Pure

Scotland's Rural College

An overview of converting reductive photocatalyst into all solid-state and direct Zscheme system for water splitting and CO2 reduction

Raizada, Pankaj; Kumar, Abhinandan; Hasija, Vasudha; Singh, Pardeep; Thakur, Vijay Kumar; Khan, Aftab Aslam Parwaz

Published in: Journal of Industrial and Engineering Chemistry

DOI: 10.1016/j.jiec.2020.09.006

Print publication: 25/01/2021

Document Version Peer reviewed version

Link to publication

Citation for pulished version (APA):

Raizada, P., Kumar, A., Hasija, V., Singh, P., Thakur, V. K., & Khan, A. A. P. (2021). An overview of converting reductive photocatalyst into all solid-state and direct Z-scheme system for water splitting and CO₂ reduction. Journal of Industrial and Engineering Chemistry, 93, 1-27. https://doi.org/10.1016/j.jiec.2020.09.066

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal ?

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

2									
5 4 5	1	1 An overview of converting reductive photocatalyst into all solid solid solid state and direct Z							
6 7	2	scheme system for water splitting and CO ₂ reduction							
8	3								
9 10	4	Pankaj Raizada ^{a*,b} , Abhinandan Kumar ^a , Vasudha Hasija ^a , Pardeep Singh ^a , ^b Vijay Kumar							
11 12	5	Thakur ^{c*} , Aftab Aslam Parwaz Khan ^{d,e}							
13 14	6								
15 16	7	^a School of Chemistry, Faculty of Basic Sciences, Shoolini University, Solan (HP), India173229							
17 18	8	^b Himalayan Centre for Excellence in Nanotechnology, Shoolini University. Solan (HP) India-							
19 20	9	173229							
21 22	10	^c Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings							
23 24 25	11	Buildings, West Mains Road, Edinburgh EH9 3JG, UK							
26	12	^d Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box							
27 28	13	80203, Jeddah 21589, Saudi Arabia							
29 30	14	^e Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203,							
31	15	Jeddah 21589, Saudi Arabia							
32 33 34	16								
35 36	17								
37 38	18								
39	19								
40 41	20	*Corresponding authors: <u>pankajchem1@gmail.com; vijay.kumar@cranfield.ac.uk</u>							
42 43	21								
44 45	22								
46	23								
47 48	24								
49 50	25								
51 52	26								
53	20								
54 55	27								
56	28								
57 58	29								
59	30								
6U 61									
62		1							
63									
65									

31 Abstract

Considering the current scenario of rising environmental and energy concerns, engineering of Zscheme photocatalytic systems is in the spotlight. The prime reason for this includes efficient redox abilities and effective space separation along with the migration of photoinduced charge carriers over conventional heterojunction systems. Herein we foreground the stumbling blocks of traditional heterojunction systems and enlighten the generations of Z-scheme photocatalysis originating from liquid-phase to direct Z-scheme photocatalytic systems. We provide substantial criteria and selection aspects of choosing reductive type photocatalysts as a potential aspirant for the Z-scheme photocatalytic system. As Z-scheme photocatalytic systems render effective space separation of photogenerated carriers, active species generation, wide optical absorption and amended redox ability. We focus on comprehensive illustration of all solid-solid-state and direct Z-scheme photocatalysts by coupling reductive type photocatalysts with other semiconductor material and explored their potential for efficacious conversion of solar energy into functional energy. Herein, we aim to provide in-depth and updated criteria of for selecting Z-scheme photocatalysts for CO₂ reduction, water splitting, and nitrogen fixation. Lastly, the article compiles with a conclusive note about future perspectives and challenges accompanying all solid solid-state and direct Z-scheme Z photocatalysts and their energy conversion applications.

Keywords: Reductive photocatalyst; Bio-inspired Z-scheme photocatalysis; Heterojunction formation; Water splitting; CO₂ reduction

62 Abbreviations

A/D, Acceptor/donor; AOT, Advanced oxidation technology; ASS, All solid state; Eg, Band gap energy; CNTs, Carbon nano tubes; CNS, Carbon nano sheets; CB, Conduction band; DFT, density function theory; DMP, 1,2 dimethyl phenol; DBP, 1,2 dibromophenol; electron-hole pair, EHP; EM, electron mediator; ESR, electron spin resonance; e⁻, electron; Er, erythromycin; GO, graphene oxide; g-C₃N₄, graphitic carbon nitride; HOMO, Highest occupied molecular orbital; h⁺, hole; HER, Hydrogen evolution rate; OH⁻, Hydroxyl radical; IEF; interfacial electric field; LUMO, lowest unoccupied molecular orbital; MoS₂, molybdenum disulfide; NPs, nanoparticles; NSs, Nanosheets; NOM, natural organic matter; NIR, near infrared region; OWS, overall water splitting; OER, Oxygen evolution rate; O_2^- , peroxide; PL, Photoluminescence; PS, Photosystem; Pg, protonated; QD, quantum dots; ROS, reactive oxygen species; rGO, reduced graphene oxide; RhB, rhodamine B; SC, semiconductor; EPR; Spin trapping electron paramagnetic resonance; O_2^{-2} , superoxide; SPR, Surface plasmon resonance; TC, tetracycline; TCH, tetracycline hydrochloride; TOC, total organic carbon; TEM, Transmission electron microscopy; TCP, 2,4,6-tricholorphenol; TEOA, triethanolamine; VB, valence band; XRD, X-ray diffraction; XPS, X-ray photoelectron spectroscopy.

93 Contents

0(• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •	••••••	••••••	tion	Introduc	1.	
CO	photocatalytic	of	principle	basic	— <u>The</u>	Basic		
			00	•••••	n	reduction		
wate	photocatalytic	of	principle	basic	— <u>The</u>	Basic	•	
			00			<mark>splitting.</mark>		
0	lectivity	se	The]	t y	Selectivit	4.	
	00	••••••	•••••	•••••	alysts	photocat		
0		••••	photocatalysts.	z-scheme p	olid-State	All All-S	5.	
AS	etal-mediated	<u> </u>	metal	Noble	Ν	5.1		
		00	· · · · · · · · · · · · · · · · · · ·		talysts	photoca		
00	5.2 <i>Carbon</i> mediated ASS photocatalysts							
•••••	••••••	•••••	S	hotocatalyst	scheme ph	Direct Z-	6.	
		ms	ocatalytic syste	<mark>cheme phot</mark> o	ons of Z-so	Applicatio	7. /	
			tion	ic CO ₂ reduc	otocatalyti	<mark>7.1 Ph</mark>		
			tting	ic water split	otocatalyti	<mark>7.2 Ph</mark>		
			lications	catalytic appl	her photoc	7.3 Otl		
0	•••••••••••••••••••••••••••••••••••••••	•••••		wpoint	n and viev	Conclusio	8. (

122

1. Introduction

Nowadays, industrial indispensability and accelerating anthropogenic activities have reached to an alarming level. The interminable increasing challenges related to dwindling renewable natural resources, solar energy conservation and environmental pollutions are of great concern [1-3]. The overriding issues impede global energy consumption; therefore, it is indispensable to explore eco-friendly technologies for environment protection and energy resorption. A sought-after advanced oxidation technology (AOT); Honda and Fujishima effect stimulated the age of heterogeneous photocatalysis with titanium dioxide (TiO₂). Photocatalysis involves the photoassisted generation of strong oxidant holes (h⁺) in the valence band (VB) and reductant electrons (e) in the conduction band (CB) of the semiconductor photocatalysts after the absorption of solar energy. In detail, when a semiconductor photocatalyst is exposed under visible-light with energy greater than or equal to their bandgap energy, the VB electrons get promoted to higher-higher-level CB generating a hole behind in VB (Fig. 1a). After excitation, the photoinduced excitons migrate to the surface of photocatalyst. For efficient photocatalysis, the CB electrons should possess strong reduction ability with a chemical potential in the range of +0.5 to -1.5 V (vs NHE) and the VB holes should possess strong oxidising capacity with oxidation potential in the range of +1.0-+3.5 V (vs NHE) [4-11]. The process further involves the interfacial transfer of photocarriers which generates various reactive oxygen species (ROS) like; peroxide $(O_2 \cdot)$, superoxide (O_2) , and hydroxyl radicals (OH) which participate in photodegradation of pollutants, reduction of CO_2 to hydrocarbon fuels, overall water splitting, N_2 fixation and biohazard disinfection [12-15]. However, after excitation, the electrons might reassemble and dissipate the input energy in the form of light or heat which needs to be addressed in order to attain higher photocatalytic efficacy. To date, designing a robust promising photocatalyst to overcome indisputable energy inadequacy and environmental degradation has become a cutting-edge research topic [16-19]. For effectual conversion of solar energy into functional fuels, various reductive type photocatalysts (ZnS, CdS, Ta₃N₅, TaON, Cu₂O, SiC, Bi₂S₃ etc)

which fulfil the necessary criteria of a photocatalytic process have been reported. However, the cost-effectiveness and physico-chemical stability hinders their photocatalytic efficiency. Therefore, to accentuate the journey of delivering large-scale benefits in the province of photocatalysis, graphitic carbon nitride $(g-C_3N_4)$ has garnered incredible fascination among scientific communities. Moreover, g-C₃N₄ on account of its hierarchical properties including appropriate optical band gap ~2.7 eV (with oxidative potential at +1.57 V and reductive at -1.13 V vs NHE at pH 7) is an utterly smart solar light harvesting photocatalyst [5, 9]. Moreover, its substantially accessible surface sites with high thermal and chemical stability offers unprecedented breakthroughs in various realms of environment conservation [20, 21].

For achieving high space charge separation efficacy and broad visible light absorption, many strategies like, coupling, doping, co-catalyst incorporation and heterojunction construction have been frequently adopted. Out of all these strategies, heterojunction formation proves its worth and can be classified as conventional [22-25] and Z-scheme heterojunctions [26-30]. Conventional heterojunction formation involves semiconductor composites which are formed by the combination of two or more semiconductors depending upon their band gaps [31-37]. These are further of three types as shown in (Fig. 1b-d). In type-I heterojunction, VB of semiconductor-II (SC-II) lies lower than semiconductor-I (SC-I), and CB of SC-II is higher than the CB of SC-I forming a straddling gap. The migration of charge carriers proceeds in a way that gathering of electrons and holes occurs only on SC-I resulting. It causes poor charge separation of photogenerated electron and hole pairs along with lower redox potential as both oxidation and reduction reactions occur at the same semiconductor [22, 23]. In type-II heterojunction, the band positions are at optimal levels (staggered gap) that offer spatial charge carrier separation with enhanced photocatalytic efficacy as compared to type-I. But its redox potential is low due to occurrence of oxidation and reduction reactions on SC-I with lower oxidation potential and SC-II with lower reduction potential. Type-III heterojunctions have broken gap situation involving separation of charge carriers similar to type-II heterojunctions [22, 38]. The broken band-gap in type-III heterojunction does not intersect causing no charge carrier separation for enhanced photocatalytic activity.

< Please Insert Fig. 1 Here>

In order tTo encounter the aforementioned issues and to achieve superior photocatalytic efficiency, Z-scheme heterojunction systems have intrigued researchers [27, 28]. The concept of Z-scheme photocatalysis was initially introduced by Bard in 1979. Ensuing ideal conditions for photocatalysis, Z-scheme heterojunction results in more negative CB edge and more positive VB edge thus narrowing band-gap of semiconductor [39]. The progression path of Z-scheme photocatalysis from the first generation to the third generation has been depicted in (Fig. 2). In contrast to type-II heterojunction, photogenerated electron-hole pair (EHP) separation in Z-scheme follows a different pathway (Fig. 3b-d). In Z-scheme mode, upon visible light irradiation electrons in CB of SC-II combines with photogenerated VB holes of SC-I. This leads to the formation of sufficiently strong oxidative VB holes in SC-II and reductive electrons in CB of SC-I. Due to the difference in band alignment and work function of the semiconductor photocatalysts, the resulting induced interface electric field expedite separation of EHP. The name Z-scheme is proposed because it imitates natural photosynthesis in plants and follows the same mechanism of charge transfer pathway that contains two-step photoexcitation which shows resemblance to the letter 'Z'. Natural photosynthesis involves two photo-induced chemical reactions in PS I (photosystem I) and PS II (photosystem II) with various intermediary enzymes which endorse oxidation and reduction reactions as shown in (Fig. 3a). Firstly, PS I accompanying chlorophyll P680 under solar light irradiation are converted to excited state P680^{*} as (Eq.1):

chlorophyll $P680 + h\nu \rightarrow$ chlorophyll $P680^*$ (1)

Simultaneously, oxidation of water molecules generates O_2 on chlorophyll P680. The electrons migrate from P680^{*} to chlorophyll P700 (accompanying PS II) in presence of enzymatic action via electrons transfer chain. Upon absorption of sun-light, chlorophyll P700 changes to excited state chlorophyll P700^{*} as:

$$ch_{\Theta}lorophyll P700 + h\nu \rightarrow chlorophyll P700^{*}$$
 (2)

The photoexcited electrons react with NADP⁺ to produce reduced coenzyme-II which is further used for the reduction of CO_2 [40]. Z-scheme is categorised into three main generations as depicted in Fig. 3b-d. The first generation is liquid phase Z-scheme photocatalyst, fabricated by coupling of two different semiconductor materials via a shuttle redox liquid-state mediator (species which acts as <u>an</u> electron acceptor and donor (A/D) pair) [41,42]. Both SC-I and SC-II get photoexcited under solar light illumination and release electrons and holes in CB and VB, respectively (Fig. 3b). Further, migration of CB electrons from SC-II to VB of SC-I takes place through redox mediator by following reactions [Eq. 3 and 4], resulting in the formation of holes in VB of SC-II.

