#AG(V0)
c

− 1 is reachable. It is su�cient to consider a
[G,MAX]−PDS such that the subgraph corresponding to AG (V0)

c
is complete and

with the condition that each entity in such a set is adjacent to all the entities in
A∗G (V0).

Dually, we have the following theorem.

Theorem 3.20. Let [G,MIN]− PDS be a parallel dynamical system over a depen-
dency graph G = (V,E) associated with the minterm MIN. Then, the number of pre-

decessors of a given con�guration y di�erent from I is upper bounded by 2#AG(V1)
c

−1.
In fact, such a bound is reachable.

3.2.2 Convergence to periodic orbits: attractors, global at-

tractors, basins of attraction and transient

The study performed above helps us to give some results concerning the attrac-
tive character of �xed points and 2-periodic orbits of any PDS with a maxterm or
a minterm Boolean function as global evolution operator, their basins of attraction
and the transient (or width) of the system.

Attractive and repulsive periodic orbits

The concepts of attractive and repulsive periodic orbit have already been in-
troduced in this thesis in Chapter 2, in De�nition 2.4. In this context, for the
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determination of attractors, one can �nd some precedents in the literature, where
the problem is set out from the point of view of constructing a (numerical) algorithm
to �nd these attractors (see [4, 55, 75]).

It should be noted that, for a periodic orbit, the concept of attractiveness is
equivalent to have at least one of the states of the periodic orbit with a predecessor
di�erent from the one that it has in such a periodic orbit. That is, a periodic orbit is
attractive if one of the states of the orbit has at least two predecessors. In particular,
a �xed point with an additional predecessor di�erent from itself is an attractive �xed
point, while a �xed point without more predecessors than itself is a repulsive one.
Note that, in this last case, the repulsive �xed point cannot be considered a GOE,
although no other di�erent state converges to it. Thus, we can state the following
results that characterize the attractive or repulsive character.

Theorem 3.21. Let [G,MAX]−PDS be a parallel dynamical system over a depen-
dency graph G = (V,E) associated with the maxterm MAX. Then, a periodic orbit
is attractive if, and only if, for a state y of such a periodic orbit, there exists an
activated entity i ∈ AG (V0)

c
, such that one of its adjacent entities also belong to

AG (V0)
c
and the rest of its adjacent ones, if any, are also adjacent to other entities

in AG (V0)
c
.

In other words, a periodic orbit is attractive if, and only if, for a state y of such
a periodic orbit, there exists and entity i ∈ AG (V0)

c
such that AG (Ac \ {i}) = V1,

being A = AG (V0).

Proof. Since a periodic orbit is attractive if one of the states in such an orbit has
at least two predecessors, the result is a consequence of Theorem 3.17 in Subsection
3.2.1, where the existence of non-unique predecessors is characterized for this type
of PDS.

Dually, we have the following result.

Theorem 3.22. Let [G,MIN]− PDS be a parallel dynamical system over a depen-
dency graph G = (V,E) associated with the minterm MIN. Then, a periodic orbit
is attractive if, and only if, for a state y of such a periodic orbit, there exists a
deactivated entity i ∈ AG (V1)

c
, such that one of its adjacent entities also belong to

AG (V1)
c
and the rest of its adjacent ones, if any, are also adjacent to other entities

in AG (V1)
c
.

In other words, a periodic orbit is attractive if, and only if, for a state y of such
a periodic orbit, there exists and entity i ∈ AG (V1)

c
such that AG (Ac \ {i}) = V0,

being A = AG (V1).
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Observe that, when a PDS presents a unique �xed point, this is globally attrac-
tive. That is, the rest of the orbits of the system converges to such a �xed point.
Thus, we can state the conditions that characterize globally attractive �xed points
for this class of PDS.

Theorem 3.23. Let [G,MAX]−PDS be a parallel dynamical system over a depen-
dency graph G = (V,E) associated with the maxterm MAX. Then, this PDS has a
globally attractive �xed point if, and only if, W ′

C = ∅ and AG (Gj)∩W ′
1 6= ∅ for every

j, 1 ≤ j ≤ p. In this situation, the globally attractive �xed point is I.

Proof. Since a �xed point of a MAX − PDS is globally attractive if, and only if,
it is the unique �xed point of such a system, the result is a consequence of Theorem
3.7 in Subsection 3.1.3, which is, indeed, a Fixed-Point Theorem for this kind of
PDS.

Dually, we have the following theorem for MIN− PDS.

Theorem 3.24. Let [G,MIN]− PDS be a parallel dynamical system over a depen-
dency graph G = (V,E) associated with the minterm MIN. Then, this PDS has a
globally attractive �xed point if, and only if, W ′

C = ∅ and AG (Gj)∩W ′
1 6= ∅ for every

j, 1 ≤ j ≤ p. In this situation, the globally attractive �xed point is O.

A similar situation occurs when a PDS presents a unique 2-periodic orbit, being
such an orbit globally attractive. Thus, we can state the conditions that characterize
globally attractive 2-periodic orbits for this class of PDS.

Theorem 3.25. Let [G,MAX] − PDS be a parallel dynamical system over a de-
pendency graph G = (V,E) associated with the maxterm MAX. Then, this system
has a globally attractive 2-periodic orbit if, and only if, the following conditions are
simultaneously satis�ed:

i) W ′
C 6= ∅.

ii) The subgraph of G generated by W ′
C is complete.

iii) Either MAX = NAND or MAX− PDS|G∗ has a unique �xed point.

Proof. Since a 2-periodic orbit of a MAX−PDS is globally attractive if, and only
if, it is the unique 2-periodic orbit of such a system, the result is a consequence of
Theorem 3.9 in Subsection 3.1.4, where it is proved that the conditions i), ii) and
iii) allow us to assure this uniqueness.
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Theorem 3.26. Let [G,MIN] − PDS be a parallel dynamical system over a de-
pendency graph G = (V,E) associated with the minterm MIN. Then, this system
has a globally attractive 2-periodic orbit if, and only if, the following conditions are
simultaneously satis�ed:

i) W ′
C 6= ∅.

ii) The subgraph of G generated by W ′
C is complete.

iii) Either MIN = NOR or MIN− PDS|G∗ has a unique �xed point.

Other interesting dynamical situation occurs when a PDS presents more than one
periodic orbit, but only one of such periodic orbits is attractive. In such a case, every
non-periodic orbit converges to the unique attractive periodic one, which could be
said to be quasi-globally attractive. Quasi-globally attractive equilibria often appear
in experimental models as, for example, epidemiological dynamical models, where
the endemic equilibrium attracts all the states of the systems except the disease free
equilibrium (see, for instance, [26]). In our setting, this situation also occurs. For
instance, in the case of a PDS on the maxterm OR (resp. minterm AND), there is
always two �xed points, namely, I and O. As is well known ([28]), I (resp. O) is a
quasi-globally attractive �xed point for such OR− PDS (resp. AND− PDS), since
every non-periodic orbit converges to it.

Basin of attraction for attractive periodic orbits

Observe that periodic orbits act as organizational kernels of the dynamics of a
PDS, since every state �nally reaches one of such periodic orbits. In this sense, their
basins of attraction (see De�nition 2.5 in Chapter 2) allow us to describe the phase
diagram as much as possible, fractionating it into the di�erent trees that reach the
corresponding periodic orbits.

In particular, the basin of attraction of a repulsive periodic orbit is the empty
set. A mechanism for obtaining the basin of attraction of any attractive periodic
orbit is to get all the predecessors of such a periodic orbit, proceeding as explained
in Corollaries 3.13 and 3.14 of Subsection 3.2.1.

Dynamical concepts as attractiveness and basins of attraction of periodic orbits
highlight the importance of determining the set of GOE states, whose characteri-
zation can be seen in Corollaries 3.7 and 3.8 of Subsection 3.2.1. These states are
the beginning of a branch in the tree constituting a basin of attraction associated
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with an attractive periodic orbit. For this reason, they are crucial in order to es-
tablish the di�erent basins of attraction. Actually, all the orbits are periodic (and,
consequently, repulsive), if the PDS does not present GOE states. But, in view of
Corollaries 3.9, 3.10 and Remark 3.5 of Subsection 3.2.1, this is not possible except
in the trivial case corresponding to only one entity. Thus, we can state the following
corollary.

Corollary 3.15. Every homogeneous PDS on a maxterm or minterm Boolean func-
tion with more than one entity has attractors.

Transient to a �xed point in PDS

When studying basins of attraction in general, one of their interesting dynamic
features is the width of them, i.e., the maximum number of iterations needed by an
eventually periodic orbit to reach its corresponding periodic orbit, as we do hereafter.

As is well known, all the periodic orbits in a PDS on a maxterm or a minterm
Boolean function are either �xed points or 2-periodic orbits, while the rest of orbits
are eventually �xed points or eventually 2-periodic orbits (see Theorems 3.1 and 3.2
of Subsection 3.1.1). In particular, the simplest maxterm OR and minterm AND,
which present only �xed points, are studied in [28], showing that the maximum
number of iterations needed by an eventually �xed point to reach the corresponding
�xed point is, at most, the diameter of the dependency graph.

Regarding the more general context of PDS on general maxterm and minterm
Boolean functions, recall that �xed points and 2-periodic orbits cannot coexists (see
Corollaries 3.5 and 3.6 of Subsection 3.1.2). Due to that, we have to distinguish
between these two cases. Actually, we study now the transient of the non-periodic
orbits to �xed points.

Lemma 3.1. Let [G,MAX]−PDS be a parallel dynamical system over a dependency
graph G = (V,E) associated with the maxterm MAX. Then, a vertex i ∈ W ′α

D

takes permanent state value 1 at a maximum of mi + 2 iterations, being mi =
card (AG (i) ∩W ′).

Proof. Consider a vertex i ∈ W ′ such that AG (i) ∩W 6= ∅ and AG (i) ∩W ′ ⊆
AG (W ). Then, we can have only one of the following two possibilities:

• ∀t ≥ 0, xti = 1. Thus, i takes permanent state value 1 at 0 iterations. Since
0 < 2 ≤ 2 +mi, the result is proved in this case.
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• ∃T ≥ 0 such that xTi = 0, being the iteration T the �rst time that the variable
xi takes the value 0. In this situation, after the next iteration T + 1, we have
xT+1
i = 1 and xT+1

j = 1 ∀j ∈ AG (i) ∩W 6= ∅.
Due to that, any j ∈ AG (i) ∩W 6= ∅ makes i take permanent state value 1
from this iteration on.

In particular, if T ≤ 1, then i takes permanent state value 1 after, at most, 2
iterations. Since 2 ≤ 2 +mi, the result is proved also in this case.

Thus, suppose that T > 1. At this point, it must be ∀t < T , xti = 1 and xtj = 0
∀j ∈ AG (i) ∩W .

But, in such a situation, to make i have state value 1 for every 0 < t < T ,
∃k ∈ AG (i) ∩W ′ ⊆ AG (W ) such that xt−1k = 0 to provide that xti = 1. After
iteration t, the vertex k takes permanent state value 1.

Since there are mi vertices in AG (i)∩W ′, the maximum number of iterations
that xi can maintain its value equal to 1, before changing to 0, is mi. That is,
after at most mi iterations, every k ∈ AG (i)∩W ′ takes permanent state value
1. This makes i have state value 0 after the next iteration, what means that
T ≤ mi + 1. Consequently, T + 1 ≤ mi + 2, what proves the result in this last
case.

Theorem 3.27 (Transient in Fixed-Point MAX−PDS). Let [G,MAX]−PDS be a
parallel dynamical system over a dependency graph G = (V,E) associated with the
maxterm MAX, where the structure of G only allows �xed points as periodic orbits.
Then, every state of the system reaches a �xed point after a maximum of

max
k∈{1,...,p}

{diam (Gk)}+ max
i∈W ′
{mi + 2}

iterations, being mi = card (AG (i) ∩W ′), ∀i ∈ W ′.

Proof. First of all, observe that p > 0, because p = 0 implies that MAX = NAND
and this system does not allow �xed points, as it can be seen in Corollary 3.2 of
Subsection 3.1.1.

In particular, if W ′ = ∅, then MAX = OR and G is the only connected subgraph
resulting from the elimination in G of the vertices belonging toW ′ and their incident
edges. Then, as proved in [28], the system converges to a �xed point after, at most,
diam (Gk) iterations, what �ts with the expression of the upper bound.
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Thus, suppose that W ′ 6= ∅ (and p > 0). Recall that, as proved in Theorems 3.3,
3.5 and Corollary 3.5 of Subsection 3.1.2, a MAX− PDS only presents �xed points
as periodic orbits if, and only if, every complemented vertex is adjacent to a direct
vertex. For this reason, Lemma 3.1 can be applied to every i ∈ W ′.

Taking this into account, after maxi∈W ′{mi + 2} iterations, every i ∈ W ′ has
permanent state value 1. Therefore, after such a number of iterations, the com-
plemented vertices neither change their state value nor a�ect the state of other
vertices. Thus, the study of the evolution of the system can be reduced to analyze
what happens in the restriction to the subgraph induced by V \W ′.

That is, at this point, the behavior of the entire system can be obtained from the
study of the evolution in each connected subgraph G1, . . . , Gp. Since they only have
vertices associated with direct variables, we know that each local system restricted to
each Gk, k ∈ {1, . . . , p}, converges to a �xed point, and it takes, at most, diam (Gk)
iterations to reach it (see [28]). In view of this, in at most maxk∈{1,...,p}{diam (Gk)}
iterations, after the maxi∈W ′{mi + 2} iterations needed for ensuring that the state
values of the vertices in W ′ are �xed, every vertex in V \W ′ reaches a state value
which will not change anymore.

Therefore, after at most

max
k∈{1,...,p}

{diam (Gk)}+ max
i∈W ′
{mi + 2}

iterations, the system reaches a �xed point of the MAX− PDS.

Theorem 3.28 (Transient in Fixed-Point MIN − PDS). Let [G,MIN] − PDS be a
parallel dynamical system over a dependency graph G = (V,E) associated with the
minterm MIN, where the structure of G only allows �xed points as periodic orbits.
Then, every state of the system reaches a �xed point after a maximum of

max
k∈{1,...,p}

{diam (Gk)}+ max
i∈W ′
{mi + 2}

iterations, being mi = card (AG (i) ∩W ′), ∀i ∈ W ′.

Observe that, depending on the conditions of each parallel dynamical system,
some max expressions in Theorems 3.27 and 3.28 can be taken over an empty set.
Along this dissertation, we consider 0 as default value in these situations.

Theorem 3.27 gives an upper bound for the transient or width of a �xed-point
MAX− PDS. Actually, this upper bound is the best possible, since it is reachable,
as we show in the example below. A dual example in the case of a minterm MIN as
evolution operator can be similarly constructed, where the upper bound obtained
in Theorem 3.28 is reached.
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Example 3.5. Let us consider the �xed-point MAX − PDS over the line graph
G = (V,E), with V = {1, 2, 3} and E = {{1, 2}, {2, 3}} (see Figure 3.1) on the
maxterm Boolean function given by MAX = x′1 ∨ x2 ∨ x3.

1 2 3

Figure 3.1: Graph G = ({1, 2, 3}, {{1, 2}, {2, 3}}).

In this case, according to the notation in Theorem 3.27:

• W = {2, 3} and W ′ = {1} are the sets of vertices whose corresponding vari-
ables appear in MAX in direct and complemented form, respectively.

• There is p = 1 connected component which results from G when the only
complemented vertex and the only edge which incides to it are removed,G1 =
({2, 3}, {{2, 3}}). In this case, diam (G1) = 1.

• There are m1 = 0 vertices in W ′ adjacent to the only element in W ′.

Associated to this PDS, consider the initial (global) con�guration: (1, 0, 0).
Then, its orbit consists of the states:

(1, 0, 0)→ (0, 0, 0)→ (1, 1, 0)→ (1, 1, 1) .

That is, the orbit starting at (1, 0, 0) reaches the �xed point (1, 1, 1) after 3 =
diam (G1) + m1 + 2 iterations, and therefore the upper bound in Theorem 3.27 is
reached.

In Figure 3.2, we show the phase diagram of this PDS, where it can be easily
checked that 3 is its transient.

In addition, we are able to provide a pattern that can be considered to obtain
a PDS on a maxterm Boolean function for which any given (optimal upper bound)
transient is reached. A dual construction can be considered to achieve a pattern in
the case of PDS on minterm Boolean functions.

Example 3.6. Let us consider the following collection of parallel dynamical systems
F = {PDSk : k ∈ N} where each PDSk is de�ned as follows:
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Figure 3.2: Phase portrait of the system [({1, 2, 3}, {{1, 2}, {2, 3}}) , x′
1 ∨ x2 ∨ x3]− PDS.

1 2

Figure 3.3: Graph G1 = ({1, 2}, {{1, 2}}).

• k = 1: PDS1 is de�ned as the parallel dynamical system over G1 = (V1, E1)
with V1 = {1, 2}, E1 = {{1, 2}} (see Figure 3.3),
and whose evolution operator is the maxterm MAX1 = x′1 ∨ x2.
In this case, according to the notation in Theorem 3.27:

◦ W1 = {2} and W ′
1 = {1} are the sets of vertices whose corresponding

variables appear in MAX1, respectively, in direct and complemented form.

◦ There is p1 = 1 connected component which results from G1 when the
only complemented vertex and the only edge which are incident to it are
removed, G1,1 = ({2}, ∅). In this case, diam (G1,1) = 0.

◦ There are m1,1 = 0 vertices in W ′
1 adjacent to the only element in W ′

1.

• k = 2: PDS2 is de�ned as the parallel dynamical system over G2 = (V2, E2)
with V2 = {1, 2, 3, 4}, E2 = {{1, 2}, {3, 4}, {1, 3}} (see Figure 3.4),

1 2

3 4

Figure 3.4: Graph G2 = ({1, 2, 3, 4}, {{1, 2}, {3, 4}, {1, 3}}).
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and whose evolution operator is the maxterm MAX2 = x′1 ∨ x2 ∨ x′3 ∨ x4.
According to the notation in Theorem 3.27:

◦ W2 = {2, 4} and W ′
2 = {1, 3} are the sets of vertices whose corresponding

variables appear in MAX2, respectively, in direct and complemented form.

◦ There are p2 = 2 connected components which result from G2 when all
the vertices in W ′

2 and the edges which are incident to them are removed,
G2,1 = ({2}, ∅) and G2,2 = ({4}, ∅). In this case, diam (G2,i) = 0 for
i = 1, 2.

◦ For all i ∈ W ′
2, m2,i = card (AG2 (i) ∩W ′

2) = 1.

• k ≥ 3: PDSk is recursively de�ned as the parallel dynamical system over
Gk = (Vk, Ek) with Vk = Vk−1 ∪ {2k − 1, 2k}, Ek = Ek−1 ∪ {{2k − 1, 2k}} ∪
{{i, 2k−1} : i ∈ W ′

k−2} and whose evolution operator is the maxterm MAXk =
MAXk−1 ∨ x′2k−1 ∨ x2k. For example, some particular cases are:

For k = 3, see Figure 3.5,

1 2

3 4

5 6

Figure 3.5: Graph G3 = (V3, E3) = ({1, 2, 3, 4, 5, 6}, {{1, 2}, {3, 4}, {1, 3}, {5, 6}, {1, 5}}).

MAX3 = x′1 ∨ x2 ∨ x′3 ∨ x4 ∨ x′5 ∨ x6.

For k = 4, see Figure 3.6,

1 2

3 4

5 6

78

Figure 3.6: Graph G4 = (V4, E4) = ({1, . . . , 8}, E3 ∪ {{7, 8}, {1, 7}, {3, 7}}).

MAX4 = x′1 ∨ x2 ∨ x′3 ∨ x4 ∨ x′5 ∨ x6 ∨ x′7 ∨ x8.
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And for k = 5, see Figure 3.7,

1 2

3 4

5 6

78

910

Figure 3.7: Graph G5 = ({1, . . . , 10}, E4 ∪ {{i, 9} : i ∈ {1, 3, 5, 10}}).

MAX5 = x′1 ∨ x2 ∨ x′3 ∨ x4 ∨ x′5 ∨ x6 ∨ x′7 ∨ x8 ∨ x′9 ∨ x10.

According to the notation in Theorem 3.27:

◦ Wk = Wk−1 ∪ {2k} and W ′
k = W ′

k−1 ∪ {2k − 1} are the sets of vertices
whose corresponding variables appear in MAXk, respectively, in direct
and complemented form.

◦ There are pk = k connected components which result from Gk when all
the vertices in W ′

k and the edges which are incident to them are removed,
Gk,i = ({2i}, ∅) for i = 1, . . . , k. In this case, diam (Gk,i) = 0 for i =
1, . . . , k.

◦ Finally, mk,i = mk−1,i + 1 for each i ∈ W ′
k−2, mk,2(k−1)−1 = mk−1,2(k−1)−1

and mk,2k−1 = k − 2.

Associated to these parallel dynamical systems, let us consider the initial state
values of the variables:

• x01 =
(
x01,1, x

0
1,2

)
= (1, 0).

• x0k =
(
x0k,1, . . . , x

0
k,2k

)
for k ≥ 2, with x0k,i = 1, if i ∈ W ′

k−1, and x0k,i = 0 in
other case. For example, some particular cases:

x02 = (1, 0, 0, 0).

x03 = (1, 0, 1, 0, 0, 0).

x04 = (1, 0, 1, 0, 1, 0, 0, 0).

x05 = (1, 0, 1, 0, 1, 0, 1, 0, 0, 0).

Conditions above ensure, for all k ∈ N:
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• mk,2k−1 ≤ k − 1 (initialization condition).

• mk+1,i ≤ mk,i + 1 for all i ∈ W ′
k (propagation condition).

which implies that mk,i ≤ k − 1 for all i ∈ W ′
k.

On the other hand,

• m1,1 = 0.

• mk+1,1 = mk,1 + 1.

Therefore, mk,1 = k − 1 and then, maxi∈W ′k{mk,i} = mk,1 = k − 1.

Now, let us see that the valoration x0k in PDSk reaches a �xed point in, exactly,
k + 1 iterations, value of the upper bound in Theorem 3.27 for this PDS. In fact,
note that:

• x01 reaches a �xed point in PDS1 after 2 iterations.

• x0k+1 reaches a �xed point in PDSk+1 after one iteration more than x0k in PDSk,
for all k ∈ N.

The simplest case (k = 1) is direct, since the evolution of x01 in PDS1 is:

(1, 0)→ (0, 0)→ (1, 1) .

Regarding the general case, it follows directly by observing that:

• x1k+1,2(k+1)−1 = x1k+1,2(k+1) = 1, and they continue activated onwards.

• x1k+1,i = x0k,i for all i ∈ Vk, and the restriction of PDSk+1 to Gk evolves as
PDSk onwards.

When the component maxk∈{1,...,p}{diam (Gk)} in Theorem 3.27 is greater than 0,
the upper bound can be also reached. To see that, let us take the parallel dynamical
system PDSk and refurbish it as follows:

• We join a line graph of length l adjacent to vertex 2 in Gk. Thus, diam (Gk,1) =
l.
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• The new evolution operator is such that its restriction to Gk is MAXk and its
restriction to the added line graph is the maxterm OR.

Then, if we �x the initial state values as above for the vertices in Gk and as 0
for the vertices in the added line graph, the system reaches a �xed point (the one
with all the vertices activated) in l + k + 1 iterations.

Remark 3.10. Observe that the upper bound for a �xed-point PDS on the simplest
maxterm OR (resp. on the simplest minterm AND), which presents only �xed points,
is given by the diameter of the dependency graph (see [28]). This previous result
is not valid for general maxterm and minterm Boolean functions, as can be seen in
Example 3.5 where diam (G) = 2 < 3, being 3 the transient of the system. This
reveals the relevance of our extended result, given by Theorems 3.27 and 3.28, due
to the breakdown found in the upper bound of the transient for general PDS.

Transient to 2-periodic orbits in PDS

By Theorems 3.3, 3.5 and Corollary 3.5 of Subsection 3.1.2, we know that a
MAX − PDS only presents 2-periodic orbits if, and only if, there exists a comple-
mented vertex which is not adjacent to a direct vertex. In [28], it is shown that the
transient for PDS on NAND or NOR Boolean functions is 1. Here, we extend these
results to the case of PDS on a general maxterm or minterm Boolean function.

Lemma 3.2. Let [G,MAX]−PDS be a parallel dynamical system over a dependency
graph G = (V,E) associated with the maxterm MAX, where the structure of G only
allows 2-periodic orbits. Then, a vertex i ∈ W ′β

D takes permanent state value 1 at a
maximum of 2si + 3 iterations, being si = card (AG (i) ∩W ′

D).

Proof. Consider a vertex i ∈ W ′β
D . As in the proof of Lemma 3.1, we can have

only one of the following two possibilities:

• ∀t ≥ 0, xti = 1, i.e., i takes permanenet state value 1 after 0 iterations. Since
0 < 3 ≤ 3 + 2si, the result is proved in this case.

• ∃T ≥ 0 such that xTi = 0, being the iteration T the �rst time that the variable
xi takes the value 0. In this situation, after the next iteration T + 1, we have
xT+1
i = 1 and xT+1

j = 1 ∀j ∈ AG (i) ∩W 6= ∅.
Due to that, any j ∈ AG (i) ∩W 6= ∅ makes i take permanent state value 1
from this iteration on.
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In particular, if T ≤ 2, then i takes permanent state value 1 after, at most, 3
iterations. Since 3 ≤ 3 + 2si, the result is proved also in this case.

Finally, suppose that T > 2. At this point, it must be ∀t < T , xti = 1 and
xtj = 0 ∀j ∈ AG (i) ∩W .

But, in this situation, to make i have state value 1 after every iteration t,
1 ≤ t < T , ∃k ∈ AG (i) ∩W ′ such that xt−1k = 0, what provides that xti = 1.
Now, we have also two possibilities:

◦ If k ∈ W ′
D, after the iteration t, x

t
k = 1 and xtj = 1 ∀j ∈ AG (k) ∩W .

Due to that, any j ∈ AG (k)∩W 6= ∅ makes k take permanent state value
1 from this iteration on. That is, the vertex k does not in�uence the state
value of the vertex i anymore.

◦ If k ∈ W ′
C , after the iteration t, x

t
k = 1 and xtj = 1 ∀j ∈ AG (k) ⊆ W ′.

Consequently, xt+1
k = 0 = xt−1k , repeating this alternation of state values

after every two iterations. In particular, observe that, in such a case, the
vertex k does not in�uence the state of the vertex i for the intermediate
iteration t+ 1.

In view of this, once a vertex k ∈ AG (i) ∩W ′
D provides the state value 1 for

the vertex i, it cannot provide it anymore. On the other hand, once a vertex
k ∈ AG (i) ∩W ′

C provides state value 1 for the vertex i after the iteration t,
in the next iteration t + 1, another vertex l ∈ AG (i) ∩W ′ with state value 0
is needed in order to keep it. That is, in the following iteration, without any
other vertex in AG (i) ∩W ′

D with state value equals 0, the state value of xi
becomes 0, or 1 de�nitively if there exists l ∈ AG (i) ∩W ′

C such that xtl = 0
while xt−1k = 0.

Therefore, the maximum number of iterations that xi can maintain its value
equal to 1, before changing to 0 for the �rst time, can be obtained intercalating
the in�uences of vertices of both sets AG (i) ∩W ′

D and AG (i) ∩W ′
C , that is,

vertices with state values equal to 0.

In particular if si = card (AG (i) ∩W ′
D) = 0, and we assume (without loos of

generality) that x0i = 1.

◦ If every vertex in AG (i) ∩W ′
C = AG (i) ∩W ′ has state value equals 1,

then x1i = 0, being 1 + 1 ≤ 3 + 2 · 0.
◦ If there is a vertex k ∈ AG (i)∩W ′

C such that x0k = 0, then, after the �rst
iteration, we can have:
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� The state values of the rest of the vertices l ∈ AG (i)∩W ′
C become 1

and, consequently, x2i = 0, being 2 + 1 ≤ 3 + 2 · 0.
� There exists a vertex l ∈ AG (i) ∩ W ′

C di�erent from k, such that
x1l = 0, what means that x1i = x2i = 1 and this state does not change
anymore.

For the general case si > 0, observe that, at most, T − 1 ≤ 2si + 1 and,
therefore, after T + 1 ≤ 2si + 3 iterations the vertex i has permanent state
value 1.

Theorem 3.29 (Transient in 2-Periodic MAX − PDS). Let [G,MAX] − PDS be a
parallel dynamical system over a dependency graph G = (V,E) associated with the
maxterm MAX, where the structure of G only allows 2-periodic orbits. Then, every
state of the system reaches a 2-periodic orbit after a maximum of

max

{
max

k∈{1,...,p}
{diam (Gk)}, 1

}
+ max

{
max
i∈W ′αD

{mi + 2}, max
i∈W ′βD

{2si + 3}

}

iterations, being mi = card (AG (i) ∩W ′
D), ∀i ∈ W ′α

D and si = card (AG (i) ∩W ′
D),

∀i ∈ W ′β
D .

Proof. In this case, as said above, W ′
C 6= ∅.

Firstly, if W ′
D = ∅, then p = 0, MAX = NAND and the system reaches a 2-

periodic orbit, at most, after 1 iteration (see [28]). It �ts with the expression of the
upper bound for this case.

Let us see now the general case when W ′
D 6= ∅, which also implies p > 0:

Consider i ∈ W ′
D. If i ∈ W ′α

D , it satis�es the hypotheses of Lemma 3.1, being
mi = card (AG (i) ∩W ′). Thus, at a maximum of mi + 2 iterations, xi will have
permanent state value 1. On the other hand, if i ∈ W ′β

D , it satis�es the hypotheses
of Lemma 3.2. Thus, at a maximum of 2si + 3 iterations, xi will have permanent
state value 1.

Taking this into account, in max{maxi∈W ′αD {mi + 2},maxi∈W ′βD
{2si + 3}} itera-

tions, for all i ∈ W ′
D, xi reaches a permanent state value 1. It must be noted that

this calculation is also valid even if W ′α
D = ∅ or W ′β

D = ∅, because of the value 0
considered by default when a max expression is taken over an empty set.
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After that, for the future evolution of the system, the vertices belonging to W ′
D

do not change their state value, and the study of the evolution of the system can be
reduced to analyze what happens in the restriction of G to W ∪W ′

C . Given that a
vertex in W is not adjacent to a vertex in W ′

C , there cannot be interference between
these sets and the behavior of the entire system can be obtained from the study of
the evolution in each connected subgraph G1, . . . , Gp and the connected components
which result from G when we remove all the vertices inW ∪W ′

D and the edges which
are incident to them, C1, . . . , Cq.

Regarding G1, . . . , Gp, since they only have vertices associated with direct vari-
ables, we know that the restriction of the PDS to each Gk performs as an OR−PDS
which converges to a �xed point in, at most, diam (Gk) iterations (see [28]). On
the other hand, the restriction of the PDS to each component Ck performs as a
NAND − PDS, and so a 2-periodic orbit is reached in, at most, 1 iteration (see
[28]). In view of this, after max{maxk∈{1,...,p}{diam (Gk)}, 1} iterations (after the
max{maxi∈W ′αD {mi + 2},maxi∈W ′βD

{2si + 3}} iterations needed for ensuring that the
state values of the vertices in W ′

D are �xed) all the vertices in W will reach a state
value that they will permanently preserve, and all the vertices in W ′

C will repeat
their state value every 2 iterations, alternating values 0 and 1 or preserving state
value 1 onwards.

