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Abstract

Despite metal oxides offer excellent charactesstit the field of photocatalysis, they often
suffer from charge carrier recombination as welimged visible response, which indeed reduce
the charge kinetics process and ultimately redneghotocatalytic output. Defect engineering is
a sophisticated technique to manufacture defedsaliar the geometric structure and chemical
environment of the host. The present study provides all-inclusive outline of recent
developments on the classification of metal oxiééedts based on the dimensions of a host
crystal lattice. Precisely, surface modificationnoétal oxides through OD (point), 1D (line), 2D
(planar), and 3D (volume) defects with their subsed mechanism and impact on
photocatalytic performance are presented. By wisehending the morphology (cores along
with the shells) and electronic structure of metdatle photocatalysts (TKDZnO, BpOs, F&O,
etc.) through different attuned and veritable apphes, their photocatalytic activity can be
substantially improved. Optimal studies on defecgieeering not only expose the altered
physicochemical features but also modulate thereledole pair dynamics, stability, and active
radical production for various photoredox reactioAdtered atomic, as well as electronic
configuration, facilitated a photocatalyst matet@lhave different optical features, adsorption
properties along with improved carrier transferwad| as isolation rate. Thus, the systematic
exploration of photocatalytic rudiments of defechrmetal oxide for various applications such
as K evolution, CQ reduction, pollutant degradation, and bacterigindéction could bring

significant research advancement in this field.

Keywords:
Defect engineering; Nanostructured metal oxidespt®atalysis; Surface reactions; Point

defects; Dislocations; Boundaries; Voids.
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1. Introduction

Escalating environmental and energy problems acerbeng one of the biggest challenges in
this contemporary world, which demands substardiééntion from researchers to develop
advanced and sustainable routes to overcome thkortage of energy resources, increasing
environmental pollution due to green-house gaseganic and inorganic pollutants, rapidly
growing industrialization and urbanization are fevere human facing tribulations-§]. Solar
energy conversion into chemical energy has beeibetated as the most effective way to
improve the gradually deteriorating environmengabre&hensions and energy catastrophé]]
Precipitation, filtration, adsorption, and centgéiion techniques are utilized traditionally to
remove toxic environmental contaminants, but theyret considered as efficient methods due
to certain limitations like a generation of toxig-products, partial organic pollutants removal
etc. Sustainable development of new nanomaterisdstd the fast advancement in the field of
material chemistry has led to a noteworthy improgemin various technologies/,[ §.
Advanced oxidation processes (AOPs) are the desigee of chemical treatment in order to
eradicate various organic as well as inorganicamirtants from the watefa the generation of
highly active oxidants like hydroxyl radicals (¢Oldpd other active oxygen speciés [L(.
These active species are formed from ozone, hydrpgeoxide, oxygen (primary oxidants),

ultraviolet (UV) light (energy sources), and phattadysts (like ZnO, Tig) etc. [L1-17.

A promising photocatalyst is one with captivatingtgntials of absorbing maximum sun rays,
producing electron (- hole (R) pairs that ultimately cause various surface ieastand will

regenerate itself after each photocatalytic cytk}. [These materials are either triggered by UV,
visible or near-infrared (NIR) rays, which generete h* pair in conduction and valance band,

respectively, for various redox reactiods’][ However, low light absorption ability, high cost
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rapid € - h" pair reassembly, poor stability, and sluggish siefaeactions of a photocatalyst
resulted in deprived photocatalytic yield8]. Therefore, various stratagems like surface
moderations, facet control, defect (surface as wasllinterface) engineering and morphology
control etc. have been developed to improve theqaiatalytic performance by amending band

potentials, light absorption, chemical and surfacgerties 19-21].

Recently, defect engineering of semiconductor ptedtdyst is considered as one of the most
enlightened and extensive means to overcome th&ations of semiconductor materials. Thus,
defect engineering is a practical approach to wstded the electronic, geometric as well as
chemical properties and their synergistic relatiyps in order to amend the photocatalytic
activity of semiconductor photocatalyst2f24. Various applications of defect rich
photocatalysts (like metal oxides, metal chalcogenigraphene, graphene oxide, and carbon
nitride etc.) include photocatalysis, energy steragevices, organic synthesis, and
electrocatalysisZ5, 26. Photocatalytic materials can be shaped by eitbprdown chemical
exfoliation or bottom-up self-assembly technique.cbntrast, defects in these semiconductor
photocatalysts were created with different methidds high temperature, chemical reduction,
vacuum activation, rapid heating, ball milling, git@a etching, and lithium-induced conversion
etc. Basically, defects are of three types: surfacék as well as interface defects which are of
great significance in photocatalysis/| 29. Surface defects include modulation in surfa@saar
energy, and the exposed lattice atoms, whereasdailicts include a change in bond length,
energy, electron affinity, the density of statedO&) as well as trapping potential etc. and
interface include both surface as well bulk def¢2& 3. Defects in a semiconductor can be

categorized into four type§&iQ. 1):
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1. OD point defects- Point defects are the defectsdbeur only at or around a single lattice
point and are not extended in space in any dimang&a. TiQ, ZnO, BiO3, V,0s, GaO3
etc.). OD defects are either generated by dopirzysemoving a lattice atom (vacancy).

2. 1D line defects - Line defects are the defects dhige due to the misalignment of atoms in
a crystal lattice (e.g.Tigand ZnO), and these are of two types: (i) Edgcidion and (ii)
Screw dislocation.

3. 2D planer defects - Planar defects include the &bion of planes or boundaries that
separate the structure into regions with the sanystat structure but different orientations
(e.g., WQ, TiO,;, CwO etc.). These are of three types (i) Stackingtsauli) Grain
boundaries (iii) Twin boundaries.

4. 3D volume defects - Volume defects include the a@wn in crystal structure from ideality
by inducing two or more chemical species in onenore crystal sites, which give rise to
voids or various disorders in the crystal lattiEe;Q,, TiO,etc.).

< Pleassert Fig. 1 here >

These defects, as mentioned above, are not uspaiantined as they are coexisted (native and
induced) within a semiconductor photocataly38,[ 34. The photocatalytic output of Metal
oxides (MOs) strongly depends upon the type ofasfgenerated in the host lattice. Noting that
MOs are considered as potential photocatalytic natewing to their apt physicochemical
properties, cost-effectiveness, stable nature, #mmodynamically favorable band edge
potentials for various photocatalytic applicatioBsare metal oxides with broad bandgap energy
generally exhibit photocatalytic performance byizitig only 5% (UV range) of the total solar
energy spectrum3p)]. Therefore, various strategies were developedniydb improve MOs

absorption competence, enhance- & pair isolation, improve electronic as well as scefa
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properties and activate the absorbed moiety orphmocatalyst 35-39. In a semiconductor,
defected sites usually act as effective active eventwhich mainly accelerate the surface

reactions and substantially expand (visible or NH&jr spectral responses.

Via the DFT (Density functional theory) calculateonf defect rich metal oxide (O deficient), it
could predict the increased density of states (D&d)active facilitation of various gaseous,(O
CO,, Np) moieties to amplify the photocatalytic outputroétal oxides involving Tig In,Og,
WO; etc. The amount of energy required to remove tist &tom or ion (cation or anion) from
its surface can be used to rationalize and envisag@ytic output in the photocatalytic process
[39]. For instance, Paet al. introduced oxygen vacancies at a higher temperga8001) and a
lower O, environment in wide bandgap semiconductor;[iD]. Oxygen ion (O) ejection from
the host TiQ surface indeed stimulated desorption with stramgpting between surface oxygen
defective TiQ and Q. Shifted band potentials due to defect rich JtBus, accelerated its
structural, optical, reductive, and adsorption prtips. The valance states of oxygen (2s, 2p), as
well as metal (3p, 3d, 4s, 4p say for Ti), are tyereated in DFT calculations to compare
calculated values with experimental data. DFT &sidire usually made at OK for the defect rich
MOs surface and at high temperature for their certaermodynamic as well as transport

experiments39|.

A certain amount of defects or imperfections is &l present in MOs nanomaterials. MOs
usually exhibit oxygen vacancies, metal ion de{&t"), a defect due to dopant insertion etc.
which can modulate their donor densities along wjttical and electronic properties resulted in
improved photocatalytic activity3p]. They are useful for avoiding the glass foggirgagess,
split H,O into @ and B and competently removal of a wide variety of difig organic/

inorganic pollutants and toxic dyes thereby, mihareg them into nontoxic, stable moieties like
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CO, and HO. Photocatalysis produces various reactive oxygmaties (ROS), for instance;
*OH, *O,, '0,, H,0, and H by reacting with @ or H,O/OH which can smooth the pollutants
degradation progress under suitable conditiar [

Herein,

2. Basics of photocatalysis

Photocatalysis on the surface of semiconductorquadélyst has grown enormously due to its
analogous behavior with photosynthesis (naturamit&l) process. Photochemicéathé pairs
generation, charge confinement, migration of igeid| € are the necessary imperative steps
involved in heterogeneous photocatalysi$-fi3. Photogenerated charge carriers are trapped at
the surface of a photocatalyst where they perfgeti§ic interfacial redox reactions (oxidation
and reduction) with the target moiety. The primprgducts are reactive (short-lived) radicals,
which at last transformed to secondary stable prizdhy the formation of selective chemical
bonds Fig. 2a) [44]. All the photocatalyst semiconductors possesdied fvalance band (VB)
and an empty conduction band (CB) with suitabledgap energy. Photocatalytic redox
reactions and light assimilation range of a phdtdgat are totally reliant on its apt VB and CB
band potentials and bandgap energy, respectivélys,Tthe above-mentioned factors are known
to be a very decisive one to select a suitable garductor photocatalytic material for water
splitting and pollutant degradation applicatiod$-f7. According to energy band theory, the
VB with € possesses lower energy, whereas CB occupies a l@gbesgy state at absolute Zero.
The efrom the VB gets excited to the empty CB only oe #bsorption of photons (light source)

with higher energy as compared to its bandgaphessinEqg. 1.

Photocatayst + hv » eggp + hip (1)
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Thereby, VB is left out with empty holes while CB accupied with ‘ewhich participates in
oxidation and reduction reactions, respectivel$-pJ. From a thermodynamics perspective,
there are different routes of calculating the effic of a photocatalytic process due to various
energy interactions. For instance: Intrinsic quamefficiency ¢) as well as apparent quantum
efficiency €), which are classified on the basis of number emergy, respectivel\b[l]. ¢ is the
number of products shaped by total absorbed photonereas is the ratio of the rate of the
photocatalytic reaction to the incident light indég [52]. Both these photocatalytic efficiencies,
therefore, depended on the intensity anslalue of absorbed solar radiations. Similarly,
according to reaction kineticgq. 2 the photodegradation rate of a photocatalysegedded on

the number of reactive species formed by redoxi@acon its surface (¢OH and sP[53,54.

[Red] [Oxi]
= = @

The basic principle of photocatalytic water sptittioperation along with potentials depicts the
excellent redox nature of empty holes and excitedviech facilitates the photocatalytic
proficiency owing to surface generated active raldspecies-ig. 2b. Precisely, the bottom of
CB should be more —ve than the reduction potenfiad” to H, (0 V), whereas the top of VB
should be more +ve than the oxidation potentiaHgD to G (1.23 V) for achieving efficient
overall water splitting49]. The overall water splitting is an uphill reactiand mainly include

two half-reactions, as shown fiy.3-5

H,0 + 2h* > %02 + 2H™* [HER] (3)

2H* +2 e~ - H, [0OER] 4)
1 e

H,0 —» 502 + H, [Over all splitting] (5
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Similarly, CQ is a linear, highly thermodynamic stable moietyibking higher C=0 bond
energy of 750 kJmdl Owing to the stable and inert nature, photocttal@O, conversion
requires a high amount of energy inpbif]] Photoexcited ewith apt reduction potential is the
main driving force for C@reduction. Multistep and multielectronic (2, 6, B I?) reaction

pathway leads to the generation of different redymeducts as depicted By). 6-11

o

CO,+e~ > CO; [E°= —1.85V] (6)
CO,+ 2H" +2e~ - HCOOH [E" = —0.61V] (7
CO, +4H" +4e~ - HCHO + H,0 [E° = —0.48V] (8)
CO, + 6H* + 6e~ - CH;0H + H,0 [E° = —0.38V] (9
CO,+8H" +8e~ - CH, +2H,0 [E" = —0.24V] (10)
2C0, + 12H" + 12e~ - C,Hs0H + 3H, 0 [E° = —0.329 V] (11)

Merely a diminutive amount of photocarriers are maigd to the surface of a photocatalytic
material, whereas others endure reassembly aablito rapid relaxation of excitedfeom CB

to VB (10 ~100 ns) p5-57. Consequently, the most significant issue is tppsess the
reassembly rate of photogenerated carriers in esirggimponent photocatalyst for better
photocatalytic productivity, as pristine semiconuanaterials with a single component could
not accomplish all the necessary conditions foedig surface redox reactions. Thereby, the
coupling of two semiconductors having surface seetion (heterojunction), inducing various
dimensional defects (active sites) and loading atatalyst etc. are considered as effectual
schemes to overcome the drawbacks of the bare qdtatgst. Among these strategies, the

present review mainly focused on defect engineestrgtegy owing to various advantages like
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defective states below CB or above VB, Z), reduced band potentials, generated active

centers which reduce the carriers reassemblyaattindeed boost up their migratidi&].