 $A + e^{-}(\text{at CB of SC} - \text{ll}) \rightarrow D$ (3)

$$D + h^+(at VB \text{ of } SC - l) \rightarrow A$$
 (4)

By this process, photoexcited electrons remain on SC-1 with more reduction potential, whereas the photogenerated holes remain on SC-II. In this way, the optimal spatial charge separation along with optimized redox potential is achieved. However, there are some typical shortcomings in the first generation of Z-scheme like, (1) Use of reversible shuttle redox mediators like I^-/IO_3^- and Fe^{2+}/Fe^{3+} causes a backward reaction [22]. During the photochemical reaction, donor and acceptor species like Fe²⁺ and Fe³⁺ will compete with reactants for oxidation and reduction reactions, respectively. So, overall photocatalytic efficacy of Z-scheme system is lowered. Moreover, the liquid phase Z-scheme system is operational in a liquid state only and hence limits its application for gaseous and solid phase systems.

<Please Insert Fig. 2 Here>

The second generation of Z-scheme photocatalysis is all-solid-state (ASS) photocatalytic system [43, 44]. ASS Z-scheme systems are designed by combining two different semiconductor materials and an electron mediator at <u>the</u> surface junction which are usually noble-metal nanoparticles (NPs) (Ag, Au, Pt, Bi and Cu) or carbon materials like (graphene oxide (GO), carbon nanotubes (CNT's), reduced graphene oxide (RGO) and carbon [45] (Fig. 3c). Noble-metal NPs, are proven to be successful in eliminating backward reaction occurring in first-first-generation Z-scheme systems. However, <u>the</u> applicability of metal NPs (NPs) at semiconductor surface junction is accompanied with certain inherited limitations *i.e.* its high cost, photo-corrosive nature and strong optical light absorption which narrows its wide-scale applications [46]. Thus, mediator free ASS Z-scheme system was introduced by Wang and his peer group in 2009, using ZnO and CdS system in direct contact with each other [47] (Fig. 3d). Thereafter in 2013, the third generation of Z-scheme entitled as direct Z-Scheme

photocatalyst get acquainted to overcome all drawbacks of first and second-generation Zscheme aimed for enhanced photocatalytic efficiency and redox potential. As the name implies in-direct Z-scheme photocatalyst, two photocatalytic systems form a direct surface junction with each other omitting requirement of redox mediators or noble metals at interface thereby, reducing light-light-shielding effect and lowering manufacturing cost [48-50]. Though both the Z-scheme system and type-II photocatalytic systems have the same structure yet their charge separation mechanism is totally different. In direct Z-scheme, photoinduced CB electrons in SC-II possessing less reduction potential combine with VB-holes in SC-I with low oxidation potential. By this means, SC-II is occupied with photogenerated holes possessing high oxidation potential and photo-irradiated electrons possessing high reduction potential remains in SC-I thereby, optimum space charge separation along with superior redox ability is accomplished. Direct Z-scheme photocatalyst attains comparatively greater photocatalytic activity than the type-II system as the charge migration pathway is substantially more favourable. In direct Z-scheme, migration of charge carriers is thermodynamically feasible by electrostatic attraction among photogenerated charge carriers. For fabrication of direct Z-scheme robust photocatalyst, appropriate band positions with extended solar light harvesting range is are required [39, 51-53].

<Please Insert Fig. 3 Here>

Hitherto, intensive research studies have been incorporated on exploring the potential of Zscheme photocatalytic systems for environmental and energy concerns [54]. For example, Xu *et al.* represented a comprehensive viewpoint involving designing, modification and applications of direct Z-scheme photocatalysts for modulating optoelectronic properties of semiconductor photocatalysts [55]. Similarly, Low *et al.* summarized potentials of direct Zscheme heterojunction systems over conventional double charge transfer system and depicted the characterization techniques to verify the formation of direct Z-scheme system along with their useful photocatalytic applications. Considering all the significant efforts to exploit the fascinating features of Z-scheme photocatalytic systems, the present study summarizes an allinclusive overview on—of_the criteria and selectivity aspects required for photocatalytic conversion of CO₂ along with water splitting. We believe that a comprehensive review focusing on reductive type photocatalyst hybridized with other semiconductor material

forming ASS and direct Z-scheme system can effectively offer new ideas for selecting and synthesizing new photocatalysts which can fulfil the criteria of energy conversion applications. To date, no such study mentioning criteria for photocatalytic CO₂ reduction and water splitting along with selectivity aspects utilizing reductive type photocatalyst have has been reported. Furthermore, we aim to represent the importance of converting conventional heterostructure into ASS and direct Z-scheme heterojunction system in order to achieve amended space charge isolation of photocarriers to carryout photo-redox reactions at distinct semiconductor materials. We further assume that the critical insight into the mechanistic viewpoint of ASS and Z-scheme heterostructures could bring substantial improvement in the field of photocatalysis. To get a measure of the catalog of different research articles related to ASS and direct Z-scheme photocatalysts, we cruised data with the help of 'Scopus' database as it provides the most significant citations. Moreover, it is one of the most authentic means of receiving information regarding current drifts and historic progression in the research field. Through Scopus, we found 2588 and 3181 articles by using keywords "All solid-solid-state Zscheme photocatalysts" and "Direct Z-scheme photocatalysts, respectively from 2009 to January, 2020 (Fig. 4a). Furthermore, Fig. 4b and c represent the applicability of ASS and direct Z-scheme systems in pollutant degradation, CO₂ reduction, overall water splitting and H_2 production. The main discussion of the present review is divided into the following sections:

• Basic <u>The basic principle of photocatalytic CO₂ reduction and water splitting.</u>

- <u>Selectivity The selectivity of the photocatalyst.</u>
- All-solid-state Z-scheme photocatalysts.
- Direct Z-scheme photocatalysts.
- Photocatalytic CO₂ reduction.
- Photocatalytic water splitting.
- Other application.
- Conclusion and viewpoint.

<Please Insert Fig. 4 Here>

303 2. Basic The basic principle of Photocatalytic CO₂ reduction

Currently, about 6 billion tons of CO_2 is released into the atmosphere which is causing severe climate and health issues. As a consequence of elevating elevated CO_2 levels in the atmosphere, global warming is one of the growing worldwide concerns. The photoassisted reduction of CO₂ into functional hydrocarbon fuels has become an attractive pursuit to produce clean energy and tackle the energy and environment problems [56]. The era of photocatalytic CO₂ reduction started back in the 1970s by the photoconversion of CO_2 into useful organic compounds [57]. Thereafter, with increasing advancements in technology, the process of photocatalytic CO₂ reduction gained significant pace. The photoreduction process mainly involves the recycling of CO₂ and subsequent generation of functional chemical fuels [58]. In detail, for photo-reduction of CO₂, the prerequisite condition is the use of appropriate photocatalyst to deploy visible light and a resulted photoreaction with CO₂ in gaseous or aqueous phase system. As a result of photo-oxidation reactions, the photocatalyst will reduce CO₂ to different hydrocarbons like methanol, methane, formic acid hydrogen and formaldehyde which can be utilized as fuel and feedstock for different reactions depending upon its reduction potential [59]. Since the gaseous CO₂ is relatively stable with $\Delta G_f^0 = -394.4 \ k Jmol^{-1}$, therefore, external energy must be supplied for its transformation into reduced products [60]. Moreover, for spontaneous photo-reduction of CO₂ $(\Delta G = negative)$, the applied potential should be more negative than the standard reduction potential. The formal redox potentials required for different photocatalytic CO₂ reduction reactions can be obtained from thermodynamic studies and are given in Eq. 5-11.

 $CO_2 + 2H^+ + 2e^- \rightarrow HCOOH$ $E_0 = -0.61V \text{ vs. NHE at pH} = 7$ (5)

$$CO_2 + 2H^+ + 2e^- \rightarrow CO + H_2O$$
 $E_0 = -0.53V \text{ vs. NHE at } pH = 7$ (6)

328
$$CO_2 + 4H^+ + 4e^- \rightarrow HCHO + H_2O$$
 $E_0 = -0.48V \text{ vs. NHE at pH} = 7$ (7)

$$CO_2 + 6H^+ + 6e^- \rightarrow CH_3OH + H_2O$$
 $E_0 = -0.38V \text{ vs. NHE at } pH = 7$ (8)

$$CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$$
 $E_0 = -0.24V \text{ vs. NHE at pH} = 7$ (9)

⁹₀ 334
$$2H^+ + 2e^- \rightarrow H_2$$
 $E_0 = -0.41V \text{ vs. NHE at pH} = 7$ (10)

$$2H_2O + 4H^+ \rightarrow O_2 + 4H^+$$
 $E_0 = +0.82V \text{ vs. NHE at pH} = 7$ (11)

The efficiency of photocatalytic CO₂ conversion depends directly on the band-gap energy of the photocatalytic material along with appropriate redox potential values. In general, the effective transmission of electrons to the surface of photocatalyst containing adsorbed CO₂ is thermodynamically feasible only if the CB edge of semiconductor material lies at more negative potential than the required standard potential. For instance, the photocatalytic CO₂ reduction into methanol can be facile if the CB of semiconductor photocatalyst lies at potential more negative than -0.38 V which is the standard reduction potential for CO_2 conversion into methanol at pH 7 vs. NHE [58, 61].

Consequently, a suitable photocatalytic material for photo-reduction of CO₂ must fulfil thefollowing criteria:

(i) transmission of multiple electrons from photocatalyst to adsorbed CO₂; (ii) the CB positioning in semiconductor photocatalyst should lie at more negative potential than the CO_2 redox potential and its subsequent reduced products; (iii) the facile adsorption of reactant molecules like, H₂O, CO₂ and carbonates on photocatalyst and desorption of products through diffusion into the system after photo-reduction reaction; (iv) the photoinduced VB holes of a semiconductor should interact with oxide species (H₂O or other sacrificial agents) to avoid the recombination with electrons as well as secondary reactions with the reduced products (as shown in Eq. 11) [62]. Thus, based on the above discussion it can be assumed that the ability of photoreduction of CO_2 can be significantly enhanced via the synergistic effect of optimal CO_2 adsorption, broad visible light absorption and efficacious charge separation.

In general, from the aforementioned chemical equations, it can be seen that there is a need of for hydrogen source and electron donor for the photoassisted reduction of CO₂ which can be fulfilled by H_2O . However, there lies an uncertainty for using H_2O as an electron donor due to its ability to indulge into a side reaction for the production of H_2 as shown by Eq. 10 [63]. During photocatalytic reduction of CO₂, H₂O can undergo both oxidation (by VB holes) and reduction (by CB electrons) to produce O₂ and H₂, respectively. This can significantly obstruct the photo-reduction efficacy of CO₂ into hydrocarbon fuels. Consequently, the overall photoassisted reduction efficiency of CO₂ is comparably lower than that of H₂ generation through water

splitting which is in agreement with thermodynamic and kinetic studies [64]. As per thermodynamic consideration, the photocatalytic CO₂ reduction requires six to eight electrons with more negative reduction value than two-electron reduction process for photocatalytic H₂ generation. Simultaneously, the complex mechanism of CO₂ photo-reduction must involve basic chemical reaction involving the transference of electrons and protons to adsorbed CO₂. Thus, the photocatalyst must overcome thermodynamic as well as the kinetic criterion by generating spatially separated reaction sites to avoid subsequent H₂ production and facile photocarriers transfer- to CO₂ [62,64,65]. So far, Z-scheme photocatalysts are capable to exhibit effective space separation of photocarriers and incremented redox abilities for efficient photo-reduction of CO₂ into hydrocarbons. The effectual migration and space isolation *via* Z-scheme mode renders superior redox ability to the photocatalytic system which can be substantially utilised in photoreduction reaction.