Therefore, after at most

max{ max
k∈{1,...,p}

{diam (Gk)}, 1}+ max{max
i∈W ′αD

{mi + 2}, max
i∈W ′βD

{2si + 3}}

iterations, any (initial) state reaches a 2-periodic orbit.

Dually, we have the following result.

Theorem 3.30 (Transient in 2-Periodic MIN − PDS). Let [G,MIN] − PDS be a
parallel dynamical system over a dependency graph G = (V,E) associated with the
minterm MIN, where the structure of G only allows 2-periodic orbits. Then, every
state of the system reaches a 2-periodic orbit after a maximum of

max

{
max

k∈{1,...,p}
{diam (Gk)}, 1

}
+ max

{
max
i∈W ′αD

{mi + 2}, max
i∈W ′βD

{2si + 3}

}
iterations, being mi = card (AG (i) ∩W ′

D), ∀i ∈ W ′α
D and si = card (AG (i) ∩W ′

D),
∀i ∈ W ′β

D .

This new upper bound obtained in Theorem 3.29 is also the best possible one
for this kind of PDS, since it is reachable, as we show in the example below. A
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dual example in the case of a minterm MIN as evolution operator can be similarly
constructed, where the upper bound obtained in Theorem 3.30 is reached.

Example 3.7. Let us consider the PDS over the line graph G = (V,E), with
V = {1, 2, 3, 4} and E = {{1, 2}, {2, 3}, {1, 4}} (see Figure 3.8) on the maxterm
Boolean function given by MAX = x′1 ∨ x2 ∨ x3 ∨ x′4.

1 2 34

Figure 3.8: Graph G = ({1, 2, 3, 4}, {{1, 2}, {2, 3}, {1, 4}}).

In this case, according to the notation in Theorem 3.29:

• W = {2, 3} and W ′ = {1, 4} are the sets of vertices whose corresponding vari-
ables appear in MAX in direct and complemented form, respectively. More-
over, W ′

D = {1} and W ′
C = {4}. Finally, W ′α

D = ∅ and W ′β
D = {1}.

• There is p = 1 connected component which results from G when all the ver-
tices in W ′ and the edges which are incident to them are removed, G1 =
({2, 3}, {{2, 3}}). In this case, diam (G1) = 1.

• There are s1 = 0 vertices in W ′
D adjacent to the only element in W ′

D.

The upper bound of Theorem 3.29 for this PDS is 4 iterations. If we consider the
initial con�guration x0 = (1, 0, 0, 0), the evolution of x0 until reaching the periodic
orbit is:

(1, 0, 0, 0)→ (1, 0, 0, 1)→ (0, 0, 0, 0)→ (1, 1, 0, 1)→ (1, 1, 1, 0) .

In Figure 3.9, we show the phase diagram of this PDS, where it can be easily
checked that 4 is its transient.

As in the case of �xed-point PDS, additionally, we are able to provide a pattern
that can be considered to obtain a 2-Periodic MAX − PDS for which any given
(optimal upper bound) transient is reached. A dual construction can be considered
to achieve a pattern in the case of PDS on minterm Boolean functions.

Example 3.8. Let us consider the following collection of parallel dynamical systems
F2 = {PDSk : k ∈ N}, where each PDSk is de�ned as follows:
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Figure 3.9: Phase portrait of the system [({1, 2, 3, 4}, {{1, 2}, {2, 3}, {1, 4}}) , x′
1 ∨ x2 ∨ x3 ∨ x′

4] −
PDS.

• k = 1: PDS1 is de�ned as the parallel dynamical system over G1 =
(
V 1, E1

)
with V 1 = {1, 2, 3, 4}, E1 = {{1, 2}, {2, 3}, {1, 4}} (the same as in Example
3.7, which is exposed in Figure 3.8).

The evolution operator is the maxterm MAX1 = x′1 ∨ x2 ∨ x3 ∨ x′4.
In this case, the relevant elements in Theorem 3.29 related to this PDS are:

◦ W 1 = {2, 3} andW ′
1 = {1, 4} are the sets of vertices whose corresponding

variables appear in MAX1, respectively, in direct and complemented form.
Inside W

′
1, W

′
D,1 = {1} and W ′

C,1 = {4}. Finally, W ′α
D,1 = ∅ and W ′β

D,1 =
{1}.
◦ There is p1 = 1 connected component which results from G1 when all the
vertices in W

′
1 and the edges which are incident to them are removed,

G1,1 = ({2, 3}, {{2, 3}}). In this case, diam
(
G1,1

)
= 1.

◦ There are s1,1 = 0 vertices in W
′
D,1 adjacent to the only element in W

′β
D,1.

• k ≥ 2: PDSk is de�ned from the elements of F shown in Example 3.6. To
avoid duplication in the name of the vertices of each PDSt ∈ F, we will denote
as it to the vertex i in PDSt:
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This way, PDSk is recursively de�ned as the parallel dynamical system over
Gk =

(
V k, Ek

)
with V k = V k−1∪V2k−3, Ek = Ek−1∪E2k−3∪{{1, 12k−3}} and

whose evolution operator is the maxterm MAXk = MAXk−1 ∨MAX2k−3.

The relevant elements in Theorem 3.29 related to this PDS are:

◦ W k = W k−1∪W2k−3 =
(⋃k−1

t=1 W2t−1

)
∪{2, 3} andW ′

k = W
′
k−1∪W ′

2k−3 =(⋃k−1
t=1 W

′
2t−1

)
∪ {1, 4} are the sets of vertices whose corresponding vari-

ables appear in MAXk, respectively, in direct and complemented form.
Also, inside W

′
k:

� W ′
D,k = W

′
D,k−1 ∪W ′

2k−3 = W
′
k \ {4}.

� W ′
C,k = W

′
C,k−1={4}.

� Finally, inside W
′
D,k, W

′α
D,k = W

′α
D,k−1 ∪ W ′

2k−3 = W
′
D,k \ {1} and

W
′β
D,k = W

′β
D,k−1 = {1}.

◦ There are pk =
(∑k−1

t=1 2t− 1
)

+ 1 = (k − 1)2 + 1 connected components

which result from Gk when all the vertices in W
′
k and the edges which

are incident to them are removed, those ones of PDS1, PDS3,. . . ,PDS2k−3
and G1,1 de�ned below. In this case, all these connected components have
diameter 0 except G1,1, with diam

(
G1,1

)
= 1.

◦ Finally, for each i ∈ W
′
D,k, mk,i if i ∈ W

′α
D,k or sk,i if i ∈ W

′β
D,k can be

obtained as:

� If i ∈ W ′
2t−1 \ {12t−1} for t ≤ k − 1, mk,i = m2t−1,i ≤ (2t− 1) − 1 ≤

2k − 4.
� If i = 12t−1 for t ≤ k − 1, because of the new adjacency {1, 12t−1} ∈
Ek, mk,i = m2t−1,i + 1 = (2t− 1)− 1 + 1 ≤ 2k − 3.
� sk,1 = k − 1.

Therefore, the upper bound in Theorem 3.29 for each PDSk ∈ F2 is 1 + 2(k −
1) + 3 = 2k + 2 iterations.

Associated to these parallel dynamical systems, let us consider the initial state
values of the variables:

• x01 =
(
x01,1, x

0
1,2, x

0
1,3, x

0
1,4

)
= (1, 0, 0, 0).
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• x0k =
(
x0k,i
)
i∈V k

for k ≥ 2, with x0k,i = x01,i for i = 1, 2, 3, 4 and x0k,i = x02t−1,i as
de�ned in Example 3.6 if i ∈ V2t−1.

Let us see that the valoration x0k in PDSk reaches a 2-periodic orbit in, exactly,
2k + 2 iterations. In fact, note that:

• x01 reaches a 2-periodic orbit in PDS1 after 4 iterations.

• x0k+1 reaches a 2-periodic orbit in PDSk+1 after two iterations more than x0k in
PDSk, for all k ∈ N.

The simplest case (k = 1) is direct, since the evolution of x01 in PDS1 is:

(1, 0, 0, 0)→ (1, 0, 0, 1)→ (0, 0, 0, 0)→ (1, 1, 0, 1)→ (1, 1, 1, 0)↔ (1, 1, 1, 1) .

Regarding the general case, it follows directly by observing that:

x0k+1,1 = 1 and, since x0k+1,4 = 0, then x1k+1,1 = 1. Furthermore, the evolution of
the whole system PDSk+1 during the �rst two iterations is the same as the restriction
of PDSk+1 to each connected component which results from Gk+1 when the vertex
1 and the edges which are incident to it are removed. Thus:

• x2k+1,2 = 0 = x0k,2.

• x2k+1,3 = 0 = x0k,3.

• x2k+1,4 = 0 = x0k,4.

• x1k+1,11
= 0, so x2k+1,1 = 1 = x0k,1.

• x2k+1,i = 1 for all i ∈ V1, and they continue activated onwards.

• If V2t−1 = {12t−1, . . . , 2 (2t− 1)2t−1} and V2t−3 = {12t−3, . . . , 2 (2t− 3)2t−3},
with t ∈ {2, . . . , k}, then:

◦ x2k+1,j2t−1
= 1 for all j ≥ 2 (2t− 1) − 3, and they continue activated

onwards.

◦ x2k+1,j2t−1
= x0k,j2t−3

for j ≤ 2 (2t− 1)− 4 = 2 (2t− 3), and the restriction
of PDSk+1 to these G2t−3 evolves as PDSk onwards.
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Remark 3.11. Observe that the upper bound for a 2-Periodic PDS on the simplest
maxterm NAND (resp. on the simplest minterm NOR), which presents only periodic
orbits of period 2, is 1 (see [28]). This previous result is not valid for general maxterm
and minterm Boolean functions, as can be seen in Example 3.7 where the transient
of the system is 4. This reveals the relevance of our extended results, given in
Theorems 3.29 and 3.30, due to the breakdown found in the upper bound of the
transient for general PDS.
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Chapter 4

Advances in Sequential Dynamical

Systems

In this chapter, we perform a complete analysis of the dynamics in sequential
dynamical systems on maxterm and minterm Boolean functions over undirected
dependency graphs. Following a similar scheme as in the parallel case, the study
is divided into two sections according to the methodology of research: dynamics of
periodic orbits and dynamics of non-periodic orbits.

4.1 Dynamics of periodic orbits

In this section, the dynamics of periodic orbits are analyzed, identifying which
of them can exist and coexist, and obtaining an upper bound for their number. In
particular, as in the parallel case, we are able to give a Fixed-Point Theorem and a
Periodic-Orbit Theorem, so characterizing the uniqueness of them.

4.1.1 Existence of periodic orbits

In Theorem 3.1 (resp. Theorem 3.2) of Subsection 3.1.1, the orbital structure
of PDS with general maxterm (resp. minterm) functions as evolution operators has
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been analyzed, proving that the only periodic orbits of such systems are �xed points
and periodic orbits of period 2.

In contrast to these results for PDS, in the case of SDS with general maxterm
(resp. minterm) functions as evolution operators, we will see that they can present
orbits of whichever period.

Theorem 4.1 (Periodic structure of MAX − SDS). Let [G,MAX, π] − SDS be a
sequential dynamical system over a dependency graph G = (V,E) associated with
the maxterm MAX. Then, it can present periodic orbits of any period.

Proof. Given n ∈ N, n ≥ 2, we will give a pattern to construct an SDS with an
orbit of period n− 1. Let us take V = {1, . . . , n− 1, n} and consider the following
adjacency structure among the vertices:

• Each i ∈ {1, . . . , n − 1} is adjacent to all the vertices in {1, . . . , n − 1} \ {i}.
In other words, we take the complete graph Kn−1 of n− 1 vertices.

• The vertex n is adjacent to the vertex n− 1.

As permutation on V we take π = id, the identity permutation.

Finally, we choose the updating operator

MAX = x′1 ∨ · · · ∨ x′n−1 ∨ xn.

Let us write xki to indicate the state value of the entity i after k iterations of
the evolution operator MAX. Then, let us consider the initial value for the variables
x0i = 1 for all i ∈ V . It is a straightforward computation to check that the system
evolves in the following way:

• After k iterations, 1 ≤ k ≤ n− 2: xkk = 0, xki = 1 for all i ∈ V \ {k}.

• After n − 1 iterations, all the state values coincide with the initial ones, i.e.,
xn−1i = x0i = 1 for all i ∈ V .

Namely, the SDS so constructed presents a periodic orbit of period n− 1.

To illustrate the designed patterns, in Figure 4.1 the cases for n = 2, n = 3,
n = 4 and n = 5 can be seen.
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12 123

1

234

1 2

345

Figure 4.1: Patterns for n = 2, n = 3, n = 4 and n = 5.

Remark 4.1. It is direct to perform a similar argument as in the proof of Theorem
3.1 of Subsection 3.1.1, but in the context of SDS, to achieve analogous information
to Remark 3.1 about asymptotic behavior of the entities in SDS, essential in the
study of these systems throughout this thesis:

• Each i ∈ W �xes its state value after a certain number of iterations.

• When a periodic orbit is reached, each i ∈ W ′
D has state value 1.

• The period comes from the evolution of the vertices belonging to W ′
C .

Dually we have the following theorem.

Theorem 4.2 (Periodic structure of MIN − SDS). Let [G,MIN, π] − SDS be a
sequential dynamical system over a dependency graph G = (V,E) associated with
the minterm MIN. Then, it can present periodic orbits of any period.

It is worth to analyze the particular relevant cases when the evolution operator
is the maxterm OR or NAND (resp. minterm AND or NOR). Recall that the only
periodic orbits of PDS over undirected dependency graphs with OR (resp. AND) as
updating operator are �xed points and with NAND (resp. NOR), 2-periodic orbits
(see Corollaries 3.1, 3.2, 3.3 and 3.4 of Subsection 3.1.1). In this case, when the
updating of the state values is asynchronous and the evolution operator is given by
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OR (resp. AND), the only periodic orbits of the system are �xed points, as in PDS.
In contrast, when the evolution operator is NAND (resp. NOR), the corresponding
SDS could present periodic orbits of any period greater than or equal to 2.

To see that, let us turn to the following well-known lemma (see [35, 91]).

Lemma 4.1. Let [G,F, π]−SDS be a sequential dynamical system over a dependency
graph G = (V,E) associated with the maxterm or minterm F . Then, the systems
[G,F, π]− SDS and [G,F ]− PDS have the same �xed points.

Firstly, in the case of OR as evolution operator, we have the following result
(which is already proved in [28], although an alternative proof is shown here).

Theorem 4.3. Let [G,OR, π] − SDS be a sequential dynamical system over a de-
pendency graph G = (V,E) associated with the maxterm OR. Then, all the periodic
orbits of this system are �xed points. In fact, there are exactly two �xed points,
namely, I and O.

Proof. By Lemma 4.1 and Corollary 3.1 in Subsection 3.1.1, I and O are the only
�xed points of this SDS.

It only remains to show that there cannot be periodic orbits of greater period:
since all the entities belong to W , we can have only one of the following two possi-
bilities for each i ∈ V :

• ∀t ≥ 0, xti = 0. In this case, the state value 0 is permanent for this entity from
the initial con�guration.

• ∃T ≥ 0 such that xTi = 1, being the iteration T the �rst time that the variable
xi takes the value 1. In this situation, the state value 1 is permanent from this
iteration on.

Thus, after a certain number of iterations, all the entities reach a �xed value
that they preserve onwards.

In the case of NAND as evolution operator, we have the following result.

Theorem 4.4. Let [G,NAND, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the maxterm NAND. Then, this system
can present periodic orbits of any period, except �xed points.
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Proof. First, notice that such an SDS cannot present �xed points. In fact, we know
that PDS with NAND as evolution operator cannot present �xed points. Then, this
�rst assertion follows from Lemma 4.1.

Given n ∈ N, we will provide a pattern to construct an SDS with NAND as
evolution operator which has an orbit of period n+ 1.

Let us take V = {1, . . . , n}. Assume that the adjacency structure among the
vertices is the one of a complete graph Kn of n vertices.

As permutation on V , we take π = id, the identity permutation.

Let us consider the initial state values x0i = 1 for all i ∈ V . Then, the system
evolves as follows:

• After k iterations, 1 ≤ k ≤ n: xkk = 0, xki = 1 for all i ∈ V \ {k}.

• After n + 1 iterations, all the state values coincide with the initial ones, i.e.,
xn+1
i = x0i = 1 for all i ∈ V .

Namely, the SDS so constructed presents a periodic orbit of period n+ 1.

Dually, in the case of AND and NOR, we have the following results (the �rst one
of them is already proved in [28]).

Theorem 4.5. Let [G,AND, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the minterm AND. Then, all the
periodic orbits of this system are �xed points. In fact, there are exactly two �xed
points, namely, O and I.

Theorem 4.6. Let [G,NOR, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the minterm NOR. Then, this system
can present periodic orbits of any period, except �xed points.

4.1.2 Coexistence of periodic orbits

In Corollaries 3.5 and 3.6 of Subsection 3.1.2, the orbital structure of PDS with
general maxterm (resp. minterm) functions as evolution operators has been ana-
lyzed, proving that the coexistence of periodic orbits with di�erent periods is not
possible.

In contrast to these results for PDS, in the case of SDS with general maxterm
(resp. minterm) functions as evolution operators, we will see that periodic orbits
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with di�erent periods greater than or equal to 2 can coexist in an SDS. Nevertheless,
when an SDS has �xed points, no other periods can appear.

It is well known that, in a PDS over a dependency graph G = (V,E) associated
with the maxterm MAX (resp. minterm MIN), if there is a �xed point, then there
are no periodic orbits of other periods (see Theorems 3.3, 3.5 and Corollary 3.5 in
Subsection 3.1.2). This situation remains true for SDS, as we see next. That is,
for both PDS and SDS, the existence of �xed points excludes the presence of other
periodic orbits.

Theorem 4.7. Let [G,MAX]−SDS be a sequential dynamical system over a depen-
dency graph G = (V,E) associated with the maxterm MAX. Then, all the periodic
orbits of this system are �xed points if, and only if, W ′

C = ∅.

Proof. In the case W ′ = ∅, the system has only two �xed points: I and O (see
Theorem 4.3 of Subsection 4.1.1 and [28]). Let us analyze now the general case when
W ′ 6= ∅:

First, assume that all the periodic orbits of this system are �xed points and let
us see that W ′

C = ∅.

Take x̂ = (x̂1, . . . , x̂n) a �xed point, where x̂i represents the (�xed) value of the
vertex i ∈ V . Note that, for all i ∈ W ′, it must be x̂i = 1. Otherwise (i.e., if x̂i = 0),
it would change to 1 after the following iteration.

Suppose that there exists i ∈ W ′ such that W ∩ AG (i) = ∅. In such a case,
AG (i) ⊆ W ′ and so, for every j ∈ AG (i), it is x̂j = x̂i = 1. Since we are assuming
that x̂ is a �xed point, independently of the order in which the state values are
updated (i.e. independently of π), these are the state values of the vertices j ∈ AG (i)
when the state value of i is updated. Then, the state value of i would change to 0
in the following iteration, which is a contradiction.

To prove the converse implication, let us suppose that for all i ∈ W ′,W∩AG (i) 6=
∅. Let us consider an arbitrary initial value for the variables (x01, . . . , x

0
n). Since the

dependency graph is �nite (and so is the state space), note that after a certain
number of iterations, let us say r ∈ N, the states of all the vertices belonging to W
become �xed (see Remark 4.1 in Subsection 4.1.1). Let us take i ∈ W ′ and let us
prove that xr+1

i = 1. In fact, let us suppose that xr+1
i = 0 and take j ∈ W ∩AG (i).

Then, it would be xr+2
j = 1 = xrj (since we are assuming that the state value of j

is �xed from the iteration r). Then, since xrj = 1, it must be xr+1
i = 1, which is a

contradiction. Thus, xr+1
i = 1 for all i ∈ W ′ and these state values do not change.
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Therefore, all the variables of the system become �xed after r+ 1 iterations and
the proof �nishes.

Theorem 4.8. Let [G,MAX]−SDS be a sequential dynamical system over a depen-
dency graph G = (V,E) associated with the maxterm MAX. Then, all the periodic
orbits of this system have period greater than 1 if, and only if, W ′

C 6= ∅.

Proof. First, assume that all the periodic orbits of this system have period greater
than 1. If the theses were not true, that is, if for all i ∈ W ′ it is W ∩ AG (i) 6= ∅,
then from Theorem 4.7 we have that all the periodic orbits of this system are �xed
points, which is a contradiction.

Conversely, let us suppose that there exists i ∈ W ′ such that W ∩AG (i) = ∅. If
there is a �xed point, reasoning as in the proof of Theorem 4.7, we have W ′

C = ∅,
which is a contradiction. Hence, all the periodic orbits of the system must have
period greater than 1.

Corollary 4.1 (Coexistence of periods in MAX − SDS). Let [G,MAX] − SDS be
a sequential dynamical system over a dependency graph G = (V,E) associated with
the maxterm MAX. Then, (eventually) �xed points and (eventually) periodic orbits
of other periods m ≥ 2 cannot coexist.

Proof. It is a direct consequence of Theorems 4.7 and 4.8.

Remark 4.2. It is important to note that all, the impossibility of coexistence of �xed
points and periodic orbits of other periods m ≥ 2, the condition which implies that
all the periodic orbits of an SDS are �xed points and the complementary condition
which implied that all the periodic orbits of an SDS have period greater than or
equal to 2, are equal to the respective ones in the case of a PDS (see Theorems 3.3,
3.5 and Corollary 3.5 in Subsection 3.1.2).

Dually, we have the following results.

Theorem 4.9. Let [G,MIN]− SDS be a sequential dynamical system over a depen-
dency graph G = (V,E) associated with the minterm MIN. Then, all the periodic
orbits of this system are �xed points if, and only if, W ′

C = ∅.

Theorem 4.10. Let [G,MIN] − SDS be a sequential dynamical system over a de-
pendency graph G = (V,E) associated with the minterm MIN. Then, all the periodic
orbits of this system have period greater than 1 if, and only if, W ′

C 6= ∅.
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Corollary 4.2 (Coexistence of periods in MIN − SDS). Let [G,MIN] − SDS be a
sequential dynamical system over a dependency graph G = (V,E) associated with
the minterm MIN. Then, (eventually) �xed points and (eventually) periodic orbits
of other periods m ≥ 2 cannot coexist.

In the light of Theorems 4.1 and 4.2 in Subsection 4.1.1, it naturally arises the
problem of determining the possible coexistence of periodic orbits of di�erent periods
for SDS with maxterm or minterm Boolean functions as updating operators. In this
sense, in the following theorems, we show that periodic orbits of whichever periods
greater than or equal to 2 can coexist in such discrete dynamical systems.

Theorem 4.11. Given {n1, . . . , nr} ⊂ N with ni ≥ 2 for every i = 1, . . . , r, r ≥ 2,
there exists an SDS with a maxterm as evolution operator which presents periodic
orbits of periods n1, . . . , nr simultaneously.

Proof. Let us construct an SDS with orbits of periods n1, . . . , nr.

For each ni, let us take two complete graphs Kni−1 and Kni−1 of ni− 1 vertices.
We will denote by {vi,1, . . . , vi,ni−1} and {vi,1, . . . , vi,ni−1} the vertices of Kni−1 and
Kni−1, respectively, for every i ∈ {1, . . . , r}. Thus, the dependency graph has
2 (n1 + · · ·+ nr − r) vertices.

Apart from the internal adjacencies in each complete graph Kni−1 and Kni−1,
we will consider the following adjacency structure among the vertices:

• vi,j is adjacent to vl,m for all j, m and i 6= l. In other words, the vertices in
Kni−1 are adjacent to all the vertices in Knl−1 for i 6= l.

• vi,j is adjacent to vl,m for all j, m and i 6= l. In other words, the vertices in
Kni−1 are adjacent to all the vertices in Knl−1 for i 6= l.

• vi,j is adjacent to vl,m for all j, m and i 6= l. In other words, the vertices
in Kni−1 are adjacent to all the vertices in Knl−1 for i 6= l (but they are not
adjacent to the vertices in Kni−1).

As permutation on the set of vertices, we will consider:

π = v1,1| · · · |v1,n1−1|v1,1| · · · |v1,n1−1| · · · |vr,1| · · · |vr,nr−1|vr,1| · · · |vr,nr−1.

Namely, �rst the state values of the vertices in Kn1−1 are updated, then the ones
in Kn1−1, next the vertices in Kn2−1 followed by the ones in Kn2−1, and so on until
all the vertices are updated.
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As evolution operator, we take MAX = NAND.

As initial state values for the variables, we consider that the vertex vi,1 is deac-
tivated and the rest of vertices are activated.

This system evolves as follows:

• After k iterations, 1 ≤ k ≤ ni − 2, vi,k+1 and vi,k are deactivated and the rest
of vertices are activated.

• After ni − 1 iterations, vi,ni−1 is deactivated and the rest of vertices are acti-
vated.

• After ni iterations, all the state values coincide with the initial ones.

Namely, the [G,MAX, π]−SDS so constructed presents a periodic orbit of period
ni.

Thus, by considering the di�erent r initial state values obtained by varying i in
{1, . . . , r}, r periodic orbits with periods n1, . . . , nr result.

Let us illustrate this result with the following example to clarify the notation.

Example 4.1. The SDS proposed by Theorem 4.11 in which a 2-periodic orbit and
a 3-periodic orbit coexist, is de�ned by

• G = ({1, 2, 3, 4, 5, 6}, {{3, 4}, {5, 6}} ∪ {{i, j} : 1 ≤ i ≤ 2, 3 ≤ j ≤ 6}) (see Fig-
ure 4.2),

• MAX = NAND,

• π = id, the identity permutation.

1

2

3

4

5

6

Figure 4.2: Graph G = ({1, 2, 3, 4, 5, 6}, {{3, 4}, {5, 6}} ∪ {{i, j} : 1 ≤ i ≤ 2, 3 ≤ j ≤ 6}).
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According to the notation in Theorem 4.11, 1 is the only vertex in K1, 2 is the
only vertex in K1, 3, 4 are the vertices in K2, and 5, 6 are the vertices in K2.

In this case, the 2-periodic orbit proposed by Theorem 4.11 can be seen in Figure
4.3.

011111

101111

Figure 4.3: 2-periodic orbit of the system proposed by Theorem 4.11.

On the other hand, the 3-periodic orbit proposed by Theorem 4.11 can be seen
in Figure 4.4.

110111

111001111110

Figure 4.4: 3-periodic orbit of the system proposed by Theorem 4.11.

Finally, we can state the dual result.

Theorem 4.12. Given {n1, . . . , nr} ⊂ N with ni ≥ 2 for every i = 1, . . . , r, r ≥ 2,
there exists an SDS with a minterm as evolution operator which presents periodic
orbits of periods n1, . . . , nr simultaneously.

4.1.3 Uniqueness of �xed points

Our main objective in this subsection is to obtain a Fixed-Point Theorem for
SDS. Observe that, although �xed points and periodic orbits of greater period can-
not coexist, there are SDS whose state spaces contain more than one �xed point.
Actually, there is a total resemblance regarding the �xed points of SDS and PDS
with whichever maxterm or minterm Boolean function as evolution operator, as said
in Lemma 4.1 in Subsection 4.1.1.

In Theorem 3.7 (resp. Theorem 3.8) of Subsection 3.1.3, a Fixed-Point Theorem
was obtained for PDS on maxterm (resp. minterm) Boolean functions as evolution
operators. Thus, as a direct consequence of this result for PDS, we have the following
theorem in the context of SDS.



4.1 Dynamics of periodic orbits 87

Theorem 4.13 (Fixed-Point Theorem for MAX−SDS). Let [G,MAX, π]−SDS be
a sequential dynamical system over a dependency graph G = (V,E) associated with
the maxterm MAX. Assume that, W ′

C = ∅. Then, this SDS has a unique �xed point
if, and only if, for every j, 1 ≤ j ≤ p, AG (Gj) ∩W ′

1 6= ∅. In this situation, the
unique �xed point is I, and all the orbits converge to this �xed point.

Proof. It is a direct consequence of Lemma 4.1 in Subsection 4.1.1, Theorems 4.7,
4.8 and Corollary 4.1 in Subsection 4.1.2 and Theorem 3.7 in Subsection 3.1.3.

Dually, we have the following theorem.

Theorem 4.14 (Fixed-Point Theorem for MIN − SDS). Let [G,MIN, π] − SDS be
a sequential dynamical system over a dependency graph G = (V,E) associated with
the minterm MIN. Assume that, W ′

C = ∅. Then, this SDS has a unique �xed point
if, and only if, for every j, 1 ≤ j ≤ p, AG (Gj) ∩W ′

1 6= ∅. In this situation, the
unique �xed point is O, and all the orbits converge to this �xed point.

4.1.4 Uniqueness of periodic orbits

By Theorems 4.7, 4.8, 4.9, 4.10 and Corollaries 4.1, 4.2 of Subsection 4.1.2, it is
well known that all the periodic orbits of an SDS have period greater than 1 if, and
only if, W ′

C 6= ∅. Our aim now is to characterize the uniqueness of periodic orbits of
period greater than 1 in a MAX− SDS. To achieve this objective, �rst, we analyze
the particular case MAX = NAND.

In Proposition 3.1 of Subsection 3.1.4, it is established that, in the case of parallel
update associated with a NAND Boolean operator, the periodic orbit (order equal
to 2 in such a case) is unique if, and only if, the associated dependency graph is
complete. In this case of sequential update, this pattern is broken, as we show below.

When a sequential update schedule with a maxterm NAND as evolution operator
is considered, as will be seen in Proposition 4.3 of Subsection 4.2.1, we have that the
GOE points of the system are the con�gurations such that there are two adjacent
vertices i, j ∈ V with xi = xj = 0. Furthermore, the rest of the con�gurations
belong to periodic orbits.

As said above, in a NAND− SDS, the completeness of the dependency graph is
not a necessary condition for the uniqueness of a periodic orbit, breaking the pattern
found for the parallel update, shown in Proposition 3.1 of Subsection 3.1.4. We can
see this break down in the following example.

Example 4.2. Let us consider the NAND− SDS de�ned by
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• G = {{1, 2, 3, 4}, {{1, 2}, {2, 3}, {3, 4}, {4, 1}}} (see Figure 4.5),

• MAX = x′1 ∨ x′2 ∨ x′3 ∨ x′4,

• π = 1|2|3|4.

1 2

34

Figure 4.5: Graph {{1, 2, 3, 4}, {{1, 2}, {2, 3}, {3, 4}, {4, 1}}}.

The con�gurations without adjacent complemented entities with state values
equal to 0 are:

(1, 1, 1, 1) , (0, 1, 1, 1) , (1, 0, 1, 1) , (1, 1, 0, 1) , (1, 1, 1, 0) , (0, 1, 0, 1) , (1, 0, 1, 0) .