< Please insert Fig. 2 here >

After an exhaustive literature review on defect ieegred photocatalysts, the present study
mainly focused on metal oxide semiconductor phd&dgsis owing to their stupendous
properties. Defect induced MOs are promising caatesl exhibiting high potential for various
photocatalytic applications. Also, data from thedBus” database have been retrieved in order
to have an idea of entire research reports availaim defect rich MOs for multiple
photocatalytic applications. “Metal oxide + Defectgineering,” “Metal oxide + Point defects,”
“Metal oxide + Dislocation,” “Metal oxide + Boundas,” and “Metal oxide + Voids” are the
keywords used to explore the research work on tefegineered MOs from 2011 to 2020. As
illustrated by the bar graph and pie chéait)( 3a and b), defect engineered MOs are emerging as
potential photocatalyst for pollutant degradatiater splitting, and C@Oreduction. Based on
the above-mentioned literature survey, it was fotivat a comprehensive article reviewing the
potential of distinct dimensionality induced defectgineered MOs is still missing. Therefore,
herein, an overview and in-depth knowledge of thpdrtance of distinct defects involving point
defects (vacancy and doping), dislocations (edgksamew dislocations), grain boundary, and
voids in metal oxide photocatalysts have been sumeth Furthermore, various surface
modifications through the above-mentioned dimeraiondriven defects in the metal oxide host
lattice have been highlighted. The effect of swefardulation in MOsia controlled creation of
different defects and their identification techreguuseful to improve the photocatalytic water
treatment, H generation, and COreduction efficacy is systematically reviewedwill also

exemplify how defects on the surface of metal oxigkayed an exclusive role in amending their
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morphological as well as chemical features beradfiti photocatalysis. With an up to date,
inclusive study and cumulative efforts from resbars, more efficient defect modified MOs
semiconductor materials with broad applicability dge designed since defect engineering is a
fundamental strategy which brings about enhancegsipbichemical properties desired in
photocatalytic hanomaterials along with new usdfuctionalities that are not present in the

pristine samples.

< Pleassent Fig. 3 here >

3. Potential and Limitations of metal oxides as photaatalyst

MOs possess exceptional thickness (thin layersh wieak interlayer interaction as well as
binding energy, which ultimately results in a bklgft (in the visible range)sp]. Various MOs
nanomaterials for instance: ZnO, BiONO;, CwO, Zr0, CeQ, SnQ, InO5 etc. have been
used as semiconductor photocatalyst in the fielshaterial chemistry owing to their outstanding

properties (anisotropic, optical as well as elettrp[60-67 as:

1. The majority of metal oxide photocatalytic matkidTiO,, ZnO, SnQ@, CeQ etc.) are
abundant in nature with crystalline lattice. Shaap,well as more intense MOs diffraction
facets depicted the refined crystalline nature @isMattice.

2. Metal oxide nanomaterials are generally with higherface area, several surface-exposed
atoms, and active sites, which helps in droppiregdharge shift distance, thus accelerates

diverse photoreactions.
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3. The weak interlayer interactions in 2D MOs wouddult in swinging chemical bonds in
between their lattice atoms. This result might eapslarized surface rendering surface
instability.

4. The enhanced surface morphology of MOs leads tontagimum utilization of light in
shorter duration under stumpy photon flux density.

5. The fascinating features involving suitable banteptals, chemical, and thermal stability,
biocompatibility as well as reusability promoteg thpplicability of MOs in photocatalytic
reactions.

6. The absorption of solar light (UV, visible, or bbthy MOs accelerates the charge isolation
process with the generation of (\/B)that are capable of oxidizing various harmful
organic/inorganic pollutants and (GB)hich could reduce absorbed species on the surface

of photocatalysts.

The favorable combination of electronic structuight absorption, charge transport properties,
and a lifetime of exciton in MOs has made it possiior their use as photocataly$t3] 59.
Hence, a tremendous devoted effort in research Heen made for the formation and
characterization of MOs to apply in the broad feetd photocatalysis. Apart from various useful
properties of MOs mentioned above, there are cedsadvantages of bare MOs photocatalyst,

which obstruct their wide-scale applicability inqabcatalysis§4, 63.

1. Applications of earth-abundant, stable, nontoxicaoiband semiconductor photocatalyst
(Zn0O, TIO, etc.) are hindered mainly owing to its low quantefficiency, low utilization
of solar light (UV(4%) light active), and enormobandgap potentials (3.2 - 3.4 eV)

which indeed lessened the photocatalytic output.
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2. Instead of having the potential to absorb maximoiardight (visible range), narrow (2.6
— 3.0 eV) bandgap MOs (CuO, JBg, WO;, MoO3, V.05 and InO; etc.) photocatalyst
showed hasty recombination of excited charge aarrighich reduce their efficiency for

photocatalytic reactions.

To overcome these above-listed drawbacks, ther@ mecessity to design and utilize more
efficient MOs photocatalytic materials with superiefficacy. The utilization of appropriate
designing strategies along with characterizatioshnejues could help to attain better

photocatalytic output with large scale applicahilit

4. Surface defects in metal oxides

Several useful techniques like doping and sensitizalto modify bandgap), charge transfer
complex formation, coupling with other suitable $sonductors (to accelerate carriers
separation), the addition of noble metal nanopasi¢for effective utilization of exciting’)g

defect engineering (to modify the surface, chemiekdctronic, light absorption properties) etc.
are vastly employed strategies to improve the ptaagdytic performance of MOs66-69.

Among these strategies, defect engineering is @&npiat strategy to overcome the above-
mentioned drawbacks of bare MOs and indeed to dpval potential (broadband as well as
narrow bandgap) metal oxide photosystéi®, ¢q. Defects are generally the disrupted periodic
arrangement of host atoms or molecules; hence, sheyld be controllably generated and
accurately characterized in crystalline MOs. DefantCrystalline MOs are widespread as they
are with perfect alignment of lattice atoms. MOs & simply modified by altering the surface

organization by creating point defects (charge Srapncluding oxygen vacancies, doping
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(impurities), and metal interstitials, as well beit vacancies/[0-71]. Basically, two main types

of defects exist in MOs as described below:

4.1 Oxygen vacancy defects

Oxygen atoms in bulk or on the surface, subsurifiaddOs are with higher electronegativity as
compared to the other metal atom in the latticd.[Oxygen removal (¥ distorted crystal
structure) from the lattice of MOs photocatalyssuléing in the generation of uneven (sub or
nonstoichiometric) charge states, which leads ¢oefifective isolation of excited charge carriers
[73]. Positively charged oxygen vacancies are genecalated in MOs by activating the oxygen
via annealing under inert or reductive atmospheoicditions, bombardment with high energy
moiety, under Hatmosphere, chemical vapor deposition (CVD), reuy@gents etc.7f]. For
instance, Pegt al. revealed the effect of generategd il TiO, (reduced) via hydrothermal action
of Ti (I) O in HCI. The nature and location of, Vh reduced Ti@played a vital role in reducing
the bandgap energy and extending its responsedswasible range75]. To a certain extent, )/
(known as effective active sites) defects are usafuoptimizing photogenerated charge
migration as well as isolation and acceleratingbleslight absorption range. But too much
distortion (\p) in the host lattice will generate recombinati@nters, which would inhibit the
rapid transfer of excitons to the surface for redeactions. Furthermore, it is also observed that
a specific concentration of Mlefects is different from the distinct fabricatiapproach along

with MOs structuref7].

4.2 M™ defects
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Other than Y defects in MOs, NI defects were also created by the addition of alew metal
cation dopant (transition metal cation) via maiséif-doping [6]. Self-doped defects (amount
less than parent cation) chiefly act as surfacbubk trappers for effective isolation of charge
carriers and also to inhibit photocorrosion rater. lastance, Lira and co-workedemonstrated
the enabled @absorption on reduced rutile TiGhrough effective charge removal from*Ti
(deeper layers). Bulk Tidefects in a crystal that served ath'epair trapper leads to the
inhibition of excited carriers reassembly and cagsipward band bending{]. Similarly, Pie
and his team fabricated *fidefect rich TiQ through high-temperature treatment. The shiftifig o
g value from 1.975 to 2.02 in Electronic Spin Reswe (ESR) spectra indicated the formation
of Ti** defects, as shown iRig 4 a and b. They further demonstrated that propertitmta
distribution of T#* (subsurface/bulk) defects were responsible for @wimg charge carrier
isolation rate, and visible light absorption resganit was observed that as-fabricated ;TiO
showed 30-fold improvement in decomposing methylbhe (MB) as compared to pristine
TiO, [78]. Surface/bulk \ along with M™ defects, sometimes occur simultaneously in single
MOs photocatalyst resulting in enhanced photocttalyutput by overcoming the particular

limitations of wide and narrow bandgap MOs.

< Please insert Fig. 4 here >

5. Fabrication and photocatalytic applications of @fect engineered metal oxides

Surface modification is a phenomenon of amending #urface properties (solid) of
photocatalyst nanomaterials by bringing physickdcteonic, magnetic, biological, or chemical

characteristics different from the ones originalbund on the surface of a semiconductor
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352 nanomaterial 19, 8Q. These surface amendment processes not only deastability to the
353 nanoparticles but also useful for enhancing thecadfy of photocatalyst towards various
354  applications. Modifications on the surface can beedby using different methods with a view to
355 increment a broad range of characteristics of thiase involving surface energy, and reactivity
356 as well charge kinetics, active sites, biocompltybiand hydrophilicity B1-84 etc. Effectual
357  strategies for controlling the development of vasiaefects in metal oxide photocatalyst along

358  with their inherent mechanism were summarized as:

359 (1) High-temperature treatment under reducing ertiatmosphere — This is the best treatment to
360 generate Y (surface) defects, whereas reducing atmospheds leathe change in color and the
361 conversion of M to M™* in MOs. For instance, Yaet al. reported the successful fabrication
362  of WO; nanosheets through two steps post-treatmenglcohothermal strategy under reducing
363  (hydrogen) atmosphere (573K35. WO3 nanosheets were facilely synthesized first, foddw
364 by the treatment under vacuum (WQ®-VT) or hydrogen (W@ -HT) atmosphere to generate
365 V, defects. The olive color of Wnanosheets indicated the generation gfrivthe lattice. The
366  shift in UV- vis- NIR spectraHig. 4c) from 480 to 490-700 nm range depicted the generatio
367 discrete fermi levels (below CB) due to the genemabf V, (Fig. 4d). As-fabricated W@
368 nanosheets exhibit surface plasmon resonance effezs to the presence of, Wefects, which
369 definitely showed enhanced charge carrier isolaéind light-harvesting in UV as well as the

370  visible region.

371 (2) Chemical reduction — Various reducing reagefotsinstance: NaBl Cah, N;H,4, ethylene
372 glycol, glycerol etc. react with the lattice fdbsO17, BIOCI etc.) oxygen atoms to generatg V
373  on the surface of MOs without altering the hostidire as well as crystallinity. For instance,

374 Renet al. fabricated reduced Tihanoparticles (dark grey) using NaBH reducing agentia
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hydrothermal routedp]. The light yellow color of TiQ changes to light grey on increasing the
concentration of NaBk indicating the generation of,\Mefects as analyzed with the help of
Scanning electron microscope (SEM) images. Comgidtgtice spacing (0.351nm) value in
Electrospray ionization (ESI) depicted the sucadsseation of Ti" defects devoid of altering
TiO, dimensions. Generated *Tidefects, as well as Vo in bare Fidndeed improved the
bandgap (narrow), visible light assimilation, at$a@rption rate for the organic dye to 438.2 nm

thus, showed higher photocatalytic output.

(3) Low temperature based vacuum activation — drteecheapest, simple strategies for only
MOs activation and known to promote their photolgéita performance. With the increase in
temperature as well as time, surface oxygen temdettaway from the host (ZnO, W00s)
lattice due to lack of outside pressure resultmy§ and M"™ defects. For instance, Xing and his
group fabricated defect (*iand \%) rich TiO, through a cheap low temperature based vacuum
activation route, without altering the host crydtatice B7]. Broad EPR peak intensity with
higher g value (2.004, 1.99) demonstrated the exist of \{ and TF*, respectively, owing to the
trapping of charge carriers. Generated defects i@pfromoted the light absorption, ;H
generation as well as photodegradation rate bytiogealefective states. It is observed that
controlled vacuum time and temperature conditiaesegsential to regulate the concentration of

V, and T¢" defects.

(4) Phase transformation — Nanosheets of MOs li&&,CIn,03, WO3, C0,4 etc. under high
temperature undergoes phase transformation reguittia porous structure with,\defects §8-
9(]. For instance, Suet al. fabricated pitted ultrathin Ce(Ce, IV) photocatalyst through a
high-temperature techniqueédl]. As-constructed thin CeOsheets (three-atom-layer) with

numerous surface pits were analyzed with the héla dransmission electron microscope
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(TEM) as well as atomic force microscopy (AFM) ineag Unsaturated pit-surrounding Ce sites
(2.302A) in Ce® with low activation energy (61.7 kdmdland increased carrier density (near
the Fermi level) ensured fast CO catalytic actias/well as activation of Onoiety. Superior
photocatalytic activity (about 50 times more) wéserved for as-fabricated CgGheets (pits

rich) than bulk Ce®(0.89%).

(5) Lithium induced conversion — Novel strategy dreate defects, boundaries as well as
dislocations like active sites in crystal structonging to the formation of ultra-small size (2-
5nm) exhibiting large surface area MOs nanopagi{i2-94. Bergeret al. fabricated defect
rich MgO via. Lithium ions (Li") doping through the thermal annealing ro@g].[ Results were
monitored with the help of IR and EPR spectrum,chifgshowed the formation of relevant active
absorption sites on the surface of MgO latticavds observed that improved ion mobility was
achieved due to the proper localization of ioins in MgO surface or near-surface region. High-
temperature conditions (above 1170 K) were acctmtéor the generation of surface,V

defects, which indeed altered the surface spedposdéeatures of the host MgO nanocrystals.

(6) UV irradiation - UV irradiation is a possiblesiains to create Monly in MOs with low bond
energy and weak (long) M-O bond length. For examplagdalaneet al. tailored binary
CeQ/Y 03 (CelY,, CelY1) nanohybrids by varying the amount of precursoasemals through
chemical precipitation supported hydrothermal rolRaman spectra at 560 ¢ndepicted the
generation of extrinsic y/defects in as-synthesized £0€; nanohybrid, as illustrated iRig. 4e,
and f P6]. Defect rich Ce@Ye,O3 showed an absorption shift in blue region 435n60n
from 350 nm (UV, bare Ce) It was observed that as-fabricated @&®,03; binary

photocatalyst with improved surface morphology il@csites as well as surface area), visible
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light activity, charge isolation revealed enhan&B decomposition rate (98%) under UV and

visible light.