3. Basie The basic principle of photocatalytic water splitting

The increasing concerns of environment and energy disputes have led researchers to exploit sustainable and re-generated fuels possessing energy-dense and green features [66-69]. Hydrogen (H₂), a carbon-carbon-free energy carrier owning exceptional energy density along with heat value 120-140 MJKg⁻¹, is a best-best-suited alternative till date to replace traditional fossil fuels as it does not generate pollutants during combustion. Currently, about 44.5 million tons of H₂ is produced worldwide and with such production rate, it will take years for H₂ to become the primary source of energy [70]. Artificial photosynthesis phenomenon for photocatalytic solar to chemical energy conversion offers highly significant means to generate fuels from the water with minimal impact on the environment. Utilizing solar energy and joining it with water by means of utilizing photoassisted water splitting offers a great deal for H₂ generation. In photocatalytic water splitting, water is introduced into a module designed for water splitting and converted into H₂, which is further utilized in systems to generate high-high-efficiency power. Considering that, the basic criteria of generating H_2 and O_2 at the solid-liquid interface strictly rely on efficient visible light harvesting. As such, the efficacious utilization of visible light leads to the conversion of solar energy into chemical functional energy and its storage for further usage [71, 72]. Overall water splitting into H_2 and O_2 is an uphill chemical reaction (Eq. 16) which accompanies an increase in Gibbs free energy [73] as shown below:

$$H_2 0 \rightarrow \frac{1}{2} 0_2 + H_2$$
 $E_0 = 1.23 \text{ eV vs NHE at pH} = 0$ $(\Delta G^0 = 237 k J mol^{-1})$ (16)

Due to uphill reaction kinetics, there is a need of for external energy to carry out the water watersplitting reaction. In photocatalytic water splitting, visible light is the external driving force which converts solar energy into hydrogen by utilizing water as the only reactant. Due to slow reaction kinetics, the involvement of semiconductor photocatalysts into the phenomenon becomes necessary. The basic criteria to evolve H₂ and O₂ involve the absorption of photons by semiconductor photocatalyst to generate holes and electrons which participate in the oxidation of H₂O and reduction of H⁺, respectively. Moreover, the overall aspects including efficacy, costeffectiveness and stability must be superior in comparison with industrial processes of generating H₂ in order to achieve the widespread application of visibly driven photocatalytic water splitting. In detail, during photocatalytic water splitting following steps take place; (i) After absorbing energy greater than the band-gap of the semiconductor, VB electrons get excited to CB thereby, produce electrons and holes (ii) photo-excited electrons and holes independently get diffused on the semiconductor surface, and (iii) subsequently undergoes surface chemical reactions involving oxidation and reduction of water by photogenerated holes and electrons to produce O₂ and H₂, respectively as shown by (Eq. 17 and 18);

$$2H^{+} + 2e^{-} \rightarrow H_{2}$$
 $E_{0} = 0 \text{ eV vs. NHE at pH} = 0$ (17)
 $H_{2}O \rightarrow 4H^{+} + 4e^{-} + O_{2}$ $E_{0} = 1.23 \text{eV vs. NHE at pH} = 0$ (18)

Thermodynamically, the prerequisites for aforementioned reactions to- proceed are; the CB minimum for a photocatalyst must lie at more negative potential than that of H^+/H_2 level (0 V vs. NHE at 0.059 pH), while the VB maximum should be more positive than that of O_2/H_2O energy level (1.23 V Vs. NHE) [74]. Precisely, in order to achieve photocatalytic OWS, a photocatalyst must overcome an energy barrier of 1.23 eV. Moreover, oxidation/reduction of water by photogenerated holes/electrons greatly depends upon band positioning of photocatalysts and redox potential of water which should be precisely matched. The schematic illustration for water splitting process is shown in (Fig. 5). In general, water splitting is a complex phenomenon posing

418

stringent conditions of selecting a photocatalyst with suitable band positioning for H_2 and O_2 evolution. Despite of considerable exploitation and development in the field of photocatalysis, the efficiency and stability of photocatalytic water splitting still faces huge challenges from both thermodynamic as well as kinetic factors due to the unsatisfactory catalytic features of the semiconductor material. Moreover, notably, the insufficient STH conversion efficiency is another factor that needs to be addressed effectively. For this purpose, sacrificial reagents like methanol (CH₃OH) and sodium thiosulphate (Na₂S₂O₈) are used as irreversible electron donor and acceptor in hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. In contrast, sacrificial half-reactions are downhill reactions comprising decrease in Gibbs free energy, also photon energy doesn't get stored, hence, it is important to design photocatalysts which do not need these reagents [75]. Till date, many photocatalytic water splitting systems involving sacrificial agents have been reported where they promote the suppression of EHP by depleting holes or by providing hydrogen atoms for H₂ evolution. Besides, adding sacrificial agents into the photocatalysis generates extra chemical energy into the reaction except for solar energy. Moreover, the sluggish reaction kinetics inhibits the overall efficiency of photocatalytic water splitting. Thus exploring semiconductor photocatalysts with significantly high-efficacy, stability, economical and physicochemical features is of utmost concern for the growth of photocatalytic water splitting.

<Please Insert Fig. 5 Here>

4. Selectivity of photocatalyst

Typically, the selection of photocatalyst and various strategies to improve photocatalytic performance are the most crucial aspects to be considered for achieving superior efficacy. Besides, to attain pilot-pilot-scale applications of the photocatalyst; recyclability, reusability and photo-stability of the photocatalytic material are equally substantial. Visibly driven photocatalytic water splitting process as well as photoreduction of CO₂, as well as photoreduction of CO₂, can be classified into three main steps: absorption of a photon, migration/separation of photocarriers, and surface redox reactions. These steps strictly depend upon the type of photocatalyst being employed in the photocatalytic process as discussed below. The effectiveness of any photocatalytic process firmly relies on the band-gap energy as well as band edge positioning of semiconductor material for efficient absorption of a photon. Since, the

initial step of photocatalysis involves the effectual harnessing of visible light which in a way depends upon the bandgap energy of the semiconductor photocatalyst. In detail, upon visible light exposure, the semiconductor photocatalyst possessing appropriate bandgap energy (Eg) can produce photoinduced EHP by the excitation of electrons from VB of a photocatalyst to its CB leaving holes behind. Only after this important step, the photocatalytic process can further proceed. However, the obstacle of photocarriers recombination can significantly limit the effective number of photocarriers reaching at the surface of photocatalyst which can hinder the overall efficacy of the photocatalytic process. Furthermore, for adequate enhancement in the photon absorption process, band engineering plays a vital role. For instance, band-gap tuning of the photocatalyst through doping is one of the most crucial techniques used for this purpose [76]. It is widely investigated that the addition of metallic and non-metallic impurities in heterojunction system can effectively enhance photoactivity by lowering the band-gap energy, boosting the visible light harnessing and imparting useful physical features [77]. To date, various metallic and non-metallic dopants such as; Sodium (Na), lithium (Li), copper (Cu), iron (Fe), carbon (c), phosphorous (P), boron (B), sulphur (S), oxygen (O), and so many others have been extensively explored [78-80]. The introduction of metal dopants into the photocatalytic system can adequately enhance the solar light harvesting, decrease the band-gap and boost the photocatalytic performance by improving the movement rate of photocarriers as well as by reducing the reassembly of EHP [81]. For example, Gao et al. reported a one-step pyrolysis process to design Fe-doped g-C₃N₄ nanosheets (NSs) which exhibited significantly enhanced MB degradation efficacy as well as H₂ production rate [82]. Doping of $g-C_3N_4$ with Fe remarkably increments the photocatalytic performance of g-C₃N₄ by tuning its electronic properties. It is observed that, non-metal dopants are preferred over metal dopants as by doping the system with a metal ion, the thermal stability of the system significantly decreases due to mid-gap energy levels [83]. While due to high electronegativity and high ionization energy, the non-metal dopants control the thermal changes and maintain the metal-free behaviour of the system. Thus, through band-gap engineering, photocatalytic efficacy of the system can be significantly improved by means of employing effective thermal and electronic features which can boost the harnessing of visible light.

So far, it is observed that the photocatalysts with wide band-gap energy cannot harvest solar energy efficiently and the photocatalysts with narrow band-gap energy undergo quick reassembly

of photocarriers. As a consequence, the overall photocatalytic efficacy of the system drops substantially. The second step that involves effective migration and separation of photoinduced carriers play a crucial role to increment the photoactivity of the system. For instance, crystallinity and surface morphology of the photocatalyst strongly affects the photocatalytic efficiency of the system [84, 85]. Since, EHP generation as well as separation, as well as separation, depends on both crystallinity and surface properties of the photocatalyst. Generally, highly crystalline semiconductor materials render significantly high photocatalytic activity. Moreover, highly crystalline photocatalyst owing to minimal surface defects can effectively inhibit EHP recombination sites. The reduced particle size of the photocatalyst can also increment the photoactivity due to diminished EHP diffusion length [86-88]. Furthermore, trapping of photocarriers in a shallow energy range resides near the band edge level can be utilized to enhance the lifespan of EHP as well as to enhance their spatial separation [89]. Alongside, trapping of photocarriers significantly decreases their mobility as well as energetics [90]. For example, a sample of g-C₃N₄ holds a superior concentration of trapped electrons with the high lifespan of a microsecond to second [91]. However, due to profound trapping, these electrons could barely migrate to the surface sites of photocatalyst and participate in the photocatalytic process. Thus, some other strategies for superior migration and separation of photocarriers involve shortening of transmission distance, reduced surface defects and formation of heterojunction systems. In order to shorten the transmission distance for efficient charge migration and separation, reduction in particle size of photocatalytic material can be very useful [90]. Since, the possibility of EHP reassembly is very high with the suspended NPs with lesser size than that of electron-hole diffusion lengths. Through optimal starting material and synthesis routes, the particle size of the photocatalysts can be controlled. As the NPs with appropriately smaller size provides short diffusion distance through which carriers can easily transfer to the active surface sites and play a part in the process. Although defects at surface morphology act as active reaction sites and reduce the reassembly rate of EHP. However, the presence of killer defects at the surface of photocatalytic material serves as a recombination centre which greatly affects the photoactivity [92]. For controlling the surface defects and to promote the crystallinity of g-C₃N₄, a molten salt flux strategy by utilizing the mixture of NaCl/KCl was reported [93]. The addition of <u>a</u> mixture of salts in the synthesis remarkably enhanced the crystallinity and inhibits the formation of defects. Such a technique can be utilized to synthesise different

photocatalysts (SrTiO₃, Sn₂TiO₄, Ta₃N₅ etc.) with high crystallinity and <u>less_fewer_defects</u> [90,94,95]. Another frequently functionalized technique to suppress the reassembly of photocarriers is the tailoring of heterojunction systems. Till date, <u>the</u> formation of Z-scheme systems utilizing two or more than two semiconductor photocatalysts is greatly explored. The superior mechanistic functioning of Z-scheme system facilitates the effective separation and migration of photocarriers by inhibiting the reassembly of charge carriers. The systematic representation of different selectivity aspects along with the criteria to achieve them is represented in Fig. 6.

<Please Insert Fig. 6 Here>

Although, scientists have paid due attention to develop new advanced semiconductor photocatalysts to harvest solar light for various photocatalytic applications. However widespread applicability of photocatalytic material could be achieved if it is cost-effective and derived from earth-earth-abundant precursors. Compounds of Re, Ru, Os, Rh, Ir, Pd, Pt, Ag and Au are not referred as earth-earth-abundant as they are very costly due to the use of expensive precursors which limits their applicability on a commercial scale. However, the transition metal-metal-based photocatalysts involving the compounds of Mn, Fe, Co, Ni, Mo, Cu, and W are widely explored due to their earth-earth-abundant feedstock and significant photocatalytic features. Oxides of Fe for various photocatalytic applications have been heavily exploited as they are appealing photocatalytic material and globally scalable [96]. Besides, abundance and cost-efficiency of iron makes it a more suitable photocatalyst for the clean energy conversion process. Other than transition metals, carbonaceous materials namely graphene, and g-C₃N₄ are metal-free semiconductor material obtained from earth-abundant C and N rich precursors. Moreover, exceptionally high physicochemical stability and non-toxicity of $g-C_3N_4$ makes it more favourable and broadly utilized photocatalyst.

544 Other parameters which influence the selection of photocatalytic material involve the separation 545 and recycling ability of the photocatalyst. To maintain the cost-effectiveness in photocatalysis it 546 is equally essential that a photocatalytic material can be easily separated from the reaction 547 mixture and recovered for further usage. It is a well-known fact that photocatalyst with particle 548 size less than 1 µm offers great activity and stability as it experiences significantly low attrition. 549 But the main difficulty of utilising such small particles is their separation from the reaction

mixture. Selecting a photocatalytic material with magnetically rich properties can be a useful approach for the efficient separation of photocatalysts [97]. Thus, a significant advancement in this area can be explored to develop more photocatalysts with high magnetic behaviour for ease of separation. Other than this, immobilizing the nano-size powdered photocatalyst with a supporting material can effectively improve the separation without consuming much time. Since without immobilization, the chances of inefficient separation along with significant loss of photocatalyst are very high [98]. For instance, powdery g-C₃N₄ nanocatalysts do not exhibit magnetisation and are difficult to separate from the system. Consequently, it becomes important to develop a facile technique for the efficient immobilization of $g-C_3N_4$ utilizing a proper supporting material which avoids the costly as well as time-time-consuming separation process. For instance, Dong et al. immobilized powdery g-C₃N₄ nanocatalyst on well-arranged Al₂O₃ ceramic foam through the in-situ process [98]. It was observed that the optimal immobilization of g-C₃N₄ on Al₂O₃ supports was effectively achieved by pyrolysis at 600 °C for about 2 h. Moreover, the immobilized g-C₃N₄ photocatalyst exhibited excellent stability and recycling efficiency without deactivation.