In Figure 4.6, it can be seen that all of them belong to the same periodic orbit.

1111 0101 1110 1011

110101111010

Figure 4.6: Unique periodic orbit of the [{{1, 2, 3, 4}, {{1, 2}, {2, 3}, {3, 4}, {4, 1}}},NAND, id]−SDS.

The rest of the con�gurations are GOE states from which this unique periodic
orbit is reached after 1 iteration.

Thus, we can enunciate the following uniqueness result for a periodic orbit in a
[G,NAND, π]− SDS.

Lemma 4.2 (m-Periodic-Orbit Theorem for NAND−SDS). Let [G,NAND, π]−SDS
be a sequential dynamical system over a dependency graph G = (V,E) associated with
the maxterm NAND. Then, there is a uniquem-periodic orbit (m > 1) if, and only if,
any con�guration reaches the state I, being m the number of con�gurations without
adjacent (complemented) vertices with state values equal to 0. In this situation, all
the orbits of the system converge to this m-periodic orbit.
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Proof. From Theorem 4.4 in Subsection 4.1.1, this kind of SDS only presents
periodic orbits of period greater than 1. On the other hand, as will be seen in
Proposition 4.3 of Subsection 4.2.1, the periodic points of the system are those
con�gurations without adjacent (complemented) vertices with state values equal to
0. In particular, the state I always belongs to a periodic orbit. Thus, the result
follows from the fact that in an SDS all the con�gurations belong to or reach a
periodic orbit.

Dually, we have the following lemma.

Lemma 4.3 (m-Periodic-Orbit Theorem for NOR−SDS). Let [G,NOR, π]−SDS be
a sequential dynamical system over a dependency graph G = (V,E) associated with
the minterm NOR. Then, there is a unique m-periodic orbit (m > 1) if, and only if,
any con�guration reaches the state O, being m the number of con�gurations without
adjacent (complemented) vertices with state values equal to 1. In this situation, all
the orbits of the system converge to this m-periodic orbit.

Once these results have been established, we provide the following system to
show how they can determine the uniqueness of a periodic orbit in this kind of SDS:

Let us consider a [G,NAND, π]−SDS such that π = 1| . . . |n, the identity permu-
tation, and take G the complete graph Kn. Then, the system has a unique periodic
orbit because each con�guration reaches the state I. In fact, if x ∈ {0, 1}n and there
exists i ∈ V such that xi = 0, let j = max{k ∈ V : xk = 0}. If j = n, after one itera-
tion the con�guration I is reached. Otherwise, after one iteration the con�guration
reached is the one with all the entities activated except j + 1. Similarly, in the next
iteration, the con�guration reached is that one with all the entities activated except
j + 2, and so on. Thus, after n− j + 1 iterations, the con�guration I is reached.

As a consequence of Example 4.2 and this last comment, we can enunciate the
following corollaries.

Corollary 4.3. In NAND − SDS, the completeness of the dependency graph is a
su�cient (but not necessary) condition for the existence of a unique periodic orbit
in the system.

And now the dual result.

Corollary 4.4. In NOR − SDS, the completeness of the dependency graph is a
su�cient (but not necessary) condition for the existence of a unique periodic orbit
in the system.
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Finally, once all the results above have been established for the particular case
in which the maxterm is NAND (and their dual versions for the minterm NOR),
now let us work with a general maxterm MAX as evolution operator.

According to what has been seen for the parallel update case, when a periodic
orbit of period greater than 1 is reached after r0 iterations, the system performs as
follows:

• If i ∈ W , then xri = xr0i for all r ≥ r0. In other words, the direct vertices do
not change their state (activated or deactivated) from the r0-th iteration on.
Moreover, in each connected component Gj, 1 ≤ j ≤ p, either every variable
associated with the vertices in Gj has state value 1 or every variable has state
value 0.

• If i ∈ W ′
D (note that if MAX 6= NAND and W ′

C 6= ∅, then W ′
D 6= ∅), it follows

that xri = 1 for all r ≥ r0. In fact, suppose that there exists i ∈ W ′
D such that

(after the r0-th iteration) xi takes the value 0 in an in�nite number of future
updates of the system, and assume (without loss of generality) that r0 ≥ 1 and
xr0i = 0. Since i ∈ W ′

D, there exists a direct vertex j adjacent to i. Observe
that it must be xr0+1

j = 1: if j updates before i, xr0i = 0 makes xr0+1
j = 1;

while if j updates after i, it is already xr0j = 1 due to xr0i = 0. Then, being
xr0+1
j = 1, we get that xri = 1 for all r > r0 + 1, which contradicts our initial

assumption.

• The restriction of the system to each connected component Cj performs as a
NAND− SDS. The permutation which determines the updating order in the
system restricted to Cj is the restriction of π to the vertices in Cj.

In view of this, it should be pointed out that, as commented in Chapter 2 about
G∗, this graph is not, in general, connected. Thus, the system

[
G∗,MAX|G∗ , π|G∗

]
−

SDS may be understood as a set of independent SDS, in the sense that the evo-
lution in each one only depends on the restriction of MAX and π to the con-
nected component of G∗ over which it is de�ned. In this setting, by saying that[
G∗,MAX|G∗ , π|G∗

]
−SDS has a unique �xed point, we mean that all these indepen-

dent SDS over the connected components of G∗ (if more than one) have a unique
�xed point.

Additionally, for every j ∈ {1, . . . , q}, let
[
Cj,MAX|Cj , π|Cj

]
−SDS be the sequen-

tial dynamical system over the dependency graph Cj associated with the maxterm
MAX|Cj , i.e., the restriction of MAX to the vertices in Cj, and π|Cj , the restriction
of π to the vertices in Cj.
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As said before, the restriction of the system to each connected component Cj per-
forms as an independent SDS with the maxterm NAND as evolution operator. Thus,
we must analyze the periodic orbits of the restricted systems

[
Cj,MAX|Cj , π|Cj

]
−

SDS, j ∈ {1, . . . , q}, and the relationships among them to study the periodic orbits
of the global system.

Let us consider the systems restricted to Cj1 and Cj2 , with j1 6= j2, and respective
periodic orbits Orbj1 and Orbj2 . The combination of these orbits in the system[
Cj1 ∪ Cj2 ,MAX|Cj1∪Cj2

, π|Cj1∪Cj2

]
− SDS is also a periodic orbit.

Observe that, depending on the synchronization of the di�erent state vectors of
Orbj1 and Orbj2 in the evolution of the system, di�erent periodic orbits can appear
in the system restricted to Cj1 ∪ Cj2 , as shown in the following example.

Example 4.3. Let us consider the following SDS:

C1 = [({1}, ∅) ,NAND, id]− SDS,

C2 = [({2}, ∅) ,NAND, id]− SDS,

being id the identity permutation. For each SDS, let us consider the following set
of states belonging to a periodic orbit:

Orb1 = {0, 1},

Orb2 = {0, 1}.

From the union of these systems, we obtain the SDS

[({1, 2}, ∅) ,NAND, 1|2]− SDS,

in which two periodic orbits are generated from Orb1 and Orb2:

• When x1 = 0 and x2 = 0 update simultaneously, Orbu1 = {(0, 0) , (1, 1)}.

• When x1 = 0 and x2 = 1 update simultaneously, Orbu2 = {(0, 1) , (1, 0)}.

Note that in the union system C1 ∪ C2 also the order 2|1 may be chosen, since
C1 and C2 update independently.
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Thereby, we de�ne the product of the periodic orbits Orbj1 and Orbj2 as the set
of all the periodic orbits of the restricted system to Cj1 ∪Cj2 generated by the states
belonging to Orbj1 and Orbj2 .

Finally, let us consider the following lemmas in which, as usual, the functions
lcm and gcd return, respectively, the least common multiple and the great common
divisor of a set of integer numbers.

Lemma 4.4. Let
[
Cj1 ,NAND|Cj1

, π|Cj1

]
− SDS and

[
Cj2 ,NAND|Cj2

, π|Cj2

]
− SDS

be two independent sequential dynamical systems over dependency graphs C1 and
C2 respectively, and associated with the maxterm NAND. Given a periodic orbit
of the system restricted to Cj1, with period mj1 > 1, and a periodic orbit of the
system restricted to Cj2, with period mj2 > 1, then the system over Cj1 ∪ Cj2 has
gcd (mj1 ,mj2) di�erent periodic orbits of period lcm (mj1 ,mj2) associated with the
product of such orbits.

Proof. Firstly, by Theorem 4.4 in Subsection 4.1.1, all the periodic orbits of these
systems have period greater than 1.

In this case, we can give an algebraical structure to the periodic orbits Orbj1
and Orbj2 by considering them as cyclic groups generated by a state of each orbit,
y and z respectively, as follows:

Orbj1 = 〈y〉 = {x ∈ {0, 1}nj1 : x = NANDt
|Cj1

(y) , for t ∈ N},

Orbj2 = 〈z〉 = {x ∈ {0, 1}nj2 : x = NANDt
|Cj2

(z) , for t ∈ N}.

Thus, results about direct product of cyclic groups can be applied in this case.
Since card (Orbj1) = mj1 and card (Orbj2) = mj2 , it is known (see [58]) that the
direct product of these cyclic groups is a group with mj1 · mj2 elements of order
lcm (mj1 ,mj2). That is, from the point of view of periodic orbits, this product
generates

mj1 ·mj2

lcm (mj1 ,mj2)
= gcd (mj1 ,mj2)

di�erent periodic orbits of period lcm (mj1 ,mj2).

This de�nition of product of periodic orbits can be easily extended to a product
of a �nite number of orbits.

Lemma 4.5. Let
{[
Cj,NAND|Cj , π|Cj

]
− SDS

}q
j=1

be a family of independent se-

quential dynamical systems over dependency graphs C1, . . . , Cq respectively, all of
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them associated with the maxterm NAND. Given a periodic orbit of each restricted
system, with period mj > 1 respectively, then the system over ∪qj=1Cj has∏q

j=1mj

lcm (m1, . . . ,mq)

di�erent periodic orbits of period lcm (m1, . . . ,mq) associated with the product of
such orbits.

Proof. This result is direct for q = 1 and coincides with Lemma 4.4 when q = 2.
For q > 2, it follows from the following recurrence rule: set a �xed value t, 2 ≤
t < q, if the product of the orbits Orb1, . . . ,Orbt when considering the t systems{[
Cj,NAND|Cj , π|Cj

]
− SDS

}t
j=1

generates∏t
j=1mj

lcm (m1, . . . ,mt)

periodic orbits of period lcm (m1, . . . ,mt) each one, then, by Lemma 4.4, the product
of only one of these periodic orbits with the periodic orbit of the following system[
Ct+1,NAND|Ct+1

, π|Ct+1

]
− SDS generates

gcd (lcm (m1, . . . ,mt) ,mt+1) =
lcm (m1, . . . ,mt) ·mt+1

lcm (lcm (m1, . . . ,mt) ,mt+1)

periodic orbits. Therefore, the number of periodic orbits when considering the prod-
uct of the t+ 1 orbits Orb1, . . . ,Orbt+1 is∏t

j=1mj

lcm (m1, . . . ,mt)

lcm (m1, . . . ,mt) ·mt+1

lcm (lcm (m1, . . . ,mt) ,mt+1)
=

∏t+1
j=1mj

lcm (m1, . . . ,mt+1)
,

and all of them with period lcm (lcm (m1, . . . ,mt) ,mt+1) = lcm (m1, . . . ,mt+1), by
Lemma 4.4.

Additionally, we establish the following lemma.

Lemma 4.6. Let
[
Cj,NAND|Cj , π|Cj

]
− SDS be a sequential dynamical system and

assume that this system has a unique periodic orbit of period mj. Then, for any
initial state x0 ∈ {0, 1}nj and a vertex i belonging to the graph Cj, exists ri > 1 such
that in the iteration ri, after the update of the state of the vertex i, all the entities
are activated. Furthermore, this pattern is periodically repeated onwards every mj

iterations.
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Proof. By Theorem 4.4 in Subsection 4.1.1, all the periodic orbits of this system
have period greater than 1. Since it has a unique periodic orbit of period mj > 1,
as will be seen in Proposition 4.3 of Subsection 4.2.1, there are exactly mj states,
x1, . . . , xmj , without adjacent complemented vertices with state values equal to 0,
being xk = NAND|Cj

(
xk−1

)
, 1 ≤ k ≤ mj. Note that, one of these con�gurations is

I.
On the other hand, the update of the state of a vertex t from a con�guration

without adjacent vertices with state values equal to 0 originates other con�guration
without adjacent vertices with state values equal to 0, because if t has an adjacent
vertex with state value 0, the evolution operator NAND updates the state value
of t to 1. Thus, from x1 each update of the state of a unique vertex generates a
con�guration belonging to {x1, . . . , xmj}.

Let us analyze the con�gurations reached after the update of the state of the
vertex i in the iterations 2, . . . ,mj + 1, respectively xi,2, . . . , xi,mj+1. Note that
xi,k 6= xi,l for all k, l ∈ {2, . . . ,mj + 1}, k 6= l, since otherwise we had a periodic
orbit with period smaller than mj. Thereby, {x1, . . . , xmj} = {xi,2, . . . , xi,mj+1} and
there is k ∈ {2, . . . ,mj + 1} such that, in xi,k, every variable has state value 1.

As a consequence of the previous results, we have the following theorem.

Theorem 4.15 (m-Periodic-Orbit Theorem for MAX − SDS). Let [G,MAX, π] −
SDS be a sequential dynamical system over a dependency graph G = (V,E) associ-
ated with the maxterm MAX. Then, it has a unique periodic orbit of period m, with
m > 1, if, and only if, the following conditions are satis�ed simultaneously:

i) W ′
C 6= ∅.

ii) Either MAX = NAND or
[
G∗,MAX|G∗ , π|G∗

]
− SDS has a unique �xed point

(I).

iii) For every j ∈ {1, . . . , q},
[
Cj,MAX|Cj , π|Cj

]
−SDS has a unique periodic orbit

with period mj > 1 (i.e., in the restricted system every state reaches the sub-
con�guration with all the entities activated).

iv) For all i, j ∈ {1, . . . , q}, i 6= j, mi and mj are coprime integers, being m =∏q
j=1mj.

Proof. In Lemma 4.2, we have proved the result for the particular case MAX =
NAND. In this case, W ′

C = V , q = 1, C1 = G and the graph G∗ is not de�ned since
the set of direct vertices is empty. Thus, let us assume that MAX 6= NAND.
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Under this assumption, let us suppose that [G,MAX, π] − SDS has a unique
periodic orbit of period m, with m > 1. First, note that from Theorems 4.7, 4.8 and
Corollary 4.1 in Subsection 4.1.2, there exists i ∈ W ′ such that W ∩AG (i) = ∅, i.e.,
W ′
C 6= ∅.
Moreover, we know that, once the m-period has been reached, the restriction

of the system to each connected component Cj, 1 ≤ j ≤ q, performs as an SDS
with NAND as evolution operator. Then, since the system has a unique m-period,
by Lemma 4.5, each

[
Cj,MAX|Cj , π|Cj

]
− SDS, 1 ≤ j ≤ q, must have a unique

mj-periodic orbit, and these periods, m1, . . . ,mq, must be pairwise coprime, being
m =

∏q
j=1mj.

Finally, let us see that
[
G∗,MAX|G∗ , π|G∗

]
− SDS has a unique �xed point. Note

that for this system, the subset of direct vertices coincides with the one in the
global system [G,MAX, π] − SDS, i.e., W . On the other hand, the subset of com-
plemented vertices in

[
G∗,MAX|G∗ , π|G∗

]
− SDS is W ′

D. In particular, since in G∗

every complemented vertex is adjacent to a direct vertex, all the periodic orbits of[
G∗,MAX|G∗ , π|G∗

]
− SDS are �xed points (see Theorems 4.7, 4.8 and Corollary 4.1

of Subsection 4.1.2).

Observe that given a �xed point of
[
G∗,MAX|G∗ , π|G∗

]
−SDS, we can construct a

periodic orbit for the system [G,MAX, π]−SDS by �xing the values of the variables
associated with the vertices in W ∪W ′

D as in such �xed point, and considering the
periodic orbit starting at the con�guration with all the vertices in W ′

C activated.
Hence, since the initial system [G,MAX, π] − SDS has a unique periodic orbit of
period m, it follows that

[
G∗,MAX|G∗ , π|G∗

]
− SDS has a unique �xed point.

Conversely, let us assume that i), ii), iii) and iv) hold, being MAX 6= NAND.

Firstly, since W ′
C 6= ∅, the only periodic orbits of [G,MAX, π] − SDS are peri-

odic orbits with period greater than 1 (see Theorems 4.7, 4.8 and Corollary 4.1 of
Subsection 4.1.2).

On the other hand, we know that the restriction of the system to each Cj, 1 ≤ j ≤
q, performs as a NAND− SDS once a periodic orbit has been reached. Then, since[
Cj,MAX|Cj , π|Cj

]
− SDS has a unique periodic orbit with period mj > 1 for each

j ∈ {1, . . . , q}, and mi, mj are coprime integers for i, j ∈ {1, . . . , q} with i 6= j, by

Lemma 4.5, the product of the sub-cycles of the subsystems
[
Cj,MAX|Cj , π|Cj

]
−SDS

generates a unique periodic orbit of period m =
∏q

j=1mj.

We also know that, in an m-periodic orbit of the system, all the variables as-
sociated with vertices in W ′

D �x their values to 1. To �nish the proof, we will see
that if

[
G∗,MAX|G∗ , π|G∗

]
− SDS has a unique �xed point, then in a periodic orbit
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of the system [G,MAX, π]−SDS all the variables associated with the direct vertices
in [G,MAX, π]− SDS (i.e. the vertices in W ) �x their values to 1.

Observe that the connected components which result in G∗ when we remove all
its complemented vertices (i.e. the vertices in W ′

D) and the edges which are incident
to those vertices coincide with the ones for G, i.e., they are G1, . . . , Gp.

Since
[
G∗,MAX|G∗ , π|G∗

]
− SDS has a unique �xed point, from Theorem 4.13 in

Subsection 4.1.3, we have that for every j, 1 ≤ j ≤ p, there exists ij ∈ AG∗ (Gj)∩W ′
D

such that ij /∈ AG∗ (Gk) for k 6= j.

Reasoning by reduction to the absurd, let us suppose that for a periodic orbit of
[G,MAX, π] − SDS there exists a vertex i ∈ W whose variable �xes its value to 0.
Let Gj be the connected component containing i, and take ij ∈ AG∗ (Gj)∩W ′

D such
that ij /∈ AG∗ (Gk) for k 6= j. In particular, since ij ∈ W ′

D, its associated variable
�xes its value to 1 in the periodic orbit. Regarding the variables associated with the
vertices in Gj, all of them �x their values to 0 in the periodic orbit.

On the other hand, once the periodic orbit has been reached, for each k, 1 ≤
k ≤ q, there exists rk > 1 such that every vertex in Ck has state value 1 when ij
updates in the rk-th iteration. In fact, this rk can be chosen as

• the one obtained by applying Lemma 4.6 over the last vertex in Ck updating
before ij according the order established in π, if any, or, in other case,

• the following iteration to the one obtained by applying Lemma 4.6 over the
last vertex in Ck to update according the order in π.

Also, since this pattern is repeated after mk iterations (see Lemma 4.6) and the
integersm1, . . . ,mq are pairwise coprime, by the Chinese Remainder Theorem, there
exists r > 1 such that every vertex in Ck, for all k ∈ {1, . . . , q}, has state value 1
when the entity ij updates in the r-th iteration, once the periodic orbit has been
reached.

In particular, for this iteration, when the state of the entity ij updates, all
the variables associated with direct vertices adjacent to ij are deactivated, and the
variables associated with complemented vertices adjacent to ij are activated. But
it implies that the state of the vertex ij would change from 1 to 0 in the iteration
r, once the periodic orbit has been reached, which is a contradiction. Therefore, all
the variables associated with the vertices in W �x their values to 1 in the periodic
orbit and the proof �nishes.

Dually, we have the following result.
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Theorem 4.16 (m-Periodic-Orbit Theorem for MIN−SDS). Let [G,MIN, π]−SDS
be a sequential dynamical system over a dependency graph G = (V,E) associated with
the minterm MIN. Then, it has a unique periodic orbit of period m, with m > 1, if,
and only if, the following conditions are satis�ed simultaneously:

i) W ′
C 6= ∅.

ii) Either MIN = NOR or
[
G∗,MIN|G∗ , π|G∗

]
−SDS has a unique �xed point (O).

iii) For every j ∈ {1, . . . , q},
[
Cj,MIN|Cj , π|Cj

]
− SDS has a unique periodic orbit

with period mj > 1 (i.e., in the restricted system every state reaches the sub-
con�guration with all the entities deactivated).

iv) For all i, j ∈ {1, . . . , q}, i 6= j, mi and mj are coprime integers, being m =∏q
j=1mj.

4.1.5 Maximum number of �xed points

By Theorems 4.7, 4.8, 4.9, 4.10 and Corollaries 4.1, 4.2 of Subsection 4.1.2, it
is known that all of the periodic orbits of an SDS are �xed points if, and only if,
W ′
C = ∅. Also, by Theorem 4.13 in Subsection 4.1.3, there is a unique �xed point

if, and only if, AG (Gj) ∩W ′
1 6= ∅ for all j, 1 ≤ j ≤ p.

In this subsection, we consider a MAX− SDS over a dependency graph G such
that its periodic orbits are only �xed points. Our purpose is to �nd an upper bound
for the number of �xed points, according to the maxterm MAX and the structure
of G.

In this case, we have the following theorem.

Theorem 4.17. Let [G,MAX, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the maxterm MAX such that W ′

C = ∅.
Then:

• If W ′ = ∅ (i.e., MAX = OR), there are exactly two �xed points: I and O.

• If W ′ 6= ∅, then there are at most 2p − 1 �xed points, being p the number of
connected components, G1, . . . , Gp, which result from G when we remove all
the vertices in W ′ and the edges which are incident to those vertices.
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Proof. This result follows directly from the upper bound obtained in Theorem
3.11 of Subsection 3.1.5 for PDS, since the �xed points in a [G,MAX, π] − SDS
coincide with the �xed points of the associated [G,MAX]−PDS (see Lemma 4.1 in
Subsection 4.1.1).

Dually, for an SDS associated with a minterm MIN, we have the following result.

Theorem 4.18. Let [G,MIN, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the minterm MIN such that W ′

C = ∅.
Then:

• If W ′ = ∅ (i.e., MIN = AND), there are exactly two �xed points: O and I.

• If W ′ 6= ∅, then there are at most 2p − 1 �xed points, being p the number of
connected components, G1, . . . , Gp, which result from G when we remove all
the vertices in W ′ and the edges which are incident to those vertices.

Moreover, the upper bound in Theorem 4.17 is attained in the SDS generated
from the PDS shown in Example 3.2 of Subsection 3.1.5 with the identity as updating
permutation. A dual example of an SDS on a minterm can be constructed where
the upper bound in Theorem 4.18 is also attained.

4.1.6 Maximum number of periodic orbits

In this subsection, we establish an upper bound for the number of periodic orbits
of period greater than 1 in a MAX− SDS (resp. MIN− SDS).

Firstly, we analyze the particular case when MAX = NAND (resp. MIN =
NOR).

Thanks to Proposition 4.3 (resp. Proposition 4.4) in Subsection 4.2.1, we obtain
an upper bound for the number of periodic orbits of a [G,NAND, π] − SDS (resp.
[G,NOR, π] − SDS) over a dependency graph G = (V,E), which only depends on
the number n of vertices of V .

Proposition 4.1. Let [G,NAND, π] − SDS be a sequential dynamical system over
a dependency graph G = (V,E) associated with the maxterm NAND. Then, the
number of periodic orbits is upper bounded by max{1, 2n−2}.
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Proof. From Proposition 4.3 in Subsection 4.2.1, the periodic points are the con-
�gurations such that no pair of adjacent vertices have state values equal to 0. Let us
see that the number of such con�gurations in a connected graph is, at most, 2n−1+1.
Then, the result is completed considering that a periodic orbit must have at least 2
states.

Reasoning by reduction to the absurd, let us suppose that there exists a graph
G with V = {1, . . . , n} and more than 2n−1 + 1 periodic points. We can assume,
without loss of generality, that n is the minimum with the property that there is
a connected graph with n vertices and more than 2n−1 + 1 periodic points. Since,
clearly, this is not the case for n = 1 and n = 2 (i.e., G = K2), it must be n ≥ 3.

Since G is a connected �nite graph, there is a vertex i such that it is not an
articulation point1. Removing i from G and the edges incident to it, we have a
connected graph G with n−1 ≥ 2 vertices in which the upper bound is valid because
of the way in which n in taken. Thus, G allows, at most, 2n−2 + 1 con�gurations
without adjacent vertices with state value 0.

Therefore, returning to G, there are a maximum of 2n−2 + 1 con�gurations with
xi = 1 and without adjacent vertices with state value 0 (those ones obtained from
G). On the other hand, there are, at most, 2n−2 con�gurations with xi = 0 and
without adjacent vertices with state value 0. Observe that, if xi = 0, it must be
xj = 1 for all j ∈ AG (i), and card (AG (i)) ≥ 1 since G is connected.

This means that G allows a maximum of 2n−2+1+2n−2 = 2n−1+1 con�gurations
without adjacent vertices with state value 0, contradicting the initial assumption,
and so the proof �nishes.

Dually, we have the following proposition.

Proposition 4.2. Let [G,NOR, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the minterm NOR. Then, the number
of periodic orbits is upper bounded by max{1, 2n−2}.

Next, we construct a [G,NAND, π] − SDS where the upper bound obtained in
Proposition 4.1 is attained. A dual example for a [G,NOR, π]−SDS can be similarly
constructed where the upper bound obtained in Proposition 4.2 is attained.

Example 4.4. Let us consider the star graph G = (V,E) with V = {1, . . . , n},
n > 1, E = {{1, i} : i = 2, . . . , n}, π = 1| . . . |n, the identity permutation, and take
the system [G,NAND, π]− SDS.

1Recall that an articulation point or cut vertex is a vertex that, if removed, disconnects the
graph.
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This system has 2n−1 +1 states without adjacent vertices with state values equal
to 0, i.e., from Proposition 4.3 in Subsection 4.2.1, 2n−1 + 1 periodic points:

• Whichever con�guration of values with x1 = 1.

• The one with x1 = 0 and xj = 1 for all j ∈ V \ {1}.

Speci�cally, there is the 3-periodic orbit:

(0, 1, . . . , 1)→ (1, 0, . . . , 0)→ (1, 1, . . . , 1)→ (0, 1, . . . , 1) ,

and the other periodic points, if any, belong to 2-periodic orbits. In such 2-periodic
orbits, x1 always has state value 1 and the other vertices alternate state values 0
and 1 after each iteration.

Therefore, the system has 2n−2 periodic orbits.

In view of this, we are able to obtain an upper bound for the number of periodic
orbits of a MAX− SDS taking into account Lemma 4.5 of Subsection 4.1.4.

Let nj be the number of vertices of Cj. In particular, if p = 0, then MAX =
NAND and q = 1. That is, we are under the assumptions of Proposition 4.1, i.e.,
the number of periodic orbits of the system is, at most, max{1, 2n1−2}.

With all of this, in the case of a general maxterm MAX, we have the following
theorem.

Theorem 4.19. Let [G,MAX, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the maxterm MAX, such that W ′

C 6= ∅
and MAX 6= NAND. Then, all the periodic orbits of the system have period greater
than 1, and the number of them is, at most,(

2p
∏q

j=1 (2nj−1 + 1)

2

)
− 1.

Proof. Since W ′
C 6= ∅, from Theorems 4.7, 4.8 and Corollary 4.1 in Subsection

4.1.2, every periodic orbit of this system has period greater than 1. Also, since
MAX 6= NAND, then W ′

D 6= ∅.
We also know that, if x0 is a periodic point of the system, then for all i ∈

W ′
D, x

0
i = 1 (and so, xmi = 1 for all m ∈ N). Moreover, the restriction of the
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system to each connected component Gj (resp. Cj) performs as an OR−SDS (resp.
NAND− SDS), once a periodic orbit has been reached.

Thus, in each connected component Gj, 1 ≤ j ≤ p, either all the entities as-
sociated with the vertices in Gj are activated or all of them are deactivated in the
periodic point, which leads to 2p combinations.

On the other hand, if in a periodic orbit of the global system the restriction
to each Cj performs as a NAND − SDS, the periodic orbits in the global system
are originated from the product of independent periodic orbits of these restricted
systems.

Let us assume that, for 1 ≤ j ≤ q, the system restricted to Cj has mj periodic
points, distributed into sj periodic orbits of respective periods mj,k, for 1 ≤ k ≤ sj.
By Lemma 4.5 in Subsection 4.1.4, the number of periodic orbits resulting from the
product considering in each system restricted to Cj, 1 ≤ j ≤ q, a periodic orbit
Orbj,kj of period mj,kj is ∏q

j=1mj,kj

lcm
(
{mj,kj}

q
j=1

) ≤ ∏q
j=1mj,kj

2

since lcm
(
{mj,kj}

q
j=1

)
≥ 2 because each period mj,kj ≥ 2. Therefore, the total

number of periodic orbits is upper bounded by

s1∑
k1=1

· · ·
sq∑

kq=1

∏q
j=1mj,kj

2
=

∑s1
k1=1 · · ·

∑sq
kq=1

∏q
j=1mj,kj

2

and, by applying the distributive property,

∑s1
k1=1 · · ·

∑sq
kq=1

∏q
j=1mj,kj

2
=

(∑s1
k1=1m1,k1

)
· · ·
(∑sq

kq=1mq,kq

)
2

=

∏q
j=1mj

2
.

Since in a periodic orbit each system restricted to Cj acts as a NAND − SDS,
from Proposition 4.1, this total number of periodic orbits is upper bounded by∏q

j=1 (2nj−1 + 1)

2
.

Finally, not all these combinations correspond to periodic orbits. Indeed, if i is
the entity in W ′

D which updates in the �rst place according to the order π, let us
consider the following con�guration:
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• xk = 0 for all k ∈ W .

• xk = 1 for all k ∈ W ′
D.

• For each 1 ≤ j ≤ q, the following states of the vertices of the graph Cj:

◦ xk = 1, if k updates after i.

◦ If k1, . . . , ks are the entities which update before i sorted in descending
update order (ks updates before ks−1, which updates before ks−2, and so
on), let us consider:

� xk1 = 0.
� For 2 ≤ t ≤ s, if kt is adjacent to a deactivated vertex of Cj, kt0 with
t0 < t, then xkt = 1. Otherwise, xkt = 0.

Since this state is such that there are no adjacent entities with state values 0
in each Cj, 1 ≤ j ≤ q, by Proposition 4.3 in Subsection 4.2.1, this con�guration
generates a periodic point of the system restricted to each Cj, 1 ≤ j ≤ q.