As discussed above, constructing defects in MOmseean effective approach to shifting their
absorbance range (UV to visible or NIR) as welt@smprove the segregation of exciteehé
pairs. Similar to rational synthesis techniquesyrabterization of several induced MOs defects is
also very imperative to specify a location, denségd the type (surface and bulk) of induced
defects §7]. Thereby, it is necessary to effectively charazee defect rich MOs in order to
evaluate their structure-photoactivity relationst@iaracterization is useful for designing high-
performance defect rich MOs photocatalytic matefalmerous characterization techniques are
categorized under two main categories which hawn lpgoposed to identify MOs defects: (a)
Microscopic characterization: Atomic-level micropao characterization is an effective tactic to
observe as well as distinguish defect rich MOs atliyewhich include: TEM a powerful,
effective characterization technique to evaluatth lsurfaces as well as bulk defects in MOs
[98], High-resolution noncontact atomic force micrgegdNC-AFM) as well as SEM (a useful
technique to characterize surface MOs defects y10Q, light element sensitive annular
bright-field (ABF)-STEM as well as high-angle anauldark-field (HAADF)-STEM [101],
Scanning tunneling microscopy (STM): Low temperaturased technique to observe the
dissociated absorbed moiety on MOs surfat@Z]] (b) Spectroscopic characterization: To
characterize detailed defect rich MOs lattice d$tme; the spectroscopic characterization
techniques plays a critical role in providing them-depth understanding of various
photocatalytic applications. Spectroscopic techesqlike X-ray photoelectron spectroscopy
(XPS) is widely utilized to characterize chemicatissurface elemental properties of defect rich

MOs. Peak shifting, peak intensity variation, negalp formation in the XPS spectrum are the
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basic indication for defect induced MOs (vacanciglogations etc.) J03. ESR shows the
presence of unpaired gresent either on the surface or in the bulk of MO®]. Similarly, X-

ray absorption spectroscopy (XAS), X-Ray absorptiear edge structure (XANES) as well as
X-Ray absorption fine structure (EXAFS) spectroscofechniques are used to detect the
chemical as well as coordination environment inedgfe MOs. Positron annihilation
spectroscopy (PAS) is very powerful in distingumghithe induced intrinsic defects in MOs.
Photoluminescence spectroscopy: PL is known as m@genious and non-destructive
characterization technique to probe discrete enlenggls as well as the structural composition of

defect rich MOs 105.

Thereby, location, type, concentration, along wiitle characterization of defects, is mainly
responsible for understanding MOs unique outstandiimction. Surface modulations can be
done through (i) point defects, which mainly inddid®y either vacancy generation or by adding
impurity in the host lattice1[0q; (ii) line and planer defects, which are indudsddislocations
as well as by boundarie4(7,109; (iii) volume defects induced by creating void disorder
[109. Defects can be introduced either before (whexfeat formation is not dependent on
growth kinetics of nanoparticles) or during (whéres totally dependent) the fabrication of MOs
semiconductor photocatalyst. Generally, it was olese that 0D, as well as 3D defects, are
mainly independent of the growth kinetics of MOsomaterial, whereas 1D, as well as 2D
defects, are unswerving on the MOs growth kinefeq. Thereby diverse types of surface
defects with their positive results on photocatalyctivity of MOs for different applications
involving biotic and abiotic pollutant degradatiohl, generation and COreduction are

discussed as below:
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5.1 Defect engineering through point defects

Point defects are known to alter the compositiorserhiconductor material through inducing
smaller or similar size dopant (impurity) into tbeystal lattice. Impurity ions can be placed
either by replacing lattice ions/atoms or at emptgrstitials sites of a crystal lattice. Dopants
can be introduced through a process known as @ffudoping, and its doping degree in a
semiconductor is totally based on the adoptedeglieé as well as the structure of the host
nanomaterial. Similarly, surface-level vacanciesthe host are often established through the
reduction or thermal action of target nanocrystalOf113. V, or doped photocatalyst
semiconductor showed improved activity towards aa@si photocatalytic applications like €O
reduction, pollutant degradation, leduction etc. In MOs, generally, anion vacang¢lagtice
V,) are easily engendered as compared to cationanecaes (M* defects) due to high formation
energy as well as lower stability. Point defectstlflp mainly results in the generation of
unbalanced charge states, electric field (non-simmsetry) that indeed mainly reduces the
reassembly rate of excited carriers. Point defexda efficiently regulate the electronic
properties, band potentials reduce the host latmardination number, and act as effective
active centers to improve MOs photocatalytic effidy. Anion vacancies generally create
midgap states in order to narrow the bandgap apdaimote MOs light absorption rate (i.e., UV
to Visible or even NIR). Similarly, cationic vacaes act as shallow acceptor, which induces p-

type conductivity and hence encouragenigration rate 111].
<BRé$e insert Fig. 5 here >

Among various MOs, ZnO is a wide gap (3.8eV), mattich, nontoxic semiconductor
photocatalytic material that utilizes ultravioletdiations only X<380nm). Many researchers

found that under high temperature, vacuum treatjénteduction like techniques, varioug V
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related defects were created in ZnO lattice dushemge in color of the host lattice. Therefore, a
lot of research work has been done to study theelation between the generated défects as
well as their photocatalytic responsel{i-11§. For instance, Heo and his team reported facile
self-assembled eich interface in defected ZnO: rGO-Cu: Lunanohybrid with the help of
various starting materials using the solvothermathod [L17]. Defect induced ZnO and other
rGO-def-ZnO, rGO-Cu, def-ZnO@@D as well as rGO/GO nanomaterial photocatalysts were
synthesized using their respective starting mdseiia alcohol followed by heat treatment
(200°C, Ny). Different peaks from Raman at 214, 296, and 625m def-ZnO: rGO-Cu: CiD
suggested successive loading ob@wanoparticles on the ZnO surface. Crystallinginea as
well as disorders or defects in as-synthesized kmnpwere characterized using X-Ray
diffraction (XRD) and Raman spectroscopy. Besidd3S results showed that the peak spectrum
of Ols for Zn-O as well as Zn-OH was at 530.2 aBd.® eV, respectively, suggested the
presence of oxygen vacancies in def-ZnO: rGO-CyOCheterostructure~(g. Sa). Bandgap was
reduced from 3.20 eV (bare) to 2.70 eV due to teegation of ¥ defects. From above these
two strategies, i.e., the formation ofrieh interface in between def-ZnO as well as@and the
induction of \ (via. TEM) (Fig. ), it was observed that there is a transformatioabsorbance
edge from UV to visible region which accelerated piotoreduction rate (41/mol/g) of CQ.

In another report, Al-Sabahi and co-workers usesingple microwave-assisted hydrothermal
process to introduce \Mn the framework of ZnO nanorods. ZnO with suefaiefects were
characterized with the help of PL and XRD spedinae to the existence of surface Zrstates
and 4 defects, ZnO nanorods exhibited prolonged liglgoaibance from UV (388 nm) to the
visible (418 nm) region and superior phenol phogpddation activity (50%) than ZnO with

lower surface defectd 1 1].
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Improvement in various photocatalyst involving themhanced photocatalytic output, solar light
assimilation power, recyclability is mainly knows enportant factors in order to achieve multi
photocatalytic applications. Li and his peer grampdied the impact of defect engineered ZnO
samples to reduce GOnto other valuable productga forming its porous nanoplates using
simple precursors (Zinc, sulfur powder, and ethgtbamine) 118. As-obtained ZnS(ep}were
consequently annealed in the presence of air walging temperatures to achieve defect rich
(porous) Zn0O-600, ZnO-650, ZnO-7Dnanoplates. Specifically decreased surface moogjyol
i.e., 17.96 Mg at 60C°C, 10.89 mi/gat 65C°C and 9.55 rfig at 700C, as well as C@adsorption
rate, was depicted by porosity and surface detedddr-IR (Fourier-transform infrared
spectroscopy), as well as XRDIFig. 5c) analysis, showed no impurity peaks indicating th
complete conversion of ZnS (egyto ZnO. VB and CB potentials of porous ZnO-600, ZB&D,
ZnO-700C were (2.87eV, -0.32V), (2.87eV, -0.35V) and (28/e0.36V), respectively
depicted the increased bandgap potentials (3.24, 3.25eV) with increasing temperature
range. Fig. 5d exhibited different Raman peaks at 99, 437 (baaj 590 crii (Vo) thus,
confirmed the presence of,Vdefects in the host lattice. Hence, with abovesoled
characteristics, it was confirmed that as-syntleskidifferent defect rich ZnO nanoplates were
well efficient photocatalyst to reduce the absor&€d to CO with 3.8 (60fC), 3.1 (650C) as
well as 2.5umol/g (700C), respectively. Therefore, photocatalytic resufs ZnO (II-IV)
semiconductor photocatalyst can be boosted by ingeaf,, M™ like point defects. It was
observed that concentrations of M the host lattice at different temperature letmsinequal
light assimilation capacity. The more the numbe¥gin the host, the stronger will be the light
absorption towards the visible region owing to ttiéferent alignment of energy levels.

Similarly, TiO, is another wide bandgap semiconductor photocatalysse photocatalytic

25



535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

activity was reduced due to various limitationsaf@e carriers recombination, corrosion, UV
light absorption etc.). Defect rich TiGexhibited improved photoactivity, polished surface
structure, colored, extended light absorption radige to the raised local states under CB, and

tailored (decreased) bandgap potential].

For instance, Yt al. designed hydroxyl-group-rich mesoporous JdpBotocatalyst through the
hydrothermal route (450-550Q) for better photocatalytic CQeduction [19. Results from the
EPR spectrumKig. €a) at 3340 G and negative Ti shift attributed te gnesence of yalong
with the formation of T'in the host TiQ. It was observed that\in the host lattice could
encourage the formation of *fifrom Ti** by accepting e(from F during calcination) to
maintain the neutrality of Tiglattice. After calcination, XPS along PL peak dpeevere still at
684 eV and 385 nm, respectively indicated the uresssful replacement of host lattice sites with
F(Fig. &b-e) (no peak shifting). The effective photoacyivdaf an as-prepared visible, active
mesoporous Ti@sample was appraised by photoconversion o @@ CH, owing to the
narrowed bandgap and functional -OH groups. It whserved that with an increase in the
surface area (9.43 #g) the rate of C@absorption (67.75umol/g) increases due to more
exposed ¥ as well as functional -OH groups. These defecthenTiQ, (host) can serve as the

isolation centers or trappers to trap charge agaraad to boost the photo-absorption efficiency.
< Please insert Fig. 6 here >

Dopants (metal or non-metal) usually replace thgimmal metal or oxygen atoms or are either
placed at the vacant interstitial sites in MOs delieg on their size as well as electronic nature.
Therefore, in order to study the effect of bothoait and cationic dopants on TiViandari and
his team designed a convenient technique to syiathesible active codoped (N and Gd) FiO

using the sol-gel routelP(. N and Gd (4f) showed strong lattice distortiowimy to the

26



558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

formation of new O-Ti-N as well as Gd-O-Ti bondfants with large ionic radii, i.e.,*N1.71

A), as well as Gd3+ (0.94A), usually placed theeblattice Tf* (0.61A) and & (1.32A) ions,
resulting in the formation of )/ Obtained N/Gd doped defect rich Li@anohybrid showed a
redshift owing to the generation of morea@md H (less recombination rate) in the presence of
solar light. Trapping sites in defect rich Lalbng with &h* pairs transfer and migration rate
during photoexcitation were illustrated with théphef the PL technique. NTi, as well as GANTi
nanostructures, showed broad range wavelengthrape¢850 to 550nm), where peak at 470nm
contributed to the formation of surface(Vi** replaced by GH) and metal defects in the host
lattice (Fig. 7a). Similarly, EPR analysis report of NTi (g = 192.001 and 2.079) and GdNTi
(g = 4.11, 3.07, 2.51 and 2.063) displayed thepirapof € in V,, presence of Gd and \i,-Gd®*
ions interaction, respectivelyFig. 7b). Owing to the formation of and Gd* defects in the
host, the energy for photoexcitation decreasedaandlerated the visible, active redox reactions
with water or methanol. The bandgap of as-fabrttat@nostructure was reduced as a
consequence of the new Fermi level below CB (Gddf above VB (N 2p), as depictedri.

7c. Mechanistic studies revealed that CBwrface) reacted with 'Hons to generate Hand it
was observed that Gd/ N-TiGhowed 10764:mol/g photocatalytic K generation, which is

approximately 26 times higher than the bare (No-a@d Gd-TiQ) sample.
< Please insert Fig. 7 here >

Similarly, Zhu et al. synthesized Au, and CoO loaded hollow FiGphere through a
solvothermal routeHig. 8a) for the superior photocatalytic G@duction than bare Tip121].
XPS spectrum of oxygen (1s) revealed the generafidf, (at 530.91eV) defects on the surface
of hollow TiO,. They generated an internal electric field alonth& (CB,,), as well as h+ (VB

CoO) trappers in the as-synthesized Au 2.0@TiO2@B=@rostructure, facilitated the isolation
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of photogenerated-&" pairs Fig. &). It was demonstrated with the help of the EPR).(&)
spectrum under dark (g = 2.003p)Nand light conditions that surface, \defects created in
Au, (@TiO,@Co0 assisted the absorption (7.6%ghas well as activation of GOnoiety.
Along with the EPR spectrum, the chemical absorptad CO, moiety on \§ was also
demonstrated with the help of FTIR spectra. DiffeédeTIR peaks of as-synthesized nanohybrid
with absorbed C& H,O, and various active intermediates were illustrateFig. 8. Thereby,
above mentioned results confirmed that the homagexeposition of the cocatalyst (Au, CoO)
and \, defects on the surface of Ti@nhanced C&reduction rate (138nol/h/g) approximately

60 times higher than the bare T€ample.
< Please insert Fig. 8 here >

Thus, the above discussion demonstrates that trease in photoactivity of as-synthesized
nanohybrid OH rich-TiQ Gd/N-Ti0, andAy @ TiO,@CoO photocatalyst is attributed to the
presence of yand M defects, induced surface junction internal eledtsld, respectively. OH
groups have an excellent affinity for @@oiety activation, and hence they are formed gy th
decomposition of water (Oknd H) followed by oxidation (f). Here, \4 defects in TiQare
induced either by replacing host Tittice oxygen atom by F atoms or by removing $@lft
Similarly, another approach by using dopant (Gd#émonstrates that metal or non-metal
doping indeed delays the charge carriers recombmatte by creating intermediate energy
levels in the TiQ lattice. From dopant studies, it is scrutinizeat thon-metal dopant (N) slightly
shifted the VB position (uplifted) as compared t8 @r improved @and H generation by
reducing energy requirement for photoexcitationp&d atomic radii are mainly responsible for
various different MOs photocatalytic mechanismsmi&ir to the dopant effect on MOs

photoactivity, cocatalysts (Au and CoO) incorparatialso plays a vital role owing to their
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unique architecture as well as a strong synerge$tect. Cocatalyst usually acts asiak (CoO)
as well as hacceptor (Au). As a result, induced internal eledield by successful interaction
of CoO, Au, and the host, TiQignificantly imparts a higher segregation ratelvdrge carriers
and also provides less transmission distance @phiotoinduced eTherefore, we conclude that
momentous exploration of the photocatalytic mecdanbehind various defects rich MOs

becomes more significant than that.