The difficulties arise from the applicability of photocatalyst from laboratory to pilot scale applications which demand low-low-cost photocatalysts which exhibit superior redox ability and quantum efficiency. A more reliable mechanistic approach regarding solar light harvesting, separation of photocarriers, surface redox reactions, photocatalyst-liquid interface interaction and photo-reactor design should be incorporated for the widespread practical applications of the photocatalyst. Noteworthy, the biggest task of comparing various photocatalytic materials originates from the different reaction conditions along with variation in photocatalytic activity measurement [78]. Ultimately selecting an optimal photocatalyst which exhibits superior photocatalytic properties including, effectual visible light harnessing, separation/migration of charge carriers, effective transmission of photocarriers to the surface and significant surface adsorption capacity fulfils the basic condition in order to attain higher quantum efficiency.

Till date, various photocatalytic materials with significant photocatalytic activities have been
reported for various photoassisted activities [99-105]. Various reduction type photocatalysts like;
CdS, TaON, Cu₂O, Ta₃N₅, SiC, ZnS, Bi₂S₃ etc. have been successfully utilized for photoreduction of CO₂ as well as for H₂ generation (Fig. 7). Out of all these photocatalysts, graphite

graphite-like $g-C_3N_4$ is a most fascinating metal-free conjugated photocatalytic material due to its amazing physical as well as chemical features. The past few years have observed a $g-C_3N_4$ driven "gold-rush" excelling in the field of photocatalysis as an outstanding 2D metal-free conjugated polymer. Its low-cost, earth-earth-abundant and facile synthesis involving nitrogen nitrogen-rich precursors like urea [106,107], melamine [108-110], thiourea [111,112] and dicyandiamide [113,114] has have spurred enormous interests of research groups. In case of g- C_3N_4 , its CB potential locates around -1.12 V vs. NHE (pH = 0) and its VB potential locates at about 1.57 V. It is noteworthy that an oxidation photocatalyst with low VB edge position exhibits strong oxidation potential while, a reduction photocatalyst generally with high CB edge shows strong reduction ability [115]. Therefore, from the CB position of $g-C_3N_4$ (-1.12 V), it is evident that it is a reduction type photocatalyst with high reduction potential which is highly suitable for CO₂ reduction and water splitting through Z-scheme pathway. Since, Z-scheme charge transfer mode renders exceptionally high space charge separation efficiency and maintains considerably high redox ability of the system which is highly desired in photoconversion applications.

<Please Insert Fig. 7 Here>

5. All-Solid-State Z-scheme photocatalysts

In 2006, the first-first-ever all-solid-state Z-scheme TiO₂-Au-Cds system was constructed via a photochemical deposition-precipitation route which involved photoreduction of Au NPs (NPs) on TiO₂ surface. The photo reduced Au NPs act as reduction sites with CdS shell around and accelerated photocarrier's separation in ASS TiO₂-Au-CdS Z-scheme. The idea of solid electron mediator gained due attention of researchers because of the improved photocatalytic ability of an as-obtained ternary system (TiO₂-Au-CdS) than binary systems (Au-TiO₂ and TiO₂-CdS) [116]. An ASS Z-scheme photocatalytic system is fabricated without A/D pair, instead, a solid electron mediator (M) is used at the surface junction of two semiconductors which can be mentioned as SC-M-SC. By inserting a conductor (electron mediator), an-ohmic contact with small resistance is generated at the interface [117,118]. Because of this ohmic contact, the photo-irradiated CB electrons from SC-II can recombine directly with photoinduced holes from the VB of SC-I which lowers the distance of electron migration pathway in Z-scheme. Moreover, the absence of redox mediator perfectly avoids backward reactions occurring in the first-first-generation Z-scheme

system. Also, overall redox potential ability is increased as photoinduced electrons and holes in CB of SC-I and in VB of SC-II, respectively, are mostly reserved for forwarding redox reactions. Additionally, the absence of liquid-phase A/D pair in SC-M-SC systems extends its applications in both gaseous and solid-phase conditions for water splitting and photoreduction of CO_2 (Table 1). Electron mediators are comprised of redox mediators, conductors involving noble metal NPs and carbon materials which are applicable in liquid-phase Z-scheme (1st generation Z-scheme). However, redox mediators limit the wide-wide-scale application of Z-scheme system because of backward reactions, less light-light-harvesting and significantly poor tolerance towards pH change in photocatalytic reactions [119, 120]. In ASS Z-scheme systems, metal NPs like Au, Ag, Pt, Cu and Bi, and carbon family members; (GO, CNT, rGO, fullerene and carbon nanosheets (CNS)) are employed as solid electron mediators owing to rapid photocarriers separation as they act as electron sink [121-123]. Mediators and solid conductors act as a charge diffusion bridge in ASS Z-scheme system which endows significant isolation of photoinduced excitons. The following section will summarise ASS Z-scheme systems with different electron mediators (noble metal NPs and carbonaceous material) in photocatalysis.

626 5.1 Noble *metal-metal-mediated ASS photocatalysts*

Inherent anticorrosive nature of noble metals with resistance to chemical action and oxidation at high temperature expand their utilization in photocatalytic applications. The prominent feature of noble metal NPs is in the presence of absorption bands in optical spectral range due to resonance plasmon excitation. The existence of this plasmonic resonance is complemented by a sharp increase of electric field amplitude inside and around NPs leading to plasmon-excitons. It is widely apprehended that noble metal NPs can function as traps and boosted the transfer efficacy of photocarriers [124]. Besides, noble metal NPs exhibit surface plasmon resonance (SPR) that reinforce optical absorption of bulk g-C₃N₄ and at the same time foster thermal redox ability during photocatalytic reactions [125]. Recently, a sandwich-structured ternary photocatalyst $CdS/Au/g-C_3N_4$ with sulphur-doping was designed by bath deposition method [126]. The incremented photocatalytic activity of resulted ternary system was governed by water splitting and dye degradation applications as compared to binary systems CdS/g-C₃N₄ and Au/g-C₃N₄. The experimental results were explained using the Z-scheme charge migration mechanism in which Au NPs acted as electron transfer mediator. In order tT o fabricate a tunable heterojunction photocatalyst CdS/Au/g-C₃N₄, Au@CdS core-core-shell assembly was placed onto the g-C₃N₄

surface. The photocatalytic activity of heterojunction photocatalyst incremented about 125.8 times for hydrogen production compared to bulk g- C_3N_4 under visible light irradiation. These reports signify that a ternary photocatalyst involving both noble metal NPs and semiconductor is an effectual strategy for enhancing photocatalytic efficacy of $g-C_3N_4$. Moreover, synthesis procedure used to tailor ternary photocatalytic system CdS-Au-g-C₃N₄ turned out to be a major drawback since binary composite CdS-g-C₃N₄ is still found in resulting ternary composite. To surmount the aforementioned drawbacks, a more facile synthetic technique is practiced practised comprising of two-step photoreduction method.

In another work, Gao et al. utilized Ag metal NPs as an electron mediator and designed g-C₃N₄/Ag/LaFeO₃ nanocomposite through photoreduction deposition followed by hydrothermal route [127]. It was observed that the three-component ASS Z-scheme photocatalytic system exhibited exceedingly well photoactivity than those of single as well two-component system due to the SPR effect of Ag metal. The SPR effect induced by Ag metal NPs established an internal electric field in the Z-scheme system which helped in the effectual separation of photocarriers. The presence of Ag metal NPs in the microstructure of $g-C_3N_4/Ag/LaFeO_3$ nanocomposite was analysed by HR-TEM examination (Fig. 8a and b). The intact contact between g-C₃N₄ and LaFeO₃ was clearly visible along with deposited Ag NPs at the surface junction utilizing the scale of about 10 nm. Other than HR-TEM, XPS spectra were also observed to investigate the presence of Ag NPs in the Z-scheme heterojunction system. The XPS spectral studies indicated the presence of all the respective elements present in g-C₃N₄/Ag/LaFeO₃ ASS system along with their orbitals. Moreover, the Ag 3d spectra displayed the presence of both photos reduced Ag⁺ (with corresponding peaks at 368.2 eV and 374.2 eV) and Ag (with corresponding peaks at 367.6 eV and 373.5 eV). The effectiveness of charge migration and isolation was scrutinized via EIS (Fig. 8c) and photoinduced fluorescence spectroscopy (Fig. 8d) which demonstrated significantly deprived recombination rate of photocarriers in ternary g-C₃N₄/Ag/LaFeO₃ ASS system as compared with pristine and binary heterostructures. Consequently, the ASS Z-scheme heterojunction systems having noble-metal NPs as electron mediator remarkably boost the photocatalytic efficiency by effectively broadening the visible light response range along with increment in photocarriers migration and separation.

<Please Insert Fig. 8 Here>

Pt as noble metal NPs have has been vastly utilised as one of the most effectual cocatalysts in water-water-splitting reactions owing to its unique features which can modulate the selectivity and activity of a photoreaction depending upon its size [102]. Besides, the electron sink (acceptor/donor) ability of Pt NPs also facilitates its utilisation as electron transmission mediator in Z-scheme photocatalysis. For instance, Wang *et al.* reported Pt noble metal NPs as electron transmission bridge between PCN and $TiO_2@C$ fabricated through impregnation followed by calcination (Fig. 9a) which facilitated electron migration from macroporous carbon-carboncoated TiO₂ (TiO₂@C) \rightarrow Pt \rightarrow g-C₃N₄ [128]. Formation of ASS Z-scheme photocatalyst rendered effectual space charge separation which boosted photocatalytic CO₂ reduction into CH₄ with a rate of 6.56 µmolh⁻¹ and quantum efficacy 5.67%. Improved charge carrier separation kinetics favoured by ASS heterostructure system was confirmed by intense transient photocurrent responses and decreased Photoluminescence (PL) peak intensity of as-synthesised DOM-CNPTC nanocomposite. Fig. 9b depicts photocurrent responses of various samples which suggested superior charge migration kinetics in 3DOM-CNPTC nanocomposite with highest photocurrent responses. In another work, charge carrier kinetics of a narrow band semiconductor material Cu₂ZnSnS₄ (CZTC) was improved by forming its Z-scheme heterostructure with g-C₃N₄ through Pt as electron migration bridge [129]. Through LSV curves (Fig. 9c), the slight increase in current density under light illumination was observed which signified extended absorption in visible light leading to amended electronic features due to the involvement of Pt and CZTS. Surface plasmonic resonance along with electron sink property of Pt synergistically boosted opto-electronic features of as-resulted CZTS@Pt/g-C₃N₄ nanocomposite. The photocatalytic ability of CZTS@Pt/g-C₃N₄ ASS Z-scheme system was evaluated for photocatalytic CO_2 conversion into CO and CH₄ with average yields of 17.351 and 7.961 μ molg⁻¹h⁻¹ which was about 3.31 and 5.56 times higher than bare $g-C_3N_4$. The mechanistic insight representing potentials and pathway of effectual photocatalytic CO₂ reduction via more feasible Z-scheme mode over conventional type-I mode is depicted in Fig. 9d.

698 Summarily, combining two semiconductor photocatalysts with a noble metal NP as electron 699 mediator serves as a great for amended visible light harnessing and space charge isolation of 700 photoinduced excitons. As a result, the photoreaction kinetics of photocatalytic system gets 701 significantly improved owing to the presence of abundant charge carriers at the surface of 702 photocatalyst which can participate in photo-redox reactions. However, in spite of of despite such fascinating features, certain inherent drawbacks of noble metal NPs limit the wide-wide-scale applicability of them in photocatalysis.

<Please Insert Fig. 9 Here>

5.2 Carbon mediated ASS photocatalysts

Low-Low-cost carbon materials also serve as electron mediators in ASS Z-scheme photocatalysts since noble metals are expensive, photo-corrosive, and their recovery from solution is time-consuming. Carbon-Carbon-based materials have more active surface sites and can act as good sink and transporters of electrons [130]. Besides, the photostability of these materials under varying reaction conditions imparts exceptionally high reusability which boosts their performance as a catalyst for various solar energy conversion applications. For instance, in a fascinating work, Hu et al. represented the dual role of RGO as electron transmission bridge and binder in g-C₃N₄/BiOI/RGO ASS Z-scheme heterojunction system immobilized on Ni foam for efficient photocatalytic CO₂ reduction [131]. The enhancement in photoefficacy of the Z-scheme system was ascribed by effectual isolation and space separation of charge carriers owing to the incorporation of RGO as electron mediator and substantial difference in work functions of g-C₃N₄, BiOi and RGO which facilitated the migration of electrons from CB of g-C₃N₄ to VB of BiOI via RGO. The unique and significant role of carbonaceous material as electron sink and transfer medium not only foster electron migration but also improve the availability of excitons of photo-induced surface reactions leading to excellent photoactivity. 0D carbon dots (CD) are also facilely utilised as an electron mediator in a Z-scheme assembly of NiFe₂O₄ (NFO)/g-C₃N₄ (CN) fabricated through a simple wet chemical method [132]. Incorporation of 0D CD aided to convert a type-II heterojunction into Z-scheme system with CD as electron donor/acceptor moiety. The improved charge carrier separation efficacy of ASS Z-scheme NFO/CN/CD nanoheterostructure was analysed with PL spectroscopic analysis which showed significantly decreased PL intensity of the nanocomposite as compared to bare samples.