Under these assumptions, in the evolution of this con�guration, when i updates,
all the direct vertices are deactivated and all the complemented vertices are acti-
vated. Thus, the state value of i ∈ W ′

D would become 0 after one iteration, which
is not possible in a periodic point, as remarked above.

Observe that, in Theorem 4.19, we need a maxterm di�erent from NAND since,
otherwise, p = 0, q = 1 and the upper bound obtained for the number of periodic
orbits of the system is not valid (see Proposition 4.1 and Example 4.4).

Dually, we have the following result.

Theorem 4.20. Let [G,MIN, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the minterm MIN, such that W ′

C 6= ∅
and MIN 6= NOR. Then, all the periodic orbits of the system have period greater
than 1, and the number of them is, at most,(

2p
∏q

j=1 (2nj−1 + 1)

2

)
− 1.

To �nish, in the following example, we construct a [G,MAX, π] − SDS where
the upper bound obtained in Theorem 4.19 is attained. A dual example of a
[G,MIN, π] − SDS can be similarly constructed where the upper bound obtained
in Theorem 4.20 is attained.
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Example 4.5. Let us �x p > 0, q > 0, and consider the following sets of vertices:

• W = {d1, . . . , dp}.

• W ′
D = {c1}.

• W ′
Cj

= {c̄j} for j = 1, . . . , q.

Then, we take as vertex set of the dependency graph V = W ∪W ′
D∪
(
∪qj=1W

′
Cj

)
.

Regarding the adjacencies among these vertices, we take the edges:

• {di, c1} for all 1 ≤ i ≤ p.

• {c1, c̄j} for all 1 ≤ j ≤ q.

All these edges constitute the edge set E.

Over this dependency graph G = (V,E), we consider the maxterm MAX whose
directed variables are the ones associated with the vertices in W and whose comple-
mented variables are those associated with the vertices in V \W .

Also, we consider the updating order given by π = d1| · · · |dp|c1|c̄1| · · · |c̄q.

For this [G,MAX, π]−SDS over G, we have p connected components, G1, . . . , Gp,
given byGi = {{di}, ∅}, and q connected components, C1, . . . , Cq, with nj = 1 vertex

each one, given by Cj =
(
W ′
Cj
, ∅
)
.

The system constructed above has exactly(
2p
∏q

j=1 (2nj−1 + 1)

2

)
− 1

periodic orbits. Certainly, every connected component Cj is a graph with 1 vertex
and so, the restriction of the SDS to Cj has one 2-periodic orbit; and the con�gu-
ration with di = 0, 1 ≤ i ≤ p, c1 = 1 and c̄j = 1, 1 ≤ j ≤ q, does not belong to a
periodic orbit, since after one iteration c1 = 0.
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4.2 Dynamics of non-periodic orbits

Following the same scheme as in the parallel case, in this section, we study the
dynamics of non-periodic orbits of SDS.

First, we study the existence and uniqueness of predecessor, what naturally leads
us to explore the �eld of the Garden-of-Eden con�gurations of the system.

Finally, we expose results about attractiveness of periodic orbits, basins of at-
traction and, specially, we analyze the maximum number of iterations needed to
ensure that any con�guration reaches a periodic orbit.

4.2.1 Predecessors and GOE con�gurations

As has been already said in Subsection 3.2.1, in [30, 31, 32], the study of prede-
cessors is divided into four speci�c problems:

• Predecessor existence (PRE).

• Predecessor uniqueness (UPRE).

• Predecessors coexistence (APRE).

• Number of predecessors of a given state (#PRE).

We will start solving the �rst of these problems in the context of SDS on maxterm
and minterm Boolean functions and we will also provide a characterization of GOE
points. Therefrom, some results will be also reached which will allow us to solve the
rest of the problems in the previous list.

The next theorem provides a characterization of the existence of predecessors,
�nding a particular predecessor, named fundamental predecessor, of a speci�c state
of the system in the context of an SDS, when it exists.

Theorem 4.21. Let [G,MAX, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the maxterm MAX. Then, a con�gu-
ration y has a predecessor if, and only if, the state x de�ned as follows is such that
MAX (x) = y:

• For every entity i ∈ V0 ∪ P0,

◦ xi = 0, if i ∈ W ,
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◦ xi = 1, if i ∈ W ′.

• For every entity i ∈ (V0 ∪ P0)
c,

◦ xi = 1, if i ∈ W ,

◦ xi = 0, if i ∈ W ′.

Proof. It must only be shown that this condition is necessary for the existence
of a predecessor. For this purpose, let us see that if there is a predecessor of y,
x̂ = (x̂1, . . . , x̂n), then x de�ned as in this theorem is also a predecessor of y.

Thus, if i ∈ V0 ∪ P0, it must be

• x̂i = 0 = xi, if i ∈ W ,

• x̂i = 1 = xi, if i ∈ W ′,

since, otherwise, yi = 1, if i ∈ V0, or yj = 1 for some j ∈ AG (i) ∩ V0 (those ones
that update before i) if i ∈ P0.

Suppose, by reduction to the absurd, that x is not a predecessor of y. Let i ∈ V
be the �rst entity, according to the order established by π, such that xi does not
update to yi. It must be i ∈ V0 ∪ P0, because the entities in (V0 ∪ P0)

c ⊆ V1 update
to the activated state because of their own state values in x.

If i ∈ P0 \ V0 ⊆ V1, let us analyze the possible states of the entities belonging to
AG (i):

• Since i is the �rst entity not updating to the state given by yi = 1, then
∀j ∈ AG (i) with i = πr, j = πs and s < r, the entity j has updated to the
state given by yj, the same as for x̂.

• xi = x̂i.

• ∀j ∈ AG (i) with i = πr, j = πs and s > r:

◦ If j ∈ P0 ∪ V0, then xj = x̂j.

◦ If j ∈ (P0 ∪ V0)c, then xj = 1, if j ∈ W , or xj = 0, if j ∈ W ′.

Since x̂i updates to yi = 1, xi must also do it, but this is a contradiction and,
consequently, i /∈ P0 \ V0.

Therefore i ∈ V0. In this situation:
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• Since i is the �rst entity not updating to the state given by yi = 0, then
∀j ∈ AG (i) with i = πr, j = πs and s < r, the entity j has updated to the
state given by yj, the same as for x̂.

• xi = x̂i.

• ∀j ∈ AG (i) with i = πr, j = πs and s > r, the entity j ∈ P0, so xj = 0, if
j ∈ W , or xj = 1, if j ∈ W ′.

Since x̂i updates to yi = 0, xi must also do it, which is a contradiction and,
consequently, i /∈ V0.

Therefore, there cannot exist i ∈ V like that and x updates to y.

Dually, we have the following result.

Theorem 4.22. Let [G,MIN, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the minterm MIN. Then, a con�gura-
tion y has a predecessor if, and only if, the state x de�ned as follows is such that
MIN (x) = y:

• For every entity i ∈ V1 ∪ P1,

◦ xi = 1, if i ∈ W ,

◦ xi = 0, if i ∈ W ′.

• For every entity i ∈ (V1 ∪ P1)
c,

◦ xi = 0, if i ∈ W ,

◦ xi = 1, if i ∈ W ′.

Theorems 4.21 and 4.22 solve the PRE problem for SDS on maxterm and minterm
Boolean functions, respectively, and allow us to establish the following characteri-
zation of the GOE points of these systems.

Corollary 4.5 (Characterization of GOE in MAX− SDS). Let [G,MAX, π]− SDS
be a sequential dynamical system over a dependency graph G = (V,E) associated
with the maxterm MAX. Then, a con�guration y is a GOE point of the system if,
and only if, the state x de�ned as in Theorem 4.21 is such that MAX (x) 6= y.

Corollary 4.6 (Characterization of GOE in MIN−SDS). Let [G,MIN, π]−SDS be
a sequential dynamical system over a dependency graph G = (V,E) associated with
the minterm MIN. Then, a con�guration y is a GOE point of the system if, and
only if, the state x de�ned as in Theorem 4.22 is such that MIN (x) 6= y.
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Next, we provide su�cient conditions to determine GOE points.

Corollary 4.7. Let [G,MAX, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the maxterm MAX. If a state y is
such that (Q0 ∩ V0) ∩W ′ 6= ∅, then y is a GOE point.

Proof. If (Q0 ∩ V0) ∩ W ′ 6= ∅, there is an entity i ∈ V0 whose corresponding
variable in MAX appears in complemented form and with an adjacent entity j ∈ V0
updating after it. In this situation, the con�guration y cannot be obtained as the
update of another state x because the evolution of the entity i to the deactivated
state makes it impossible the posterior update of the entity j to this state.

Corollary 4.8. Let [G,MAX, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the maxterm MAX. If a state y is
such that (Q0 ∩ V c

0 ) ∩W 6= ∅, then y is a GOE point.

Proof. If (Q0 ∩ V c
0 )∩W 6= ∅, there is an entity i ∈ V1 whose corresponding variable

in MAX appears in direct form and with an adjacent entity j ∈ V0 updating after
it. The proof �nishes reasoning as in Corollary 4.7.

Dually, we have the following results.

Corollary 4.9. Let [G,MIN, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the minterm MIN. If a state y is such
that (Q1 ∩ V1) ∩W ′ 6= ∅, then y is a GOE point.

Corollary 4.10. Let [G,MIN, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the minterm MIN. If a state y is such
that (Q1 ∩ V c

1 ) ∩W 6= ∅, then y is a GOE point.

From Corollary 4.7 (resp. Corollary 4.9), it can be deduced that a con�guration
with two adjacent complemented vertices with state value 0 (resp. 1) is a GOE point
of a [G,MAX, π]− SDS (resp. [G,MIN, π]− SDS). Actually, when MAX = NAND
(resp. MIN = NOR), they are the only GOE points of the system.

Indeed, if a con�guration y of [G,NAND, π] − SDS is such that yi = yj = 0
implies that {i, j} /∈ E, then y has a predecessor given by

• xi = 1, if i ∈ V0 ∪ P0,

• xi = 0, if i ∈ (V0 ∪ P0)
c.



108 Advances in SDS

Additionally, since in such kinds of systems any con�guration reaches a periodic
orbit at a maximum of one iteration (see [28]), we have the following result.

Proposition 4.3. Let [G,NAND, π]−SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the maxterm NAND. Then, the GOE
points of the system are the con�gurations such that there are two adjacent vertices
i, j ∈ V with xi = xj = 0. Furthermore, the other con�gurations belong to periodic
orbits.

Dually, we have the following result.

Proposition 4.4. Let [G,NOR, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the minterm NOR. Then, the GOE
points of the system are the con�gurations such that there are two adjacent vertices
i, j ∈ V with xi = xj = 1. Furthermore, the other con�gurations belong to periodic
orbits.

From Proposition 4.3 (and, dually, from Proposition 4.4), we can see that the
pattern of the parallel update case for a MAX − PDS over a dependency graph
G = (V,E), with V = {1, . . . , n} and n ≥ 2, whereby a con�guration with only one
activated entity has no predecessors, is broken in the case of the sequential update,
as shown in the following example.

Example 4.6. In the case of the SDS de�ned by

• G = ({1, 2}, {{1, 2}}),

• MAX = x′1 ∨ x′2,

• π = 1|2,

the con�guration y = (0, 1) is not a GOE point because x = (1, 1) is its predecessor.

In view of these results, we can state the following corollaries about the number
of GOE points in an SDS.

Corollary 4.11. Let [G,MAX, π]−SDS be a sequential dynamical system over a de-
pendency graph G = (V,E) associated with the maxterm MAX, with V = {1, . . . , n}
and n ≥ 2. Then, the number of GOE points, #GOE, is such that

1 ≤ #GOE ≤ 2n − 2.

Moreover, these bounds are the best possible because they are reachable.
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Proof. First, we will prove that any SDS with n ≥ 2 has GOE points. Observe
that, as n ≥ 2, there exist two adjacent entities i and j with i updating before j. If
i ∈ W , then a con�guration with yi = 1 and yj = 0 has no predecessor; otherwise
i ∈ W ′ and the same occurs for a con�guration with yi = yj = 0.

In fact, the lower bound is reached, as shown in the example below. Let us
consider the [G,MAX, π]− SDS de�ned by

• G = ({1, 2}, {{1, 2}}),

• MAX = x′1 ∨ x′2,

• π = 1|2.

In this case, (0, 0) is a GOE of the system and the rest of states belong to a
3-cycle, as can be checked in Figure 4.7.

00

11

0110

Figure 4.7: Phase portrait of the system [({1, 2}, {{1, 2}}) , x′
1 ∨ x′

2, 1|2]− SDS.

On the other hand, I is never a GOE point of the system, because the state x
de�ned as follows is its predecessor:

• xi = 1, if i ∈ W ,

• xi = 0, if i ∈ W ′.

Also, there is always another con�guration with a predecessor, because if x is
de�ned as

• xi = 0, if i ∈ W ,

• xi = 1, if i ∈ W ′,

then x updates to a state y such that y1 = 0.

As shown in the example below, this upper bound is also reached. Let us consider
the following [G,MAX, π]− SDS, determined by
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• G = ({1, 2}, {{1, 2}}),

• MAX = x1 ∨ x′2,

• π = 1|2.

The phase portrait of this system is shown in Figure 4.8.

01

00 10

11

Figure 4.8: Phase portrait of the system [({1, 2}, {{1, 2}}) , x1 ∨ x′
2, 1|2]− SDS.

Remark 4.3. In Corollary 4.11, n ≥ 2 has been imposed. This is necessary because
a [G,MAX, π] − SDS with n = 1 has 2 �xed points, if W ′ = ∅, or one 2-cycle, if
W = ∅. That is, it has not GOE points in any case.

Dually, we have the following result.

Corollary 4.12. Let [G,MIN, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the mintermMIN, with V = {1, . . . , n}
and n ≥ 2. Then, the number of GOE points, #GOE, is such that

1 ≤ #GOE ≤ 2n − 2.

Moreover, these bounds are the best possible because they are reachable.

In Theorem 4.21, a constructive proof about the existence of a fundamental pre-
decessor is shown. The conditions regarding a predecessor exposed in that reasoning
inspires the following result.

Corollary 4.13. Let [G,MAX, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the maxterm MAX. If a con�guration
y has a predecessor x, the following conditions are veri�ed:

• If yi = 0, for every entity j ∈ AG (i), with i = πr and j = πs:
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◦ If i = j or r < s:

� xj = 0, if j ∈ W , or

� xj = 1, if j ∈ W ′.

◦ If r > s:

� yj = 0, if j ∈ W , or

� yj = 1, if j ∈ W ′.

• If yi = 1, there exists an entity j ∈ AG (i) such that if i = πr and j = πs, at
least one of the following conditions is accomplished:

◦ i = j or r < s, and:

� xj = 1, if j ∈ W , or

� xj = 0, if j ∈ W ′.

◦ r > s, and:

� yj = 1, if j ∈ W , or

� yj = 0, if j ∈ W ′.

Proof. On one hand, if yi = 0 and there is j ∈ AG (i) such that the conditions
shown are not satis�ed in this case, the entity i will update to the activated state
due to this adjacent entity j, which is a contradiction. On the other hand, if yi = 1
and ∀j ∈ AG (i) these conditions are not satis�ed, the entity i will update to the
deactivated state, which is also a contradiction.

Dually, we have the following result.

Corollary 4.14. Let [G,MIN, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the minterm MIN. If a con�guration
y has a predecessor x, the following conditions are veri�ed:

• If yi = 1, for every entity j ∈ AG (i), with i = πr and j = πs:

◦ If i = j or r < s:

� xj = 1, if j ∈ W , or

� xj = 0, if j ∈ W ′.

◦ If r > s:

� yj = 1, if j ∈ W , or
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� yj = 0, if j ∈ W ′.

• If yi = 0, there exists an entity j ∈ AG (i) such that if i = πr and j = πs, at
least one of the following conditions is accomplished:

◦ i = j or r < s, and:

� xj = 0, if j ∈ W , or

� xj = 1, if j ∈ W ′.

◦ r > s, and:

� yj = 0, if j ∈ W , or

� yj = 1, if j ∈ W ′.

In a MAX − SDS (resp. MIN − SDS), the entities whose state is deactivated
(resp. activated) in y determine univocally their state and the state of their adjacent
entities in P0 (resp. P1) in any predecessor x, if such a predecessor exists. However,
for any entity whose state value is 1 (resp. 0) in y, it is only necessary the intervention
of a timely adjacent entity, or itself, with the appropriate state in the moment of
its update. This point is the key to solve the UPRE, APRE and #PRE problems
hereafter.

The following theorems allow us to determine if, given a state y with a predecessor
x, there are other con�gurations di�erent from x such that they are also predecessors
of y. Thus, the UPRE and APRE problems in the context of an SDS on maxterm
and minterm Bolean functions are solved.

Theorem 4.23. Let [G,MAX, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the maxterm MAX. Let y be a con�g-
uration of the system such that it has a predecessor. Then, this predecessor of y is
not unique if, and only if, there is a predecessor of y belonging to the following set:

P = {x̂ ∈ {0, 1}n : ∃ i ∈ (V0 ∪ P0)
c such that x̂i 6= xi and x̂j = xj ∀j ∈ V \ {i}},

being x the fundamental predecessor of y described in Theorem 4.21.

Proof. Since the fundamental predecessor x de�ned as in Theorem 4.21 is such
that x /∈ P, it must only be shown that this condition is necessary for the existence
of a predecessor di�erent from x. For this purpose, let us see that, if there is
a predecessor of y di�erent from x, x = (x1, . . . , xn), then there exists a state
x̂ = (x̂1, . . . , x̂n) ∈ P such that x̂ is also a predecessor of y.
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Given that x 6= x, being x a predecessor of y, by Corollary 4.13, there is an entity
i0 ∈ (V0 ∪ P0)

c such that xi0 6= xi0 . Let us take x̂ as the only element of P such that
x̂i0 6= xi0 (consequently, x̂i0 = xi0), and let us see that this state is a predecessor of
y.

Suppose, by reduction to the absurd, that x̂ is not a predecessor of y. Let i ∈ V be
the �rst entity, according to the order established by π, such that x̂i does not update
to yi. It must be i ∈ V0 ∪ P0 ∪ {i0}, because the entities in (V0 ∪ P0 ∪ {i0})c ⊆ V1
update to the activated state because of their own state values in x̂.

If i ∈ P0 \ (V0 ∪ {i0}) = P0 \ V0 ⊆ V1, let us analyze the possible states of the
entities belonging to AG (i):

• Since i is the �rst entity not updating to the state given by yi = 1, then
∀j ∈ AG (i) with i = πr, j = πs and s < r, the entity j has updated to the
state given by yj, the same as for x.

• x̂i = xi.

• ∀j ∈ AG (i) with i = πr, j = πs and s > r:

◦ If j ∈ P0 ∪ V0 ∪ {i0}, then x̂j = xj.

◦ If j ∈ (P0 ∪ V0 ∪ {i0})c, then either x̂j = 1, if j ∈ W , or x̂j = 0, if j ∈ W ′.

Since xi updates to yi = 1, x̂i must also do it, but this is a contradiction and,
consequently, i /∈ P0 \ V0.

If i ∈ V0 \ {i0} = V0, we have the following:

• Since i is the �rst entity not updating to the state given by yi = 0, then
∀j ∈ AG (i) with i = πr, j = πs and s < r, the entity j has updated to the
state given by yj, the same as for x.

• x̂i = xi.

• ∀j ∈ AG (i) with i = πr, j = πs and s > r, the entity j ∈ P0 = P0 \ {i0}, so
either xj = 0, if j ∈ W , or xj = 1, if j ∈ W ′.

Since xi updates to yi = 0, x̂i must also do it, which is a contradiction and,
consequently, i /∈ V0.

Therefore i = i0. In this situation, we have the following:
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• Since i is the �rst entity not updating to the state given by yi = 1 (i0 ∈
(V0 ∪ P0)

c ⊆ V1), then ∀j ∈ AG (i0) with i0 = πr, j = πs and s < r, the entity
j has updated to the state given by yj, the same as for x.

• x̂i0 = xi0 .

• ∀j ∈ AG (i0) with i0 = πr, j = πs and s > r:

◦ If j ∈ P0 ∪ V0, then x̂j = xj.

◦ If j ∈ (P0 ∪ V0)c, then either x̂j = 1, if j ∈ W , or x̂j = 0, if j ∈ W ′.

Since xi updates to yi = 1, x̂i must also do it, but this is also a contradiction
and, consequently, i 6= i0.

Therefore, there cannot exist i ∈ V like that and x̂ updates to y.

Remark 4.4. The previous result reduces an initial exponentially-sized problem, the
search of a particular con�guration among the 2n possible states of the system, into
another one in which, at most, n cases must be analyzed. In this case, a short list of
possible candidates is given and the evaluation of the evolution operator only over
the elements of this set provides the answer to the global problem of existence of a
unique predecessor for a state y.

Dually, we have the following result.

Theorem 4.24. Let [G,MIN, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the minterm MIN. Let y be a con�g-
uration of the system such that it has a predecessor. Then, this predecessor of y is
not unique if, and only if, there is a predecessor of y belonging to the following set:

P = {x̂ ∈ {0, 1}n : ∃ i ∈ (V1 ∪ P1)
c such that x̂i 6= xi and x̂j = xj ∀j ∈ V \ {i}},

being x the fundamental predecessor of y described in Theorem 4.22.

These results respond to the question of the existence of more than one predeces-
sor for a state y. The next step is to go deeper into this topic, getting the number of
them. In the following results, we explain a method to obtain all the predecessors of
y and, consequently, this number in order to solve the predecessor problem #PRE.

Corollary 4.15. Let [G,MAX, π] − SDS be a sequential dynamical system over
a dependency graph G = (V,E) associated with the maxterm MAX. Let y be a
con�guration and let us consider the following iterative process:
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• Pn+1 = {y}.

• If i ∈ V , then

Pi = {x ∈ {0, 1}n : ∃y ∈ Pi+1 / xj = yj if j 6= πi and MAX|AG(πi) (x) = yπi},

being MAX|AG(πi) the restriction of MAX over AG (πi).

Then, P1 is the set of all the predecessors of y.

Example 4.7. Let us illustrate this procedure with a particular example, in order
to clarify the notation. We consider the [G,MAX, π]− SDS de�ned by

• G = ({1, 2, 3}, {{1, 3}, {2, 3}}),

• MAX = x1 ∨ x2 ∨ x3,

• π = 1|2|3.

The phase portrait of this system is shown in Figure 4.9.
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011

111001 110000

Figure 4.9: Phase portrait of the system [({1, 2, 3}, {{1, 3}, {2, 3}}) , x1 ∨ x2 ∨ x3, 1|2|3]− SDS.

The set of predecessors of the con�guration y = (1, 1, 1) is

{(1, 1, 1) , (1, 1, 0) , (0, 0, 1) , (0, 1, 1) , (1, 0, 1)}.

Let us see that this set is obtained as P1 at the end of the iterative process
starting with P4 = {(1, 1, 1)}.
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Firstly, P3 is obtained: since π3 = 3, the only con�gurations that can belong to
P3 are (1, 1, 0) and (1, 1, 1). Besides, since MAX|AG(3) (1, 1, 0) = MAX|AG(3) (1, 1, 1) =

1 = y3, then P3 = {(1, 1, 0) , (1, 1, 1)}.
Then, to obtain P2, since π2 = 2 and considering the elements in P3, the

only con�gurations that can belong to this set P2 are (1, 0, 0), (1, 1, 0), (1, 0, 1)
and (1, 1, 1). Now, MAX|AG(2) (1, 0, 0) is equal to 0 6= y2, while MAX|AG(2) (1, 1, 0),
MAX|AG(2) (1, 0, 1) and MAX|AG(2) (1, 1, 1) are all equal to 1 = y2. Hence, the set P2

is as follows: P2 = {(1, 1, 0) , (1, 0, 1) , (1, 1, 1)}.
Finally, since π1 = 1 and knowing the set P2, the only con�gurations that can

belong to P1 are (0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1) and (1, 1, 1). Now,
MAX|AG(1) (0, 1, 0) is equal to 0 6= y1, while MAX|AG(1) (1, 1, 0), MAX|AG(1) (0, 0, 1),
MAX|AG(1) (1, 0, 1), MAX|AG(1) (0, 1, 1) and MAX|AG(1) (1, 1, 1) are all equal to 1 = y1.
Thus, P1 = {(1, 1, 0) , (0, 0, 1) , (1, 0, 1) , (0, 1, 1) , (1, 1, 1)}.

Dually, we have the following result.

Corollary 4.16. Let [G,MIN, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the minterm MIN. Let y be a con�gu-
ration and let us consider the following iterative process:

• Pn+1 = {y}.

• If i ∈ V , then

Pi = {x ∈ {0, 1}n : ∃y ∈ Pi+1 / xj = yj if j 6= πi and MIN|AG(πi) (x) = yπi},

being MIN|AG(πi) the restriction of MIN over AG (πi).

Then, P1 is the set of all the predecessors of y.

These last procedures allow us to know all the predecessors of a state y in an
SDS and, consequently, the number of them. However, the calculus of the number
of predecessors for a state of the entities depends on the connections among entities
in the particular graph. In this case, as traditionally done in other contexts, we have
been able to get a bound for the number of predecessors of a con�guration, which
is given in the following theorems.

Theorem 4.25. Let [G,MAX, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the maxterm MAX. Then, the number
of predecessors of a given state y is upper bounded by 2#(V0∪P0)

c

. Moreover, this
bound is the best possible because it is reachable.



4.2 Dynamics of non-periodic orbits 117

Proof. From Theorem 4.21 and Corollary 4.13, the states of the entities belonging
to V0 ∪ P0 in a possible predecessor of y are �xed. Since the state values of the rest
of entities are either 0 or 1, a �rst upper bound for the number of predecessors is
2#(V0∪P0)

c

.

This upper bound is the best possible because it is reached in the following
example. Let us consider the [G,MAX, π]− SDS de�ned by

• G = (V,E), with V = {1, . . . , n}, n ≥ 2, and E = {{2, i} : i ∈ V \ {2}},

• MAX = x′1 ∨ x2 ∨ · · · ∨ xn,

• π = 1| . . . |n.

In this context, if y = (0, 1, . . . , 1), then V0 = {1}, P0 = {2}, Q0 = ∅ and
V1 = {2, . . . , n}.

For any predecessor, x, it must be x1 = 1 and x2 = 0 but, in this case, all the
other choices for the states of the rest of entities generate predecessors of y.

Dually, we have the following result.

Theorem 4.26. Let [G,MIN, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the minterm MIN. Then, the number
of predecessors of a given state y is upper bounded by 2#(V1∪P1)

c

. Moreover, this
bound is the best possible because it is reachable.

4.2.2 Convergence to periodic orbits: attractors, global at-

tractors, basins of attraction and transient

The study performed above helps us to give in this subsection some results
concerning the attractive character of �xed points and periodic orbits of greater
period of any SDS with a maxterm or a minterm Boolean function as global evolution
operator, their basins of attraction and the transient (or width) of the system.

Attractive and repulsive periodic orbits

The concept of attractive or repulsive periodic orbit has already been introduced
in this thesis in Chapter 2, in De�nition 2.4.

As said before, for a periodic orbit, the concept of attractiveness in our context is
equivalent to have at least one of the states of the periodic orbit with a predecessor
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di�erent from the one that it has in its periodic orbit. Thus, we can state the
following results that characterize the attractive or repulsive character.

Theorem 4.27. Let [G,MAX, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the maxterm MAX. Then, a periodic
orbit is attractive if, and only if, for a state y of such a periodic orbit, there is a
predecessor of it belonging to the following set:

P = {x̂ ∈ {0, 1}n : ∃ i ∈ (V0 ∪ P0)
c such that x̂i 6= xi and x̂j = xj ∀j ∈ V \ {i}},

being x the fundamental predecessor of y de�ned as:

• For every entity i ∈ V0 ∪ P0,

◦ xi = 0, if i ∈ W ,

◦ xi = 1, if i ∈ W ′.

• For every entity i ∈ (V0 ∪ P0)
c,

◦ xi = 1, if i ∈ W ,

◦ xi = 0, if i ∈ W ′.

Proof. Since a periodic orbit is attractive if one of the states in such an orbit has
at least two predecessors, the result is a consequence of Theorem 4.23 in Subsection
4.2.1, where the existence of non-unique predecessors is characterized for this type
of SDS.

Dually, we have the following result.

Theorem 4.28. Let [G,MIN, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the minterm MIN. Then, a periodic
orbit is attractive if, and only if, for a state y of such a periodic orbit, there is a
predecessor of it belonging to the following set:

P = {x̂ ∈ {0, 1}n : ∃ i ∈ (V1 ∪ P1)
c such that x̂i 6= xi and x̂j = xj ∀j ∈ V \ {i}},

being x the fundamental predecessor of y de�ned as:

• For every entity i ∈ V1 ∪ P1,

◦ xi = 1, if i ∈ W ,
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◦ xi = 0, if i ∈ W ′.

• For every entity i ∈ (V1 ∪ P1)
c,

◦ xi = 0, if i ∈ W ,

◦ xi = 1, if i ∈ W ′.

Observe that, when an SDS presents a unique �xed point, this is globally attrac-
tive. That is, the rest of the orbits of the system converges to such a �xed point.
Thus, we can state the conditions that characterize globally attractive �xed points
for this class of SDS.

Theorem 4.29. Let [G,MAX, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the maxterm MAX. Then, this SDS
has a globally attractive �xed point if, and only if, W ′

C = ∅, and AG (Gj) ∩W ′
1 6= ∅

for every j, 1 ≤ j ≤ p. In this situation, the globally attractive �xed point is I.

Proof. Since a �xed point of a MAX − SDS is globally attractive if, and only if,
it is the unique �xed point of such a system, the result is a consequence of Theorem
4.13 in Subsection 4.1.3, which is, indeed, a Fixed-Point Theorem for this kind of
SDS.

Theorem 4.30. Let [G,MIN, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the minterm MIN. Then, this SDS
has a globally attractive �xed point if, and only if, W ′

C = ∅, and AG (Gj) ∩W ′
1 6= ∅

for every j, 1 ≤ j ≤ p. In this situation, the globally attractive �xed point is O.

A similar situation occurs when an SDS presents a unique periodic orbit of period
m, being such an orbit globally attractive. Thus, we can state the conditions that
characterize globally attractive m-periodic orbits with m > 1 for this class of SDS.

Theorem 4.31. Let [G,MAX, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the maxterm MAX. Then, this system
has a globally attractive m-periodic orbit with m > 1 if, and only if, the following
conditions are simultaneously satis�ed:

i) W ′
C 6= ∅.

ii) Either MAX = NAND or
[
G∗,MAX|G∗ , π|G∗

]
− SDS has a unique �xed point

(I).
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iii) For every j ∈ {1, . . . , q},
[
Cj,MAX|Cj , π|Cj

]
−SDS has a unique periodic orbit

with period mj > 1 (i.e., in the restricted system every state reaches the sub-
con�guration with all the entities activated).

iv) For all i, j ∈ {1, . . . , q}, i 6= j, mi and mj are coprime integers, being m =∏q
j=1mj.