In another report, Linet al. reported the successful formation (in-situ) ofVRtmediated
defective TiQ photocatalyst using a diffusion flame aerosol r@aft2?]. Defect rich Pt/TIiGQ-

V, nanoparticles were achieved under thg (Hydrogenation) atmosphere at a very high
temperature<£700°C). Surface ¥ defects and loading of Pt on the semiconductotquatalyst
helped to trap the photoexcited (solated them from ™ and hence reduced their éad H)
recombination rate. Here, %as well its oxidized counterparts, act as effecttharge carriers
separators owing to its higherteapping nature, as illustrated fing. Sa. The binding energy of
Ti 2psz at 457.4 eV for both the sample (LU, and Pt/TiQ-Vo) and band energy (O1s) at
528.2 eV and 530.6 eV demonstrating the existerficsuitable concentration of \vin the
nonstoichiometric Pt/Ti®@V, semiconductor Kig. % and c). The amended morphological
properties indeed accelerated the rate of photoeel€CO (26umol/g-catalyst/h) and CH115
umol/g-catalyst/h) production owing to their enridreurface edensity (Pt sites). Furthermore, it
was found that photoactivity of Pt/TiV, (141 pmol/g-catalyst/h) was higher than other
synthesized Ti@V,, Pt/TiO, photocatalyst. EMSI played a decisive role in prewveg not only
the gradual loss of Pas well as ¥but also accelerated the transference dfam V; to Pt

surface. Thereby, it was observed from the abowvetimeed results that amended electronic
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configuration (\4) of as-synthesized heterostructure enhanced nptloa surface activation for

CO., moiety but also facilitated the segregation of ppodbduced charges.
< Please insert Fig. 9 here >

In another work, Tan and his coworkers preparedwelndopant free method to fabricate stable
as well as visible light active graphene oxide/axygich TiQ(GO/O-Ti(,), resulting in surface
disorderliness123. Oxygen-rich defects were created into bare;Ti®ough the wet chemical
impregnation route, which strongly absorbed the, @@ its surface owing to the hydrophilic
nature of GO, as depicted ing. 1Ca. Here, GO acted as an efficient charge-transpphridge

(e sink) and made the Tgurface more super-hydrophilic owing to its hydritip nature. The
upshift in the potential of VB reduced the bandgapiO, to 2.95eV (UV- vis DRS spectra) and
showed extraordinary efficiency in the visible (48@0 nm) rangeKig. 1(b). Owing to the
formation of favorable fermi level positions, CBveould migrate rapidly across the interface
(GO sheet) and move freely. Hence, isolation ofitere efficiently obstructed the charge
reassembly process, ultimately accelerated the @bduction, as illustrated iRig 1Cc. The
absorbance of C{as well as visible light, induced and H on the surface of as-synthesized
nanoparticles, which on interaction with €hdergoes oxidation as well as reduction reactions
It was observed that optimized surface oxygen deficGO/O-TiQ (5wt.% of GO) exhibited
the highest Chiformation rate of 1.718mol /g.o:(6h) and reactivity of 95.8%, i.e., 1.6 and 1.4
times more than 9TiO; and pristine TiQ, respectively. Remarkable increment in the reducti
of CO, to CH; was ascribed to the formation of the Schottky learait the interface, which not
only allowed the rapid separation of photoinducadiers but also improved the photostability

rate of nanohybrids.

< Please insert Fig. 10 here >
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Similarly, porous defect rich T#¥Dwere prepared byustaphaet al. using a template-free
hydrothermal process. Enhanced photocatalytic degican of MB (90.4%) was observed due to
the visible-light assimilation and prolonged &' isolation by ample surface-active OH sites and
Vo (ESR peaks) as presentedFiy. 11a [117. In other reports, analysis of defect rich %iO
photocatalyst depicted the highest photodecompositfficiency due to optimum phase
composition and high surface area upon doping tfe Mattice with small radii ions of Af and
V>*[111]. Similar to TiQ; and ZnO photocatalytic materials, generatgéh\WWO; nanomaterials
can also prolong the light absorption range everthto NIR region. Defects can alter the
electronic properties as reported in WE,WOs using the CTAB-assisted hydrothermal route.
The as-fabricated nanocomposite exhibited XPS pe&B1.58 eV owing to the formation of VvV
as depicted irig 11b. Stable face to face WMBi,WOs heterojunction facilitated the faster
tunneling of &which degraded 76.3% of Ciprofloxacifri. 11c) under visible and NIR

irradiations [L13.

Conclusively, the synthetic routes adopted to ssitte defect induced ZnO, Ti@nd many
other metal oxide photocatalytic nanohybrids ateiat for controlling their size, shape, surface
properties etc. Along with these, concentratiortureg and location of generated point defects
(Vo) played a critical role as excessive vacanciestqdied lattice) in the MOs host would also
inhibit the migration rate of e h' pairs to the surface for their reactions. Moreowarjous
occurring oxidation and reduction reactions ondhdace of MOs, dispense sufficiently higher
respective potential for different occurring phatatytic reactions. For instance, in the case of
TiO,, one \,, and Ti interstitial in lattice unit, provides twaa four excess avhich in turn
boosts (even 20 — 30 times) the output of variau$ase reduction reactions. It is crucial to

consider these parameters for all-encompassingtisgrand the revelation of the exact
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photocatalytic mechanism of as-fabricated vario@shheterostructure. Various defect mediated
MOs like TiO,, ZnO, and others having desired properties aréogically affable in order to
stimulate the redox reactions of the assorted dcgamoiety or toxic pollutants under visible
irradiation. It was observed that in-depth constkerof point defects (role) also helps to study
other 1D, 2D, and even 3D defects in MOsble. 1summarize distinct point defect rich MOs as
efficient defect drove semiconductor photocatalysith improved performance for various

applications.

< Please insert Fig. 11 here >

5.2 Defect engineering through dislocations

Line defects are mostly 1 D defect, also knownisdations, which chiefly occur in crystalline
nanomaterials to establish their mechanical streripislocations can move if the host atoms
from one of the adjoining plane crack their bonasl aebond with the lattice atoms at the
terminating edge. Edge dislocation, screw dislocatiand mixed (both) dislocations are the
basic three types of dislocations that can be ieduc MOs. Edge dislocations in photocatalytic
nanomaterials are defined along the end of theadxlf-plane of atoms and have been reported
for TiO,, ZnO, WQ like MOs. The imperfection may widen in a straighe through the crystal,
or it may trail an irregular routelB1-133. Edge dislocation may be petite, extending only a
minuscule distance into the host, inducing a stilene atomic distance along the slither plane.
Screw dislocations can be produced by tearing tysal parallel to the slip direction in the host,
for instance, TiQ, ZnO, CuO, and InO; [134-137 etc. If a screw dislocation is followed
around a complete circuit, it will show a slip att similar to that of a screw thread. The slip
pattern may be either left or right-handed and s&itates ameliorating of atomic bonds

incessantly so that the form of the crystal remévessame. 1D type of defects generally occurs
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in a single photocatalytic semiconductor and i® @enerated very frequently at the interface
between two different photocatalytic materials. d€fect engineering strategy is advantageous
to suppress damaging superficial states, accelgralie € - h™ pairs migration rate and also
contributes to shifting the band potentials to potenlight-harvesting of MOs photocatalyst
[137. Thereby, various examples of different hetergdtires with enhanced photo-efficiency

by introducing edge and screw-type dislocationsdéseussed below:

Rare earth metal ions with partially filled 4f aeds (fully filled 5s and 5p) mainly known to
reduce the nucleation rate and the growth of MO®aiystals owing to their larger ionic radii
along with higher tendency to attract hosts oxygéom. From the research of Divya and
Pradyumnan, it can be found that*#nO photosystem showed improved visible light
photoresponse owing to the generation of defekés\i, dislocations, interstitial oxygen defects
etc. in the crystal latticel g. They synthesized dislocated as well asri¢ch EF*/ZnO lattice
through solid-state route at high temperature {O0OXRD diffraction peaks showed fig. 11a
and b depicted no secondary peaks at low (0.6w@®&) amount of dopants, whereas at higher
concentration (1.2wt%) different plane peak (2222@%.42°) appeared which clearly indicated
the presence of Etin the host. Increased density of various disiocat (0.264*16°m?)
resulted in the host lattice strain, which furthereased the hardness of photocatalyst. Different
elemental (Zn (2p), O (1s), C, Er (4d)) magnifiezhks patternHig. 12¢c, d andFig. 13a, b)
were observed separately with the help of XPS,catthg the presence of Zn (1021.6,
1044.6eV), intrinsic oxygen (529.7eV) andEf168.2eV).E¥" acted as a substitution impurity,
which decreased the bandgap potential of as-fabdcphotocatalytic material. Erpair in a
lattice required three oxygen atoms, whereas Znfired only one, due to which the host

lattice went through amendment (dislocations) ati@o\; like defects. The fluorescence peak
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spectrum (maximum at 0.75) of bare and"Eoped (0.58) nanohybridFig. 13 ¢ and d)
illustrated that impurities as well as dislocatigiasyed a vital role in lattice redshift (from 3&b
560nm). As-synthesized EfZnO is highly stable until 5 continuous cyclesdanwas observed
that photocatalytic output for MB degradation (833 25min) was increased with increasing
the Ef*amount (0.6 wt%) in ZnO. Therefore, lattice dists, along with impurities (defects)
are considered as the main reason for the peakengesition and deep band emissions in green

wavelength.
< Please insert Fig. 12 and 13 here >

In a similar way, Saravanas al. designed visible active &emediated Ag/Ce@ZnO ternary
nanohybrid with vapor-solid conversion mechanism g$aperior dye and industrial sewage
degradation]39. XRD as well as XPSHig. 14a-e) peak spectrum for Ag (3d), C£Oe**and
Cceé") and znO (ZA', 2p) (no impurity peaks) confirmed the fabricatioh Ag/CeQ/ZnO
nanocomposite. The presence of T@e"" in the host lattice confirmed the presence of asfe
with newly induced Fermi level @, which easily facilitated the transference of(®urface
Plasmon resonance, SPR mechanism) from Ag to, @d0wed by ZnO Fig. 15. These CB, as
well as other free dinally reacted with oxygen moiety to form reaetivO, which, further react
with H,O to give *OH for effective dye degradation. Linefetts in the ternary composite
generated ¥, which ultimately increased the absorption, desonpand diffusion of oxygen
moiety. TEM images depicted the presence girVthe ternary ZnO nanohybrid owing to line
defects. These results showed that as-fabricatdrtéid nanostructure with reduced bandgap
(2.66eV), high surface area (39.2g), and stable nature efficiently degrade pheB8pg, 120

min), MB and MO (100%, 90 min) under visible lighiumination. The newly generated
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intermediate states reduced the band potentials ), indicating the successful, strong

interaction between Ag, Ce(¥ZnO nanoparticles.
< Please insert Fig. 14 here >

In order to study the structural, morphological aopon crystal splitting and photocatalytic
behavior, Chat al. reported a facile synthetic route for the prepanaof TiO, rutile nanobelts
by using diverse precursor$4(. These nanobelts were prepared with the help ohepot
hydrothermal method in the presence of concentitd@id TiO, nanostructures like nanoflowers,
nanobelts or nanowires etc. were formed with thEaeement of host fiions with H ions.
Consequently, HCI concentration played a vital ioléislocating the Ti@lattice atoms during
synthesis. PL spectrum was analyzed to comparebdinelgap energy of Tinano-flowers,
nanowires, nanobelts, and it was observed that lireyearly in between 2.1-2.8 eV range. It
was analyzed that the reduced bandgap of the pdtatgst was due to the formation of a
shallow fermi band (0.27-0.87eV) below the CB obJiDecreased band gap and applied strain
in the host lattice, resulted in surface rich (GB)density and thus ultimately boosted the
photoactivity of TiQ nanobelts. Dislocations in the Ti@ost were determined with the help of
burgers vector and dislocation line. Edge dislacetiin the TiQ lattice produced misorientation
(6 degrees) between the atoms that influencedontstouction by stimulating the formation of
TiO2 nanowires (5nm) from nanobelts. Dislocations ttalsng with HCI concentration, played
an important role in studying the structural, maiplgical properties of Ti@photocatalyst.
Edge dislocations are generally formed during th@vtgh of nanocrystals through imperfect
oriented attachments. In another report, Beal. prepared colored nanostructures of Jwith
edge dislocations via one step hydrosolvothermatierdEdge dislocations characterized through

HRTEM analysis served as active centers that irdldé& defects, tunned electronic properties
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and ultimately improved the light response regioV{vis spectra; 400-900 nm). In summary,
the controlled edge dislocations, along with®**Tidefects, were positive for improving
photodegrading efficacy up to 1.8 times for MB asmpared to defect-free T3O[131].
Similarly, Vo-rich Pt/WQ nanosheets displayed 98% toluene conversion arfd 9%
reduction ascribed to more host lattice dislocatitiran bare W¢J135. The effective tunneling
of photogenerated e h* pairs from CB of W@ to Pt was comparatively prolonged due to the
presence of ¥ which significantly enhanced the formation of H@nd Q" on the surface of