In a similar study, nanocarbon (C) as solid electron mediator in ASS $g-C_3N_4/ZnIn_2S_4$ (ZIS) Zscheme photocatalytic system was reported [133]. The photoactivity of <u>the</u> as-tailored system was assessed by H₂ production through water splitting. Moreover, the synergic effect of $g-C_3N_4$ coupled with nanocarbon coated ZIS boosted the photocatalytic H₂ generation due to the unique visible light harnessing as well as conducting ability of graphic phase nanocarbon. Due to the conducting behaviour of nanocarbon present at the interface of $g-C_3N_4$ and ZIS, the transference of electrons and holes was significantly improved. SEM and TEM analysis were was utilized to examine the microstructure and composition of the as-synthesised g-C₃N₄/C/ZIS system as depicted in Fig. 10a-c. From HR-TEM analysis (Fig. 10c) the lattice spacing of 0.328 nm and 0.321 nm corresponded to (002) plane of $g-C_3N_4$ and (102) plane of hexagonal ZIS, respectively were observed. While the solid-solid-state nanocarbon electron mediator having deprived crystallinity did not show any clear lattice fringes. To further explore the presence of nanocarbon in the tailored g- $C_3N_4/C/ZIS$ nanocomposite, thermogravimetric (TG) analysis were performed as shown in Fig. 10d and e. With increasing temperature range (400-602 °C) gradual decrease in the weight of g-C₃N₄/C/ZIS ASS Z-scheme system was observed suggesting the ignition of nanocarbon at this temperature. Furthermore, Raman spectrum displayed two apparent peaks at 1375 and 1523 cm⁻¹ which were ascribed to disordered (D) band and graphitic (G) band of carbon, respectively, and confirmed the presence of graphic carbon in the nanocomposite Fig. 10f.

<Please Insert Fig. 10 Here>

Thus, solid-state electron mediator in the ASS Z-scheme systems can efficiently promote the migration of photocarriers and boost the photocatalytic performance by causing spatially separated charge carriers to induce photo-redox reactions at different semiconductors. However, using solid-state electron mediator as a transmission bridge between two semiconductor photocatalysts accompany several adverse effects on the overall photocatalytic efficacy which are summarized as below;

- Use of coloured material in <u>the</u> electron transference process affects the effectual harnessing of visible light.
- (ii) Costly noble metal NPs are not only rare but also obstruct the visible light absorption due to their tendency to act as <u>a</u> strong absorber.
 - (iii) The presence of photocorrosive noble metals substantially limits the photocatalytic activity over varying pH range.
- (iv) The transmission distance of electrons from one semiconductor to another is significantly large due to the presence of solid electron mediator.

Therefore, it became necessary to tailor a photocatalytic system which not only avoids the use of electron mediators but also offers significant photocatalytic ability under different reaction conditions. The latest third generation of Z-scheme i.e. direct Z-scheme photocatalytic systems seem to be an effective approach to overcome all the drawback associated with ASS Z-scheme and provide appropriate redox potential for H₂ generation as well as for CO₂ reduction.

6. Direct Z-scheme photocatalysts

Direct Z-Scheme scheme nanohybrids were primarily introduced in 2013 which comprised of two semiconductor photocatalysts forming a compact surface junction and neglecting the requirement of Transmission Bridge for migration of electrons [134-136]. In comparison with traditional Z-scheme (generation I with redox mediator), direct Z-scheme system conquer backward reactions due to absence of redox mediators. Moreover, the shielding effect produced by charge carrier mediators (A/D pairs) is also effectively reduced. Furthermore, in contrast with ASS Z-scheme systems involving solid electron mediator, there is are no expensive and photo-corrosive metals included in direct Z-scheme system. In addition, the transmission distance for electron transfer gets remarkably decreased due to the absence of electron migration bridge formed by solid-state mediators. Although the structure of both type-II and direct Z-Scheme scheme system is similar vet their charge transfer mechanism is totally different as ascertain by various characterization methods [137, 138]. As mentioned before, in direct Z-scheme system the spatial separation of EHP follows inter cross-sectional electron transfer mechanism stimulated by the induced electric field at the interfacial junction, totally different from conventional heterojunction photocatalysts. Both semiconductors (SC-I and SC-II) under visible light illumination, generates EHP which undergo inter-cross-cross-sectional electron transfer via transference of e_{CB}^- present in SC-II to VB of SC-I and combines with holes. Eventually, e_{CB}^- on SC-I and h_{VB}^+ of SC-II are spatially separated with high redox potential values than <u>the</u> potential for radical's production (-0.33 V and +2.4 V vs. NHE for $\bullet O_2^-$ and $\bullet OH$ radicals, respectively). Also, through direct Z-scheme migration pathway of photogenerated EHP, the photon shielding problem induced due to redox mediators is effectively overcome resulting in higher absorption of visible light by semiconductor photocatalysts.

For instance, Low *et al.* smartly designed reusable TiO₂/CdS direct Z-scheme heterojunction system and evaluate its potential for photoassisted CO_2 reduction into methane [139]. The formation of an intact surface junction between TiO₂ and CdS as a result of direct Z-scheme coupling was investigated with in-situ irradiated X-ray photoelectron spectroscopy (ISI-XPS) as shown in Fig. 11a and b. Precisely, after the exposure of light, the slight positive shift in binding energy (by 0.3 eV) of Ti 2p peaks were observed owing to decreased electron density. Besides, under the same conditions, Cd 3d peaks exhibited negative shift by -0.2 eV due to increased electron density on CdS. These in-situ results depicted significant transference of electrons from TiO₂ to CdS under visible light illumination suggesting the formation of direct Z-scheme system instead of conventional type-II heterojunction. Such in-situ experimental observations provide an effective insight into the mechanistic pathway of charge carrier's migration and separation. In another study, a novel Z-scheme 2D/2D MnIn₂S₄/g-C₃N₄ (MnISCN) nanocomposite was prepared by hydrothermal route followed by in-situ loading of MnIn₂S₄ (MnIS) nanoflakes on g- $C_{3}N_{4}$ (CN) nanosheets [140]. Photoactivity of the system was assessed for TC degradation and H₂ production. X-ray diffraction (XRD) study supported the formation of an intact phase structure of MnISCN-20 system providing excellent constancy and durability of MnISCN nanocomposite. Furthermore, H₂ evolution ability of obtained photocatalyst was determined under visible light irradiation in an aqueous solution containing 0.25 M Na₂SO₃ and 0.35 M Na₂S. Bare CN and MnIS exhibited weak photocatalytic activity for H_2 generation with an average efficacy of 24.5 µmol g⁻¹ h⁻¹ and 58.3 µmol g⁻¹ h⁻¹, respectively. Besides, MnISCN-20 photocatalyst displayed substantial photocatalytic efficiency of 200.8 µmol g⁻¹ h⁻¹ which was about 3.5 times more than MnIS nanoflakes. The UV-Vis DRS results displayed that valance band maximum (VBM) of CN nanosheets and MnIS nanoflakes were at 2.35 eV and 1.15 eV, respectively. While, conduction band minimum (CBM) for CN nanosheets and MnIS nanoflakes were calculated to be at -0.58 eV and -0.74 eV, respectively. Thus, the narrow-band gaps of both the photocatalysts facilitate visible light absorption leading to band-to-band transition of photocarriers. It was found that production of •OH radical was not feasible due to more negative VB edge (+1.15 eV vs. NHE) of MnIS than the standard redox potential of •OH/H₂O (+1.99 eV vs. NHE), moreover, CB edge value of CN (-0.58 eV vs. NHE) was more positive as compared to standard potentials of O₂/H₂O₂ (-0.695 eV vs. NHE). Hence, Z-scheme charge transfer mechanism was framed in which the photoexcited electrons get migrated from CB of CN to VB

of MnIS generating photoexcited EHP with enhanced redox abilities to produce •OH radicals as shown in (Fig. 11d). Evidently, tTypical double transfer mechanism (Fig. 11c) is excluded which is in accordance to-with PL, ESR and trapping experiments. Thus, with the formation of the intact surface junction, direct Z-scheme heterojunction system endows superior optoelectronic properties which are in agreement with assorted characterisation techniques.

Other than binary nanocomposites, g-C₃N₄ based ternary novel Z-scheme heterojunction g-C₃N₄/MoS₂/Ag₃PO₄ (CMA) was successfully designed for O₂ evolution under white light illumination [141]. By exfoliation, highly conductive 2D MoS₂ nanoflakes and altered $g-C_3N_4$ nanosheets were concurrently coupled with Ag₃PO₄ (silver orthophosphate) resulting in a ternary direct Z-scheme CMA heterojunction system for enhanced O₂ production through OWS. The CMA composites with distinct MoS₂ amount showed significant variation in photocatalytic performances. Out of all the prepared CMA composites, CMA-20 composite (CMA composite with 20 mg MoS₂ loading) attributed best photocatalytic water oxidation efficacy. SEM analysis illustrated that large amounts of ECN nanosheets and MoS₂ were dispersed over uniform Ag₃PO₄ particles. From DRS plots, the band-gap of MoS_2 nanosheets was determined to be 1.72 eV. Furthermore, CB and VB edge potential were estimated to be at -0.1 V and 1.71 V, respectively. Based on these potential values, the photocarriers migration pathway was direct Z-scheme as illustrated in (Fig. 11e). Under simulated visible light illumination, photoexcited CB electrons in Ag₃PO₄ get transmitted to VB of MoS₂ and combines with photogenerated holes. Besides, photo-induced CB electrons in MoS₂ migrated and combined with VB holes of g-C₃N₄, leaving behind active holes in Ag₃PO₄ along with electrons in CB of g-C₃N₄ for effective photo-illuminated water splitting. In CMA nanocomposite, the presences of highly conductive MoS₂, exceptionally boost the photocarriers transfer efficacy by suppressing photogenerated EHP.

<Please Insert Fig. 11 Here>

Summarily, tailoring direct Z-scheme photocatalytic system with appropriate semiconductor
photocatalysts is an effective strategy to overcome various environmental and energy issues.
Since, direct Z-scheme photocatalytic systems hold great potential for superior migration and
separation of photocarriers while maintaining the apt redox ability of the system. However,
several challenges involving effectual solar light harvesting, high physicochemical stability, the

formation of intact surface junction and utilization of proper characterization techniques in order to investigate the charge migration pathways still needs improvement. Nevertheless, with breakthrough discoveries and <u>an</u> ever-growing number of publications in this area, it is evident that direct Z-scheme systems fan the flame in photocatalytic water splitting as well as CO₂ reduction applications.

858 7. Applications of Z-scheme photocatalytic systems

859 7.1 Photocatalytic CO₂ reduction

As the efforts of researchers on photoassisted CO₂ reduction increases, new directions and tendencies emerges. Recent reports display certain common perspectives of designing and tailoring Z-scheme photocatalytic systems in order to stimulate high photo to functional energy conversion efficacy with high product selectivity. Since, photocatalytic Z-scheme setup involves two different semiconductor materials to bring about dual excitation after visible light exposure and efficaciously separate photocarriers. Thus, photocatalytic CO₂ reduction into useful fuels utilizing Z-scheme photocatalytic systems seems as like a beneficial technique for contemporaneous environmental remediation and partly partial fulfilment of energy requirements [142-149]. However, designing of Z-scheme photosystems with utmost selectivity of products in case of CO₂ reduction is very crucial. For instance, Jo *et al.* rationally tailored Bi₂WO₆/RGO/g- C_3N_4 (BWO/RGO/CN) nanocomposite for photoassisted CO_2 reduction into CO and CH_4 [150]. The as-tailored ASS Z-scheme photocatalyst containing 15 wt% BWO and 1 wt% RGO displayed remarkable efficiency in the photoreduction of CO₂ with notable selectivity of 92% against H₂ production. The unique assembly of 2D photocatalytic materials along with the dual role of RGO (electron capture and redox mediator) in ASS Z-scheme system played a leading role in photoactivity enhancement. To scrutinize the CO₂ reduction efficiency of the aforementioned system, experiments utilizing pristine as well as binary samples of BRC 15 PM (a mixture containing RGO-1 wt%, CN and BWO-15 wt%) and commercial P25 catalyst, as well as binary samples of BRC-15 PM (a mixture containing RGO-1 wt%, CN and BWO-15 wt%) and commercial P25 catalyst, were performed as depicted in Fig. 12a. Clearly, BWO/RGO/CN ASS Z-scheme system exhibited superior photoreduction efficiency which was ascribed to the synergistic effect between 2D components of the heterojunction. Besides, the photocatalytic system also showed improved H₂ evolution with 185 µmol quantum yield which

was far better than pristine and binary samples. Furthermore, to investigate the effectiveness of space charge separation as well as the dual functionality of RGO, transient photocurrent analysis, as well as the dual functionality of RGO, transient photocurrent analysis, was utilized. From Fig. 12b the photocurrent responses of different photocatalysts during five on-off cycles of intermittent light exposure can be seen. Evidently, a All the BWO/RGO/CN nanocomposites exhibited better photocurrent responses in contrast with other photocatalysts suggesting a superior separation of photocarriers in the composite. Notably, the photocurrent results were well consistent with the PL as well as photocatalytic analysis. The proposed Z-scheme charge transfer mechanism of BWO/RGO/CN for photoassisted CO₂ reduction is depicted in Fig. 12c. Through Z-scheme charge transfer mode containing RGO as the transmission bridge, the photoinduced holes were accumulated on VB of BWO while the photoexcited electrons were collected at CB of CN. As a result, the VB holes of BWO reacted with water to produce O₂ and protons while the CB electrons of CN after returning to RGO interacted with adsorbed CO₂ to produce CO₂. radicals which in turn generated CO, CH₄ and H₂. Moreover, due to synergistic effect of BWO, RGO and CN in the photocatalytic system the reassembly of photocarriers was drastically decreased resulted in increased electron density on the system which effectively facilitated the formation of CH₄ and CO.