Proof. Since an m-periodic orbit, m > 1, of a MAX−SDS is globally attractive if,
and only if, it is the unique periodic orbit of period greater than 1 of such a system,
the result is a consequence of Theorem 4.15 in Subsection 4.1.4, where it is proved
that the conditions i), ii), iii) and iv) allow to assure this uniqueness.

Theorem 4.32. Let [G,MIN, π] − SDS be a sequential dynamical system over a
dependency graph G = (V,E) associated with the minterm MIN. Then, this system
has a globally attractive m-periodic orbit with m > 1 if, and only if, the following
conditions are simultaneously satis�ed:

i) W ′
C 6= ∅.

ii) Either MIN = NOR or
[
G∗,MAX|G∗ , π|G∗

]
−SDS has a unique �xed point (O).

iii) For every j ∈ {1, . . . , q},
[
Cj,MAX|Cj , π|Cj

]
−SDS has a unique periodic orbit

with period mj > 1 (i.e., in the restricted system every state reaches the sub-
con�guration with all the entities deactivated).

iv) For all i, j ∈ {1, . . . , q}, i 6= j, mi and mj are coprime integers, being m =∏q
j=1mj.

Basin of attraction for attractive periodic orbits

As in the case of PDS, periodic orbits act as organizational kernels of the dy-
namics of an SDS, since every state �nally reaches one of such periodic orbits. Their
basins of attraction (see De�nition 2.5 in Chapter 2) allow us to describe the phase
diagram as much as possible, fractionating it into the di�erent trees that reach the
corresponding periodic orbits.

A mechanism to obtain the basin of attraction of any attractive periodic orbit
is to get all the predecessors of such a periodic orbit, proceeding as explained in
Corollaries 4.15 and 4.16 of Subsection 4.2.1.
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As in the parallel case, the importance of determining the set of GOE states
(whose characterization can be seen in Corollaries 4.5 and 4.6 of Subsection 4.2.1) is
clear in the light of dynamical concepts as attractiveness and basins of attraction of
periodic orbits. These states are the beginning of a branch in the tree constituting
a basin of attraction associated with an attractive periodic orbit. Thus, they are
crucial in order to establish the di�erent basins of attraction. Actually, all the orbits
are periodic (and, consequently, repulsive), if the SDS does not present GOE states.
But, in view of Corollaries 4.11, 4.12 and Remark 4.3 of Subsection 4.2.1, this is not
possible except in the trivial case corresponding to only one entity. Thus, we can
state the following corollary.

Corollary 4.17. Every homogeneous SDS on a maxterm or minterm Boolean func-
tion with more than one entity has attractors.

Transient to a �xed point in SDS

One of the most interesting dynamic features of the basins of attraction is the
maximum number of iterations needed, by an eventually periodic orbit, to reach its
corresponding periodic orbit, which is the width or transient of the system.

As commented in Theorems 4.1 and 4.2 of Subsection 4.1.1, in an SDS on a max-
term or minterm Boolean function there can be orbits of any period. In particular,
the simplest maxterm OR and minterm AND, which present only �xed points, are
studied in [28], showing that the maximum number of iterations needed by an even-
tually �xed point to reach the corresponding �xed point is, at most, the diameter
of the dependency graph.

Regarding the more general context of SDS on arbitrary maxterm and minterm
Boolean functions, recall that �xed points cannot coexist with periodic orbits of
greater period (see Corollaries 4.1 and 4.2 in Subsection 4.1.2). Due to that, we
have to distinguish between these two cases. In particular, in this subsection, we
study the transient of non-periodic orbits to �xed points.

In Subsection 3.2.2, which concerns dynamical attraction in the parallel case,
Lemma 3.1 shows an upper bound for the number of iterations needed to ensure
that a vertex i ∈ W ′ such that AG (i) ∩W 6= ∅ and AG (i) ∩W ′ ⊆ AG (W ) (i.e.,
i ∈ W ′α

D ) takes permanent state value 1 for a general maxterm.

This proof shows that a vertex i can preserve a non-permanent state value 1 for,
at most, as many iterations as the number of elements of AG (i) ∩ W ′. In every
update, this non-permanent state 1 can be preserved by the in�uence of one of these
adjacent elements in AG (i)∩W ′, each one just for a unique iteration in the optimal
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case. After that, i takes state value 0 and, one iteration later, permanent state value
1. For more details, see the proof in Lemma 3.1 of Subsection 3.2.2.

In the case of sequential update, the state value associated to a vertex i ∈ V at
time t is involved, in the same iteration t, in the update of the states of the vertices
belonging to AG (i) which are in the updating order after i and, in the iteration
t+ 1, in the update of the states of the vertices belonging to AG (i) which are in the
updating order before i. Thus, the initial state value of the vertex i, x0i , does not
a�ect to the update of the state of the vertices belonging to AG (i) which are in the
updating order after i, but x1i does.

For this reason, a vertex i ∈ W ′
D with initial state deactivated can recover this

state some iterations later if the entities in AG (i) ∩W update after i, according to
π. Hereafter, i gets permanent state value 1 because all the entities in AG (i) ∩W
become activated.

Thus, in the case of SDS, the same reasoning that in the proof of Lemma 3.1
in Subsection 3.2.2 can be considered to achieve an upper bound for the number
of iterations needed to ensure that such a vertex i ∈ W ′α

D takes permanent state
value 1, but starting from the con�guration reached after the �rst iteration. This
gives an additional iteration with respect to the upper bound shown in Lemma 3.1
of Subsection 3.2.2.

Taking all of this into account, in this case of sequential update, we have the
following result:

Lemma 4.7. Let [G,MAX, π] − SDS be a sequential dynamical system over a de-
pendency graph G = (V,E) associated with the maxterm MAX. Then, a vertex
i ∈ W ′α

D takes permanent state value 1 after a maximum of mi + 3 iterations, being
mi = card (AG (i) ∩W ′).

From Lemma 4.7, we can obtain the following theorem.

Theorem 4.33 (Transient in Fixed-Point MAX− SDS). Let [G,MAX, π]− SDS be
a sequential dynamical system over a dependency graph G = (V,E) associated with
the maxterm MAX, where the structure of G only allows �xed points as periodic
orbits. Then, every orbit of the system reaches a �xed point after a maximum of

max
k∈{1,...,p}

{diam (Gk)}+ max
i∈W ′
{mi + 3}

iterations, being mi = card (AG (i) ∩W ′) for each i ∈ W ′.
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Proof. First of all, observe that it must be p > 0, because p = 0 implies that
MAX = NAND and the system does not allow �xed points, as shown in Theorem
4.4 of Subsection 4.1.1.

In particular, if W ′ = ∅, then MAX = OR, p = 1, G1 = G and m1 = 0. Then,
as proved in [28], the system converges to a �xed point after, at most, diam (G)
iterations, what �ts with the expression of the upper bound.

Thus, suppose that W ′ 6= ∅ (and so p > 0). Recall that, as proved in Theorems
4.7, 4.8 and Corollary 4.1 of Subsection 4.1.2, a [G,MAX, π] − SDS only presents
�xed points as periodic orbits if, and only if, every complemented vertex is adjacent
to a direct vertex, i.e., W ′

C = ∅. For this reason, Lemma 4.7 can be applied to every
i ∈ W ′.

Taking this into account, after maxi∈W ′{mi + 3} iterations, every i ∈ W ′ has
permanent state value 1. Therefore, after such a number of iterations, the com-
plemented vertices neither change their state value nor a�ect the state of other
vertices. Thus, the study of the evolution of the system can be reduced to analyze
what happens in the restriction to the subgraph induced by V \W ′ = W .

That is, at this point, the behavior of the entire system can be obtained from the
study of the evolution in each connected subgraph G1, . . . , Gp. Since they only have
vertices associated with direct variables, we know that each local system restricted
to Gk, k ∈ {1, . . . , p}, converges to a �xed point, and it takes at most diam (Gk)
iterations to reach it (see [28]). In view of this, in at most maxk∈{1,...,p}{diam (Gk)}
iterations, after the maxi∈W ′{mi + 3} iterations needed for ensuring that the state
values of the vertices in W ′ are �xed, every vertex in W reaches a permanent state
value.

Therefore, after at most

max
k∈{1,...,p}

{diam (Gk)}+ max
i∈W ′
{mi + 3}

iterations, the system reaches a �xed point.

Dually, we have the following result.

Theorem 4.34 (Transient in Fixed-Point MIN−SDS). Let [G,MIN, π]−SDS be a
sequential dynamical system over a dependency graph G = (V,E) associated with the
minterm MIN, where the structure of G only allows �xed points as periodic orbits.
Then, every orbit of the system reaches a �xed point after a maximum of

max
k∈{1,...,p}

{diam (Gk)}+ max
i∈W ′
{mi + 3}

iterations, being mi = card (AG (i) ∩W ′) for each i ∈ W ′.
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Observe that some max expressions in Theorems 4.33 and 4.34 could be consid-
ered over empty sets. In this context, we consider 0 as default value in these cases
and also when summations appear over empty sets.

The upper bound provided in Theorem 4.33 is the best possible, since it is
reachable as we show in the example below. A dual example can be obtained, in
which the upper bound in Theorem 4.34 is also reached.

Example 4.8. Let us consider the graph G = (V,E) of Figure 4.10, where

• V = {1, 2, 3, 4, 5, 6, 7}, and

• E = {{1, 2}, {2, 3}, {3, 4}, {3, 5}, {4, 6}, {5, 7}}.

1

2

3

4 5

6 7

Figure 4.10: Graph G = ({1, 2, 3, 4, 5, 6, 7}, {{1, 2}, {2, 3}, {3, 4}, {3, 5}, {4, 6}, {5, 7}}).

Now, let us consider the SDS over G on the maxterm Boolean function given by

MAX = x1 ∨ x2 ∨ x′3 ∨ x′4 ∨ x′5 ∨ x6 ∨ x7

and π = id, the identity permutation.

In this case, according to the notation in Theorem 4.33:

• W = {1, 2, 6, 7} andW ′ = {3, 4, 5} are the sets of vertices whose corresponding
variables appear in MAX in direct and complemented form, respectively.

• There are p = 3 connected components which result from G when the comple-
mented vertices and the edges which are incident to them are removed,

G1 = ({1, 2}, {{1, 2}}) , G2 = ({6}, ∅) and G3 = ({7}, ∅) .

In this case, diam (G1) = 1 and diam (G2) = diam (G3) = 0.
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• m3 = 2 and m4 = m5 = 1.

Associated with this SDS, let us consider the initial con�guration

x0 = (0, 0, 1, 1, 0, 0, 0) .

The transit starting at x0 can be seen in Figure 4.11, being (1, 1, 1, 1, 1, 1, 1) an
attractive �xed point of the system.

0011000

0010110

0011011

0011111

0001111

0111111

1111111

Figure 4.11: Orbit of x0 = (0, 0, 1, 1, 0, 0, 0).

That is, x0 reaches a �xed point after 6 = diam (G1) + m3 + 3 iterations and,
therefore, the upper bound in Theorem 4.33 is reached.

Remark 4.5. Observe that the upper bound for the simplest maxterm OR and
minterm AND, given by the diameter of the dependency graph in [28], is not valid
for general maxterm and minterm Boolean functions when the periodic orbits of the
system are �xed points. This can be seen in Example 4.8, where diam (G) = 4 < 6,
being 6 the transient of the system. This reveals the relevance of our more general
results, given by Theorems 4.33 and 4.34, due to the breakdown found in the upper
bound of the transient for general SDS.

Transient to periodic orbits in SDS

From Theorems 4.7, 4.8 and Corollary 4.1 in Subsection 4.1.2, we know that a
MAX − SDS only presents periodic orbits of period greater than 1 if, and only if,
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there exists a complemented vertex which is not adjacent to a direct vertex. In [28],
it is shown that the transient for SDS on NAND or NOR Boolean functions is 1
(except for the simplest system when there is only 1 vertex, in which case all the
con�gurations are periodic points). Here, we extend these results to the case of SDS
on a general maxterm or minterm Boolean function.

Let [G,MAX, π]−SDS be a sequential dynamical system such that it only allows
periodic orbits of period greater than 1. In this context, W ′

C is not empty (see
Theorems 4.7, 4.8 and Corollary 4.1 of Subsection 4.1.2).

Note that, in such an SDS, W ′
D can be empty (see Theorems 4.7, 4.8 and Corol-

lary 4.1 of Subsection 4.1.2) and, therefore, alsoW ′α
D andW ′β

D would be empty. This
case corresponds to the maxterm NAND, where a periodic orbit is always reached
after a maximum of 1 iteration ([28]).

Once this particular case has been exposed, we can suppose that W ′
D 6= ∅ and,

thus, W ′β
D 6= ∅. Lemma 4.7 shows a stability result, which can be also applied in

this case for the vertices belonging to W ′α
D , if any. In this context, it is crucial to

analyze the performance of the elements of W ′β
D .

As in the case of the elements in W ′α
D (see Lemma 4.7), if i ∈ W ′β

D , there exists
an iteration such that i has permanent state value 1 after such an iteration. Observe
that, if i becomes deactivated after the iteration t ≥ 1, and we take j ∈ W ∩AG (i)
(which is not an empty set since i ∈ W ′β

D ⊆ W ′
D), then:

• If j updates after i, then j updates to a permanent activated state after the
iteration t.

• If j updates before i, then j updates to a permanent activated state after the
iteration t+ 1.

As a consequence, i has permanent state value 1 after the iteration t+ 1 in both
cases.

Thus, when a periodic orbit has been reached, all the vertices belonging to W ′
D

have permanent state value 1, and the period comes from the evolution of the vertices
in W ′

C .

To analyze the number of iterations needed to ensure that a vertex i ∈ W ′β
D

reaches a permanent state value 1, we must study its environment within the global
SDS: its adjacent direct vertices; the subsystems restricted to the graphs Cj adjacent
to i (i.e., with some vertices adjacent to i); and the adjacent entities belonging to
W ′
D. Formally, for each i ∈ W ′β

D , the following subsystem arise in a natural way for
the study of its asymptotic stability.
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Let us consider the set of vertices

Vi = {i} ∪ (AG (i) ∩W )∪
(AG (i) ∩W ′

D) ∪ (AG (AG (i) ∩W ′
D) ∩W )∪

{k ∈ V : ∃j ∈ {1, . . . , q}/i ∈ AG (Cj) and k is a vertex of the graph Cj}

and consider the SDS de�ned by:

• Si = (Vi, Ei), the subgraph of G where Vi is the vertex set and the edges in Ei
are these ones in E between two vertices belonging to Vi.

• MAX|Si , the restriction of MAX to the vertices in the graph Si.

• π|Si , the restriction of π to the vertices in the graph Si.

This SDS,
[
Si,MAX|Si , π|Si

]
− SDS, will be named onwards as the local subsys-

tem associated with i, or SDSi, and i will be called the central vertex of the local
subsystem.

Following with the notation in Lemma 4.7, consider mi = card (AG (i) ∩W ′
D).

Since i ∈ W ′β
D , by Theorems 4.7, 4.8 and Corollary 4.1 in Subsection 4.1.2, the

local subsystem only presents periodic orbits of period greater than 1. Also, let si
be the maximum period of this system, which can be obtained from the periods of
the SDS generated by the graphs Cj contained in Si, as studied in Lemma 4.6 of
Subsection 4.1.4.

With this, we have the following lemma.

Lemma 4.8. Let [G,MAX, π] − SDS be a sequential dynamical system over a de-
pendency graph G = (V,E) associated with the maxterm MAX, where the structure
of G only allows periodic orbits of period greater than 1. Then, any vertex i ∈ W ′β

D

takes permanent state value 1 after a maximum of

1 +
∑
j∈W ′βD

[1 + sj (mj + 1)]

iterations, being mj = card (AG (j) ∩W ′
D) and sj the maximum period of the local

subsystem associated with j.
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Proof. First, the following analysis applies to valuations obtained after an evolu-
tion of the system. Hence, an extra iteration must be added to the upper bound
which will be obtained below. Observe that the initial state can be a con�gura-
tion of the states of the entities impossible to be repeated again after an update
of the system. Consequently, these initial con�gurations will be excluded from the
reasoning. These situations are:

• In the initial con�guration, the state of an entity can in�uence only to some
of its adjacent vertices, those updating before it (as said above in the contex-
tualization of Lemma 4.7).

• The initial con�guration in the subsystem restricted to a graph Cj may cor-
respond to an eventually periodic orbit of this subsystem. However, after an
update of the global system, the reached con�guration will be always a peri-
odic point of this subsystem since it will not have two adjacent complemented
vertices with state value 0 (see Proposition 4.3 of Subsection 4.2.1). Observe
that, after an update of the global system, there cannot be two adjacent com-
plemented vertices with state value 0, since the �rst of them updating to state
value 0 would provoke the update of the other one to state value 1.

If we analyze each local subsystem SDSj independently, j ∈ W ′β
D , a state value

1 of the central vertex j can be preserved after an update of the system by one of
these ways:

• If, at the moment of the update of j, there is an adjacent entity k ∈ W which
is activated. Also, this state will be permanently preserved onwards.

• If, at the moment of the update of j, for all k ∈ W ∩ AG (i), k is deactivated
and j has an adjacent entity l ∈ W ′ which is deactivated. In this case, when
j updates again in the following iteration, l is activated, not being able to
perform this e�ect over j.

Since the entities belonging to W ′
C which are adjacent to j can show a periodical

evolution, indeed this second option can be permanent even without an adjacent
activated entity.

Thus, if we consider each local subsystem independent from the others, its upper
bound is reached by the maximum number of iterations in which the second options
does not become permanent, updating after that the entity j to the deactivated
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state and then, to the permanent state activated given by the �rst option with an
activated adjacent vertex.

In this case, for this entity j, let us suppose that it takes the maximum number
of iterations, sj− 1, to appear states of the entities belonging to W ′

C which does not
preserve the state value 1 of the entity j in the following iteration. In this case, an
adjacent vertex belonging to W ′

D can delay the change of state of this entity, having
to wait again sj − 1 iterations for a valuation of the states of the entities belonging
to W ′

C which does not preserve the state value 1 of the entity j in the following
iteration. Again, other adjacent vertex belonging to W ′

D can delay the change of
state of this entity, and so on until the last adjacent vertex of j belonging to W ′

D

gets permanent state value 1 by means of an adjacent direct vertex with state value
1.

When the local subsystem completes sj−1 iterations again, after the next update,
j evolves to state value 0, which has taken sj (mj + 1) iterations overall. Next, j
evolves to a permanent state value 1 by means of an adjacent direct vertex with
state value 1.

However, since the local subsystems are connected through the graph, the ex-
treme case is satis�ed when this situation spreads stepwise from a unique local sub-
system to another one, which means to add the individual upper bounds to achieve
a global upper bound.
Remark 4.6. Note that in Lemma 4.7 a di�erent upper bound could be obtained for
each vertex verifying the hypothesis, considering the particular conditions of each
one. In this case, the upper bound is the same for all the vertices in W ′β

D , showing
the number of iterations needed to ensure that all the elements of this set have
permanent state value 1 simultaneously. The order in which each element �xes its
state value to 1 depends on the dependency graph and the order of update.

And, �nally, we can state the following theorem.

Theorem 4.35 (Transient in m-Periodic MAX−SDS). Let [G,MAX, π]−SDS be a
sequential dynamical system over a dependency graph G = (V,E) associated with the
maxterm MAX, where the structure of G only allows periodic orbits of period greater
than 1. Then, every orbit of the system reaches a periodic orbit after a maximum of

max
k∈{1,...,p}

{diam (Gk)}+ max{max
i∈W ′αD

{mi + 3}, (1 +
∑
j∈W ′βD

[1 + sj (mj + 1)])δW ′βD
, 1}

iterations, being mi = card (AG (i) ∩W ′
D), si the maximum period of the local sub-

system associated with i for each i ∈ W ′β
D and δW ′βD

a dummy variable taking value

0, if W ′β
D = ∅, and value 1 in other case.
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Proof. In this case, as is well known (see Theorems 4.7, 4.8 and Corollary 4.1 in
Subsection 4.1.2), W ′

C 6= ∅.
First, if W ′

D = ∅, then p = 0, MAX = NAND and the system reaches a periodic
orbit, at most, after 1 iteration (see [28]). It �ts with the upper bound for this case.

Now, let us see the general case when W ′
D 6= ∅, which also implies p > 0:

Consider i ∈ W ′
D.

• If i ∈ W ′α
D , the hypotheses of Lemma 4.7 are satis�ed considering mi =

card (AG (i) ∩W ′). So, at a maximum of mi + 3 iterations, xi will have per-
manent state value 1.

• On the other hand, if i ∈ W ′β
D , then it satis�es the hypotheses of Lemma 4.8

and so, at a maximum of 1 +
∑

j∈W ′βD
[1 + sj (mj + 1)] iterations, xi will have

permanent state value 1.

Taking all of this into account, in

max{max
i∈W ′αD

{mi + 3}, (1 +
∑
j∈W ′βD

[1 + sj (mj + 1)])δW ′βD
}

iterations, for all i ∈ W ′
D, xi reaches a permanent state value 1.

It must be noted that this calculation is also valid even if W ′α
D = ∅ or W ′β

D = ∅,
because of the value 0 considered by default when a max or a

∑
expression is taken

over an empty set, besides the use of the dummy variable δW ′βD .

Also, in this case, this number of iterations is always greater than or equal to 1.
Thus, it is the same as max{maxi∈W ′αD {mi+3}, (1+

∑
j∈W ′βD

[1 + sj (mj + 1)])δW ′βD
, 1},

to include in the same formula the case W ′
D = ∅.

After that, for the future evolution of the system, vertices belonging to W ′
D do

not change their state values, and the study of the evolution of the system can be
reduced to analyze what happens in the restriction of G to W ∪W ′

C . Since a vertex
in W is not adjacent to a vertex in W ′

C , there cannot be interference between these
sets. Hence, the behavior of the entire system can be obtained from the study of
the evolution in each connected subgraph G1, . . . , Gp and C1, . . . , Cq.

Regarding to G1, . . . , Gp, since they only have vertices associated with direct
variables, we know that the restriction of the SDS to each Gk performs as an SDS
on a maxterm OR as evolution operator. Therefore, an attractive �xed point is
attained in, at most, diam (Gk) iterations (see [28]).
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On the other hand, the restriction of the SDS to each component Ck performs
as an SDS on a maxterm NAND as evolution operator. In this case, let us consider
the following facts:

• The periodic points of the subsystem restricted to a subgraph Ck are those
con�gurations without adjacent complemented vertices with state value 0 (see
Proposition 4.3 in Subsection 4.2.1). Also, after an update of the global system,
there cannot be two adjacent complemented vertices with state value 0, since
the �rst of them updating to state value 0 would provoke the update of the
other one to state value 1. Thus:

◦ After one iteration, the system restricted to Ck reaches a periodic point
of this subsystem.

◦ A periodic point of this subsystem over Ck cannot evolve to an eventually
periodic orbit of the subsystem due to the interference of the rest of the
entities in the global system.

• The number of iterations needed to ensure that all the elements in W ′
D have

permanent state value 1 is greater than or equal to 1.

Thus, after the iterations needed to ensure that all the elements in W ′
D have

permanent state value 1, all the elements in W ′
C already have a state belonging

to a periodic orbit in each subsystem restricted to each subgraph Ck. Finally, the
composition of these local periodic orbits generates a periodic orbit in the global
system, as can be seen in Lemma 4.6 of Subsection 4.1.4.

In view of this, after maxk∈{1,...,p}{diam (Gk)} iterations (following the previous
max{maxi∈W ′αD {mi + 3}, (1 +

∑
j∈W ′βD

[1 + sj (mj + 1)])δW ′βD
, 1} iterations needed for

ensuring that the state value of the vertices in W ′
D is �xed) all the vertices in W

will reach a state that they will preserve permanently, and all the vertices in W ′
C

will have a state that they will repeat simultaneously in a future update.

Therefore, after at most

max
k∈{1,...,p}

{diam (Gk)}+ max{max
i∈W ′αD

{mi + 3}, (1 +
∑
j∈W ′βD

[1 + sj (mj + 1)])δW ′βD
, 1}

iterations, the system reaches a periodic orbit.

Dually, we have the following result.
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Theorem 4.36 (Transient in m-Periodic MIN− SDS). Let [G,MIN, π]− SDS be a
sequential dynamical system over a dependency graph G = (V,E) associated with the
minterm MIN, where the structure of G only allows periodic orbits of period greater
than 1. Then, every orbit of the system reaches a periodic orbit after a maximum of

max
k∈{1,...,p}

{diam (Gk)}+ max{max
i∈W ′αD

{mi + 3}, (1 +
∑
j∈W ′βD

[1 + sj (mj + 1)])δW ′βD
, 1}

iterations, being mi = card (AG (i) ∩W ′
D), si the maximum period of the local sub-

system associated with i for each i ∈ W ′β
D and δW ′βD

a dummy variable taking value

0, if W ′β
D = ∅, and value 1 in other case.

This new upper bound shown in Theorem 4.35 is also the best possible one
for this kind of SDS, since it is reachable, as shown in the example below. A dual
example can be obtained, in which the upper bound in Theorem 4.36 is also reached.

Example 4.9. Let us consider the graph G = (V,E) (see Figure 4.12), with

• V = {1, 2, 3, 4, 5, 6, 7, 8, 9}, and

• E = {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {3, 6}, {6, 7}, {3, 8}, {8, 9}}.

1

2

345 6 7

8

9

Figure 4.12: Graph G = ({1, . . . , 9}, {{1, 2}, {2, 3}, {3, 4}, {4, 5}, {3, 6}, {6, 7}, {3, 8}, {8, 9}}).

Now, let us consider the SDS over G on the maxterm Boolean function given by

MAX = x1 ∨ x2 ∨ x′3 ∨ x′4 ∨ x′5 ∨ x′6 ∨ x′7 ∨ x′8 ∨ x′9

and π = id, the identity permutation.

In this case, according to the notation in Theorem 4.35:



4.2 Dynamics of non-periodic orbits 133

• W = {1, 2} and W ′ = {3, 4, 5, 6, 7, 8, 9} are the sets of vertices whose corre-
sponding variables appear in MAX in direct and complemented form, respec-
tively. Moreover, W ′

D = {3} and W ′
C = {4, 5, 6, 7, 8, 9}. Finally, W ′α

D = ∅ and
W ′β
D = {3}.

• There is p = 1 connected component resulting from G when the comple-
mented vertices and the edges which are incident to them are removed, G1 =
({1, 2}, {{1, 2}}). In this case, diam (G1) = 1.

• m3 = 0.

• The local subsystem associated with the only element in W ′β
D , SDS3, is the

global system in which the vertex 1 and the edge adjacent to it have been
removed. In this case, s3 = 3 (see Lemma 4.6 in Subsection 4.1.4).

Associated with this SDS, let us consider the initial con�guration

x0 = (0, 0, 1, 1, 1, 0, 0, 1, 0) .

The transit starting at x0 can be seen in Figure 4.13, being (1, 1, 1, 0, 1, 1, 0, 1, 0)
a periodic point of the system.

001110010

001011111

001100101

001111010

000101111

011110101

111011010

111101111111110101

Figure 4.13: Orbit of x0 = (0, 0, 1, 1, 1, 0, 0, 1, 0).
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That is, the orbit starting at x0 reaches its attractor after 6 = diam (G1) +
(1 + [1 + s3 (m3 + 1)]) iterations. Therefore, the upper bound in Theorem 4.35 is
reached.

Remark 4.7. Observe that the upper bound for the simplest maxterm NAND and
minterm NOR, which present periodic orbits of period greater than 1, is 1 (see [28]).
The theorems above proves that this upper bound is not valid for general maxterm
and minterm Boolean functions when the periodic orbits of the system have period
greater than 1. This can be seen in Example 4.9, where the transient of the system
is 6. Again, this reveals the relevance of our more general results, given in Theorems
4.35 and 4.36, due to the breakdown found in the upper bound of the transient for
general SDS.



Chapter 5

Advances in Parallel and

Sequential Directed Dynamical

Systems

In Chapters 3 and 4, a complete study of the dynamics in parallel and sequential
dynamical systems on maxterm and minterm Boolean functions over undirected
dependency graphs has been exposed. Some of these results can be immediately
generalized for the case of directed dependency graphs. This is the case of the results
on the existence and coexistence of periodic orbits and predecessors and Garden-
of-Eden con�gurations. As a closure of the results exposed in this dissertation and
as a sign of continuity in the study of the dynamics of these systems, they will be
exposed along this chapter.

As in the last two chapters, the study here is divided into two sections: dynamics
of periodic orbits and dynamics of non-periodic orbits.

The preliminaries in Chapter 2 can be considered also in this chapter, when
appropriate. Anyway, although the generalization of the concepts from undirected
graphs to directed graphs is immediate, it is worth to devote here some lines to
delimit the notation when there are changes regarding what was said in Chapter 2.

First of all, in the case of directed dependency graphs, we consider all the vertices
that in�uence i ∈ V or the entities belonging to U ⊆ V in their evolution:

ID (i) = {j ∈ V : (j, i) ∈ A} ∪ {i},
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ID (U) =
⋃
i∈U

ID (i).

And also, for our purposes, we will need to consider these other sets:

ID (i) = {j ∈ V : (j, i) ∈ A},

ID (U) =
⋃
i∈U

ID (i) ,

I∗D (U) = ID (U) \ U.

Thus, in this case of directed dependency graphs, the formal de�nition of the
a discrete dynamical system in which all the entities update their states in a syn-
chronous way is as follows.

De�nition 5.1. Let D = (V,A) be a directed graph on V = {1, . . . , n} and a map

F : {0, 1}n → {0, 1}n, F (x1, . . . , xi, . . . , xn) = (y1, . . . , yi, . . . , yn) ,

where yi is the updated state value of the entity i by applying a local function fi
over the state values of the entities in ID (i). They constitute a discrete dynamical
system called parallel directed dynamical system over D, which will be denoted
by [D,F ] − PDDS or F − PDDS when specifying the dependency digraph is not
necessary.

Accordingly with this de�nition, in this dissertation, generical PDDS with a
maxterm MAX (resp. minterm MIN) as evolution operator will be denoted by
MAX− PDDS (resp. MIN− PDDS).

On the other hand, in the case of sequential update, the de�nition is as follows.

De�nition 5.2. Let D = (V,A) be a directed graph on V = {1, . . . , n}, π =
π1| . . . |πn a permutation on V and a map

[F, π] = Fπn ◦ · · · ◦ Fπ1 : {0, 1}n → {0, 1}n,

[F, π] (x1, . . . , xi, . . . , xn) = (y1, . . . , yi, . . . , yn) ,

where Fπi : {0, 1}n → {0, 1}n updates the state value of the entity πi ∈ V from xπi
to yπi considering the state values of the entities belonging to ID (πi) and keeping
the other states unaltered, i.e., Fπi = (id1, . . . , fπi , . . . , idn), being idj the identity
function over the entity j and fπi : {0, 1}n → {0, 1} the local function which performs
the update for the entity πi. They constitute a discrete dynamical system called
sequential directed dynamical system over D, which will be denoted by [D,F, π] −
SDDS or F −SDDS when specifying the dependency graph is not necessary and the
updating order is implicit in this context of sequential evolution.
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As in the case of PDDS, in this dissertation, generical SDDS with a maxterm
MAX (resp. minterm MIN) as evolution operator will be denoted by MAX− SDDS
(resp. MIN− SDDS).