Vo-rich Pt/WGQ.
< Please insert Fig. 15 here >

Afforecited examples of 1D defect epitomized th&lviole of dislocations for the outstanding
photoactivity under visible light illumination. Theby, it was observed that screw and edge
dislocations within the 1D host photocatalyst bedsthe photocatalytic output for various
applications by altering their bandgap potentidis. macroscopic crystalline photocatalytic
semiconductors, it is sensible to suppose thahénimprovement of morphological structures
(like TiO, nanobelts to nanowires), dislocations played d witie. Whereas, it is observed that
in comparison to point defects, 1D defects havey Vigtle influence on electronic properties
(band potentials, fermi level) of MOs semicondustdrhese defects may act as a source or sink
of vacancies and M (OD defects) hence, indirectly alter the electropioperties. The most
crucial benefit of inducing a 1D defect is to irdhce the flow of excitons during the redox
reaction process. The induced strain brought &attsorientation in the host lattice, which
improved their pollutant absorbance rate, expobeit € and H rich surface as well shifted the

optical response towards visible range to makeg@l photocatalyst.
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5.3 Defect engineering through boundaries

Planar defects are also known as boundaries, waskcally have two dimensions as well as
separate regions of the materials with differegs@l structural morphology or crystallographic
orientations. The planar defect arises across @epéad thus are of further two types: grain
boundaries and twin boundaries. The grain bounidatlye outside area of a grain that separates
it from the other grains. Grains with different esz usually rotated with respect to the
neighboring grains, i.e., when one grain stopsttarobegins. Similarly, twin boundaries are
with different nonrandom crystal orientations other side of a plane. Twins are either grown-in
during the crystallization or the result of mecleahior thermal work J41-143. Grown twins

are the consequence of disruption or change irhdse lattice during growth attributable to a
possible deformation from a more abundant substguon. Defects generally boost up the light
absorption as well as excited charge carriers p@mdy enhancing effective active surface.
Decreased charge reassembly is mainly due to ttreased charge transfer rate as well as
generated grain boundaries in MOs. Several exangdléD defect rich MOs photocatalytic

nanohybrids are as follows:

Zhu et al. reported the novel synthesis of grain boundaryreeged metal (Rh and Pd) nanowire
on the 2D TiQ (nanosheets) through a solvothermal route folloWwgdeat treatment (160)
[14€). Inter band transition due to non-plasmonic RHPdrresulted in the absorption of solar
radiation with 1>400nm, otherwise pristine TiO TiO,-Rh/Pd nanoparticles, Ti&Rh short

nanowires (SWs) as well as Ti®h Long nanowires (LWSs) absorbed only the UV light
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radiations £<400nm). It was observed from the above UV-vis-MiRuse reflectance spectrum
analysis Fig. 16a and b) that Rh and Pd (cocatalyst) effectivelyoenaged the segregation of
photoexcited charge carriers in the Ti@anosheets. The highest yield in ZiRh LWs for CO,
CH4, CHsOH (reduced C@products) were calculated to be 13ol/g/h, 4.5umol/g/h,
12.1umol/g/h, respectively. Boosted G@duction rates were owing to deprived recombomati
rate (charge carriers) and effectivéransmit from the surface of T}HCB) to Rh or Pd but also
due to the formation of highly active (grain bounes) as well as stable T}®Rh photocatalyst.
Increased temperature conditions (Z9Csignificantly reduced the density of grain boumes
(from 0.42n/m to 0.11n/m) from the surface of RhRat (from 0.32 to 0.07n/m) cocatalyst
indicating the improved interfacial contact betweéme two. Increased or decreased
photocatalytic output of various reduced gfPoducts with temperature depicted the importance
of grain boundaries on the surface of F7iRh and TiQ-Pd for sufficient CQ selectivity and
reduced photocatalytic Hactivity. High-temperature conditions during falation and the
formed grain boundaries in the host had not altédnedsurface morphology of the formed 74O
Rh nanowires. On the other hand, with increasimgperature, Ti@Pd nanostructures were
showing altered surface morphology from nanopasicto nanowires. Thereby, ingenious
surface engineering of T¥Pd depicted their less stable properties thanhandtiO-Rh (Fig.

16c and d).

< Please insert Fig. 16 here >

Similarly, Senthamizhaet al. found the enhanced photodegradation capacity-afyathesized
grain boundaries rich electrospun ZnO nanohybridselectrospinning techniqué47. Grain
boundaries are known as an effective sink for tleé&as, which facilitates the chemical

absorption of various oxygen-related moieties (galits). With an increase in the temperature
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conditions, the sharp XRD diffraction peaks depigtithe enhanced crystallinity as well as
increased grain size of the ZnO host lattice. Ebspiun ZnO nanofibers photocatalyst showed
higher photoactivity due to their large surfaceaaraore number of reactive oxygen moieties as
well as other dominant properties. Photoactivitghwiespect to time, temperature for various
pollutants like MB, RhB, and 4-Nitrophenol with érse ZnO morphologies (ZNF-1, ZNF-2,
ZHT, ZBF, ZSF, and ZNP) depicted the correlatiotwaen the grain boundaries and their
respective output. Photodegradation activity of ZN®ith a higher rate constant (0.0419 tin
was observed for MB (100 %), RhB (91%), and 4-Nitrenol (92%), respectively. It was
confirmed from the above-mentioned results thahwiirface area, grain boundaries in the host
also played an essential role in studying varidugsizal as well as chemical characteristics of

the ZnO nanofibers photocatalyst.

In order to boost the photodegradation rate of,Ts@&miconductor for MB dye, Jainst al.
constructed F& as well as C¥& codoped visible, active TiQwith the help of an aqueous sol-gel
route [L48). These rare earth metal (Beand lanthanide ions (€8 improved the charge carriers
segregation rate owing to rapidté pairs trapping and transferring as well as stalgetronic
arrangement. Cé (at grain boundaries) mainly responsible for teading of VB as well as CB
levels, which ultimately resulted in TiQdislocations with reduced crystal growth. It was
demonstrated with the help of XRD peaks that oxygaeancies/N defects were created with
Fe* dopant owing to its similar size (0.8% as that of Ti* (0.68). However, significant lattice
distortion (strain or defects) were analyzed indhse of lanthanide ion (€éCe™", 0.97/1.144)
due to its highly incompatible ionic radii. An imased amount of €¥Ce'™ dopant in the Ti@
crystal usually increased the BET surface area6(3ff/g) with decreased crystallinity as

compared to pristine TiDBare TiQ lattice was free from any type of crystal defects. (well-
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arranged fringes), but codoping in the host illstd (with Energy dispersive x-ray
spectroscopy, EDS) the generation of stress asult ref a line as well as screw dislocations.
Continuous overlapping of the d-orbital {Bewith the CB (TiQ) yielded decreased bandgap,
redshift, and high absorption rate of as-fabricte/Ce** doped TiQ. Monitored photoactivity
results illustrated the improved MB photodegradat{t00%, at 160 min) rates than undoped
TiO, (32%). Grain boundaries, as well as dislocationthe crystal lattice, were thus known as
active sites to generate labilg Wefects, portable oxygen reactive moieties whattlifated the
trapping as well as migration rate of excitédied H. In another report, Kamei and coworkers
investigated the effect of grain boundary inducedrystalline TiQ for the photoreduction of
Ag ions. The bunched surface of the bicrystal vis@smhain localization centre for photocatalytic
reduction, as observed with the help of AFM imadgésnding of both CB and VB due to
induced grain boundary ultimately suppressed tekembination rate of excited charge carriers

and, in turn, enhanced the Ag precipitatiaif].

Conclusively, an ample amount of grain and twinrmtaries with developed surface areas in 2D
nanocrystals suggested more opportunity for theorglien, diffusion, and desorption of
reactants and subsequent products. The generationome than one type of defect in a
photocatalyst simultaneously can significantly @ase their shoulder or tail absorption, which is
known as the root cause for boosted photocatabytiput [33, 6§. Along with these properties,
it was also found that formed boundaries help gsashe interfacial charge relocation process
owing to the presence of intergranular layers. Masi stable defective MOs nanohybrids
depicted high pollutant absorption or degradatiate rdue to the presence of discontinuous
lattice fringes, surface terraces, steps, kinkd,\atancies etc. From the photocatalytic resuilts, i

was analyzed that the density of the grain and beuandaries in the nanocrystals continuously
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decreased with the increasing temperature condititm 2D defect rich MOs photocatalytic
material, grain or twin boundary terminations tiplesyed an essential role in catalyzing various
photoreactionsTable. 2summarizes distinct 2D defect rich MOs as efficidefect driven

photocatalytic materials with enhanced photoagtifdr various environmental and energy

applications.

5.4 Surface modifications through voids

These defects are 3D macroscopic defects (largde)sand hence also known as bulk defects.
These are generally introduced into a nanomateéuahg refinement from its raw state or during
fabrication processes, for instance: cracks, pdoesign inclusions etc1f7]. These can exist in
both crystalline and amorphous nanocrystals anti@mee categorized into two types: Voids and
disorders. Voids are known as pits small regiongretthere are no atoms and which can be
thought of clusters of vacancies. In parallel, digos are also typed of volume defects in which
atoms are dislocated from their position to fornarahy in the host lattices. Low density, high
surface to volume ratio, high shell permeabilitycedlent optical as well as electronic properties
due to 3D defects are mainly responsible for acatfey various surface redox reactions with
extended MOs photoresponse. 3D voids were showdtermphotocatalytic MOs, which are

present either on the surface or on the bulk, Bvgds, Zr0O,, CdO, Sn@, ZnO etc. 158-160Q.

From various research studies, it is scrutinized tihe SPR effect of various Nobel metals boosts
the photocatalytic rate of MOs. For instance, Kdppand his team used an environmentally
friendly microwave-assisted route to fabricate ZA@/nanostructure in order to study the

different phase, structural as well as morpholdgocaperties 161]. Ag is known as an ideal
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noble metal owing to its various advantagessiek nature, non-noxious, low cost etc. They
compared the different photocatalytic results ftBRIegradation at different concentrations of
Ag in ZnO/Ag nanocomposite. XPS spectruing(17 a-d) illustrated the triumphant fabrication
of ZnO/Ag-2 with corresponding Zn (2p), Ag (3d),(0s) peaks. At 540, 467, and 378 nm PL
spectrum demonstrated the new fermi trap level,ravgd excitons segregation rate, and
deposition of h on the surface of Ag, respectively. Schottky jiorctformed at the Ag/ZnO

interface played a vital role indésplacement as well as its scavenging actionvdils in the

ZnO host facilitated trapping of photoexcited@B) and f (VB). Charge carriers (trapped) then
reacted with surface absorbed &d HO to produce superoxide and *OH radicals, respagtiv

Ag functionalization on the surface of semicondudoO lessened the work function which
significantly, augmented the photocatalytic reactperformance of Ag/ZnO. Therefore, voids
and Ag deposition (SPR effect) on ZnO boosted thB Begradation rate from 45.5% to 99.8%,

i.e., approximately 8.5 times more than bare Zn@isenductor.
< Please insert Fig. 17 here >

In another work, Kwiatkowskét al. investigated the effect of voids on photocatalyield in the
ZnO/[TiO, core/shell (ZT) photosystem. They fabricated ZnO4T core/shell nanohybrid
through the sol-gel deposition route, followed hytlier calcination at a higher temperature
(450°C) [167]. Calcination for 1h generated empty spadeés.(18a) due to the diffusion of Zf
into TiO, at the ZT interface called voids (Kirkendall ethedhe preferential outward diffusion
of Zn ions into the Ti@surface would lead to the creation of voids atZh®/TiO; interface, as
depicted with the help of XPS as well as EDX analygoids (more V) in the sample shifted
the light-absorbing range (Visible, 420-600nm), ueet the band gap (2.9eV) potential via

generating fermi level as well as generated mooitexk € and H. ZT interface played a crucial
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role in the photodegradation of MB dye, as illustdain Fig. 18 b, along with different
comparative studies. The above-described resufjgestied the significantly modified region in

ZT nanostructure, which in result boosted the dipretodegradation rate.
< Please insert Fig. 18 here >

Based upon the structural composition of bacterigram-negativ&scherichia coli (E.coli) is of
great concern. Thereby, L@ al. demonstrated that the PdO loaded sli@anocomposite with
voids showed high disinfection photoefficiency &rcoli [163. Uniform allocation of PdO
inside as well as on the surface of Ti®@llow spheres was accomplished through templage-
solvothermal route followed by calcinatioRiq. 19a). Elemental peaks of Ti, O, and Pd were
depicted with the help of surface analysis basedhenXPS characterization technique, which
confirmed the synthesis of PdO/TLi@eterojunction. UV light absorption (365 nm) spacias
depicted inFig.19 b, showed multiple reflections due to photoexcitd@rges in the hollow
spheres (interior voids) of PdO doped Tiphotocatalyst. Decreased surface area (33¢)m
with increased pore dimension to 22.2 nm due toptiesence of voids acted as charge carrier
trapper which facilitated the migration of &and € more quickly to the outer surface as well as to
PdO, respectively thus, reducing their recombimaiigig. 19 c). As a result, the synergism
between extended light absorption and subsequeargehisolation was attained due to the
creation of voids. Also, it was observed that Papidg at 0.4 wt% on Ti@host was found to
disinfect E.Coli cell more efficiently, i.e., 7-log decrease baetecell count in 100 min than
bare. Therefore, in the as-synthesized sample, hotlow sphere morphology as well as

generated voids (trappers), contributed to the gmignimproved disinfection cell output.

< Pleassdrt Fig. 19 here >
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In a nutshell, with the help of various charactatian techniques, it is examined that pits in the
lattice usually decreased the surface area of topatalyst. But 3D defect rich MOs still exhibit
higher photocatalytic output because of their didive surface morphology rather than defined
decreased surface area. Photoefficacy is affegteaidomorphological structure of formed void
in a photocatalytic material. From the above-ciee@mples, it is scrutinized that the initial
photodegradation rate of toxic pollutants or baatarcreased with an increase in the entire void
volume. Both Kirkendall, as well as SPR effectsvpla@d the formation of larger voids at the
boundary of heterostructures. Also, relative insheg voids, sagging bonds as well as ledges

etc. in the host attributed to the redshift (visithnge) as well as lower bandgap potential.