<Please Insert Fig. 12 Here>

Till date, various photocatalytic systems utilizing photosensitive AgCl in Z-scheme photocatalysts have been explored due to their unique property of switching from Ag⁺ to metal Ag⁰ which facilitate the space isolation of photocarriers. Besides, due to appropriate band edge positioning of AgCl ($E_{VB} = 3.19 \text{ eV}$ and $E_{CB} = -0.05 \text{ eV}$), it can be coupled with reductive g-C₃N₄ photocatalyst in Z-scheme mode to stimulate the photoassisted reduction of CO₂. Keeping that in mind, Murugesan et al. tailored a novel direct Z-scheme AgCl@g-C₃N₄ nanohybrid by loading different AgCl ratios on g-C₃N₄ through improved deposition-precipitation synthesis route [151]. Remarkably, the wide band-gap of AgCl (3.26 eV) obstructed visible light absorption but localised SPR effect in Ag⁰ facilitated absorption of light leading to the generation of photocarriers. Also, PL studies supported the heterojunction formation between AgCl and g-C₃N₄ resulting in suppressed recombination of photoinduced EHP. Notably, the PL emission intensity of aforementioned photocatalytic system decreased with the presence of AgCl in the composite suggesting the formation of intact surface junction which effectively inhibited the

914reassembly of EHP. Detailed synthesis and charge migration route is-are explicated in (Fig. 13).915Proposed Z-scheme mechanism of $1\%AgCl@g-C_3N_4$ elucidated that accumulated916photogenerated electrons on AgCl surface combine directly with VB holes of g-C_3N_4 suppressing917EHP recombination. Further, photo-illuminated CB electrons of g-C_3N_4 owing sufficient918potential can reduce CO₂ into methane, acetic acid and formic acid as confirmed through gas919chromatography analysis. The mechanistic reactions involving the photoreduction of CO₂ is as920follows:

$$CO_2 + 8H^+ + 8e^- \rightarrow CH_4 + 2H_2O$$
 $E_0 = -0.24 \text{ V vs. NHE}$ (20)

$$2CO_2 + 8H^+ + 8e^- \rightarrow CH_3COOH + 2H_2O$$
 $E_0 = -0.31V \text{ vs. NHE}$ (21)

(22)

 $CO_2 + 2H^+ + 2e^- \rightarrow HCOOH$ $E_0 = -0.58 \text{ V vs. NHE}$

<Please Insert Fig. 13 Here>

Thus, the unique combination of semiconductors with complimentary band edge positioning to extend visible light absorption and to improve the redox ability of photocatalytic systems *via* efficient charge isolation can substantially enhance the photoreduction efficacy of CO₂.

In another study, Xu and his peer group designed a ternary Ag₂CrO₄/g-C₃N₄/GO nanocomposite (CAG) using a photosensitizer (Ag₂CrO₄) and a cocatalyst (GO) for CO₂ reduction into CH₃OH and CH₄ [152]. Less particle size of Ag₂CrO₄ facilitated its combination with N-H groups present on the wrinkled g-C₃N₄ surface via co-ordination bond. As a result, the strong junction was established between g-C₃N₄ and Ag₂CrO₄ which in turn boosted space separation of photocarriers. The as-synthesised CAG photocatalyst displayed improved photocatalytic efficiency for CO₂ conversion with 0.30 h⁻¹ turnover frequency $(2.3 \times 2 \text{ g-C}_3 \text{N}_4)$. Similar band structure along with suitable loading ratio of Ag₂CrO₄ helped to construct direct Z-scheme heterojunction stimulated by an internal electric field (IEF) across Ag₂CrO₄/g-C₃N₄ junction resulting in CO₂ adsorption and subsequent reduction (Fig. 14a). Also, the addition of GO as cocatalyst endorsed charge transfer along with plentiful adsorption and catalytic sites for CO₂. Since, the 2D porous network structure of GO containing -COOH and -OH groups stimulated the transportation as well as binding of CO_2 molecules. To investigate the effectiveness of charge migration and separation through Z-scheme mode, fluorescent spectroscopy along with

photocurrent measurements were carried out. Evidently, tThe ternary composite displayed weakest PL emission intensity which was attributed to the exceptional electron sink behaviour of GO resulted in inhibited direct recombination of photocarriers. Besides, the photocurrent analysis of ternary CAG photocatalyst also indicated the efficacious charge separation in the sample by showing the highest photocurrent response than that of pristine and binary samples-. Upon visible light illumination and under the effect of IEF, CB electrons of Ag₂CrO₄ combined with photoinduced VB holes of g-C₃N₄ with an accumulation of electrons and holes in CB of g-C₃N₄ and VB of Ag₂CrO₄, respectively. Photoinduced CB electrons of g-C₃N₄ with sufficient potential reduced CO₂ into functional fuels like CH₃OH and CH₄ whilst, photogenerated VB holes of Ag_2CrO_4 reacted with water to produce O_2 . Besides, lower GO potential (-0.49 V vs. NHE, pH = 7) than g-C₃N₄ was a thermodynamically favourable condition for migration of CB electrons of $g-C_3N_4$ onto the conductive network surface of GO. Thereby, CAG ternary nanocomposite displayed improved photocatalytic CO₂ conversion efficiency because of the effective synergetic outcome of Ag_2CrO_4 , g-C₃N₄ and GO. Thus, it is quite evident that by combining plasmonic semiconductor photocatalyst with carbonaceous electron sink materials synergy between extended light absorption and charge separation can be achieved leading to boosted photocatalytic efficacy.

It has been widely reported that the transition metal oxides with broad-band edge positioning contains partly filled d-orbitals which extend the absorption of light in the visible region due to d-d transitions [153]. Typically, MnO₂ with partly filled d-orbitals is a prominent transition metal oxide semiconductor photocatalyst having fascinating features like economic, abundance, superior physicochemical stability and environmental friendly. Moreover, due to the multiple valances of MnO₂, it can act as a semiconductor photocatalyst which can effectively enhance the visible light absorption as well as photoactivity after coupling with reductive g-C₃N₄. For example, Wang at el. designed $MnO_2/g-C_3N_4$ nanocomposite via facile in-situ oxidation-reduction reaction comprising KMnO₄ and MnSO₄.H₂O absorbed on the g-C₃N₄ surface [154]. The as-obtained enhanced CO₂ reduction efficacy was accredited to synergetic catalytic effect developed during heterojunction construction between MnO₂ and g-C₃N₄. Moreover, the interface bonding between Mn²⁺ and ubiquitously present NH₂ functional groups on g-C₃N₄ surface boosted the spatial separation of photocarriers. Also, through ohmic contact developed at the interface, the photogenerated CB electrons of MnO₂ shifted to the VB of g-C₃N₄ (Fig. 14b)

provided effective space charge separation. Besides, CB electrons of g-C₃N₄ reacted with absorbed CO_2 under the influence of protons to generate CO and H_2O . To further elucidate the charge migration and effective separation, electrochemical impedance spectroscopy (EIS) as well as photocurrent responses, as well as photocurrent responses, were examined. It was observed that the MnO₂/g-C₃N₄ nanohybrid exhibited exceedingly enhanced photocurrent density in contrast with bare g-C₃N₄ indicated highly suppressed reassembly and effective separation of EHP. Thus, the notable features like: matched band alignments, improved visible light harvesting and synergistic interactions between MnO₂ and g-C₃N₄ due to solid C-O bonding at the surface junction substantially incremented the photoassisted conversion of CO₂ into CO.

As a whole, a large number of semiconductor photocatalysts have been developed lately in order to get the optimal photocatalytic CO₂ conversion efficiency. However, with the present scenario of photocatalytic materials and photo-efficiency, the photoassisted reduction of CO₂ cannot be implemented on an industrial scale. The improved results obtained from Z-scheme photocatalysis involving fascinating reductive type $g-C_3N_4$ semiconductor seems to be a good approach to attain widespread applications. However, the selection of adjoining semiconductor photocatalyst, design of photoreactor and selective reduction of CO₂ into functional hydrocarbon fuels still require more attention by researchers.

<Please Insert Fig. 14 Here>

7.2 Photocatalytic water splitting

Photocatalytic water splitting is vital in order to meet desirable energy source, without reckoning on fossil reserves [155-163]. However, even after breakthrough discoveries in photocatalysis, H₂ generation through photoassisted water splitting utilizing semiconductor materials is still far from the reach of pilot-pilot-scale applications. In order to improve the visible light harnessing along with resultant photo_efficiency a number of several strategies involving texture engineering, bandgap modifications, incorporation of co-catalyst and so on, have been developed. So far, mimicking natural photosynthesis to form artificial Z-scheme photocatalysis empowers efficient solar energy utilization for photocatalytic H₂ generation through water splitting. In that regard, metal-free 2D reductive type g-C₃N₄ promptly becomes a promising candidate for photocatalytic H_2 generation due to its exceptional physicochemical features. Hybridising $g-C_3N_4$ with another metal-free semiconductor photocatalyst to form a Z-scheme

heterojunction system can effectively impart high photocarriers separation efficacy along with superior redox ability to enhance the overall photoactivity. For example, innovative work by Wang et al. anticipated two metal-metal-free C₃N/g-C₃N₄ nanocomposites in which g-C₃N₄ sheet (single layer/bilayer) was concealed with monolayer C_3N [164]. Investigations revealed that the band bending caused by strong internal electric fields at the respective interface region of 1012 photocatalysts facilitate the migration of photocarriers through Z-scheme rather than type-II route. A proposed direct Z-scheme mechanism for OWS (Fig. 14c) explicates photoexcited CB electrons of C_3N monolayer possess sufficient potential for HER while VB holes of g- C_3N_4 are used to oxidise H_2O into O_2 . From experimental results, it was observed that due to migration of photoinduced electrons from C_3N to monolayer or bilayer g- C_3N_4 sheet, strongly built-built-in electric field was induced which caused band bending in C₃N and g-C₃N₄ sheets upward and downward, respectively. Consequently, the CB edge potential of C₃N monolayer and VB edge of $g-C_3N_4$ in the nanocomposite were suitable enough with the photocatalytic water redox potentials. Moreover, the synergistic effect induced due to coupling of two metal-metal-free 2D materials facilitated the harnessing of visible light from visible to NIR region.

The concept of hydrogen evolution through water decomposition using Z-scheme photocatalysis is a ground-breaking strategy for the sustainable and eco-friendly method for energy development [165-174]. However, the key concern of tailoring a Z-scheme photocatalytic system involves the semiconductor photocatalysts with well-matched band alignments best suited for water redox potentials. Coupling $g-C_3N_4$ with TiO₂ serves as a great deal since, there band edge positions match well together. Besides, the involvement of Au NPs as a solid electron mediator with dual functionality to act as a photosensitizer as well as their ability of SPR effect can significantly boost the photocatalytic H₂ generation. Best-The best example in this regard is the work by Zou et al. who engineered g-C₃N₄/Au/C-TiO₂ hollow spheres as ASS Z-scheme photocatalyst with Au NPs as solid-state electron mediator [175]. Upon solar light illumination, incremented photocatalytic efficacy of $g-C_3N_4/Au/C-TiO_2$ nanocomposite was evaluated for H_2 production. It was reported that incorporation of Au NPs as electron mediator facilitated the absorption of light in visible range due to SPR effect. From HR-TEM experiments, presence of Au NPs in the heterojunction system was evaluated where the lattice fringes with d-spacing of 0.35 nm ((001) facet of anatase TiO₂) and 0.24 nm ((111) facet of Au) were observed. On the other hand, C-doping introduced a mid-gap state near the VB of TiO₂ extending light absorption

to longer wavelength. PL studies indicated that •OH radicals were the leading ROS for photocatalytic H₂ evolution which is possible only through <u>the</u> Z-scheme migration pathway. Since, through <u>the</u> double-charge migration route, the redox potential of the system was not sufficient enough for the generation of •OH radicals in <u>the</u> majority. The proposed ASS Zscheme charge transfer mode illustrating the band alignments of g-C₃N₄, Au and C-doped TiO₂ is depicted in Fig 15a. The electrons from CB of C-TiO₂ migrated through Au NPs to VB of g-C₃N₄ and combined with holes. Simultaneously, photogenerated CB electrons in g-C₃N₄ reduced H⁺ to H₂ besides VB holes of C-TiO₂ oxidized sacrificial agents into products. As a result, the aforementioned nanocomposite exhibited superior photoassisted H₂ evolution rate which was 42 and 86 times higher than that of g-C₃N₄ and C-TiO₂, respectively. Thus, efficient visible light harnessing, superior redox ability and effectual migration/separation of photocarriers through ASS g-C₃N₄/Au/C-TiO₂ nanocomposite synergistically stimulated the photocatalytic efficacy.