Additionally, we need to rede�ne the sets P0, Q0, P1 and Q1 introduced previ-
ously for SDS. Let us consider now, only in the context of SDDS, the following sets
contained in ID (V0):

P0 = {i ∈ V : ∃j ∈ V0 such that (i, j) ∈ A, i = πr, j = πs and s < r},

Q0 = {i ∈ V : ∃j ∈ V0 such that (i, j) ∈ A, i = πr, j = πs and s > r}.

In other words, each element i belonging to P0 (resp. Q0) is in�uencing to a
vertex j ∈ V0 which is updated, according the order expressed in π, before (resp.
after) i.

Similarly for V1, we consider the sets P1 and Q1 contained in ID (V1):

P1 = {i ∈ V : ∃j ∈ V1 such that (i, j) ∈ A, i = πr, j = πs and s < r},

Q1 = {i ∈ V : ∃j ∈ V1 such that (i, j) ∈ A, i = πr, j = πs and s > r}.

5.1 Dynamics of periodic orbits

In this section, we solve the problems of existence and coexistence of periodic
orbits in MAX − PDDS, MIN − PDDS, MAX − SDDS and MIN − SDDS, in the
context of the analysis of the dynamics of periodic orbits in this kind of systems.

5.1.1 Existence and coexistence of periodic orbits in PDDS

As a starting point in the study of the dynamics of PDDS, we begin by analyzing
the orbital structure of a PDDS on a general maxterm or minterm as evolution
operator. Speci�cally, we study the type of periodic orbits that such a system can
present.

In Sections 3.1 and 4.1, we deal with this topic in the case of general maxterm
or minterm functions over undirected graphs, performing a complete analysis of the
dynamics in these cases. In this occasion, we propose a generalization of some of
these previous results by studying the dynamics in the case of dynamical systems
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on maxterm and minterm Boolean functions over directed graphs, which also is of
great interest from the point of view of circuit theory or computer science.

In the following results, we show that a PDDS on a general maxterm or minterm
Boolean function can present periodic orbits of any period, so breaking the pattern
shown in the case of parallel dynamical systems over undirected dependency graphs,
in which only �xed points and 2-periodic orbits are available.

Theorem 5.1 (Periodic structure of MAX − PDDS). Let [D,MAX] − PDDS be a
parallel directed dynamical system over a dependency digraph D = (V,A) associated
with the maxterm MAX. Then, it can present periodic orbits of any period.

Proof. The proof can be seen in [18]. Nevertheless, due to its constructive char-
acter and its utility in the following, we include it here.

Firstly, the case of period 1 (�xed point) is direct since the simplest system with
n = 1 and the maxterm OR has two �xed points: I and O.

Orbits of period 2 can also appear in this kind of systems. For example, let us
consider the PDDS de�ned by: D = ({1, 2, 3}, {(1, 3) , (2, 3)}) (see Figure 5.1) and
MAX = NAND. In this case, the con�guration x0 = (0, 1, 1) belongs to a periodic
orbit whose elements are: Orb (x0) = {(0, 1, 1) , (1, 0, 1)}.

1 3 2

Figure 5.1: Graph D = {{1, 2, 3}, {(1, 3) , (2, 3)}}.

Finally, given n ∈ N, n ≥ 3, we will give a pattern to construct a PDDS with an
orbit of period n. Let us consider the complete digraph Kn = (VKn , EKn) and, from
it, construct the following directed graph D = (V,A):

• V = VKn = {1, . . . , n}.

• A = EKn \ ({(i, i+ 1) : 1 ≤ i ≤ n− 1} ∪ {(n, 1)}).

Finally, we choose the updating operator MAX = NAND.

Let us write xki to indicate the state value of the entity i after k iterations of
the evolution operator MAX. Then, let us consider the initial value for the variables
x01 = 0 and x0i = 1 for all i ∈ V \ {1}. It is a straightforward computation to check
that the system evolves in the following way:
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• After k iterations, 1 ≤ k ≤ n− 1: xkk+1 = 0, xki = 1 for all i ∈ V \ {k + 1}.

• After n iterations, all the state values coincide with the initial ones, i.e., xni =
x0i for all i ∈ V .

Namely, the PDDS so constructed presents a periodic orbit of period n.

To illustrate the designed patterns, in Figure 5.2 the cases for n = 3, n = 4,
n = 5 and n = 6 can be seen.

1

23

1 2

34

1

2

34

5

1 2

3

45

6

Figure 5.2: Patterns for n = 3, n = 4, n = 5 and n = 6.

Dually, we have the following theorem [18].

Theorem 5.2 (Periodic structure of MIN − PDDS). Let [D,MIN] − PDDS be a
parallel directed dynamical system over a dependency digraph D = (V,A) associated
with the minterm MIN. Then, it can present periodic orbits of any period.

As a direct consequence of these theorems, we can establish the following results
for some special classes of maxterm and minterm Boolean functions [18].

Corollary 5.1. Let [D,OR] − PDDS be a parallel directed dynamical system over
a dependency digraph D = (V,A) associated with the maxterm OR. Then, all the
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periodic orbits of this system are �xed points. In fact, I and O are always �xed
points of the system, but other �xed points can appear, so breaking the pattern for
OR− PDS in the case of undirected dependency graphs.

Corollary 5.2. Let [D,NAND]−PDDS be a parallel directed dynamical system over
a dependency digraph D = (V,A) associated with the maxterm NAND. Then, this
system can present periodic orbits of any period, except �xed points.

Dually, we have the following results.

Corollary 5.3. Let [D,AND]−PDDS be a parallel directed dynamical system over
a dependency digraph D = (V,A) associated with the minterm AND. Then, all the
periodic orbits of this system are �xed points. In fact, O and I are always �xed
points of the system, but other �xed points can appear, so breaking the pattern for
AND− PDS in the case of undirected dependency graphs.

Corollary 5.4. Let [D,NOR]−PDDS be a parallel directed dynamical system over
a dependency digraph D = (V,A) associated with the minterm NOR. Then, this
system can present periodic orbits of any period, except �xed points.

So far in this subsection, we have recall the results on the existence of periodic
orbits in PDDS. However, some important questions still remain open. One of them
consists in analyzing the coexistence of periodic orbits with di�erent periods.

In Subsections 3.1.2 and 4.1.2, a complete analysis of the coexistence of periodic
orbits in PDS and SDS, respectively, has been performed. This analysis shows that
�xed points and periodic orbits of greater period cannot coexist, although all the
possible periodic orbits with periods greater than 1 (only 2-periodic orbits in the
case of PDS and any period greater than 1 in the case of SDS) can coexist.

For PDDS with general maxterm (resp. minterm) functions as evolution opera-
tors, we will show that periodic orbits with di�erent periods can coexist. Even �xed
points and periodic orbits of period greater than 1 can now coexist, so breaking the
pattern observed for PDS and SDS over undirected dependency graphs.

Theorem 5.3 (Coexistence of periods in MAX−PDDS). Given {n1, . . . , nr} ⊂ N,
r ≥ 2, there exists a PDDS with a maxterm as evolution operator which presents
periodic orbits of periods n1, . . . , nr simultaneously.

Proof. Let us construct a PDDS with orbits of periods n1, . . . , nr.

Firstly, let us consider the case in which ni ≥ 2 for all i ∈ {1, . . . , r}.
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For each ni, let us take the PDDS in the proof of Theorem 5.1 for which the
ni-periodic orbit is achieved. To avoid duplication in the name of the vertices of each
PDDS, we will denote by vi,j to the vertex j in the digraph of the PDDS associated
to the ni-periodic orbit.

Let us consider the digraphs associated to these PDDS. Apart from the internal
in�uences in each case, we will consider the following in�uence structure among the
vertices: vi,j is adjacent (reciprocal in�uence) to vl,m for all j, m and i 6= l. In other
words, the vertices in two digraphs from di�erent PDDS have reciprocal in�uence
among them. This way, we reach a connected digraph D.

As evolutionary operator we take MAX = NAND.

As initial state values for the variables, we consider that the vertex vi,1 is deac-
tivated and the rest of vertices are activated.

This system evolves as follows:

• After k iterations, 1 ≤ k ≤ ni− 1, vi,k+1 is deactivated and the rest of vertices
are activated.

• After ni iterations, all the state values coincide with the initial ones.

Namely, the [D,MAX]−PDDS so constructed presents a periodic orbit of period
ni.

Thus, by considering the di�erent r initial state values obtained by varying i in
{1, . . . , r}, r periodic orbits with periods n1, . . . , nr result.

On the other hand, when there exists i ∈ {1, . . . , r} such that ni = 1, let
[D,MAX] − PDDS be the PDDS constructed above (or in the proof of Theorem
5.1 in the case r = 2) in which the other periodic orbits nj ≥ 2, j 6= i, coexist, being
D = (V,A). Based on this systems, let us consider the PDDS de�ned from these
elements:

• D = (V ∪ {d}, E ∪ {(d, k) : k ∈ V }), the dependency digraph of the PDDS.

• MAX = MAX ∨ d, the maxterm Boolean function of the PDDS.[
D,MAX

]
−PDDS is as [D,MAX]−PDDS, but with an additional direct entity

in�uencing all the other ones but in�uenced by none (apart from itself).

In this case, an initial state x0d = 0 will be preserved permanently and the system
will evolve as [D,MAX]−PDDS, appearing all the periodic orbits of period greater
than 1; while an initial state x0d = 1 reaches the �xed point I after, at most, 1
iteration.
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Let us illustrate this result with the following example to clarify the notation.

Example 5.1. The PDDS proposed by Theorem 5.3 in which a �xed point, a 2-
periodic orbit and a 3-periodic orbit coexist, is de�ned by:

• D = (V,A) (see Figure 5.3), with

◦ V = {1, 2, 3, 4, 5, 6, 7}, and
◦ A = {(2, 4) , (3, 4)} ∪ {(5, 7) , (6, 5) , (7, 6)} ∪ {{i, j} : 2 ≤ i ≤ 4, 5 ≤ j ≤

7} ∪ {(1, i) : 2 ≤ i ≤ 7}.

1

2

4

3

5

6

7

Figure 5.3: Graph D = (V,A).

• MAX = x1 ∨ x′2 ∨ x′3 ∨ x′4 ∨ x′5 ∨ x′6 ∨ x′7.

According to the notation in Theorem 5.3: 1 is the vertex d in the PDDS of
the proof of Theorem 5.1 generating the �xed point; 2, 3, 4 are the vertices in the
PDDS of the proof of Theorem 5.1 generating the 2-periodic orbit; and 5, 6, 7 are
the vertices in the PDDS of the proof of Theorem 5.1 generating the 3-periodic orbit.

In this case, the �xed point proposed by Theorem 5.3 is I. The 2-periodic orbit
proposed by Theorem 5.3 can be seen in Figure 5.4.

0011111

0101111

Figure 5.4: 2-periodic orbit of the system proposed by Theorem 5.3.

And �nally, the 3-periodic orbit proposed by Theorem 5.3 can be seen in Figure
5.5.
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Figure 5.5: 3-periodic orbit of the system proposed by Theorem 5.3.

Finally, we can state the dual result.

Theorem 5.4 (Coexistence of periods in MIN− PDDS). Given {n1, . . . , nr} ⊂ N,
r ≥ 2, there exists a PDDS with a minterm as evolution operator which presents
periodic orbits of periods n1, . . . , nr simultaneously.

5.1.2 Existence and coexistence of periodic orbits in SDDS

In Theorem 5.1 (resp. Theorem 5.2) of Subsection 5.1.1, some results about
the orbital structure of PDDS with general maxterm (resp. minterm) functions as
evolution operators have been shown, proving that periodic orbits of any period
can appear in such systems. In this subsection, we analyze the case of SDDS with
general maxterm (resp. minterm) functions as evolution operators, showing that
this situation remains when considering sequential update in SDDS.

Theorem 5.5 (Periodic structure of MAX − SDDS). Let [D,MAX, π] − SDDS
be a sequential directed dynamical system over a dependency digraph D = (V,A)
associated with the maxtermMAX. Then, it can present periodic orbits of any period.

Proof. It is a direct consequence of Theorem 4.1 in Subsection 4.1.1, since an SDS
is a particular case of SDDS.

Dually, we have the following theorem.

Theorem 5.6 (Periodic structure of MIN−SDDS). Let [D,MIN, π]−SDDS be a se-
quential directed dynamical system over a dependency digraph D = (V,A) associated
with the minterm MIN. Then, it can present periodic orbits of any period.

It worths analyzing the particular relevant cases when the evolution operator of
a discrete dynamical system is the maxterm OR or NAND (resp. minterm AND
or NOR). Recall that the only periodic orbits of PDDS over directed dependency
graphs with OR (resp. AND) as updating operator are �xed points while with
NAND (resp. NOR), periodic orbits of period greater than 1 (see Corollaries 5.1,
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5.2, 5.3 and 5.4 in Subsection 5.1.1). In this case, this situation remains when
considering sequential update in SDDS.

To see that, let us establish �rst the following lemma.

Lemma 5.1. Let [D,F, π]−SDDS be a sequential directed dynamical system over a
dependency digraph D = (V,A) associated with the maxterm or minterm F . Then,
the systems [D,F, π]− SDDS and [D,F ]− PDDS have the same �xed points.

Proof. Let x̂ = (x̂1, . . . , x̂n) be a �xed point of the [G,F ] − PDDS, where x̂i
represents the (�xed) state value of the vertex i ∈ V . Since the updating of the
state value of each i only depends on the state values of the entities in ID (i) and
the restriction of F to that set, it is straightforward to check that, independently of
the election of π, x̂ is also a �xed point of [G,F, π]− SDDS.

Conversely, let x̂ be a �xed point for [G,F, π] − SDDS for a certain updating
permutation π. Since the state values of all the vertices remain equal in the succes-
sive updating steps determined by π, it becomes clear that x̂ is also a �xed point of
[G,F ]− PDDS.

Firstly, in the case of OR as evolution operator, we have the following result.

Corollary 5.5. Let [D,OR, π] − SDDS be a sequential directed dynamical system
over a dependency digraph D = (V,A) associated with the maxterm OR. Then, all
the periodic orbits of this system are �xed points. In fact, I and O are always �xed
points of the system, but other �xed points can appear, so breaking the pattern for
OR− SDS in the case of undirected dependency graphs.

Proof. This proof is very similar to the one for the analogous result in PDDS.

By Lemma 5.1 and Corollary 5.1 in Subsection 5.1.1, I and O are always �xed
points of this SDDS, but there can appear another ones di�erent from them.

It only remains to show that there cannot be periodic orbits of greater period:
since all the entities belong to W , we can have only one of the following two possi-
bilities for each i ∈ V :

• ∀t ≥ 0, xti = 0. In this case, the state value 0 is permanent for this entity from
the initial con�guration.

• ∃T ≥ 0 such that xTi = 1, being the iteration T the �rst time that the variable
xi takes the value 1. In this situation, the state value 1 is permanent from this
iteration on.



5.1 Dynamics of periodic orbits 145

Thus, after a certain number of iterations, all the entities reach a �xed value
that they preserve onwards.

In the case of NAND as evolution operator, we have the following result.

Corollary 5.6. Let [D,NAND, π]−SDDS be a sequential directed dynamical system
over a dependency digraph D = (V,A) associated with the maxterm NAND. Then,
this system can present periodic orbits of any period, except �xed points.

Proof. First, notice that such an SDDS cannot present �xed points. In fact, we
know that PDDS with NAND as evolution operator cannot present �xed points.
Then, this �rst assertion follows from Lemma 5.1.

On the other hand, this system can present periodic orbits of any period greater
than 1 is a direct consequence of Theorem 4.4 in Subsection 4.1.1, since an SDS is
a particular case of SDDS.

Dually, we have the following results.

Corollary 5.7. Let [D,AND] − SDDS be a sequential directed dynamical system
over a dependency digraph D = (V,A) associated with the minterm AND. Then, all
the periodic orbits of this system are �xed points. In fact, O and I are always �xed
points of the system, but other �xed points can appear, so breaking the pattern for
AND− SDS in the case of undirected dependency graphs.

Corollary 5.8. Let [D,NOR] − SDDS be a sequential directed dynamical system
over a dependency digraph D = (V,A) associated with the minterm NOR. Then,
this system can present periodic orbits of any period, except �xed points.

Once studied the existence of periodic orbits in SDDS, we continue analyzing
the possible coexistence of them in this kind of systems. In Theorem 5.1 (resp.
Theorem 5.2) of Subsection 5.1.1, some results about the orbital structure of PDDS
with general maxterm (resp. minterm) functions as evolution operators have been
shown, proving that the coexistence of any periodic orbits with di�erent periods is
possible, even with �xed points.

In line with the results for PDDS, in the context of SDDS with general maxterm
(resp. minterm) functions as evolution operators, we will show that periodic orbits
with di�erent periods can coexist in an SDDS, even �xed points and periodic orbits of
period greater than 1, so breaking the pattern observed for systems over undirected
dependency graphs.

Theorem 5.7 (Coexistence of periods in MAX− SDDS). Given {n1, . . . , nr} ⊂ N,
r ≥ 2, there exists an SDDS with a maxterm as evolution operator which presents
periodic orbits of periods n1, . . . , nr simultaneously.
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Proof. If ni ≥ 2 for all i ∈ {1, . . . , r}, the result is a direct consequence of Theorem
4.11 in Subsection 4.1.2, since an SDS is a particular case of SDDS.

On the other hand, if there exists i ∈ {1, . . . , r} with ni = 1, let [G,MAX, π]−
SDS be the SDS constructed in Theorem 4.11 in Subsection 4.1.2 (or in Theorem
4.4 in Subsection 4.1.1 in the case r = 2) in which the other periodic orbits nj ≥ 2,
j 6= i, coexist, being G = (V,E). Based on this SDS, let us consider the SDDS
de�ned from these elements:

• D = (V ∪ {d}, E ∪ {(d, k) : k ∈ V }), the dependency digraph of the SDDS.

• MAX = MAX ∨ d, the maxterm Boolean function of the SDDS.

• π = d|π, the order permutation of the SDDS.

[
D,MAX, π

]
− SDDS is as [G,MAX, π] − SDS, but with an additional direct

entity in�uencing all the other ones but in�uenced by none (apart from itself).

In this case, an initial state x0d = 0 will be preserved permanently and the system
will evolve as [G,MAX, π]−SDS, appearing all the periodic orbits of period greater
than 1; while an initial state x0d = 1 reaches the �xed point I after, at most, 1
iteration.

Dually, we have the following result.

Theorem 5.8 (Coexistence of periods in MIN − SDDS). Given {n1, . . . , nr} ⊂ N,
r ≥ 2, there exists an SDDS with a minterm as evolution operator which presents
periodic orbits of periods n1, . . . , nr simultaneously.

5.2 Dynamics of non-periodic orbits

In this last section, we study the existence and uniqueness of predecessor, what
naturally leads us to explore the Garden-of-Eden con�gurations of the system, in
the context of the study of the dynamics of non-periodic orbits in PDDS and SDDS.

5.2.1 Predecessor and GOE con�gurations in PDDS

As said in Subsection 3.2.1 in the context of PDS, the study of predecessors in
network models is usually divided into four more speci�c problems [31, 32]:
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• Predecessor existence problem (PRE): Determining whether a predecessor ex-
ists for a given state.

• Unique predecessor problem (UPRE): Determining whether a predecessor is
the unique one for a given state.

• Coexistence of predecessors problem (APRE): Determining whether a prede-
cessor is not unique for a given state.

• Number of predecessors problem (#PRE): Counting the number of predeces-
sors of a given state, in case of non-uniqueness.

In this subsection, to begin with, we solve the �rst one in the context of PDDS
on maxterm and minterm Boolean functions. This allows us to get also a character-
ization of the GOE of such systems. These results lead us to describe the structure
of the potential predecessors of a given state, what allows us to give results to solve
the rest of the problems in the mentioned context.

In order to solve the PRE problem, in the next theorem, we provide su�cient
and necessary conditions to know when a certain con�guration y is the successor of
another con�guration x, i.e., when y has at least a predecessor.

Theorem 5.9. Let [D,MAX]−PDDS be a parallel directed dynamical system over
a dependency digraph D = (V,A) associated with the maxterm MAX. Then, a con-
�guration has a predecessor if, and only if, every activated entity in�uencing to a
deactivated one in such a con�guration is also in�uenced by an activated entity which
is not in�uencing to any deactivated one.

In other words, a con�guration has a predecessor if, and only if, ID (Ic) = V1,
being I = ID (V0).

Proof. This constructive proof generates a predecessor state x of a current state
y, whenever possible, highlighting those conditions of y under which the existence
of a predecessor x is impossible.

In this case, we can split the set V1 associated to y into two subsets, corresponding
to the vertices in�uencing to some vertices in V0, I∗D (V0), and the vertices which are
not in�uencing to any vertex in V0, ID (V0)

c
, that is,

V1 = I∗D (V0) ∪ ID (V0)
c

Suppose, by reduction to the absurd, that there exists a con�guration y which
has a predecessor x, but one of the (activated) entities k such that yk = 1, which
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is in�uencing to someone of V0, i.e., k ∈ I∗D (V0), is not in�uenced by anyone in
ID (V0)

c
.

Observe that if i ∈ V0, then, for every entity j ∈ ID (i), it must be:

• xj = 0 when j ∈ W , and

• xj = 1 when j ∈ W ′,

since otherwise, yi = 1 and i /∈ V0. In particular, this occurs for every j ∈ ID (V0).

In such a context, since k ∈ I∗D (V0) ⊂ V1 is not in�uenced by any entity in
ID (V0)

c
, it would be yk = 0, what is a contradiction.

Reciprocally, if for a given con�guration y every activated entity in�uencing to a
deactivated one, is also in�uenced by an activated entity which is not in�uencing to
any deactivated one, to get a predecessor, x, of the given con�guration y, it should
be su�cient to take x as follows:

• For every entity j ∈ ID (V0),

◦ xj = 0, if j ∈ W , and

◦ xj = 1, if j ∈ W ′.

• For every entity j ∈ ID (V0)
c
,

◦ xj = 1, if j ∈ W , and

◦ xj = 0, if j ∈ W ′.

Remark 5.1. Observe that, in the conditions of existence of predecessors in Theorem
5.9, each activated entity in�uencing to a deactivated one acts as an articulation
node between deactivated entities and activated entities which are not in�uencing
to any deactivated one. That is, in terms of the proof, the vertices in I∗D (V0) act as
connectors between vertices in V0 and vertices in ID (V0)

c
.

Dually, we have the following theorem.

Theorem 5.10. Let [D,MIN]−PDDS be a parallel directed dynamical system over
a dependency digraph D = (V,A) associated with the minterm MIN. Then, a con�g-
uration has a predecessor if, and only if, every deactivated entity in�uencing to an
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activated one in such a con�guration is also in�uenced by a deactivated entity which
is not in�uencing to any activated one.

In other words, a con�guration has a predecessor if, and only if, ID (Ic) = V0,
being I = ID (V1).

Remark 5.2. Dually to the case in Theorem 5.9, in the conditions of Theorem 5.10,
each deactivated entity in�uencing to an activated one acts as an articulation node
between activated entities and deactivated entities which are not in�uencing to any
activated one. That is, in terms of the proof, the vertices in I∗D (V1) act as connectors
between vertices in V1 and vertices in ID (V1)

c
.

Theorems 5.9 and 5.10 solve the PRE problem for PDDS on maxterm and
minterm Boolean functions and allow us to establish a characterization of GOE
states of such systems.

Corollary 5.9 (Characterization of GOE in MAX−PDDS). Let [D,MAX]−PDDS
be a parallel directed dynamical system over a dependency digraph D = (V,A) asso-
ciated with the maxterm MAX. Then, a con�guration is a GOE if, and only if, there
exists an activated entity in�uencing to a deactivated one in such a con�guration,
but not in�uenced by an activated entity which is not in�uencing to any deactivated
one.

In other words, a con�guration is a GOE if, and only if, ID (Ic) 6= V1, being
I = ID (V0).

Corollary 5.10 (Characterization of GOE in MIN−PDDS). Let [D,MIN]−PDDS
be a parallel directed dynamical system over a dependency digraph D = (V,A) asso-
ciated with the minterm MIN. Then, a con�guration is a GOE if, and only if, there
exists a deactivated entity in�uencing to an activated one in such a con�guration,
but not in�uenced by a deactivated entity which is not in�uencing to any activated
one.

In other words, a con�guration is a GOE if, and only if, ID (Ic) 6= V0, being
I = ID (V1).

Remark 5.3. Contrarily to the case of MAX − PDS (Corollary 3.9 in Subsection
3.2.1), in the case of MAX − PDDS, a state of the system with only one activated
entity could have a predecessor. Speci�cally, if the activated entity has out-degree
0, such a state has a predecessor. Dually, in the case of MIN − PDDS, a state of
the system with only one deactivated entity could have a predecessor. Speci�cally,
if the deactivated entity has out-degree 0, such a state has a predecessor.
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Actually, we have obtained bounds for the number of GOE points of such systems,
as shown below.

Corollary 5.11. Let [D,MAX]−PDDS be a parallel directed dynamical system over
a dependency digraph D = (V,A), with V = {1, . . . , n} and n ≥ 2, associated with
the maxterm MAX. Then, the number of GOE points, #GOE, is such that

1 ≤ #GOE ≤ 2n − 2.

Moreover, these bounds are the best possible because they are reachable.

Proof. Firstly, observe that, as n ≥ 2, there exist a vertex i ∈ V in�uencing to
other vertex j ∈ V . Then, a con�guration such that yi = 1 and yk = 0, if k 6= i, has
no predecessors by Theorem 5.9. This bound is reached in the following example:

Let D = (V,A) be the digraph de�ned by V = {1, 2} and A = {(1, 2)}. Addi-
tionally, let us consider the maxterm MAX = x1 ∨ x′2.

Let [D,MAX]−PDDS be the parallel directed dynamical system over D associ-
ated with the maxterm MAX. This system has a unique GOE con�guration, as can
be seen in its phase portrait in Figure 5.6.
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Figure 5.6: Phase portrait of the system [{1, 2}, {(1, 2)}, x1 ∨ x′
2]− PDDS.

On the other hand, in view of the characterization of GOE given in Corollary
5.9, it is clear that the states I and O are not GOE points. Moreover, this upper
bound is reached for the complete digraph K2, whichever the maxterm MAX, since
the other two states, (0, 1) and (1, 0), are GOE.

And now its dual version.

Corollary 5.12. Let [D,MIN]−PDDS be a parallel directed dynamical system over
a dependency digraph D = (V,A), with V = {1, . . . , n} and n ≥ 2, associated with
the minterm MIN. Then, the number of GOE points, #GOE, is such that

1 ≤ #GOE ≤ 2n − 2.

Moreover, these bounds are the best possible because they are reachable.
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Remark 5.4. In Corollary 5.11 (resp. Corollary 5.12), n ≥ 2 has been imposed. This
is necessary because a [D,MAX]−PDDS (resp. [D,MIN]−PDDS) with n = 1 has
2 �xed points, if W ′ = ∅, or one 2-cycle, if W = ∅. That is, it has not GOE points
in any case.

The proof of Theorem 5.9 is constructive and provides information about the
structure of a predecessor of a given state of the system, when it exists. This
information is collected in the following two results.

Corollary 5.13. Let [D,MAX] − PDDS be a parallel directed dynamical system
over a dependency digraph D = (V,A) associated with the maxterm MAX. If a
con�guration y has a predecessor state x, such a predecessor veri�es:

• If yi = 0, for every entity j ∈ ID (i), then

◦ xj = 0, if j ∈ W , and

◦ xj = 1, if j ∈ W ′.

• If yi = 1, then there exists an entity j ∈ ID (i) such that it accomplishes one
of the following conditions:

◦ xj = 1 and j ∈ W , or

◦ xj = 0 and j ∈ W ′.

Proof. We can see it in the constructive process shown to prove Theorem 5.9.

Remark 5.5. In terms of Corollary 5.13, in the case of existence of predecessor
for a state y, there is always a structure x corresponding to a predecessor, named
fundamental predecessor of y, as in other contexts. This con�guration, which is
proposed in the (second part of the) proof of Theorem 5.9, is as follows:

• If i ∈ ID (V0), then

◦ xi = 0, if i ∈ W , and

◦ xi = 1, if i ∈ W ′.

• If i ∈ ID (V0)
c
, then

◦ xi = 1, if i ∈ W , and

◦ xi = 0, if i ∈ W ′.
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Thus, to know if a con�guration y has a predecessor in a MAX−PDDS, one needs
only to verify if the corresponding con�guration x, candidate to be its fundamental
predecessor, is such that MAX (x) = y.

Dually, we have the following corollary.

Corollary 5.14. Let [D,MIN]−PDDS be a parallel directed dynamical system over a
dependency digraph D = (V,A) associated with the minterm MIN. If a con�guration
y has a predecessor state x, such a predecessor veri�es:

• If yi = 1, for every entity j ∈ ID (i), then:

◦ xj = 1, if j ∈ W , and

◦ xj = 0, if j ∈ W ′.

• If yi = 0, then there exists an entity j ∈ ID (i) such that it accomplishes one
of the following conditions:

◦ xj = 0 and j ∈ W , or

◦ xj = 1 and j ∈ W ′.

Remark 5.6. As for Corollary 5.13, in terms of Corollary 5.14, in the case of exis-
tence of predecessor for a state y, there is always a structure x corresponding to a
predecessor, named fundamental predecessor of y. This con�guration is as follows:

• If i ∈ ID (V1), then

◦ xi = 1, if i ∈ W , and

◦ xi = 0, if i ∈ W ′.

• If i ∈ ID (V1)
c
, then

◦ xi = 0, if i ∈ W , and

◦ xi = 1, if i ∈ W ′.

Thus, as before, to know if a con�guration y has a predecessor in a MIN−PDDS,
one needs only to verify if the corresponding con�guration x, candidate to be its
fundamental predecessor, is such that MIN (x) = y.
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As in the case of undirected dependency graphs, observe that the entities whose
state values are 0 (resp. 1) in the con�guration y determine univocally their state
values and the state values of their in�uencing ones in any predecessor x with respect
to MAX−PDDS (resp. MIN−PDDS), when such a predecessor exits. Nevertheless,
for any entity whose state value is 1 (resp. 0) in the con�guration y, it is only
necessary the existence of an appropriate in�uencing one which provides such a
value with the MAX− PDDS (resp. MIN− PDDS) updating. This points out how
to look for the solution to the UPRE, APRE and #PRE problems in our context.

The following results are concerned with the determination of the possible pre-
decessors of a given con�guration y, once we know that at least one predecessor x
exists. As a consequence, we solve the UPRE and APRE problems for PDDS on
maxterm and minterm Boolean functions.