Zhao and his team synthesized visible light actidk porous shell nanospheres from
Ag/TiO,/SiO;, through oxidative chemical polymerization followbg the sol-gel method=(g.

20 a). The as-fabricated SI@Ag@AQ/TIO, photocatalyst contained three basic units, i.e.,
Ag/TiO,, voids from the polypyrrole (PPy) layer, and pa&ahell-like functional unitsl4].
Owing to low density and high surface area for ltteding of dopant, varied void space like
properties contributed to its higher efficiency fine degradation of dye, i.e.,>>99.5%.FTIR
spectrum analysis of TKDAQ/TIO,, PPy-Ag/TiQ as well asSIG@Ag@AQg/TiO,photocatalysts
were analyzed, which inveterate the fabricationpbbtocatalyst. It was observed that after
calcination, the characteristic peaks (1544cmi455cnt, 1192cnt) for PPy in PPy -
Ag/TiO.disappeared thereby demonstrated the formation ofdsv in the sample.
SIG@Ag@AQ/TIO, nanohybrid exhibited strong visible light absoopti(420nm) and reduced
bandgap value (2.96eV), as illustrated-ig. 20b. Thus, PPy layers removal in the photocatalyst
showed the generation of microreactors called wvatti large surface area and Ag deposition.

Noteworthy, new energy level formation with aptgtal and SPR effect due to noble metal
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deposition is ascribed as a chief factor for edfitidye removal. In another report, Yeioal.
prepared ordered monodispersive Pt/SIT@, microspheres with high void spaces via core-
shell silica microspheres$7. TEM and EDX analysis depicted the successfutl\formation
in as-synthesized microspheres, which acted asreactors. Pt encased void rich $00,
microspheres exhibited multiple reflections of Ught, which in turn enhanced,Hproduction

rate to 1518 pmoltg™.
< Please insert Fig. 20 here >

Similarly, Zhaoet al. developed a facile strategy to fabricate Pd deedr N-doped carbon
sphere@Sn®with 3D defects, prolonging the light absorptiomga to 425 nm and facilitated
the étransfer from Sn@to Pd NPsKig. 21a). Increased BET surface area (11&q1) showed
maximum reactant and active site interactions,ltieguin improved reduction efficiency (92%)
of 4- nitrophenol 160. In another report, Sahat al. developed novel visible active Au
decorated CdS/CdO hollow nanocomposite throughefhex route by use of oleic acid (capping
agent), for the efficient remediation of environmanpollution. lonic diffusion was mainly
responsible for the generation of voids inside ta@ocomposite. The formation of a central
hollow structure was confirmed with the help of TEMages and BET. Increased surface area
(36.74 ni/gm) depicted that voids in the Au@CdS/CdO namopse shortened the distance of
photogenerated e h' pairs to reach its surface and effectively redubedrate of recombination
as shown inFig 21 b. CB potentials of CdO and CdS were appropriatédsign Z-scheme
heterostructure (Fig. 21 c), endowed the highgevblution (7.412 mmol §h™), RhB (0.1947

min™), MB (0.095 mirt) degradation and Cr (0.24 rifijnreduction rateq59.

< Please insert Fig. 21 here >
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Recently, Thennaraset al. prepared visible, active ZnO/ZnQx,; nanolayered composite by
combustion route to degrade organic pollutants (A®)slurry photoreactor with unstable
intermediates J65. The decomposition of various precursors with ratant gas emission
depicted the creation of voids in the ZnO/Zs@r as analyzed with the help of FE-SEM
micrographs. As-resulted narrowed bandgap (2.77feNfer reduced the reassembly rate of e
(CB of zZnO) as well as ‘h (VB of ZnCrQ,), which ultimately facilitated the AO
photodegradation efficiency. At pH 6.86 (optimal) tbe reaction mixture, the highest AO
degradation (99%) was analyzed under visible ligimge due to the presence of more voids.
Mechanistic studies revealed that adsorbed dyetynoie the photocatalyst was degraded into
H,O and CQ owing to the production of superoxide and *OH cat$i on the surface of ZnO as

well as ZnCs0,, respectively.

Conclusively, hollow spaces in the MOs-core integfaare known as a void channel that
facilitates the diffusion power of different compmams across its surface. A large number of pits
and disorders in nanohybrids (Kirkendall effectpstantially alter their surface morphological
properties. Along with these advantages, they alscelerated the pollutant or metal ions
absorption speed, improved the storage power @pailored the band potentials along with
electric as well as redox potentials. Thereby,abeve-mentioned parameters thus appeared as a
favorable route to increase the induceeh’eisolation rate and to improve photocatalytic
technigues for wide sanitization of wastewateralnutshell, for comprehensive studies as well
as clarification of photocatalytic means, it is ywesrucial to analyze the above-mentioned
structure of void generation in a MOs lattice. Dist void rich MOs as efficient defect driven
photocatalytic materials with improved performaiice various photocatalytic applications are

summarized inTable. 3.Therefore, defect engineering is known as onehefrhost common
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approaches which proved its significance in aceéleg the photocatalytic output of most of the

metal oxides.

6. Other applications

As reviewed above, defect modulation in MOs sendcmtor materials substantially improve
the photocatalytic performance owing to extendesibieé light absorption, charge-carriers
isolation, and boosted surface photo-reaction kisetrable. 4 summarize distinct MOs as
efficient defect driven photocatalytic materialstiwiimproved performance. However, the
utilization of defect engineered MOs are not lirdite photocatalysis only, but their significant
potential is explored in other applications as wPhotoelectrochemical sensors (PEC) have
gained much attention owing to its several advaddike; simple equipment, high sensitivity,
fast analysis, and low cost etc. For instance, Kagad his group synthesized W8,0
nanoplates and WO49 nanowires via precipitation and microwave-assistede, respectively,
to study both photocatalytic and PEC RhB degradatotocurrent density, and; ldvolution

for water splitting applications. From BET and Ranspectra analysis, it was observed that
large surface area and generateddéfects in WsO,9 could efficiently improve the charge
isolation rate, resulting fostered photocatalytitBRlegradation to 91%, photocurrent density to
4.08 mA/cn and higher photocatalytic ;Horoduction rate than WEH,O [197]. In another
report, Rahmamt al. fabricated visible-active Tighanowires with abundant surfaceg ¥sing a
catalyst-assisted pulsed laser deposition routéa&i\,, defects were identified with the help of
XPS spectrum analysis. Prolonged charge carriarelinmg and longer wavelength absorption
resulting from \§ exhibited improved current density from 1.6 mAfdm 2.2 mA/cr i.e. 87%

of the overall PEC current 2. Similarly, to analyse the electrocatalytic prajgs of NiCgO,,
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Yang et al. fabricated stable NiMn LDH/NiG®, nanohybrids via a hydrothermal route.
Interestingly, incorporated defects investigatesbdlgh XPS spectra in the Niga, provided
large surface area and active sites on the expedge sites, which indeed reduced the energy
barrier for Q evolution and thereby increased the electrocatabptiygen evolution performance
of NiCo,04 [193. In another report, versatile catalysts using ;Li@anosheets supported by a
CNT were fabricated for Li-S batteries. Wagagal. investigated the effect of CNT@TiQ
defects (through XPS) on the electronic condugtiaitd chemical adsorption and depicted that
the surface rich vacancies accelerated the suréacexchange process through bandgap
engineering. As-synthesized catalyst showed lomfecstability, high area capacity of 5.4 mAh
cm?s, the large surface area of 256%§1{194. Similarly, Yu et al. exploited defect engineered
and highly stable NiCeQelectrocatalyst via a two-step dip-coating methdBS and Raman
spectral analysis depicted the formation of defects, which leads to stronger electronic
interactions between Ni and Cg@ large number of active sites and favorable tieadinetics

for O, in the as-fabricated NiCeOx sample showed impra®gevolution rate, a high current
density of 10 mA/crhand a low overpotential of 470 m\I§5. Chenet al. developed defect
rich MgH,/Cu,O composite by three-step ball-milling method citmited to the improved GO
hydrogenation. As a result, defect rich hydrogenagie MgH/CuO composite exhibited 54.8%
olefins formation and 20.7% GQconversion rate1P6. Thereby, from the above-reviewed
reports, it is clear that defects in MOs semiconolsccould serve as highly active (catalytic)
sites, which accelerated e h" isolation by tunning band potentials thus, holdjmrgmising

potential for achieving high catalytic, PEC, andotlocatalytic performances.

7. Conclusive outlook
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Modulation in photocatalytic efficacy through defengineering seems to play as an effective
approach to improve numerous solar light-driven iremwental restoration and energy
conversion applications. In recent years significattention has been drawn to simultaneously
modify the optical, electronic, and photoinducedfate reaction kinetics of semiconductor
photocatalysts. Thus, the present study has beeaoteadk to highlighting recent progress in
defect-engineered MOs photocatalyst for varioudiegjons, with significant advances being
made. Potentials and certain inherent bottlene¢kd@s as photocatalyst has been concisely
summarized, followed by surface modification throwgnion/cation vacancy. Furthermore, the
influential role of defect engineering in MOs thgbu the generation of point defects,
dislocations, boundaries, and voids has been exgblaith their fabrication, identification, and
the subsequent effect on photoactivity. Differensgible routes to modify the photocatalytic
performance of MOs either by generating point dsfedislocations and boundaries or voids
were highlighted. Noteworthy, defect induced MO&ibit superior photocatalytic activity than
bare nanomaterial owing to the substantial impadefect creation on optoelectronic properties.
Thereby, assorted defects involving anionic, catiand multi vacancies, vacancy associates,
distortions, dislocations, voids as well as bouiegarare introduced to alter the bandgap,
morphological arrangement, coordination number,daetivity etc. in various MOs. Defect
mediated MOs are fabricated using different effectstrategies (high-temperature conditions,
UV radiations, Chemical reduction etc.) and arenidied by utilizing valid diverse, and
advanced characterization methods (EPR, XPS, Ra8iHEM etc.). Defects played a pivotal
role in a semiconductor photocatalyst owing to filleowing reasons: Firstly, defects in MOs
can improve the dissociative adsorption of moietiks pollutants, CQ as well as KO etc.

Secondly, they tune the electronic band potenimalsrder to boost optical absorption efficacy.
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Thirdly, they act as charge carrier trappers tcaech the segregation rate by exposing excited e
on to the surface of MOs. Of note, the applicatiohdefect modified MOs are not only limited
to photocatalysis, but they also offer great pagim the field of energy storage devices, photo-

electrochemical systems, electrocatalysts, caiglgsid membranes for biological functions.

8. Challenges and perspectives

Despite various positive effects of defect engimgein MOs semiconductors, there still remain
certain challenges involving fabrication technigeésiefect rich MOs, mechanistic studies for
their identification, and the role of defects inpiraving various photocatalytic applications. The
efficient production of defect mediated MOs withaure surface area and morphology will be of
crucial concern. Besides, certain disadvantagestaisl to associate with defect modified MOs,
which need critical attention, as follows: 1. Exgige concentration of any (0, 1, 2, and 3D) bulk
defects in MOs will form reassembly centers andsthesponsible for the reunion of excited
carriers, 2. High-temperature conditions (calcmati sometimes even destroy the primary
chemical bonding present in between the host at8mSpme defects like surface anion defects
in a semiconductor are not much stable and henglel & easily renovated 4. Fabrication of
defects in MOs is random, i.e., one impurity magdieo more than one defects in host
semiconductor etc. and 5. The stability of a phatalyst is an essential key factor while
fabricating a photocatalyst. Numerous MOs nanoratesth varied photocatalytic mechanisms
and defects can demonstrate different photocatalgsults towards full range applications.
Proper understanding of the correlation betweendad defects and the resulted modulation in
photocatalytic property can help to overcome timeitéitions or to resolve the problems like

quantitative defect analysis, involvement in @" isolation, in-situ characterization, controlled
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generation and concentration at the desired latatidViOs. These issues mentioned above can
provide new insight for defect induced effective-eh® pairs segregation and for boosted

photocatalytic output.