In summary, the reductive type $g-C_3N_4$ with appropriate CB and VB edge potentials is undoubtedly a fascinating semiconductor photocatalyst in Z-scheme water splitting applications. Also, the coupling of $g-C_3N_4$ with an appropriate photocatalyst in order to form a Z-scheme hybrid is a promising tactic to boost its photoassisted water splitting performance. Various direct Z-scheme photocatalysts with their photocatalytic abilities for H₂ generation and CO₂ reduction are summarised summarized in Table. 2.

<Please Insert Fig. 15 Here>

7.3. Other applications

Although dinitrogen (N₂) is the most abundant gas in <u>the</u> atmosphere, yet 'fixed' nitrogen form bioavailability for living organisms is minimal [176]. In order to fulfil these necessities, nitrogen fixation under mild conditions is essential since artificial N₂ fixation through <u>the</u> Haber-Bosch process involves high energy involvements. Thus, developing advanced strategies which involve green and sustainable energy sources is highly desired. Photocatalytic N₂ fixation utilizing never lasting solar energy is a green and economical technique for the conversion of N₂ into NH₃ [177, 178]. For example, Cao *et al.* described aromatic rings of 3, 4-dihydroxybenzaldehyde (DBD) as an electron mediator in Ga₂O₃/graphitic carbon nitride (Ga₂O₃-DBD/g-C₃N₄) ASS Z-scheme heterojunction for solar light assisted photocatalytic nitrogen fixation [179]. The as-tailored nanocomposites were found to exhibit high photocarriers separation efficacy, improved visible-
light absorption along with high redox capacity due to the formation of a conductive interface between Ga₂O₃-DBD and g-C₃N₄. The proposed charge migration mechanism in relevance with experimental results was Z-scheme mode with DBD rings as electron mediator instead of typical type-II as illustrated in (Fig. 15b). Spin trapping electron paramagnetic resonance (EPR) technique confirmed $\cdot CO_2^-$ as the main active species responsible for N₂ fixation (Fig. 15c). Moreover, the facile generation of $\bullet CO_2^-$ (E₀ = 1.8V) radicals with sufficient potential prompted the photoassisted reduction of N₂ to NH₃. The photocurrent measurements observed for 2.4% Ga₂O₃-C₃N₄ and 2.4% Ga₂O₃-DBD/g-C₃N₄ are depicted in Fig. 15d. It can be clearly-seen that the photocurrent response of 2.4% Ga_2O_3 -DBD/g-C₃N₄ was observed to be much higher than that of 2.4% Ga₂O₃-C₃N₄, suggesting the superior space charge separation due to the construction of Z-scheme involving DBD rings as the electron mediator. Due to Z-scheme charge migration route, high potential photogenerated CB electrons of g-C₃N₄ converted O₂ to H₂O₂ while VB holes of Ga₂O₃ with sufficient redox potential generated •OH radicals from H₂O. Furthermore, •OH radicals reacted with CH_3OH to produce • CO_2^- which facilitated the reduction of N₂ to NH₃.

<Please Insert Fig. 15 Here>

In another work, Liu and his team reported the facile fabrication of porous g-C₃N₄ loaded with Fe₂O₃ for the photocatalytic conversion of N₂ to ammonia [180]. Coupling g-C₃N₄ (porous) with Fe₂O₃ substantially incremented the photocatalytic N₂ reduction rate driven by artificial solar light. Of note, the g-C₃N₄/Fe₂O₃ (< 1 wt%) (GF) nanocomposite exhibited 47.9 mg/L/h rate of photocatalytic production NH₃ from N₂ reduction which was about 6 times higher than pristine g-C₃N₄. To examine the photocatalytic activities of GF composites annealed at different temperatures for the photoassisted reduction of N_2 , the experiments were performed in a water system with bubbling N₂ atmosphere under the exposure of 300 W Xe lamp. And the rate of NH₃ production by different GF composites is depicted in Fig. 16a. The investigation further revealed that the GF composite annealed at 500 °C (GF-500) exhibited an exceedingly high rate of NH₃ generation (47.9 mg/L/h) which significantly decreased after an additional increase in annealing temperature, suggesting the importance of Fe₂O₃ in the composite. Moreover, the photocurrent responses also suggested that the GF composites exhibited higher photocurrent intensity due to the effectual separation of photocarriers (Fig. 16b). The GF-500 composite displayed photocurrent intensity of 4.5×10^{-6} A which was much higher than that of g-C₃N₄ (1.0 × 10⁻⁶ A).

Furthermore, the possible Z-scheme charge transfer pathway is depicted in Fig. 16c. Because of suitable band edge positioning, the photo-excited CB electrons of Fe_2O_3 rapidly combine with VB holes of g-C₃N₄ and form a Z-scheme system. Due to Z-scheme charge transfer mode, effectual space charge separation was attained resulted in <u>well-well-</u>maintained redox abilities suitable for photocatalytic N₂ reduction.

<Please Insert Fig. 16 Here>

Other than energy conversion applications, photocatalysis is in constant limelight for environmental remediation involving biotic and abiotic pollutant degradation, noxious gases removal and harmful electromagnetic waves absorber [181-185]. Thus, with consistent research efforts in the field of photocatalysis, more efficient semiconductor materials with high stability, recyclability, non-toxicity and extended visible spectral response can be designed with critical significance in both theory and practice.

8. Conclusion and viewpoint

The discussion in <u>the</u> present review highlights <u>the</u> photoassisted energy conversion applications that could provide a light of hope to overcome the energy issues rising globally. Selecting an appropriate photocatalytic material which fulfils all the imperative criteria is of utmost concern. Architecting visible light stimulated Z-scheme photocatalysts is in rife attention by dint of its great potential in various photocatalytic applications that aids to serve as a promising aspirant for solar light harvesting and environmental restoration. As explained in <u>a</u> review of literature, fascinating properties of reductive type g-C₃N₄ like its tunable electronic structure and first-rate physicochemical stability complements its coupling with other semiconductor materials with appropriate band potentials <u>in order</u> to achieve improved photoactivity. This review encircles farreaching aspects of recent research work on all solid state and direct Z-scheme photocatalysis inspired by artificial photosynthesis together with its captivating applications like CO₂ reduction, photocatalytic water splitting and nitrogen fixation (Fig. 17). Construction of Z-scheme photocatalysts involving reduction type photocatalysts has some characteristic qualities which extend its application in various pitches as:

(1) To attain water splitting, Z-scheme system involving reduction type photocatalysts has overruled conventional double transfer system by outspreading wavelength towards NIR to offer maximum optical absorption along with improved redox ability. Furthermore, <u>the</u> Z-scheme ⁴ 1131 photocatalytic system is capable to encompass both half-cell reactions deprived using sacrificial ⁶ 1132 reagents for water splitting.

(2) For photocatalytic CO₂ reduction, constructing reduction type g-C₃N₄ based Z-scheme 8 1133 10 1134 photocatalytic system provides efficiently high redox ability. Since $g-C_3N_4$ is a reduction type 12¹¹1135 photocatalyst moreover existence of ubiquitous -NH and -NH₂ Lewis basic groups provide 1136 effective absorption sites for CO₂ along with the generation of photocarriers for its reduction.

¹⁵ **1137** 16 (3) Tailoring of Z-scheme systems which include reductive photocatalysts render sufficient 171138 catalytic surface sites, improved generation of ROS and suppressed EHP recombination which boosts the overall photocatalytic efficacy. 19 1139

₂₁1140 (4) Integrating $g-C_3N_4$ with a suitable photocatalytic material which offers SPR effect is of great ²² 23 **1141** potential as it extends visible light harnessing ability of Z-scheme system. As a result, the Z-²⁴ 1142 scheme mode synergistically improves optical response along with charge carrier isolation ²⁶ 1143 27 efficiency.

(5) Involvement of carbonaceous material as electron sink provides additional help to boost the charge carrier's kinetics and enhance the availability of electrons to participate in photo-redox reactions.

<Please Insert Fig. 17 Here>

• Current scenario

³⁷ 1149 To date, Z-scheme photocatalysis is a developing strategy as it provides superior photocatalytic 39 1150 efficacy over traditional double charge transfer mechanism. The reason of improved photoactivity is ascribed by its ability to generate photo-illuminated charge carriers, their 41 **1151** 43 **1**152 effective spatial separation, more catalytic surface sites, the formation of active species, a 45 **1**153 prolonged life-time of ROS and enhanced redox abilities by using two photocatalysts. However, 46 47 **1**154 the first and second generation of Z-scheme photocatalysis has some pitfalls which restrict their ⁴⁸ 1155 widespread applications. In detail, traditional or liquid-phase Z-scheme photocatalysts use liquid 50 1156 state redox mediators which undergo thermodynamically favourable backward reactions resulting in low photoactivity. Moreover, in the second generation of the Z-scheme system, use of noble-metals as solid-state electron mediators not only renders visible light absorption but is also photo-corrosive which affect the photocatalytic efficiency. In ASS Z-scheme system, optimal modification in the geometrical configuration is the most desirable strategy to boost the photocatalytic performance. On the other hand, various efforts in-in-band modification of direct

38

1 2 3

5

7

9

11

13 14

18

20

28 1144

30 1145 31 ₃₂ 1146

³³ 34 **1147**

³⁵ 36 **1148**

38

40

42

44

49

51

29

⁴ 1162 5 1163 7 Z-scheme photocatalysis unleashed its inside out properties. Still, significant efforts by researchers are underway to architect more efficient systems of this type.

• Challenges and outlook for researchers

1 2 3

8 1 1 6 4

9 10 **1**165

 12^{11}_{12} 1166 13^{13}_{14} 1167

¹⁵ 1168

¹⁷1169

²² 23 **1172**

²⁶ 1173 ²⁶ 1174 ²⁷

²⁸ 1175

30 1176 31 32 **1**177

1179 36 ³⁷ 1180

39 1181 40

41 **1182** 42 43 **1**183

 $\frac{46}{47}$ 1185

⁴⁸ 1186

52 1188 53 ₅₄ 1189

⁵⁷ 1191

1173

18 19 **1170**

20 21 **1171**

24

29

33 ₃₄1178

35

38

44 45¹¹⁸⁴

49 50 **1187**

51

55 55 56 **1190**

63 64 65

11

In Z-scheme systems, a rational assortment of photocatalytic material is protagonist among all other conditions. Choosing an appropriate semiconductor material with apt band edge potentials is of foremost importance along with some other 'nuts-and-bolts';

- (1) Semiconductors with narrow band-gap and sufficient redox sites are favourable for the development of Z-scheme photocatalysis as it expedites harnessing of visible light and generation of active species for various oxidation/reduction reactions.
- (2) Morphological features also play an important role in active species generation as semiconductor materials with ultrathin structure accelerates the diffusion of photoinduced carriers onto the semiconductor surface and stimulates redox reactions.
- (3) Alongside, fabrication of new coupled systems hinge on rational interface-engineering methodologies is an additional tactic that should be taken into account. In direct Zscheme systems establishment of surface phase junction between two photocatalysts plays a key role in space charge separation due to induced internal electrical field. Nevertheless, it is important that the migration pathway of photocarriers and direction of built-in electric field must overlap each other in order to achieve accelerated charge separation which can be further improved by band bending through polarization.
- (4) For effective forward charge transference and utilization along with suppressed reassembly, integrated co-catalyst/semiconductor systems should be rationally designed. Of note, challenging deposition of ultrathin layer precisely on the semiconductor surface without obstruction in migration of photocarriers to co-catalyst can be prevailed partially using atomic layer deposition technique.
- (5) Deprived absorption of undeviating sun-light is another bottleneck along with scalability and operability of photocatalytic material for their long lifespans in forthcoming practical applications.
- (6) Higher practicability of a photocatalyst is associated with its separation efficiency, thereby, semiconductor materials should be anchored on functional polymeric inorganic membranes to achieve effectual separation efficacy.

- 1 2 3 ⁴ 1192 5 ⁶ 1193 7 8 1 1 9 4 9 10 **1195** 11 1196 12 13 14 1197 ¹⁵ 1198 16 17 1199 18 19 1200 20 21 **1201** 22 23 **1202** ²⁴ 1203 25 ²⁶ 1204 28 1205 29 30 1 206 31 ₃₂ 1207 ³³ 34 **1208** ³⁵ 36 **1209** ³⁷ 1210 38 39 1211 40 41 **1212** 42 4₃⁻1213 ⁴⁴₄₅1214 46 47 1215 ⁴⁸ 1216 49 50 **1217** 51 52 1218 53 $_{54}^{-}$ 1219 ⁵⁵ 56 **1220** ⁵⁷ 1221 ⁵⁹ 1222 60 61 62 63 64 65
- (7) Advanced characterization techniques should be implemented to understand interfacial activities of semiconductors to utilize their worth fully in photocatalytic activity.
- (8) More in-situ investigation techniques should be incorporated in order to examine the charge migration pathway and <u>the underlying reaction mechanism</u>.