Theorem 5.11. Let [D,MAX] − PDDS be a parallel directed dynamical system
over a dependency digraph D = (V,A) associated with the maxterm MAX. Let y be
a con�guration and suppose that it has a predecessor. Then, the predecessor of y is
not unique if, and only if, there exists an activated entity i ∈ ID (V0)

c
such that one

of its in�uencing entities also belong to ID (V0)
c
and its in�uenced ones in I∗D (V0),

if any, are also in�uenced by other entities in ID (V0)
c
.

In other words, the predecessor of y is not unique if, and only if, there exists and
entity i ∈ ID (V0)

c
such that ID (Ic \ {i}) = V1, being I = ID (V0).

Proof. First of all, suppose that there exists such an activated entity i ∈ ID (V0)
c

in the con�guration y which is not in�uencing to any deactivated one, such that one
of its in�uencing entities also belong to ID (V0)

c
and its in�uenced ones in I∗D (V0),

if any, are also in�uenced by other entities in ID (V0)
c
. Remember that, since y has

a predecessor, the entities in ID (V0) at y determine univocally their state values
in any predecessor with respect to MAX − PDDS. On the other hand, we can act
similarly as in the (second part of the) proof of Theorem 5.9 and for every entity
j ∈ ID (V0)

c
, j 6= i, to construct a predecessor con�guration, we can take as follows:

• xj = 1 when j ∈ W , and

• xj = 0 when j ∈ W ′.

Now, taking into account that one of the entities which are in�uencing to i
also belong to ID (V0)

c
and the rest of its in�uenced ones in I∗D (V0), if any, are also

in�uenced by other entities in ID (V0)
c
, i and its in�uenced vertices in I∗D (V0) become
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activated, independently of the state value of i. That is, in such a predecessor
construction, we can choose either xi = 0 or xi = 1, so obtaining two di�erent
con�gurations which are predecessors of y.

Reciprocally, suppose that the con�guration y has more than one predecessor.
Again, the entities in ID (V0) in the con�guration y determine univocally their state
values in any predecessor with respect to MAX − PDDS. Thus, the discrepancies
should be in the state values of entities belonging to ID (V0)

c
, that is, activated

and not in�uencing to any deactivated one. Suppose that there is a discrepancy of
two predecessors in the state values of an entity i ∈ ID (V0)

c
. This means that the

entity i and its in�uenced ones in I∗D (V0) become activated in y independently of the
state value of i in such predecessors. Therefore, there should exist activated entities
belonging to ID (V0)

c
which are in�uencing to i and its in�uenced ones in I∗D (V0) to

provide that all of them have state value equal to 1 in the con�guration y.
Remark 5.7. In terms of Theorem 5.11, given a state y, if the con�guration x de�ned
as in Remark 5.5 is its (fundamental) predecessor, to know if this is its unique
predecessor, we must only verify if y has a predecessor belonging to the following
set:

P = {x̂ ∈ {0, 1}n : ∃ i ∈ ID (V0)
c
such that x̂i 6= xi and x̂j = xj ∀j ∈ V \ {i}}.

This result reduces an initial exponentially-sized problem, i.e., the search of a
particular con�guration among the 2n possible states of the system, into another
one in which, at most, n cases must be analyzed.

Dually, we have the following theorem.

Theorem 5.12. Let [D,MIN]−PDDS be a parallel directed dynamical system over
a dependency digraph D = (V,A) associated with the minterm MIN. Let y be a
con�guration and suppose that it has a predecessor. Then, the predecessor of y is
not unique if, and only if, there exists a deactivated entity i ∈ ID (V1)

c
such that one

of its in�uencing entities also belong to ID (V1)
c
and its in�uenced ones in I∗D (V1),

if any, are also in�uenced by other entities in ID (V1)
c
.

In other words, the predecessor of y is not unique if, and only if, there exists and
entity i ∈ ID (V1)

c
such that ID (Ic \ {i}) = V0, being I = ID (V1).

Remark 5.8. Similarly as in Remark 5.7, in terms of Theorem 5.12, given a state
y, if the con�guration x de�ned as in Remark 5.6 is its (fundamental) predecessor,
to know if this is its unique predecessor, we must only verify if y has a predecessor
belonging to the following set:

P = {x̂ ∈ {0, 1}n : ∃ i ∈ ID (V1)
c
such that x̂i 6= xi and x̂j = xj ∀j ∈ V \ {i}}.
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As in the case of MAX−PDDS, this result reduces for MIN−PDDS the initial
exponentially-sized problem, into another one in which, at most, n cases must be
analyzed.

Once the existence of more than one predecessor is known, the following step is
to try to obtain the number of them for any given state. In the next two corollaries,
we explain how to obtain theoretically the set of all of them and, consequently, its
number, in order to solve the classical predecessor problem #PRE.

Corollary 5.15. Let [D,MAX] − PDDS be a parallel directed dynamical system
over a dependency digraph D = (V,A) associated with the maxterm MAX. Let y a
con�guration and

Pi = {x state : x satisfies the conditions in Corollary 5.13 for yi}.

Then, P =
⋂
i∈V Pi is the set of all the predecessor states of y.

Dually, we have the following corollary.

Corollary 5.16. Let [D,MIN]−PDDS be a parallel directed dynamical system over
a dependency digraph D = (V,A) associated with the minterm MIN. Let y be a
con�guration and

Pi = {x state : x satisfies the conditions in Corollary 5.14 for yi}.

Then, P =
⋂
i∈V Pi is the set of all the predecessor states of y.

In the case of MAX − PDDS (resp. MIN − PDDS), the con�guration O (resp.
I) has always a unique predecessor, by Theorems 5.9 and 5.11 (resp. Theorems 5.10
and 5.12). However, the calculus of the number of predecessors for a general state of
the entities di�erent from these ones depends on the connections among the entities
in each particular system. Nevertheless, as traditionally done, we have been able
to get a bound for the number of predecessors of a general con�guration, which is
given in the following theorem.

Theorem 5.13. Let [D,MAX]−PDDS be a parallel directed dynamical system over
a dependency digraph D = (V,A) associated with the maxterm MAX. Then, the
number of predecessors of a given con�guration y di�erent from O is upper bounded

by 2#ID(V0)
c

− 1. In fact, such a bound is reachable.
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Proof. From Theorems 5.9 and 5.11, it is clear that the possible discrepancies
between predecessors correspond to di�erences in state values of entities in ID (V0)

c
.

Since the state values of any of these entities are either 0 or 1, a �rst bound for the
number of predecessors is 2#ID(V0)

c

.

However, if ID (V0)
c

= ∅, by Theorem 5.9, y has not predecessors, while if
ID (V0)

c
6= ∅, a con�guration such that:

• xi = 0 when i ∈ W ∩ ID (V0)
c
, and

• xi = 1 when i ∈ W ′ ∩ ID (V0)
c
,

cannot be a predecessor of y. Thus, in any case, one con�guration must be discarded
from the previous bound.

In fact, such a bound 2#ID(V0)
c

− 1 is reachable. It is su�cient to consider a
[D,MAX]− PDDS such that the subdigraph corresponding to ID (V0)

c
is complete

and with the condition that each entity in such a set is in�uencing to all the entities
in I∗D (V0).

Dually, we have the following theorem.

Theorem 5.14. Let [D,MIN]−PDDS be a parallel directed dynamical system over
a dependency digraph D = (V,A) associated with the minterm MIN. Then, the
number of predecessors of a given con�guration y di�erent from I is upper bounded

by 2#ID(V1)
c

− 1. In fact, such a bound is reachable.

5.2.2 Predecessor and GOE con�gurations in SDDS

As said in Subsection 4.2.1 within the ambit of SDS, in [30, 31, 32], the study of
predecessors is divided into four speci�c problems (PRE, UPRE, APRE and #PRE).

Proceeding as in the case of SDS, the next theorem provides us with a character-
ization of existence of predecessors in terms of su�cient and necessary conditions,
�nding a particular predecessor, named fundamental predecessor, of a speci�c state
of the entities in the context of an SDDS, when it exists.

Theorem 5.15. Let [D,MAX, π]−SDDS be a sequential directed dynamical system
over a dependency digraph D = (V,A) associated with the maxterm MAX. Then,
a con�guration y has a predecessor if, and only if, the state x de�ned as follows is
such that MAX (x) = y:
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• For every entity i ∈ V0 ∪ P0,

◦ xi = 0, if i ∈ W ,

◦ xi = 1, if i ∈ W ′.

• For every entity i ∈ (V0 ∪ P0)
c,

◦ xi = 1, if i ∈ W ,

◦ xi = 0, if i ∈ W ′.

Proof. The arguments in this proof are similar to those in the case of SDS. How-
ever, for the sake of completeness, we include them here.

It must only be shown that this condition is necessary for the existence of a
predecessor. For this purpose, let us see that if there is a predecessor of y, x̂ =
(x̂1, . . . , x̂n), then x de�ned as in this theorem is also a predecessor of y.

Thus, if i ∈ V0 ∪ P0, it must be,

• x̂i = 0 = xi, if i ∈ W ,

• x̂i = 1 = xi, if i ∈ W ′,

since otherwise, yi = 1, if i ∈ V0, or yj = 1 for some j ∈ V0 in�uenced by i (those
ones that update before i) if i ∈ P0.

Suppose, by reduction to the absurd, that x is not a predecessor of y. Let i ∈ V
be the �rst entity, according to the order established by π, such that xi does not
update to yi. It must be i ∈ V0 ∪ P0, because the entities in (V0 ∪ P0)

c ⊆ V1 update
to the activated state because of their own state values in x.

If i ∈ P0 \ V0 ⊆ V1, let us analyze the possible state of the entities belonging to
ID (i):

• Since i is the �rst entity not updating to the state given by yi = 1, then
∀j ∈ ID (i) with i = πr, j = πs and s < r, the entity j has updated to the
state given by yj, the same as for x̂.

• xi = x̂i.

• ∀j ∈ ID (i) with i = πr, j = πs and s > r:

◦ If j ∈ P0 ∪ V0, then xj = x̂j.
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◦ If j ∈ (P0 ∪ V0)c, then xj = 1, if j ∈ W , or xj = 0, if j ∈ W ′.

Since x̂i updates to yi = 1, xi must also do it, but this is a contradiction and,
consequently, i /∈ P0 \ V0.

Therefore i ∈ V0. In this situation:

• Since i is the �rst entity not updating to the state given by yi = 0, then
∀j ∈ ID (i) with i = πr, j = πs and s < r, the entity j has updated to the
state given by yj, the same as for x̂.

• xi = x̂i.

• ∀j ∈ ID (i) with i = πr, j = πs and s > r, the entity j ∈ P0, so xj = 0, if
j ∈ W , or xj = 1, if j ∈ W ′.

Since x̂i updates to yi = 0, xi must also do it, which is a contradiction and,
consequently, i /∈ V0.

Therefore, there cannot exist i ∈ V like that and x updates to y.

Dually, we have the following result.

Theorem 5.16. Let [D,MIN, π]− SDDS be a sequential directed dynamical system
over a dependency digraph D = (V,A) associated with the minterm MIN. Then, a
con�guration y has a predecessor if, and only if, the state x de�ned as follows is
such that MIN (x) = y:

• For every entity i ∈ V1 ∪ P1,

◦ xi = 1, if i ∈ W ,

◦ xi = 0, if i ∈ W ′.

• For every entity i ∈ (V1 ∪ P1)
c,

◦ xi = 0, if i ∈ W ,

◦ xi = 1, if i ∈ W ′.

Theorems 5.15 and 5.16 solve the PRE problem for SDDS on maxterm and
minterm Boolean functions, respectively, and allow us to establish the following
characterization of the GOE points of these systems.
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Corollary 5.17 (Characterization of GOE in MAX − SDDS). Let [D,MAX, π] −
SDDS be a sequential directed dynamical system over a dependency digraph D =
(V,A) associated with the maxterm MAX. Then, a con�guration y is a GOE point
of the system if, and only if, the state x de�ned as in Theorem 5.15 is such that
MAX (x) 6= y.

Corollary 5.18 (Characterization of GOE in MIN−SDDS). Let [D,MIN, π]−SDDS
be a sequential directed dynamical system over a dependency digraph D = (V,A)
associated with the minterm MIN. Then, a con�guration y is a GOE point of the
system if, and only if, the state x de�ned as in Theorem 5.16 is such that MIN (x) 6=
y.

Next, we provide su�cient conditions to determine GOE points.

Corollary 5.19. Let [D,MAX, π]−SDDS be a sequential directed dynamical system
over a dependency digraph D = (V,A) associated with the maxterm MAX. If a state
y is such that (Q0 ∩ V0) ∩W ′ 6= ∅, then y is a GOE point.

Proof. If (Q0 ∩ V0) ∩ W ′ 6= ∅, there is an entity i ∈ V0 whose corresponding
variable in MAX appears in complemented form and in�uencing an entity j ∈ V0
which updates after it. In this situation, the con�guration y cannot be obtained as
the update of another state x because the evolution of the entity i to the deactivated
state makes it impossible the posterior update of the entity j to this state.

Corollary 5.20. Let [D,MAX, π]−SDDS be a sequential directed dynamical system
over a dependency digraph D = (V,A) associated with the maxterm MAX. If a state
y is such that (Q0 ∩ V c

0 ) ∩W 6= ∅, then y is a GOE point.

Proof. If (Q0 ∩ V c
0 )∩W 6= ∅, there is an entity i ∈ V1 whose corresponding variable

in MAX appears in direct form and in�uencing an entity j ∈ V0 which updates after
it. The proof �nishes reasoning as in Corollary 5.19.

Dually, we have the following results.

Corollary 5.21. Let [D,MIN, π]−SDDS be a sequential directed dynamical system
over a dependency digraph D = (V,A) associated with the minterm MIN. If a state
y is such that (Q1 ∩ V1) ∩W ′ 6= ∅, then y is a GOE point.

Corollary 5.22. Let [D,MIN, π]−SDDS be a sequential directed dynamical system
over a dependency digraph D = (V,A) associated with the minterm MIN. If a state
y is such that (Q1 ∩ V c

1 ) ∩W 6= ∅, then y is a GOE point.
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Corollary 5.19 means that a con�guration y with a deactivated entity associated
to a complemented variable and in�uencing other deactivated one which updates
after it, is a GOE point. In Subsection 4.2.1, an homologous result is shown for the
case of SDS (see Corollary 4.7). Indeed, when MAX = NAND, they are the only
GOE points and the other con�gurations belong to periodic orbits (see Proposition
4.3). In NAND − SDDS, these con�gurations are not the only GOE points of the
system and there are eventually periodic points di�erent from the GOE, as shown
in the following example.

Example 5.2. In the case of the NAND− SDDS de�ned by

• D = ({1, 2}, {(2, 1)}),

• MAX = x′1 ∨ x′2,

• π = 1|2,

the con�guration (0, 1) is a GOE point and (1, 0) is neither a GOE nor a periodic
point, as can be seen in the phase portrait of the system in Figure 5.7.
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11 00

Figure 5.7: Phase portrait of the system [({1, 2}, {(2, 1)}) , x′
1 ∨ x′

2, 1|2]− SDDS.

Additionally, the pattern of the synchronous update over undirected graphs
shown in Corollary 3.9 of Subsection 3.2.1 for a MAX − PDS over a dependency
graph G = (V,E), with V = {1, . . . , n} and n ≥ 2, whereby a con�guration with
only one activated entity has no predecessors, is broken in this case of SDDS, since
it is already broken in the case of SDS, as said in Example 4.6 of Subsection 4.2.1,
and SDS is a particular case of SDDS.

In view of these results, we can state the following corollaries about the number
of GOE points in an SDDS.
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Corollary 5.23. Let [D,MAX, π]−SDDS be a sequential directed dynamical system
over a dependency digraph D = (V,A) associated with the maxterm MAX, with
V = {1, . . . , n} and n ≥ 2. Then, the number of GOE points, #GOE, is such that

1 ≤ #GOE ≤ 2n − 2.

Moreover, these bounds are the best possible because they are reachable.

Proof. First, we will prove that any SDDS with n ≥ 2 has GOE points.

If there is an arc from an entity i towards an entity j with i updating before j, if
i ∈ W then yi = 1 and yj = 0 cannot be obtained after the update of a con�guration,
and the same if i ∈ W ′ for the values yi = yj = 0.

Otherwise, each arc of D is such that its initial vertex updates after its �nal
vertex, according to the order π. Thus, the vertex πn is not in�uenced by another
one in its update and, in any predecessor of a state with yπn = 1, πn must be
activated if πn ∈ W or deactivated if πn ∈ W ′. Since D in weakly connected, there
exists k ∈ V such that (πn, k) ∈ A and, therefore, yk = 0 and yπn = 1 cannot be
obtained after the update of a con�guration.

In fact, the lower bound is reached, as shown in the example below. Let us
consider the [D,MAX, π]− SDDS de�ned by

• D = ({1, 2}, {(1, 2)}),

• MAX = x′1 ∨ x′2,

• π = 1|2.

In this case, (0, 0) is a GOE point, being the phase portrait of the system as can
be checked in Figure 5.8.
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Figure 5.8: Phase portrait of the system [({1, 2}, {(1, 2)}) , x′
1 ∨ x′

2, 1|2]− SDDS.

On the other hand, I is never a GOE point of the system, because the state x
de�ned as follows is its predecessor:
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• xi = 1, if i ∈ W ,

• xi = 0, if i ∈ W ′.

Also, there is always another con�guration with a predecessor, because if x is
de�ned as

• xi = 0, if i ∈ W ,

• xi = 1, if i ∈ W ′,

then x updates to a state y such that y1 = 0.

As shown in the example below, this upper bound is also reached. Let us consider
the following [D,MAX, π]− SDDS, determined by

• D = ({1, 2}, {(1, 2) , (2, 1)}),

• MAX = x1 ∨ x′2,

• π = 1|2.

The phase portrait of this system is shown in Figure 5.9.
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Figure 5.9: Phase portrait of the system [({1, 2}, {(1, 2) , (2, 1)}) , x1 ∨ x′
2, 1|2]− SDDS.

Remark 5.9. In Corollary 5.23, n ≥ 2 has been imposed. This is necessary because
a [D,MAX, π] − SDDS with n = 1 has 2 �xed points, if W ′ = ∅, or one 2-cycle, if
W = ∅. That is, it has not GOE points in any case.

Dually, we have the following result.
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Corollary 5.24. Let [D,MIN, π]−SDDS be a sequential directed dynamical system
over a dependency digraph D = (V,A) associated with the minterm MIN, with V =
{1, . . . , n} and n ≥ 2. Then, the number of GOE points, #GOE, is such that

1 ≤ #GOE ≤ 2n − 2.

Moreover, these bounds are the best possible because they are reachable.

In Theorem 5.15, a constructive proof about the existence of a fundamental
predecessor is shown. The structure of such a predecessor exposed in that reasoning
inspires the following result.

Corollary 5.25. Let [D,MAX, π]−SDDS be a sequential directed dynamical system
over a dependency digraph D = (V,A) associated with the maxterm MAX. If a
con�guration y has a predecessor x, the following conditions are veri�ed:

• If yi = 0, for every entity j ∈ ID (i), with i = πr and j = πs:

◦ If i = j or r < s:

� xj = 0, if j ∈ W , or

� xj = 1, if j ∈ W ′.

◦ If r > s:

� yj = 0, if j ∈ W , or

� yj = 1, if j ∈ W ′.

• If yi = 1, there exists an entity j ∈ ID (i) such that if i = πr and j = πs, at
least one of the following conditions is accomplished:

◦ i = j or r < s, and:

� xj = 1, if j ∈ W , or

� xj = 0, if j ∈ W ′.

◦ r > s, and:

� yj = 1, if j ∈ W , or

� yj = 0, if j ∈ W ′.
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Proof. On the one hand, if yi = 0 and there is j ∈ ID (i) such that the conditions
shown are not satis�ed in this case, the entity i will update to the activated state
due to this in�uencing entity j, which is a contradiction. On the other hand, if
yi = 1 and ∀j ∈ ID (i) these conditions are not satis�ed, the entity i will update to
the deactivated state, which is also a contradiction.

Dually, we have the following result.

Corollary 5.26. Let [D,MIN, π] − SDDS be a sequential directed dynamical sys-
tem over a dependency digraph D = (V,A) associated with the minterm MIN. If a
con�guration y has a predecessor x, the following conditions are veri�ed:

• If yi = 1, for every entity j ∈ ID (i), with i = πr and j = πs:

◦ If i = j or r < s:

� xj = 1, if j ∈ W , or

� xj = 0, if j ∈ W ′.

◦ If r > s:

� yj = 1, if j ∈ W , or

� yj = 0, if j ∈ W ′.

• If yi = 0, there exists an entity j ∈ ID (i) such that if i = πr and j = πs, at
least one of the following conditions is accomplished:

◦ i = j or r < s, and:

� xj = 0, if j ∈ W , or

� xj = 1, if j ∈ W ′.

◦ r > s, and:

� yj = 0, if j ∈ W , or

� yj = 1, if j ∈ W ′.

In a MAX− SDDS (resp. MIN− SDDS), the entities whose state is deactivated
(resp. activated) in y determine univocally their state and the state of their in�u-
encing entities in P0 (resp. P1) in any predecessor x, if such a predecessor exists.
However, for any entity whose state value is 1 (resp. 0) in y, it is only necessary
the intervention of a timely in�uencing entity, or itself, with the appropriate state
in the moment of its update. This point is the key to solve the UPRE, APRE and
#PRE problems hereafter.



5.2 Dynamics of non-periodic orbits 165

The following theorems allow us to determine if, given a state y with a predecessor
x, there are other con�gurations di�erent from x such that they are also predecessors
of y. Thus, the UPRE and APRE problems in the context of an SDDS on maxterm
and minterm Bolean functions are solved.

Theorem 5.17. Let [D,MAX, π]−SDDS be a sequential directed dynamical system
over a dependency digraph D = (V,A) associated with the maxterm MAX. Let y be a
con�guration of the system such that it has a predecessor. Then, this predecessor of
y is not unique if, and only if, there is a predecessor of y belonging to the following
set:

P = {x̂ ∈ {0, 1}n : ∃ i ∈ (V0 ∪ P0)
c such that x̂i 6= xi and x̂j = xj ∀j ∈ V \ {i}},

being x the fundamental predecessor of y described in Theorem 5.15.

Proof. The arguments in this proof are similar to those in the case of SDS. How-
ever, to the sake of completeness, we include them here.

Since the fundamental predecessor x de�ned as in Theorem 5.15 is such that
x /∈ P, it must only be shown that this condition is necessary for the existence of a
predecessor di�erent from x. For this purpose, let us see that if there is a predecessor
of y di�erent from x, x = (x1, . . . , xn), then there exists a state x̂ = (x̂1, . . . , x̂n) ∈ P
such that x̂ is also a predecessor of y.

Given that x 6= x and x is a predecessor of y, by Corollary 5.25, there is an entity
i0 ∈ (V0 ∪ P0)

c such that xi0 6= xi0 . Let us take x̂ as the only element of P such that
x̂i0 6= xi0 (consequently, x̂i0 = xi0), and let us see that this state is a predecessor of
y.

Suppose, by reduction to the absurd, that x̂ is not a predecessor of y. Let i ∈ V be
the �rst entity, according to the order established by π, such that x̂i does not update
to yi. It must be i ∈ V0 ∪ P0 ∪ {i0}, because the entities in (V0 ∪ P0 ∪ {i0})c ⊆ V1
update to the activated state because of their own state values in x̂.

If i ∈ P0 \ (V0 ∪ {i0}) = P0 \ V0 ⊆ V1, let us analyze the possible state of the
entities belonging to ID (i):

• Since i is the �rst entity not updating to the state given by yi = 1, then
∀j ∈ ID (i) with i = πr, j = πs and s < r, the entity j has updated to the
state given by yj, the same as for x.

• x̂i = xi.
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• ∀j ∈ ID (i) with i = πr, j = πs and s > r:

◦ If j ∈ P0 ∪ V0 ∪ {i0}, then x̂j = xj.

◦ If j ∈ (P0 ∪ V0 ∪ {i0})c, then x̂j = 1, if j ∈ W , or x̂j = 0, if j ∈ W ′.

Since xi updates to yi = 1, x̂i must also do it, but this is a contradiction and,
consequently, i /∈ P0 \ V0.

If i ∈ V0 \ {i0} = V0, we have the following:

• Since i is the �rst entity not updating to the state given by yi = 0, then
∀j ∈ ID (i) with i = πr, j = πs and s < r, the entity j has updated to the
state given by yj, the same as for x.

• x̂i = xi.

• ∀j ∈ ID (i) with i = πr, j = πs and s > r, the entity j ∈ P0 = P0 \ {i0}, so
xj = 0, if j ∈ W , or xj = 1, if j ∈ W ′.

Since xi updates to yi = 0, x̂i must also do it, which is a contradiction and,
consequently, i /∈ V0.

Therefore i = i0. In this situation, we have the following:

• Since i is the �rst entity not updating to the state given by yi = 1 (i0 ∈
(V0 ∪ P0)

c ⊆ V1), then ∀j ∈ ID (i0) with i0 = πr, j = πs and s < r, the entity
j has updated to the state given by yj, the same as for x.

• x̂i0 = xi0 .

• ∀j ∈ ID (i0) with i0 = πr, j = πs and s > r:

◦ If j ∈ P0 ∪ V0, then x̂j = xj.

◦ If j ∈ (P0 ∪ V0)c, then x̂j = 1, if j ∈ W , or x̂j = 0, if j ∈ W ′.

Since xi updates to yi = 1, x̂i must also do it, but this is also a contradiction
and, consequently, i 6= i0.

Therefore, there cannot exist i ∈ V like that and x̂ updates to y.

Remark 5.10. As in the case of PDDS, this result reduces an initial exponentially-
sized problem, into another one in which, at most, n cases must be analyzed.
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Dually, we have the following result.

Theorem 5.18. Let [D,MIN, π]− SDDS be a sequential directed dynamical system
over a dependency digraph D = (V,A) associated with the minterm MIN. Let y be a
con�guration of the system such that it has a predecessor. Then, this predecessor of
y is not unique if, and only if, there is a predecessor of y belonging to the following
set:

P = {x̂ ∈ {0, 1}n : ∃ i ∈ (V1 ∪ P1)
c such that x̂i 6= xi and x̂j = xj ∀j ∈ V \ {i}},

being x the fundamental predecessor of y described in Theorem 5.16.

These results respond to the question of the existence of more than one predeces-
sor for a state y. The next step is to go deeper into this topic, getting the number of
them. In the following results we explain a method to obtain all the predecessors of
y and, consequently, this number in order to solve the predecessor problem #PRE.

Corollary 5.27. Let [D,MAX, π]−SDDS be a sequential directed dynamical system
over a dependency digraph D = (V,A) associated with the maxterm MAX. Let y be
a con�guration and let us consider the following iterative process:

• Pn+1 = {y}.

• If i ∈ V , then

Pi = {x ∈ {0, 1}n : ∃y ∈ Pi+1 / xj = yj if j 6= πi and MAX|ID(πi)
(x) = yπi},

being MAX|ID(πi)
the restriction of MAX over ID (πi).

Then, P1 is the set of all the predecessors of y.

Example 5.3. Let us illustrate this procedure with a particular example in order
to clarify the notation. We consider the [D,MAX, π]− SDDS de�ned by

• D = ({1, 2, 3}, {(1, 2) , (2, 3) , (3, 1)}),

• MAX = x1 ∨ x2 ∨ x3,

• π = 1|2|3.
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Figure 5.10: Phase portrait of the system [({1, 2, 3}, {(1, 2) , (2, 3) , (3, 1)}) , x1 ∨ x2 ∨ x3, 1|2|3] −
SDDS.

The phase portrait of this system is shown in Figure 5.10.

The set of predecessors of the con�guration y = (1, 1, 1) is

{(1, 1, 1) , (0, 1, 1) , (1, 0, 1) , (1, 1, 0) , (1, 0, 0) , (0, 0, 1)}.

Let us see that this set is obtained as P1 at the end of the iterative process
starting with P4 = {(1, 1, 1)}.

Firstly, P3 is obtained: since π3 = 3, the only con�gurations that can belong to
P3 are (1, 1, 0) and (1, 1, 1). Besides, since MAX|ID(3) (1, 1, 0) = MAX|ID(3) (1, 1, 1) =

1 = y3, then P3 = {(1, 1, 0) , (1, 1, 1)}.
Then, to obtain P2, since π2 = 2 and considering the elements in P3, the

only con�gurations that can belong to this set P2 are (1, 0, 0), (1, 1, 0), (1, 0, 1)
and (1, 1, 1). Now, MAX|ID(2) (1, 0, 0), MAX|ID(2) (1, 1, 0), MAX|ID(2) (1, 0, 1) and
MAX|ID(2) (1, 1, 1) are all equal to 1 = y2. Thus, the set P2 is as follows: P2 =

{(1, 0, 0) , (1, 1, 0) , (1, 0, 1) , (1, 1, 1)}.
Finally, since π1 = 1 and knowing the set P2, the only con�gurations that

can belong to P1 are (0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1), (1, 0, 1), (0, 1, 1)
and (1, 1, 1). Now, MAX|ID(1) (0, 0, 0) and MAX|ID(1) (0, 1, 0) are equal to 0 6= y1,
while MAX|ID(1) (1, 0, 0), MAX|ID(1) (1, 1, 0), MAX|ID(1) (0, 0, 1), MAX|ID(1) (1, 0, 1),
MAX|ID(1) (0, 1, 1) and MAX|ID(1) (1, 1, 1) are all equal to 1 = y1. Thus, P1 =

{(1, 0, 0) , (1, 1, 0) , (0, 0, 1) , (1, 0, 1) , (0, 1, 1) , (1, 1, 1)}.

Dually, we have the following result.

Corollary 5.28. Let [D,MIN, π]−SDDS be a sequential directed dynamical system
over a dependency digraph D = (V,A) associated with the minterm MIN. Let y be
a con�guration and let us consider the following iterative process:
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• Pn+1 = {y}.

• If i ∈ V , then

Pi = {x ∈ {0, 1}n : ∃y ∈ Pi+1 / xj = yj if j 6= πi and MIN|ID(πi)
(x) = yπi},

being MIN|ID(πi)
the restriction of MIN over ID (πi).

Then, P1 is the set of all the predecessors of y.

As in the case of SDS, these last procedures allow us to know all the predeces-
sors of a state y in an SDDS and, consequently, the number of them. However, the
calculus of the number of predecessors for a state of the entities depends on the con-
nections among entities in the particular digraph. In this case, as traditionally done
in other contexts, we have been able to get a bound for the number of predecessors
of a con�guration, which is given in the following theorems.

Theorem 5.19. Let [D,MAX, π]−SDDS be a sequential directed dynamical system
over a dependency digraph D = (V,A) associated with the maxterm MAX. Then, the
number of predecessors of a given state y is upper bounded by 2#(V0∪P0)

c

. Moreover,
this bound is the best possible because it is reachable.

Proof. From Theorem 5.15 and Corollary 5.25, the states of the entities belonging
to V0 ∪ P0 in a possible predecessor of y are �xed. Since the state values of the rest
of entities are either 0 or 1, a �rst upper bound for the number of predecessors is
2#(V0∪P0)

c

.