In order to achieve economic as well as environalebenefits, we have to follow specific
directions as i) Understanding the origin of certalefects in MOs, ii) Exploring the
photocatalytic mechanism (photodegradation, phdtaron, and disinfection etc.) involving
certain defects, iii) Fabricating defect mediatedtah oxide photocatalyst showing elevated-
performance. Appropriate synergism between comritlallefect designing, suitable identification
technique, and in-situ characterization for inwgeing the reaction pathway involved in
photocatalysis can effectively help researcherskingrin the field to explore new insights and
attain amended photoactivity. Therefore, in a Imeits defect engineering is known as an
essential objective for synthesizing visible lighttive MO photocatalyst exhibiting higher

stability with superior photocatalytic output faneronmental and energy-related applications.
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Table 1. OD defect rich metal oxides photocatalytic system

Photocatalyst Modified Syntheticroute Surface Photocatalytic Characterization Ref.
heter ostructure band gap area Applications techniques
Bi/a-Bi,04/g- 2.83eV Calcination- Degradation rate: PL and XPS [124
CsNy photoreduction Tetracycline (90.2%) spectrum
technique Rhodamine B
(95.6%)
a-Bi,Os (Enlarged In Chemical 1n'/g Indigo carmine dye Diffuse [125
Microrods) between precipitation degradation (6.8 reflectance and
2.82- method times more than UV spectrum
2.85eV bare)
Micro 2.85eV Solvothermal  ~24 nflg Capture hypertoxic ~ XPS spectra 1249
nanostructured method SeQ?ions specially
Bi,O5 with surface SeQZanions
V, defects
Beta —B}Os:Ce 2.3eV Simple 1 nflg Biocide triclosan XPS spectra 127
Hydrolysis decomposition
technique
Bi,O4/V,0s@0- 2.17eV Co-pyrolysis 83.75m/g  Degradation rate was XPS and UV- [12§
CiNy approach 98.1 % for phenol  spectrum
red (i.e. 1.2 and 1.8
times higher than
bare ByO; as well
as\,Os respectively)
Vo-rich Pt/Ga0O;  4.75eV Hydrothermal 19.41%y  CO evolution rate EPR and XPS [129
was 21.@mol/h spectrum
TiO,-ZITiO4-SIO,  2.54eV Sol-gel method 121.4%hp RhB degradation XPS spectra 13q

heterostructure

(95%, 90 min)




Table 2. 1D and 2D defect rich metal oxides photocatalgyistem

Photocatalytic  Band gap Characterization M ode of Surface Photocatalytic ~ Ref.
material and techniques fabrication area application

A-value
Fe doped ZnO >3.37eV HRTEM and XPS Wet chemical MO degradation 149
nanorod arrays (480-680nm) method
TiO, 2.29Ev HRTEM and One step 190nf/g MB degradation [150

(UV-visible EELS(e energy  hydrosolvothermal (100%, 5h)

range) loss method

spectroscopy)

TiO, 300-400nm HRTEM Simple sol-gel 54.3 nilg 4-Chlorophenol [15]]
(Surfactant route degradation
effect)
Ag/TIO, 2.93eV SEM and XPS Sol-gel spin Methylene blue [152]

(>350nm) coating technique degradation

(51.81%)
ZnO/Ag >420 nm TEM and UV-vis One pot RhB dye [153
nanoassemblies spectrum nonaqueous degradation
method (80%)
Zn0O 3.29eV FESEM and TEM Facile solution ~ 7.8703m/g RhB dye [154]
nanoparticles  (370-390nm) method degradation
(95%)

Er/ZnO Facile and Phenol [155

nanostructures (430-600nm)

FESEM and TEM

surfactant-free
chemical solution
route

degradation

FITiO, 2.85eV

(450nm)

XRD

Solid state

MO degradation 156




Table 3. 3D defect rich metal oxides photocatalytic system

Photocatalytic Pore M ode of Calcination Surfac Light Photocatalytic Ref.
system size fabrication temperatur earea  absorbed application
e (m?/g)
TiO, 5-7nm  Novel facile 400°C 73.7 uv Methyl orange and [166]
nanocrystals microwave 4-Chlorophenol
assisted hydrolysis degradation
Fe,0,@Void@P 40nm Dispersion Heating in 61.4 uv Removal of Pd [167]
MAA@Void@T polymerization autoclave at (I and Cr (VI)
i0, and hydrothermal 16C°C
strategy
ZnO nanorods Low temperature 300°C 3.52 uv Methylene blue  [168
wet chemical degradation
method
Pt/TiO, 20 Facile chemical  5°C/min 132 Visible H evolution [169
approach using (11.2mmol/h/g)
ionic liquid
FeTiOs - TiO; Facile sacrificial ~ 1°C/min uVv- High oxygen [170
yolk- shell hard template visible evolution rate
hollow spheres strategy (148umol/g/h)
Zn-Al-In metal  5- Co-precipitation ~ 450-600C 65.8 Visible MB dye [177
oxides 100nm method degradation
SIO@TIG,/CDs 8 nm Facile method In heating 37 Visible Dinitraphenols [177
nanocomposite mantle at dye degradation

60°C




Table 4. Examples of various metal oxides photocatalysth different band potentials and

defects
Photocatalytic | CB/VBor | Typesof Synthetic Characterization | Photocatalytic Ref.
materials bandgap defects route application
Bi203
Bi,04/Bi,O,COs 0] Hydrothermal HRTEM, Raman| Photocatalytic NO | [173
vacancies and ESR removal
Bi,0Os Eg=2.6 0] Solvothermal | DRIFT spectra NO removal rate: [174
polymorph eV (- vacancies | method And ESR B-Bi,O3 = 52.0%
Bi,»0s) followed by and
Eg=21 calcination 0-Bi,O3=20.1%.
eV (a-
Bi»0x)
B-Bi03/TiO, (B-Bi,0Os) | Dislocatio | Pulse UV-vis DRS Photoelectrocatalyti [175
Nanotubes Eg=251|n electrodepositi ¢ degradation of
eV on method carbamazepine =
CB=- 98%
0.23V
VB =2.28
V
BiVO,
BiVO,thin Eg=2.4 | Surface rf- sputtering Raman and UV- | Rh6G dye [17€
films eV defects method Visible degradation = 95%
absorption in4h
Hydrogenated | Eg =2.31 | Surface Hydrogenation | XPS and EPR degradation rate far[177]
BiVO, eV oxygen treatment tertracycline = 98%
vacancies
BiVO, Eg=2.4 Dislocatio | Coprecipitation| SEM 90% MB [179
eV ns and method degradation
voids
Ga,03
B — Ga0s Eg=4.59 | O and Ga | Reflux Raman and PL RhB [179
nanorods eV vacancies | condensation photodegradation
method rate = 90%
Ga0; Eg=4.2-| O and Ga | Precipitation Raman and PL | Maxi. Hydrocarbon | [18(]
polymorphs 49eV vacancies | method spectra removal ratef§-
Ga03) = 0.42
pmol H'm? and
CO, production rate
(B- Ga0s) =2.4
pmol h'm?
WO,
C-Dots/WQ Eg =2.84 | Surface Oil bath reflux | Raman spectra RhB degradation;| [181]]
eV (WG;) | defects and method under UV light =
CB =0.20 | lattice 97.1%
\% disorders under visible light =
VB = 3.07 97.7% under NIR
V light =60.1% .
Carbon-coated | Eg = 2.40 | Surface Ultra-rapid HRTEM, XPS Aerobic amines [182
WO, eV defects, O | solution oxidation
vacancies | combustion




10

synthesis

method
TiO/WO5 Eg =2.50 | W**,Surfac | Hydrogen EPR, XPS Gaseous toluene | [183
eV (TiO,), | e oxygen | annealing conversion rate =
3.1lev vacancies 72%
(WO3)
Fe,Os
F&0s-MgAl 0, - (0] Co- STEM-EDX CO yield = 0.6 mol | [184]
vacancies | precipitation Kgosm-1
method
lodine doped Eg =2.14 | Surface Sol-gel method| XPS, FESEM andVB degradation rate [185
Fe,0; eV defects and UV- VIS DRS = 97.72%
dislocation
S
a-Fe0; Eg=22 Oxygen Oxidation and | TEM, BET and RhB degradation = | [18€]
nanoblades eV vacancy, | vacuum Electron energy | 100%
dislocation | reduction loss spectroscopy
and dense
voids
TiO;
Ti*ITiO, - Ti** Electrochemical XPS Degradation rate of| [187]
defects, | anodization Mb and RhB =
oxygen followed by 100% phenol = 99%
vacancies | reduction
Hollow TiO, - voids Surface sol-gel N, adsorption — | H, production rate =| [18§
micro/nanostruc process desorption 62.55 pmol i
tures isotherms
NiO
Biosynthesized | Eg = 3.4 Grain Biosynthetic XRD, HRTEM, MB degradation rate [189
NiO eV boundary, | followed by PL = 46%
nanocrystals voids, Nf* | heating method
and
Oxygen
vacancy
NaTaQ/NiO - voids Sol-gel and UV-Visible H, evolution rate = | [19(]
solid — state absorption 9000 pumol H
methods
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Fig. 1. Schematic illustrating the defects with differetdgraic arrangement structures in
photocatalytic materials, reproduced with permisgiom Elsevier (license No.
4820611494141) [33].
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reprinted with permission from Elsevier (license. M877150926938) [78], (c-d) UV—vis -NIR
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53

54
55
56
57
58
59

(a) (b) .
1.0E+04 ey
5 CO:
s0E+03] Talio 236 100 5 \
~—
4 Catalyst Catalyst
% 6.0E+03 Oxidation 5 e Reduction
~—~ e .
3) Zn0 . ‘l » ‘ c:zﬁ
g 4.0E+03 1 T’ R
[ (_lTre/rfF
N
= 2.0E+031 ﬁ T
— P e¥1 7™ o
! ‘i;{f{") A by
0.0E+00 I “f;}}:-'
T‘ T T T T v f‘f’"‘
950 945 940 935 930 925 CH, v
Binding energy (eV)
(c) (d)
= Zn0-600
ZnS(en)ys = I n0-650
— InO-700
_— /;‘
2 =3
e )
2 —Zn0-600| ~—
> —7Zn0-650| 2
N - -
) —7Zn0-700 7]
4 =
n o)
S
-
JCPDS 36-145 =
iEl ‘Lﬁ ]
T T T | T 7 T T T ||| v T T T T T T 1
10 20 30 40 50 60 70 80 100 200 300 400 500 600 700 800
26(degree) Wavelength (nm)

Fig. 5. (&)XPS peaks of Cu 2p in def-ZnO: rGO-Cu;Otheterostructure, (b) Mechanistic
studies of as prepared def ZnO:rGO-Cy@eterostructure, reproduced with permission from
Elsevier (license No. 4820630113683) [117], (c) Xpddterns of ZnS(egpjistarting material and
the samples by annealing ZnS(gy8t different temperature for 2 h, (d)Raman speuftithe as-

prepared porous ZnO nanoplates, reprinted with sran from Elsevier (license No.
4820630765968) [118].



~
()
-

() (b)

529875 eV Ols 458.600 eV Ti2p
— Before /\ — Before

Before ? — After ) T After
< 530.125 ¢V < 58.875¢V
N’ N’
"'"f”‘ww F,MWMV-WM fm Z
‘g ‘? 464.250eV
8 532,125 ¢V 5
3 75 eV -
E E
~ L]
% 2n et . , ,
L 5250 527.5 530.0 532.5 535.0 537.5540.0 455 460 465 470
_‘g’ q (d) Bindingenergy (eV) (e) Binding energy (eV)
: h
£ 684.625¢v Fls PL spectra
E - - - - - ) — Before — Before
= < ? — After
4h - 3
N
g >
& =
«
2 =
2 2
= s
—
T T T T T
2800 3000 3200 3400 3600 3800 4000

680 685 690 695 30 340 360 380 400 420 40 460 480 500

W agnetcNicld (Cans) Binding energy (eV) Wavelength (nm)

Fig. 6. (a) Quantitative EPR results for Ti®amples before calcined and after calcined for 2h
and 4 h respectively, (b-d) XPS spectra of JJl@©fore and after calcined (O 1s, Ti 2p and F 1s
respectively), (e) PL spectrum of Ti®efore and after calcined for 2 h, reproduced with

permission from Elsevier (license No. 48206314750999].



65
66
67
68

(a) 70 A 4 —— NTi (b) 800

60 10nm ——— Gd1oNTi

—— Gd2oNTi ~ 600

3
N -
< 404 : 470nm
£ : £ 4001 e
g 307 : g =, \
g 20- E 500, -mo 150 200 250 300 g=2.079L
= g=2.063 g=2.001

10 - 2=1.919

(a) 200250 300 350 400 450 5o
0 T : : 0 . i .
350 400 470 500 550 0 200 400 600 800
Wavelength (nm) Magnetic filed (mT)

(©)

N doped TiO; Gd doped TiO; Gd and N
doped TiO:

Fig. 7. (a) PL spectra of NTi, G@NTi and Gd oNTi, (b) EPR spectra of NTi (a), GeNTi (b),
(c) Schematic representation of excitations in [detbTiG, Gd-doped TiQand Gd, N co-
doped TiQ, adapted with permission from Elsevier (license A820640600542) [120].



69

70
71
72
73
74

(a) .Co(NOs)Z’ TBOT .’ (b)

0O,+H*
Carbon sphere Co(OH):@C Ti(OH)s@Co(OH):@C

CH4

calcination

o ©

. 4
HAuCl4 .o . CO +H*|
=) .

L. o
calcination n—»

e (

Q.
..

9
Au@THS@CoO THS@CoO

c.

~
)
~
~
(=%
-’

Dark absorption for 1h
—— Irradiation for 1h
Irradiation for 2h
— lrradiation for 2.5h

CO,-light on

Al TY.Y LYY NUG Ry

CO,-dark

n N,-light on
RV BN /.«MM'V\N/‘NMM

WMTM

Intensity (a.u)
Intensity (a.u)

3300 3350 3400 3450 3500 1000 1200 1400 1600 1800 2000
B(G) Wavelength (cm™)

Fig. 8. (a) lllustrations of formation process of ATHS@CoO, (b) The possible mechanism
for photoreduction C@over Aux@THS@CoO, (c) EPR spectra obA@THS@CoO in the
presence of CoOand N before and after the simulated sun light irradiati@)In situ FTIR
spectrum of C@and HO interaction with Ayo@THS@CoO and THS in the dark and light for
different times, reproduced with permission fromsdsdier (license No. 4820740271566) [121].



75

76
77
78
79

(a)

0]
8 g e
! : =\
m-CO,> 'F 8":.,_ E ‘/‘mst Formate
°~,,‘.

Coy-
2e+ 4H*
HCOO-

H,0+ CO lle'
e e CHO+% 0,
: co TIO-Vo 2e"+ H,0

[+
: H*+e CH;0+% 0,
: lze-+ e
| 4H" + 4eT
; CH, +%0,
L O

b) | . _
(b) 457.36}, Tizp |
457.68 463.46 _ TiO, |

454 456 458 460 462 464 466
Binding energy (eV)

DA TOV. |
J K TiO; |
J ,\,_\hlr/‘ri()g-\;, ]

524 526 528 530 532 534 536 538
Binding energy (eV)

Intensity (a.u.)
=
N
~1
7]
.

~
(]
~—'

[ () o,

Intensity (a.u.)

Fig. 9. (a) Proposed mechanism for the formation of CO@Hg from CQ, photoreduction with
H,0O on Pt/TiQ-VO, adapted with permission from Elsevier (liceh&e 4820780394645), (b-c)
XPS spectrum of Ti 2p and O1s of the 7i®iO,-VO, Pt/TiO, and Pt/TiQ-VO samples,
respectively, adapted with permission from Else{lieense No. 4870171142651) [122].