This upper bound is the best possible because it is reached in the following
example. Let us consider the [D,MAX, π]− SDDS de�ned by

• D = (V,A), with V = {1, . . . , n}, n ≥ 2, and A = {(2, i) : i ∈ V \ {2}} ∪
{(1, 2)},

• MAX = x′1 ∨ x2 ∨ · · · ∨ xn,

• π = 1| . . . |n.

In this context, if y = (0, 1, . . . , 1), then V0 = {1}, P0 = {2}, Q0 = ∅ and
V1 = {2, . . . , n}.

In any predecessor, x, it must be x1 = 1 and x2 = 0 but, in this case, all the
other choices for the states of the rest of entities generate predecessors of y.



170 Advances in PDDS and SDDS

Dually, we have the following result.

Theorem 5.20. Let [D,MIN, π]− SDDS be a sequential directed dynamical system
over a dependency digraph D = (V,A) associated with the minterm MIN. Then, the
number of predecessors of a given state y is upper bounded by 2#(V1∪P1)

c

. Moreover,
this bound is the best possible because it is reachable.

Remark 5.11. As can be checked, these upper bounds coincide with the ones obtained
for SDS over undirected dependency graphs.



Conclusions and future research

directions

This dissertation supposes a complete description of the dynamics of homoge-
neous PDS and SDS on maxterm and minterm Boolean functions over undirected
graphs.

The results obtained in PDS and SDS have turned out fundamental to identify
di�erent features of the dynamics in PDDS and SDDS. On the other hand, the
methods and techniques developed in this work provide novel ingenious ideas to
research this theory in the future.

In this sense, this work gives us hope for further progress in some future research
directions which arise from it. The main future research directions correspond to
extensions of the results to other kinds of models. Speci�cally, the study of models
coming from the generalizations of the basic elements involved in the de�nitions (i.e.,
the set of states of the entities, the dependency graph, the local update functions
and the updating schedule) of deterministic BN models can be considered as a nat-
ural continuation of this research work, as well as the analysis of non-deterministic
models. Additionally, from this complete theoretical study, a direct application of
these results to models coming from sciences, engineering or real-word situations
seems to be feasible.

More speci�cally, we have:

1. Related to the set of states of the entities:

• Generalization to a (general) Boolean algebra: In [22], a generalization
of PDS over graphs is introduced by considering that the states of the
entities can take values in an arbitrary Boolean algebra (B,g,f, ′,O, I)
with 2p elements, p ∈ N, p ≥ 1. Note that the results in this dissertation
correspond to the particular case where B = {0, 1}, that is, p = 1. In
such a paper, a generalization of some results related to PDS is performed
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by using the Stone Representation Theorem for Boolean Algebras in a
suitable way to decompose this general dynamical system into p PDS,
where the entities take values in {0, 1}. Thus, a direct research line
consists in generalizing the analysis shown in this dissertation for PDS
and SDS to the case of general Boolean algebras just following this idea.
On the other hand, the states of all the variables usually belong to the
same Boolean algebra, but there exits also the possibility of belonging
to di�erent Boolean algebras (with di�erent number of elements) since,
even so, the interaction between two variables with di�erent states can
be modeled through a Boolean function.

• Generalization to a (general) �nite set of states: The original CA ([117])
were de�ned assuming that each cell can have, not only binary states
activated and deactivated, but any state value belonging to a �nite set.
The study in this case is usually performed by considering the binary
situation, although some papers ([88, 107]) explore the general situation,
under some physical assumptions of uniformity. Nevertheless, observe
that these models are not Boolean network models.

• Generalization to an in�nite set of entities or states: Although, by com-
putational reasons, the study of this kind of dynamical systems is usually
performed considering a �nite set of entities, already in the original con-
ception of CA ([117]), a system can have an in�nite number of them. The
possibility of analyzing the dynamics in systems with an in�nite number
of entities, which can take an in�nite number of states, can be consider
as an interesting future line of research.

• Generalization to fuzzy sets: A direct generalization of our results could
be obtained by using fuzzy sets and following the ideas in [124].

2. Related to dependency graph:

• Generalization to directed graphs and to special kinds of them: In Chap-
ter 5 of this thesis, and in some previous works (see [18] for example),
the importance of analyzing the behavior of the system when the entities
are not in�uenced in a symmetrical form is shown. In this Chapter 5,
some of the results obtained in the previous chapters of this dissertation
are generalized. As a future research direction, we propose a global gen-
eralization of all the other previous results, which will lead to a complete
understanding of the dynamics in PDDS and SDDS.
On the other hand, in this thesis, overall results have been obtained for
PDS and SDS over general undirected dependency graphs. However,
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sometimes, it can be important to know the behavior of a system re-
stricted to a particular kind of graph, looking for a speci�c performance.
Some previous works have already dealt with this topic (see, for exam-
ple, [21]), being line graphs, star graphs, arborescence structures, acyclic
graphs and circle graphs some special graph classes which are worthwhile
to be considered.

• Generalization to free-loop graphs: Structures di�erent from the usual
are becoming popular because of their appearance in disciplines such as
genetic or biology. This is the case, for example, of the study of the
dynamics in systems in which the update of the state of each entity does
not depend on the state of the own entity (see [97]). This change in the
fundamental principles implies a very promising research direction, with
multiple proposals for use in the �eld of applied sciences.

• Generalization to mixed-loop graphs: Inspired by the previous proposal,
the study can be extended to the most general case of systems where
loops are not in all the nodes, but in some of them, which is the real
situation in some biological systems (see [97]).

3. Related to the local functions:

• Generalization to general Boolean functions: As said in Chapter 2, the
great importance of the particular class of Boolean functions formed by
maxterms and minterms is that (see [24, 37, 98]) any Boolean function,
except F ≡ 1 (resp. F ≡ 0) can be expressed in a canonical form as a
conjunction (resp. disjunction) of maxterms (resp. minterms). Thus, it
is natural to start with the study of the dynamics for this kind of Boolean
functions, as done in this thesis. Once this analysis has been done, the
following step is to study how the results can be used in order to achieve
a complete study of the dynamics in parallel and sequential dynamical
systems over graphs on general Boolean functions as evolution operators.

• Generalization to independent local (Boolean) functions: Along this dis-
sertation, we have studied the dynamics of systems in which, the evolution
of the states of the entities is performed by local functions acting over
the adjacency or in�uence sets associated with them. All the results in
this thesis are related to the case of homogeneous systems, i.e., those
ones in which the evolution of the states of the entities is performed by
local functions which are the restriction of a global maxterm or minterm
Boolean function.
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When generic structures are modeled, the situation could be more com-
plex, being able to have independent local functions to update the state
of the entities of the system (see [78]). Some works have already studied
this situation (see [19, 25, 115]) and, as a line of continuity of the results
shown in this dissertation, we propose the generalization of them in this
context.

4. Related to the updating schedule:

• Generalization to mixed schedule (MDS): Since a complete study of the
dynamics has been performed in this thesis in the case of dynamical
systems with parallel and sequential update of the state of the entities,
a direct generalization consists in consider a mixture of both kind of
evolution (see [62, 65]). This schedule is present in some computational
processes when the updating task is not performed neither in parallel nor
a sequential manner, but in a mixed way.
In this case, the vertex set V is divided into some subsets, V1, . . . , Vk ⊆ V ,
being Vi ∩ Vj = ∅ when i 6= j, such that the update of the states is
performed in a parallel way inside every set Vi, but sequentially among
di�erent sets, being the entities belonging to V1 the �rst evolving their
states, after that the entities in V2, and so on.

• Generalization to updating order given by �words�: In the sequential
update case, in this thesis, we have used a permutation among the vertices
to specify the sequence in which the states of the entities evolve. The
update order is usually formalized this way, but also through �nite words
over the vertex set of the corresponding wiring graph (see [91, 92]). That
is, in an iteration a node could be updated more than one time. This
possibility can be considered as a future research line.

In addition, other interesting future research direction could be to use these
results in the analysis of non-deterministic models. Some recent works (see [91, 92])
show the importance of the research in non-deterministic models, which allow more
�exibility, adjust to the reality and signi�cance of the results than in deterministic
models. The �rst steps towards this objective, which would extend greatly the
results, could be the study of the dynamics in systems in which:

• The adjacency relationships change after each iteration.

• The local functions change after each iteration.
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• The updating order (in the case of sequential update) changes after each iter-
ation.

Along this dissertation, we have mentioned the versatility of CA and KN in
applications to several branches of sciences as biology (see [53, 78, 79, 113]), ecology
(see [54, 72, 73]), psychology (see [2, 70]), mathematics (see [41, 43, 47, 57, 76]),
physics (see [42, 44, 48]) and chemistry (see [83]), among others. Thus, other future
research challenge could be to �nd applications to models coming from sciences and
engineering (as, for instance, those in [27, 56], where some of our works are taken
as a theoretical basis) or to study ad hoc real-word models related with the ones
treated here that other researchers can propose us.



176 Conclusions and future research directions



Bibliography

[1] W. Abou-Jaoudé, D. Ouattara, M. Kaufman, From structure to dynamics:
frequency tuning in the p53-mdm2 network I. logical approach, J. Theor. Biol.
258 (2009) 561�577.

[2] F.D. Abraham, A beginners guide to the nature and potentialities of dynam-
ical and network theory II: A very brief comparison of discrete networks to
continuous dynamical systems, Chaos Complex. Lett. 9(2) (2015) 1�18.

[3] N.L. Ackerman, C.E. Freer, Graph Turing Machines, Proceedings of WoLLIC
10388 (2017) 1�13.

[4] T. Akutsu, S. Kosub, A.A. Melkman, T. Tamura, Finding a periodic attractor
of a Boolean network, IEEE/ACM Trans. Comput. Biol. Bioinf. 9(5) (2012)
1410�1421.

[5] R. Albert, R.S. Wang, Discrete dynamic modeling of cellular signaling networks,
Methods Enzymol 467 (2009) 281�306.

[6] J.A. Aledo, L.G. Diaz, S. Martinez, J.C. Valverde, On the Periods of Parallel
Dynamical Systems, Complexity Volume 2017 (2017) Article ID 7209762, 6
pages.

[7] J.A. Aledo, L.G. Diaz, S. Martinez, J.C. Valverde, On periods and equilibria
of computational sequential systems, Info. Sci. 409�410 (2017) 27�34.

[8] J.A. Aledo, L.G. Diaz, S. Martinez, J.C. Valverde, Maximum number of peri-
odic orbits in parallel dynamical systems, Inf. Sci. 468 (2018) 63�71.

[9] J.A. Aledo, L.G. Diaz, S. Martinez, J.C. Valverde, Predecessors and Garden-
of-Eden con�gurations in parallel dynamical systems on maxterm and minterm
Boolean functions, J. Comput. Appl. Math. 348 (2019) 26�33.



178 Bibliography

[10] J.A. Aledo, L.G. Diaz, S. Martinez, J.C. Valverde, Solution to the predecessors
and Gardens-of-Eden problems for synchronous systems over directed graphs,
Appl. Math. Comput. 347 (2019) 22�28.

[11] J.A. Aledo, L.G. Diaz, S. Martinez, J.C. Valverde, Predecessors Existence Prob-
lems and Gardens of Eden in Sequential Dynamical Systems, Complexity Vol-
ume 2019 (2019) Article ID 6280960, 10 pages.

[12] J.A. Aledo, L.G. Diaz, S. Martinez, J.C. Valverde, Predecessors and Gardens
of Eden in sequential dynamical systems over directed graphs, Appl. Math.
Nonlinear Sci. 3(2) (2018) 593�602.

[13] J.A. Aledo, L.G. Diaz, S. Martinez, J.C. Valverde, Dynamical attraction in
parallel network models, Appl. Math. Comput. 361 (2019) 874�888.

[14] J.A. Aledo, L.G. Diaz, S. Martinez, J.C. Valverde, Attractors and transient in
sequential dynamical systems, Int. J. Comput. Math. (2019).

[15] J.A. Aledo, L.G. Diaz, S. Martinez, J.C. Valverde, Enumerating periodic orbits
in sequential dynamical systems, under review.

[16] J.A. Aledo, L.G. Diaz, S. Martinez, J.C. Valverde, Coexistence of periods in
parallel and sequential dynamical systems over directed graphs, under review.

[17] J.A. Aledo, S. Martinez, F.L. Pelayo, J.C. Valverde, Parallel dynamical systems
on maxterm and minterm Boolean functions, Math. Comput. Model. 35 (2012)
666�671.

[18] J.A. Aledo, S. Martinez, J.C. Valverde, Parallel dynamical systems over directed
dependency graphs, Appl. Math. Comput. 219 (2012) 1114�1119.

[19] J.A. Aledo, S. Martinez, J.C. Valverde, Parallel discrete dynamical systems on
independent local functions, J. Comput. Appl. Math. 237 (2013) 335�339.

[20] J.A. Aledo, S. Martinez, J.C. Valverde, Updating method for the computation
of orbits in parallel and sequential dynamical systems, Int. J. Comput. Math.
90(9) (2013) 1796�1808.

[21] J.A. Aledo, S. Martinez, J.C. Valverde, Parallel dynamical systems over special
digraph classes, Int. J. Comput. Math. 90 (2013) 2039�2048.

[22] J.A. Aledo, S. Martinez, J.C. Valverde, Graph Dynamical Systems with General
Boolean States, Appl. Math. Inf. Sci. 9 (2015) 1803�1808.



Bibliography 179

[23] J.A. Aledo, S. Martinez, J.C. Valverde, Parallel dynamical systems over graphs
and related topics: a survey, J. Appl. Maths 2015 (2015) Article ID 594294, 14
pages.

[24] J.A. Aledo, J. Penabad, J.J. Villaverde, J.C. Valverde, Algebra y Matemática
Discreta, Alpeviva, Albacete, 2001.

[25] J. Aracena, A. Richard, L. Salinas, Maximum number of �xed points in AND-
OR-NOT networks, J. Comput. Syst. Sci. 80 (2014) 1175�1190.

[26] D.F. Aranda, D.Y. Trejos, J.C. Valverde, A discrete epidemic model for bovine
Babesiosis disease and tick populations, Open Phys. 15 (2017) 360�369.

[27] S. Asensio-Cuesta, J.M. García-Gómez, J.L. Poza-Luján , J.A. Conejero, A
game-theory method to design job rotation schedules to prevent musculoskeletal
disorders based on workers' preferences and competencies, Int. J. Environ. Res.
Public Health 16 (2019) Article ID 4666.

[28] C.L. Barrett, W.Y.C. Chen, M.J. Zheng, Discrete dynamical systems on graphs
and Boolean functions, Math. Comput. Simul. 66 (2004) 487�497.

[29] C.L. Barrett, H.B. Hunt III, M.V. Marathe, S.S. Ravi, D.J. Rosenkrantz, R.E.
Stearns, P.T. Tosic, Gardens of Eden and �xed points in sequential dynamical
systems, Discrete Math. Theor. Comput. Sci. Proceedings (2001) 95�110.

[30] C.L. Barrett, H.B. Hunt III, M.V. Marathe, S.S. Ravi, D.J. Rosenkrantz, R.E.
Stearns, Predecessor and permutation existence problems for sequential dynam-
ical systems, Discrete Math. Theor. Comput. Sci. AB(DMCS) (2003) 69�80.

[31] C.L. Barrett, H.B. Hunt III, M.V. Marathe, S.S. Ravi, D.J. Rosenkrantz, R.E.
Stearns, M. Thakur, Predecessor existence problems for �nite discrete dynam-
ical systems, Theoret. Comput. Sci. 386(1�2) (2007) 3�37.

[32] C.L. Barrett, H.B. Hunt III, M.V. Marathe, S.S. Ravi, D.J. Rosenkrantz, R.E.
Stearns, M. Thakur, Errata for the paper �Predecessor existence problems for
�nite discrete dynamical systems� [Theoret. Comput. Sci. 386(1�2) (2007) 3�
37], Theoret. Comput. Sci. 395 (2008) 132�133.

[33] C.L. Barrett, C.M. Reidys, Elements of a theory of computer simulation I,
Appl. Math. Comput. 98 (1999) 241�259.

[34] C.L. Barrett, H.S. Mortveit, C.M. Reidys, Elements of a theory of computer
simulation II, Appl. Math. Comput. 107 (2002) 121�136.



180 Bibliography

[35] C.L. Barrett, H.S. Mortveit, C.M. Reidys, Elements of a theory of computer
simulation III, Appl. Math. Comput. 122 (2002) 325�340.

[36] C.L. Barrett, H.S. Mortveit, C.M. Reidys, Elements of a theory of computer
simulation IV: sequential dynamical systems: �xed points, invertibility and
equivalence, Appl. Math. Comput. 134 (2003) 153�171.

[37] E.A. Bender, S.G. Williamson, A Short Course in Discrete Mathematics, Dover
Publications, Inc., New York, 2005.

[38] H.J. Blok, B. Bergersen, Synchronous versus asynchronous updating in the
�Game of Life�, Phys. Rev. E 59 (1999) 3876�3879.

[39] G. Boole, An Investigation of the Laws of Thought, on Which Are Founded
the Mathematical Theories of Logic and Probabilities, Cambridge University
Press, Cambridge, 1854.

[40] S.D. Cardell, A. Fúster-Sabater, Binomial Representation of Cryptographic
Binary Sequences and Its Relation to Cellular Automata, Complexity 2019
(2019) Article ID 2108014, 13 pages.

[41] G. Cattaneo, G. Chiaselotti, A. Dennunzio, E. Formenti, L. Manzoni, Non
Uniform Cellular Automata Description of Signed Partition Versions of Ice and
Sand Pile Models, LNCS 8751 (2014) 115�124.

[42] G. Cattaneo, G. Chiaselotti, T. Gentile, P.A. Oliverio, The lattice structure of
equally extended signed partitions. A generalization of the Brylawski approach
to integer partitions with two possible models: ice piles and semiconductors,
Fund. Inform. 141 (2015) 136.

[43] G. Cattaneo, G. Chiaselotti, P.A. Oliverio, F. Stumbo, A new discrete dy-
namical system of signed integer partitions, European J. Combin. 55 (2016)
119�143.

[44] G. Cattaneo, M. Comito, D. Bianucci, Sand piles: from physics to cellular
automata models, Theoret. Comput. Sci. 436 (2012) 35�53.

[45] W.Y.C. Chen, X. Li, J. Zheng, Matrix method for linear sequential dynamical
systems on digraphs, Appl. Math. Comput. 160 (2005) 197�212.

[46] G. Chiaselotti, G. Marino, P.A. Oliverio, D. Petrassi, A discrete dynamical
model of signed partitions, J. Appl. Math. 1 (2013), Article ID 973501, 10
pages.



Bibliography 181

[47] G. Chiaselotti, T. Gentile, P.A. Oliverio, Parallel and sequential dynamics of
two discrete models of signed integer partitions, Appl. Math. Comput. 232
(2014) 1249�1261.

[48] B. Chopard, M. Droz, Cellular Automata for Modeling Physics, Cambridge
University Press, Cambridge, 1998.

[49] J.H. Conway, What is Life?, In Winning ways for your mathematical plays,
Academic Press, New York, 1982.

[50] C. Defant, Enumerating periodic points of certain sequential dynamical sys-
tems, arXiv:1511.06966v1.

[51] C. Defant, Binary codes and 2-periodic orbits of sequential dynamical system,
Discrete Math. Theor. Comput. Sci. 19(3) (2017) 10.

[52] B. Derrida, Y. Pomeau, Random networks of automata: a simple annealed
approximation, Europhysics Letters 1(2) (1986) 45�49.

[53] A. Deutsch, S. Dormann, Cellular Automaton Modelling of Biological Pattern
Formation, Birkhäuser, Boston, 2004.

[54] U. Dieckman, R. Law, J.A.J. Metz, The Geometry of Ecological Interactions.
Simplifying Spatial Complexity, Cambridge University Press, Cambridge, 2000.

[55] E. Dubrova, M. Teslenko, A sat-based algorithm for �nding attractors in syn-
chronous Boolean networks, IEEE/ACM Trans. Comput. Biol. Bioinf. 8(5)
(2010) 1393�1399.

[56] W. Dzwinel, R. Wcislo, D.A. Yuen, S. Miller, PAM: Particle automata in mod-
eling of multiscale biological systems, ACM Trans. Model. Comput. Simul. 26
(2016).

[57] A. Fuster-Sabater, P. Caballero-Gil, On the use of cellular automata in sym-
metric cryptography, Acta Appl. Math. 93 (2006) 215�236.

[58] J.A. Gallian, Contemporary Abstract Algebra, seventh ed., Cengage Learning,
Boston, 2010.

[59] M. Gardner, The fantastic combination of John Conway's new solitaire game
�life�, Scienti�c American 223 (1970) 120�123.

[60] M. Gardner, On cellular automat, self-reproduction, the Garden of Eden and
the game life, Scienti�c American 224 (1971) 112�117.



182 Bibliography

[61] A. Garg, A.D. Cara, I. Xenarios, L. Mendoza, G. Micheli, Synchronous versus
asynchronous modeling of gene regulatory networks, Bioinformatics 24 (2008)
1917�1925.

[62] C. Gershenson, Classi�cation of random Boolean networks, In R.K. Standish,
M. Bedau, H. Abbass (Eds.) Artifcial Life VIII 1�8, MIT Press, Massachusets,
2002.

[63] C. Gershenson, Phase Transitions in Random Boolean Networks with Di�erent
Updating Schemes, https://arxiv.org/pdf/nlin/0311008.pdf.

[64] C. Gershenson, Updating Schemes in Random Boolean Networks: Do They
Really Matter?, In Pollack, J., M. Bedau, P. Husbands, T. Ikegami, R.A. Wat-
son (Eds.) Arti�cial Life IX, Proceedings of the Ninth International Conference
on the Simulation and Synthesis of Living Systems (2004), pp. 238�243. MIT
Press.

[65] C. Gershenson, Introduction to random Boolean networks,
http://arxiv.org/pdf/nlin.AO/0408006.pdf.

[66] C. Gershenson, J. Broekaert, D. Aerts, Contextual random Boolean networks,
Proceedings of the 7th European Artifcial Life Conference (2003) 615�624.

[67] C. Gershenson, S.A. Kau�man, I. Shmulevich, The Role of Redundancy in
the Robustness of Random Boolean Networks, In Rocha, L.M., L.S. Yaeger,
M.A. Bedau, D. Floreano, R.L. Goldstone, A. Vespignani (Eds.), Arti�cial Life
X, Proceedings of the Tenth International Conference on the Simulation and
Synthesis of Living Systems (2006), pp. 35�42. MIT Press.

[68] F. Green, NP-complete problems in cellular automata, Complex Systems 1
(1987) 453�474.

[69] F. Greil, B. Drossel, Dynamics of critical Kau�man networks under asyn-
chronous stochastic update, Phys. Rev. Lett. 95 (2005) 048701�048705.

[70] C. Hardy, Networks of Meaning: A Bridge Between Mind and Matter, Praeger,
Michigan, 1998.

[71] R.A. Hernández, Linear �nite dynamical systems, Commun. Algebra 33 (2005)
2977�2989.

[72] J. Hofbauer, K. Sigmund, Evolutionary Games and Population Dynamics, Cam-
bridge University Press, Cambridge, 2003.



Bibliography 183

[73] P. Hogeweg, Cellular automata as a paradigm for ecological modeling, Appl.
Math. Comput. 27(88) 81�100.

[74] A. Ilachinski, Cellular Automata. A Discrete Universe, World Scienti�c, Singa-
pore, 2001.

[75] D.J. Irons, Improving the e�ciency of attractor cycle identi�cation in Boolean
networks, Physica D 217 (2006) 7�21.

[76] F. Jian, S. Dandan, Complex network theory and its application research on
P2P networks, Appl. Math. Nonlinear Sci. 1 (2016) 45�52.

[77] J. Kari, Theory of cellular automata: a survey, Theor. Comput. Sci. 334(1�3)
(2005) 3�33.

[78] S.A. Kau�man, Metabolic stability and epigenesis in randomly constructed
genetic nets, J. Theor. Biol. 22 (1969) 437�467.

[79] S.A. Kau�man, Origins of Order: Self-Organization and Selection in Evolution,
Oxford University Press, Oxford, 1993.

[80] A. Kawachi, M. Ogihara, K. Uchizawa, Generalized predecessor existence prob-
lems for boolean �nite dynamical systems, Paper presented at the Leibniz In-
ternational Proceedings in Informatics, LIPIcs (2017) 83.

[81] A. Kawachi, M. Ogihara, K. Uchizawa, Generalized predecessor existence prob-
lems for boolean �nite dynamical systems on directed graphs, Theor. Comput.
Sci. 762 (2019) 25�40.

[82] D. Kempe, J. Kleminberg, E. Tardos, In�uential nodes in a di�usion model
for social networks, Proceedings of the 32nd International Colloquium on Au-
tomata, Languages and Programming (2005) 1127�1138.

[83] L.B. Kier, P.G. Seybold, C.K. Cheng, Modeling Chemical Systems Using Cel-
lular Automata, Springer, New York, 2005.

[84] L.B. Kier, P.G. Seybold, Cellular automata modeling of complex biochemical
systems, Springer, New York, 2009.

[85] Y.A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, New York,
2004.

[86] F. Li, T. Long, Y. Lu, Q. Ouyang, C. Tang, The yeast cell-cycle network is
robustly designed, Proc. Natl. Acad. Sci. USA 101 (2004) 4781�4786.



184 Bibliography

[87] C.L. Liu, Elements of Discrete Mathematics, McGraw-Hill, Inc, New York,
1985.

[88] B. Luque, F.J. Ballesteros, Random walk networks, Physica A 342 (2004) 207�
213.

[89] S. Martinez, Parallel dynamical systems over graphs, Ph.D. Thesis, Universidad
de Castilla-La Mancha, 2013.

[90] L. Mendoza, A network model for the control of the di�erentiation process in
th-cells, BioSystems 84 (2006) 101�114.

[91] H.S. Mortveit, C.M. Reidys, Discrete, sequential dynamical systems, Discrete
Math. 226 (2002) 281�295.

[92] H.S. Mortveit, C.M. Reidys, An Introduction to Sequential Dynamical Systems,
Springer, New York, 2007.

[93] S. Nandi, B. K. Kar, P.P. Chaudhuri, Theory and applications of cellular au-
tomata in cryptography, IEEE Transactions on Computers 43(12) (1994) 1346�
1357.

[94] J. von Neumann, Theory of Self-Reproducing Automata, University of Illinois
Press, Chicago, 1966.

[95] C.M. Reidys, On acyclic orientations and sequential dynamical systems, Adv.
Appl. Math. 27 (2001) 790�804.

[96] A.S. Ribeiro, S.A. Kau�man, Noisy attractors and ergodic sets in models of
gene regulatory networks, J. Theoret. Biol. 247 (2007) 743�755.

[97] R.S. Robeva, Algebraic and Discrete Mathematical Methods for Modern Biol-
ogy, Academic Press, New York, 2015.

[98] K. Rosen, Discrete Mathematics and Its Applications, McGraw-Hill Education,
Boca Raton, 2011.

[99] D. Scalise, R. Schulman, Emulating cellular automata in chemical reaction dif-
fusion networks, Nat. Comput. 15(2) (2016) 197�214.

[100] J. L. Schi�, Cellular Automata: A Discrete View of the World, John Wiley &
Sons, New York, NY, USA, 2008.



Bibliography 185

[101] R. Serra, M. Villani, A. Barbieri, S.A. Kau�man, A. Colacci, On the dynamics
of random Boolean networks subject to noise: attractors, ergodic sets and cell
types, J. Theoret. Biol. 265 (2010) 185�193.

[102] A.N. Sharkovsky, Co-existence of cycles of a continuous mapping of a line onto
itself, Ukrainian Mathematical Journal 16 (1964) 61�71.

[103] I. Shmulevich, E.R. Dougherty, W. Zhang, From Boolean to probabilistic
Boolean networks as models of genetic regulatory networks, Proceedings of
the IEEE 90 (2002) 1778�1792.

[104] I. Shmulevich, E.R. Dougherty, Probabilistic Boolean Networks: the Modeling
and Control of Gene Regulatory Networks, SIAM, Philadelphia, 2010.

[105] I. Shmulevich, S.A. Kau�man, Activities and sensitivities in Boolean network
models, Phys. Rev. Lett. 93 (2004) 1�4.

[106] I. Shmulevich, S.A. Kau�man, M. Aldana, Eukaryotic cells are dynamically
ordered or critical but not chaotic, Proc. Nat. Acad. Sci. USA 102(38) (2005)
13439�13444.

[107] R.V. Sole, B. Luque, S.A. Kau�man, Phase transitions in random networks
with multiple states, Technical Report 00�02�011, Santa Fe Institute, 2000.

[108] P. �tefan, A theorem of �harkovskii on the existence of periodic orbits of
continuous endomorphisms of the real line, Communications in Mathematical
Physics 54(3) (1977) 237�248.

[109] K. Sutner, On the computational complexity of �nite cellular automata, J.
Comput. System Sci. 50 (1995) 87�97.

[110] T. To�oli, Cellular automata as an alternative to (rather than an approx-
imation of) di�erential equations in modeling physics, Physica D 10 (1984)
117�127.

[111] T. To�oli, N. Margolus, Cellular Automata Machines, MIT Press, Mas-
sachusets, 1987.

[112] T. To�oli, N. Margolus, Invertible cellular automata: a review, Physica D 45
(1990) 229�253.

[113] Z. Toroczkai, H. Guclu, Proximity networks and epidemics, Physica A 378
(2007) 68.



186 Bibliography

[114] P.T. Tosic, G.U. Agha, On computational complexity of counting �xed points
in symmetric Boolean graph automata, Lect. Notes Comput. Sci. 3699 (2005)
191�205.

[115] A. Veliz-Cuba, R. Laubenbacher, On computation of �xed points in Boolean
networks, J. Appl. Math. Comput. 39 (2012) 145�153.

[116] S. Wiggins, Introduction to Applied Nonlinear Systems and Chaos, Springer,
New York, 1990.

[117] S. Wolfram, Statistical mechanics of cellular automata, Rev. Mod. Phys. 55(3)
(1983) 601�644.

[118] S. Wolfram, Universality and complexity in cellular automata, Physica D 10
(1984) 1�35.

[119] S. Wolfram, Cellular automata as models of complexity, Nature 311(5985)
(1984) 419�424.

[120] S. Wolfram, Algebraic properties of cellular automata, Physica D 10 (1984)
1�25.

[121] S. Wolfram, Theory and Applications of Cellular Automata, Volume 1 of Ad-
vanced Series on Complex Systems, World Scienti�c, Singapore, 1986.

[122] S. Wolfram, Cellular Automata and Complexity, Addison-Wesley, New York,
1994.

[123] S. Wu, A. Adig, H.S. Mortveit, Limit cycle structure for dynamic bi-threshold
systems, Theor. Comput. Sci. 559 (2014) 34�41.

[124] O. Zapata, C. Gershenson, Random Fuzzy Networks, ALIFE 14: Proceedings
of the Fourteenth International Conference on the Synthesis and Simulation of
Living Systems (2014), 1�2.