H

(a) No—o i1 Heat,

o r
\_\-o H/ \H \H - dl’y, ‘
O o on =l
b AT
+ A~~~ anneal

Titanium (IV) A~ >
HO Peroxo titanate 0:-TiO:

butoxide
complex
+
Dry —_—
overnight r. !
- o “BECH
GO-OTiO;powder gg?i?(};(zzn Graphene oxide
(b) 11.68 ¢ — (a)02-TiO:
6 L= — (b)1GO-OTiO
1.4 {\‘* @ (b) (©) (d) _(c)ZGO-OTiIOzz
o — (d)5GO-OTiO
g 1.2 TO® (e)10GO-OTiC:z
s © ) (@ (H15G0O-0TiO;
.-E — (2)20-GO-OTiO:
s 08 (
i 0.6 (D/ © ()
0.4 ©
0 2 ()
o l® | ' : : @
200 300 400 500 600 700 800
Wavelength/nm
o (d)
COOH~{_y—{ »< < )< Charge transfer NHE
020 and seperation (pH=0)
\ A
O O< 470 CH S8
COOH—~_ )54 L )< | %—x— 0V
J 4 —

VB upshift from _ ga_gé_\ga
oxygen —
H+  excess defects 0,-TiO,

mﬁzo

80

81  Fig. 10. (a) Synthesis procedure of GO-O%iknary nanocomposites, (BY-vis DRS for Q—
82 TiO, and GO-OTiQ composites, (c) Schematic illustrating the propodearge transfer and
83 isolation processes in GO-OTiGinary nanocomposite for the photoreduction of, @6der

84 visible light irradiation, reprinted with permissidrom Elsevier (license No. 4870630646826)
85 [123].



86

87
88
89
90
91

92

93

(a) FTN-2M i (b) 0 1s
FTN-3M /1\ :
v ] . A\ S8V
i / //'\ N | |
A THR 531.58 eV / |
N RN _[_UwB2 -
| /! AN \ 3 | /X 53018 eV
|/ al /1 [\ N2 ' e
L/ TN\ | & Y
g SN N\ F 531.58¢V 1/
5 7\ —~ /] v\ \ g L :
g |/ '\\/ /AN 2 A
-_— \ o / : \\\ \ —_—
/ ! v/ O UBWO
/‘L99|_A/” L s
320 325 330 335 340 544 542 540 538 536 534 532 530 528 526
Magnetic field (mT) Binding energy (eV)

(c) 0]

[WO,|> | f3f2desedys

Ciprofloxacin

o IR Rt Rt Y Product
Xygen vacancy ... e T T TR 4 4% T s
Ciprofloxacin

Product S g R RPN R ¢

OBi 90 (W OwW «0

Fig. 11. (a) ESR spectra of FTN photocatalyst depicting diffeiggmalue, adapted with
permission from Elsevier (license No. 49006401026912]; (b) The survey of high resolution
XPS spectra of 10s depicted, \c) Photocatalytic degradation mechanism of UWB
photocatalyst under visible light irradiation, Adeg with permission from Elsevier (license No.
4900631140091) [113].



94

95

96

97

98

99

100

101

102

103

~
=3
~—

(a)

=(1,0,3)
+(1,1,2)
=

Arbitarary intensity values (cps)

—
L L(1,0,2)
- = (1,1,0)
=
2 51
o)

Arbitarary intensity values (cps)

—
-
—
=
-
-
-

[~

36.0 362 364 36.6 368 37.0
2theta (degree)

30 60 90
(C) 2theta (degree) (d

3000004

A

Zn2p,,

Zn2p,

250000

2000007

O1s

150000

Intensity (cps)

100000

Zn 3p

C1s
Erdd
Zn 3s

50000

Arbitarary intensity values (cps)

0

1200 1000 800 600 400 200 534 532 530 s28 526 524 522 520
Binding energy (eV) Binding energy (eV)

Fig. 12. (a-b) XRD pattern of samples and Shift observetthénpattern for the peak
corresponding to (101) plane of ZnO with erbiumidgprespectively (A) heat treated pure
ZnO, (B) 0.3 wt% Er doped ZnO, (C) 0.6 wt% Er dogedD, (D) 0.9 wt% Er doped ZnO and
(E) 1.2 wt% Er doped ZnO, XPS spectra of 0.6 wt%d&ped ZnO particles: (c) full spectrum,
(d) O1s, reproduced with permission from ElseViieefise No. 4820780821714) [138].



104

105
106
107
108
109

(a) (b)
3 ~
Z ] Zn2 g
i ] ‘N Zp3j2 c_: Er 4d
] Zn 2p12 =
S £
E 3
- =
> -
i~ -
= -
i ™ il
= =
= s
z k =
< <
1060 1050 1040 1030 1020 1010 180 178 176 174 172 170 168 166 164 162 160
(c) Binding energy (eV) ( Binding energy (eV)
600000 1000000
- AA
5000001, s ¢ 800000
_ o “aaa, ata aaddaiad 7
£ oa00000 ... o BT, UL E
= an S0etecette 00 2 600000
& Hyym =
2300000 {3eery Tva A £
g T, w2
= 200000 1990 Moo E = 400000
000004 000000000
100000 T T T T T 200000 T T T T T T
350 355 360 365 370 375 380 500 520 540 560 580 600 620 640
Wavelength (nm) Wavelength (nm)

Fig. 13. XPS spectra of 0.6 wt% Er-doped ZnO particles:@pg and (b) Er 4d, reproduced
with permission from Elsevier (license No. 4820780814) [138], (c-d) Fluorescence spectra of
the samples in the UV range and Visible range aesgely. (A) pure, (B) 0.3 wt% Er doped
ZnO, (C) 0.6 wt% Er doped ZnO, (D) 0.9 wt% Er do@eD and (E) 1.2 wt% Er doped ZnO,
reprinted with permission from Elsevier (license. ¥82079077912) [138].



(b)

~
o
-’

Survey Zn 2p .
&
=
— |& S
2|8 S =
S 2 & A
.;:‘ -] E i) EA z i '\‘
z |12 3 3238 Z },’ \\
g po S §° 82 2 2 \
= - “eal = \\
.J Se” N§% \5\
W <O S -
1000 800 600 400 200 0 1050 1045 1040 1035 1030 1025 1020 1015
indi Binding energy (eV
(c) Binding energy (eV) (d) g gy )
Ag 3d Ce 3d
‘:? Ag 3dsp 2
= Ag 3ds2 <
g ¥ £
= @»
3 £
E £

915 910 905 900 895 890 885 880 875 870
Binding energy (eV)

376 374 372 370 368 366 364 362
Binding energy (eV)

(e)

018

Intensity (a.u)

528

536 534 532 530 526
Binding energy (eV)
110
111 Fig. 14. XPS spectra of ternary Ag/Ce@nO nanohybrid (a) Survey spectrum, (b) HR-XPS
112 spectrum of Zn 2p, (c) HR-XPS spectrum of Ag 3d,H&-XPS spectrum of Ce 3d, and, (e)
113 HR-XPS spectrum of O 1s, reproduced with permisiom Elsevier (license No.
114 4820791429547) [139].

115



116

117

118
119

E. 4
WX /\ 0, ®,=5.20eV
’-'-i;"-. ’I-_[i:-v B D,=4.26eV ®.=4.69eV o,
CBy (OO, KD cg,
F - "
A :
Fc -“F
z
BE=320V T

VBCM“ Oo@ -
CeO, °H\ 7n0 B,

Ev = Energy in vaccum; ¢ = Work function; NF = New Fermi Energy; F =
Fermi Energy; A - Ag; C - CeO,; Z - ZnO and B.E - Band Gap Energy.

Fig. 15. Schematic diagram depicting thdélew and photocatalytic degradation mechanism of
pollutants using ternary Ag/Ce@nO nanohybrid, adapted with permission from Eisev
(license No. 4820791429547) [139].



120

121
122
123
124
125

(a) (b) —Tio:
— TiO, ,
! — TiO:- PANPs
—— TiO2-Rh NPs _ .
— — TiO2- Rh SWs = TR
= =
= —TiOx Rh LWs S
- g
3 =
= <
= < |
(= (=3
2 2
-2 <
200 300 400 500 600 700 800

200 300 400 500 600 700 800

(©) Wavelength (nm) (d) Wavelength (nm)
"
20 Tem CO = C,H:;0H 120 )5 M= CO == C:H.0H 120
o BN CH, B Selectivity 100 B CH, = Selectivity 1100
- . O & i L ©
= g SE W L80 <
S z 5 151 L E
i 60 =g 1 F60
= S B 2
E 40 =2 107 Ly =
a n 5: 75!
+20 5 L0
L0 0_ 0
Ist 2nd 3rd 4th Ist 2nd 3rd 4th
Cycle Cycle

Fig. 16. (a) UV-vis-NIR diffuse reflectance spectra of FjdiO,-Rh NPs, TiQ-Rh SWs and
TiO,-Rh LWSs, (b) UV-vis-NIR diffuse reflectance speabfaliO,, TiO,-Pd NPs and Ti@Pd
NWs, (c) Stability studies of CO, Gldnd GHsOH evolution rates as well as the selectivity for
CO; reduction over (a) Ti®ORh LWs and (b) Ti@-Pd NWs in photocatalytic C@eduction
reaction, reproduced with permission from Elseflieense No. 4820800272558) [146].



~
o
~’
_~
=
-’

Zn 2p

Zn 2p2s3

— ~
= =
< <
N ) -
3} 0O 1S >y
= =
w w
= =
ot D
N -
= =
— Ag3d —

1200 1000 800 600 400 200 O 1060 1050 1040 1030 1020

Binding energy (eV) Binding energy (eV)
(d) Ag 3ds»

~
(]
~

018

Intensity (a.u)
Intensity (a.u)

536 534 532 530 528 526 380 378 376 374 372 370 368 366
Binding energy (eV) Binding energy (eV)

K

(e)

CO; + H,O

126
127 Fig. 17. XPS spectra (a—d) of ZnO/Ag-2 sample, (e) Posgibietocatalytic mechanisotf
128 ZnO/Ag-2 Sample, reprinted with permission fromeiigr (license No4821281041421)
129 [160].



130

131
132
133
134
135
136

(a) I TiO; 'Shell' I Zn-Modified
TiOz 'Shell'

t.:4 Surface i3}

%34 'Dents’ , N VT .

102 m =
[ I Em ZT HCI 2
t = " amg,
(] H m "
0.8- Light ON L
=
< ] ZT
. O
061 T « -
S ] =
g "a 1
S &
044 < "
3
o = ZT mm ZT-HCI
O.2I ' 1 b 1 . 1 . Ll by ] & 1 - I o
0 20 40 60 80 100 120 140 160
time (min)

Fig. 18. (a) A schematic illustration resulting presumabbilerimal diffusion process of Zn ions
into TiO, at the ZnO/TiQinterface at 45« accompanied with formation of ‘voids’ in ZnO-
core, (b) Photodegradation of MB with the use ef ZmO/TiGQ, composites before (blue scatter
1, ZT) and after dissolution (red scatter 2, ZT-H&1ZnO cores in HCI (A). Inset: values of
pseudo first-order rate constants (k400) calculédedT (blue) and ZT-HCI (red), reproduced

with permission from Elsevier (license No. 4821283(®28) [161].



137

138
139
140
141

142

Pd loaded TiO:
hollow sphere

As-synthesized

TiO: hollow sphere
o TiO; 'S
* Pd Pd loaded TiO>
* PdO hollow sphere

Fig. 19. (a) Schematic illustration of the synthesis proesss PdO and Pd loaded Tl@llow
spheres, respectively, (b-c) Schematic illustratitum the multiple reflections in the hollow
sphere and the/a" pair segregation in the composite photocatalgsipectively, adapted with

permission from Elsevier (license No. 48212901022562].



(a)

TiO; Py TEOS EtOH

PEG

AgNO,

NaBr Fe(NO,), HCI, pH=2-3

Chemical oxidative polymerization The hydrolysis of TEOS

The formation of PPy-Ag The coating of outer layer
° hybirdized layer on TiO> o shell from TEOS preCursor

TiO2 / PPy-Ag/TiO; H:SiO;@PPy-Ag/TiO:

Add Sutaowor
10J UonEUIE)

D3d Jjo Suryses
pue Suikip-0zaa1 |

¥4
Core Porous shell Yolk-porous shell Nanospheres
Ag/TiO: SiO; Si0; @void @Ag/TiO;

5
CB va ~ Ag) |

isible light

shell ¥ a4 0 B\e
Porous shell A "N\ SPR effect

bm H,0

N — Degradation

143

144 Fig. 20. (a) Schematic representation of S@void@Ag/TiQ yolk-porous shell nanospheres,
145 (b) Possible mechanism for dye removal by as-pegpphotocatalyst SK®void@Ag/TiQ,
146 reproduced with permission from Elsevier (license 8821290425051) [163].

147

148



149

10
g =
= /
»n s
; y,
26 e
3 o
£ 4 v
2 oo
= e
) i POt
£ % ,s‘” Surface area 8.863m?%/g
S —
00 02 04 06 08 1.0
© () Relative pressure
o 104 —*" CdS/CdO u Evs.NHE
c |'|7 A h
= f -1.0 [ me )
75] 8 ] 5 ” .
"2 ¥ 05+ Reduction
g i " (Hz/H)
< 61 o". i cas ee
2 7/ 05 | cee k73ev | A"
2 4 ety o LT \ Oxidation
- I A e I (0/H,0)
E t-~'-0"'ﬁ wa”’" 15 H ZC;-;(:V Th'h'hth*
ERES I et s 20 F
> . Surface area 36.74m?/g k
o 25|\
T b T L T L T ' T v ] 30 I
0.0 02 04 06 08 1.0 ’

Relative pressure

150

151 Fig. 21. (a) The proposed synergistic mechanism of yolki$P#INCs@SnO2 nanoreactor with
152 improved photocatalytic activity, reprinted withrpassion from ACS [160](b-c) BET surface
153 area of CdO , CdS/CdO nanocompodit®,The proposed synergistic mechanism of Au
154 decorated CdO/CdS nanocomposite, adapted with pgionifrom Elsevier, (license No.
155 400640651325) [159].
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Highlights
» Distinctive surface step defects heighten the photoactivity of porous metal oxides

» Diverse strategies for controlled vacancies, metal defectsin metal oxides nanostructure
are highlighted

»  Spectroscopic techniques were used to reveal the role of dislocations, boundaries, and

voids on performance of metal oxides

» Dimensionality driven defectsin metal oxide catalystsis explored with systematic

modifications in lattice compositions
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