To trigger a plethora of attempts in <u>the</u> modification of g-C₃N₄ based Z-scheme photocatalysis, some other considerations should also be envisaged like; semiconductor material should have improved visible light response, relatively high VB edge to provide strong oxidation potential, high physicochemical endurance and surface contact should be compact. From future perspectives, the development of Z-scheme photocatalysis involving reductive photocatalysts is <u>in need ofneeds</u> revision as; the mechanistic charge transfer pathway on <u>the</u> surface of semiconductors is still blurred and should be explored more. In ASS systems fermi level positions of solid-state electron mediator and semiconductor must be precisely concerned. Furthermore, modification in band edge positioning should be exploited in order to achieve superior redox abilities. Also, factors which influence the quantum efficiency of photocarriers should be evaluated. Only <u>a</u> few studies have reported in-situ characterisation techniques for clarity of charge carrier migration pathway *via* Z-scheme mode. More such techniques should be involved for scrutinising charge transfer pathways through Z-scheme mechanism.

Considering our present level of knowledge and available technology, updating photocatalytic efficacy on industrial level utilizing narrow band-gap semiconductors which are lucrative and abundant still needs improvement. More development in the field of Z-scheme photocatalysis is peremptory, preferably in conjunction with innovative discoveries emanate from inclusive research areas. Thus, it is our genuine hope that putting more efforts on this research area will definitely accelerate its widespread applications.

1 2				
3 ⁴ 1223 ⁵ 1224	References			
6 1224 7 1225	[1]	K. Qi, B. Cheng, J. Yu, W. Ho, Chin. J. Catal. 38 (2017), pp. 1936–1955.		
8 ₉ 1226	[2]	J. Yu, S. Wang, J. Low, W. Xiao, Phys. Chem. Chem. Phys. 15 (2013), pp. 16883-		
$^{10}_{11}$ 1227		16890.		
$\frac{12}{12}$ 1228	[3]	S.Y. Lee, S. J. Park, J. Ind. Eng. Chem. 23 (2015), pp. 1-11.		
14 1229	[4]	N. Chandela, S. Sharmaa, V. Duttaa, P. Raizadaa, A.H. Bandegharaeic, R. Kumar, V.K.		
16 1230		Gupta, S. Agarwal, P. Singha, Desalin. Water Treat. (2020), pp. 1–19.		
17 18 1231	[5]	J. Hu, P. Zhang, J. Cui, W. An, L. Liu, Y. Liang, Q. Yang, H. Yang, W. Cui, J. Ind.		
19 20 1232		Eng. Chem. 84 (2020), pp. 305-314.		
$^{21}_{22}$ 1233	[6]	L.S. Yoong, F.K. Chong, Binay K. Dutta, Energy 34 (2009), pp. 1652–1661.		
$^{23}_{24}$ 1234	[7]	M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, Renew. Sust. Energ. Rev. 11 (2007),		
²⁵ 1235		pp. 401–425.		
27 1236	[8]	M.S. Akple, J. Low, Z. Qin, S. Wageh, A.A. Al-Ghamdi, J. Yu, S. Liu, Chin. J. Catal.		
29 1237		36 (2015), pp. 2127–2134.		
³⁰ 31 1238	[9]	A. Kumar, P. Raizada, P. Singh, A.H. Bandegharaei, V.K. Thakur, J. Photochem.		
³² 33 1239		Photobiol. A: Chem. (2020), pp. 112588.		
³⁴ 35 1240	[10]	P. Singh, K. Sharma, V. Hasija, V. Sharma, S. Sharma, P. Raizada, M. Singh, A.K.		
³⁶ 1241 37		Saini, A.H. Bandegharaei, and V.K. Thakur, Mater. Today Chem. 14 (2019), pp.		
38 1242		100186.		
40 1243	[11]	X.H. Xia, Z.J. Jia, Y. Yu, Y. Liang, Z. Wang, L.L. Ma, Carbon 45 (2007), pp. 717–721.		
41 42 1244	[12]	K. Sharma, P. Raizada, A.H. Bandegharaei, P. Thakur, R. Kumar, V.K. Thakur, V.H.		
$43 \\ 44 $ 1245		Nguyen, P. Singh, Process Saf. Environ. Prot. 142 (2020), pp. 63-75.		
⁴⁵ 1246 46	[13]	P. Raizada, A. Sudhaik, P. Singh, A.H. Bandegharaei, V.K. Gupta, S. Agarwal,		
⁴⁷ 1247 48		Desalination Water Treat. 171 (2019), pp. 344-355.		
49 1248 50	[14]	P. Raizada, P. Thakur, A. Sudhaik, P. Singh, V.K. Thakur, A.H. Bandegharaei, Arab. J.		
51 1249		Chem. 13 (2020), pp. 4538-4552.		
53 53 1250	[15]	N. Chandel, K. Sharma, A. Sudhaik, P. Raizada, A.H. Bandegharaei, V.K. Thakur, P.		
⁵⁴ 55 1251		Singh, Arab. J. Chem. 13 (2020), pp. 4324-4340.		
⁵⁶ 1252 57	[16]	P. Raizada, A. Sudhaik, V.P. Singh, V.K. Gupta, A.H. Bandegharaei, R. Kumar, P.		
58 1253 59		Singh, Desalination Water Treat. 148 (2019), pp. 338-350.		
60 61				
62 63		41		
64 65				

- ³
 ⁴ 1254 [17] P. Singh, A. Sudhaik, P. Raizada, P. Shandilya, R. Sharma, A.H. Bandegharaei, Mater.
 ⁶ 1255 Today Chem. 12 (2019), pp. 85-95.
- 8 1256 [18] B. Priya, P. Shandilya, P. Raizada, P. Thakur, N. Singh, P. Singh, J. Mol. Catal. A:
 9
 10 1257 Chem. 423 (2016), pp. 400-413.
- 11
121258[19]A.R. Sani, P. Singh, P. Raizada, E.C. Lima, I. Anastopoulos, D.A. Giannakoudakis, S.13
141259Sivamani, T.A. Dontsova, A.H. Bandegharaei, Bioresour. Technol. 297 (2020), pp.15
16122452.
- ¹⁷ 1261 [20] J. Fu, J. Yu, C. Jiang, B. Cheng, Adv. Energy Mater. 8 (2017), pp. 1701503.
- 19 1262 [21] W. Jiang, W. Luo, J. Wang, M. Zhang, Y. Zhu, J. Photochem. Photobiol. C Photochem.
 20 21 1263 Rev. 28 (2016), pp. 87–115.
- ²²₂₃1264 [22] J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Adv. Mater. 29 (20) (2017), pp. ²⁴₂₅1265 1601694.
- ²⁶ 1266 [23] H. Du, Y. Liu, C. C. Shen, and A. W. Xu, Chinese J. Catal. 38 (8) (2017), pp. 1295 ²⁸ 1267 1306.
- 30 1268 [24] P. Raizada, J. Kumari, P. Shandilya, P. Singh, Desalin. Water Treat. 79 (2017), pp. 204 31 32 1269 213.
- ³³₃₄1270 [25] P. Thakur, P. Raizada, P. Singh, A. Kumar, A.A.P. Khan, A.M. Asiri, Arab. J. Chem.
 ³⁵₃₆1271 (2020), In press, https://doi.org/10.1016/j.arabjc.2020.04.026
- ³⁷ 1272 [26] A. Hezam, K. Namratha, D. Ponnamma, Q. A. Drmosh, A.M.N. Saeed, C. Cheng, K.
 ³⁹ 1273 Byrappa, ACS Omega 3 (2018), pp. 12260-12269.
- 41 1274 [27] T. Zhang, X. Shao, D. Zhang, X. Pu, Y. Tang, J. Yin, B. Ge, W. Li, Sep. Purif. Technol.
 42 43 1275 195 (2018), pp. 332-338.
- ⁴⁴₄₅1276 [28] X. Zheng, L. Yang, Y. Li, L. Yang, S. Luo, Electrochim. Acta. 298 (2019), pp. 663-669.
- ⁴⁶₄₇ 1277 [29] J. Chen, Q. Yang, J. Zhonga, J. Li, C. Hu, Z. Deng, R. Duan, Mater. Chem. Phys. 217
 ⁴⁸₄₉ 1278 (2018), pp. 207–215.
- 50 1279 [30] S.L. Prabavathi, K. Govindan, K. Saravanakumar, A. Jang, V. Muthuraj, J. Ind. Eng.
 51 52 1280 Chem. 80 (2019), pp. 558-567.
- ⁵³₅₄1281 [31] P. Chen, X. Dai, P. Xing, X. Zhao, Q. Zhang, S. Ge, J. Si, L. Zhao, Y. He, J. Ind. Eng. ⁵⁵₅₆1282 Chem. 80 (2019), pp. 74-82.
- ⁵⁷ 1283 [32] Sonu, V. Dutta, S. Sharma, P. Raizada, A.H Bandegharaei, V.K. Gupta, P. Singh, J.
 ⁵⁹ 1284 Saudi Chem. Soc. 23 (2019), pp. 1119-1136.

60 61

1 2

29

62 63

2 3 ⁴ 1285 [33] A. Kumar, P. Raizada, P. Singh, R.V. Saini, A.K. Saini, A.H. Bandegharaei. Chem. 5 ⁶ 1286 Eng. J. (2019), pp. 123496. 7 [34] P. Singh, S. Gautam, P. Shandilya, B. Priya, V.P. Singh, P. Raizada, Adv. Mater. Lett. 8 8 1287 9 10 **1288** (2017), pp. 229-238. 11 12 12 12 89 [35] V. Hasija, P. Raizada, V.K. Thakur, A.A.P. Khan, A.M. Asiri, P. Singh, J. Env. Chem. 13 14 1290 Eng. (2020), pp. 104307. ¹⁵ **1291** 16 [36] P. Raizada, A. Sudhaik, P. Singh, P. Shandilya, V.K. Gupta, A.H. Bandegharaei, S. 17 1292 Agrawal, J. Photochem. Photobiol. A: Chem. 374 (2019), pp. 22-35. 18 A. Sudhaik, P. Raizada, S. Thakur, A.K. Saini, P. Singh, A.H. Bandegharaei, J.H. Lim, [37] 19 **1293** 20 ₂₁ 1294 D.Y. Jeong, V.H. Nguyen, Appl. Nanosci. (2020), pp. 1-23. ²² 23 **1295** [38] R. Marschall, Adv. Funct. Mater. 24 (2014), pp. 2421-2440. ²⁴ 1296 Y. Wang, H. Suzuki, J. Xie, O. Tomita, D. Martin, M. Higashi, D. Kong, R. Abe, and J. [39] ²⁶ 1297 Tang, Chem. Rev. 118 (10) (2018), pp. 5201-5241. 27 [40] Y. Tachibana, L. Vayssieres, J. R. Durrant, Nat. Photonics 6 (2012), pp. 511–518. 28 1298 29 M. Higashi, Y. Abe, A. Ishikawa, T. Takata, B. Ohtani, K. Domen, Chem. Lett. 37 [41] 30 **1299** 31 ₃₂1300 (2008), pp. 138-139. ³³ 34 **1301** R. Abe, K. Sayama, H. Sugihara, J. Phys. Chem. B 109 (2005), pp. 16052-16061. [42] ³⁵ 36 **1302** [43] H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, Nat. Mater. 5 (2006), pp. 782. ³⁷ 1303 D. Zhou, Z. Chen, Q. Yang, X. Dong, J. Zhang, L. Qin, Sol. Energy Mater. Sol. Cells [44] 38 39 1304 157 (2016), pp. 399-405. 40 $41\,1305$ [45] L. Jiang, X. Yua, G. Zeng, J. Liang, Z. Wu, H. Wang, Environ. Sci. Nano 5 (3) (2018), 42 4₃⁻1306 pp. 599-615 ⁴⁴₄₅1307 J. Low, C. Jiang, B. Cheng, S. Wageh, A. A. Al-Ghamdi, J. Yu, Small Methods 1 (5) [46] 46 47 1308 (2017), pp. 1700080. ⁴⁸ 1309 X. Wang, G. Liu, Z. G. Chen, F. Li, L. Wang, G. Q. Lu, H. M. Cheng, Chem. Commun. [47] 49 0 (2009), pp. 3452-3454. 50 **1310** 51 J. Zhang, J. Fu, Z. Wang, B. Cheng, K. Dai, W. Ho, J. Alloys Comp. 766 (2018), pp. [48] 52**1311** 53 ₅₄1312 841-850. ⁵⁵ 1313 [49] J. Zhang, Y. Hu, X. Jiang, S. Chen, S. Meng, X. Fu, J. Hazard. Mater. 280 (2014), pp. ⁵⁷ 1314 58 713-722. 59 60 61 62 43 63 64 65

- 2 3 ⁴ 1315 [50] X. Yue, X. Miao, Z. Ji, X. Shen, H. Zhou, L. Kong, G. Zhu, X. Li, S. A. Shah, J. 5 Colloid Interface Sci. 531 (2018), pp. 473–482. ⁶ 1316 7 [51] T.S. Natarajana, K.R. Thampi, R.J. Tayade, Appl. Catal. B Environ. 227 (2018), pp. 8 1317 9 296-311. 10 **1318** 11 12¹¹1319 J. Wen, J. Xie, X. Chen, X. Li, Appl. Surf. Sci. 391 (2017), pp. 72–123. [52] 13 14 1320 S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 25 (2009), pp. 10397–1040. [53] ¹⁵ **1321** 16 [54] M. Ge, Z. Li, Chinese J. Catal. 38 (2017), pp. 1794-1803. 17 1322 Q. Xu, L. Zhang, J. Yu, S. Wageh, A.A. Al-Ghamdi, M. Jaroniec, Mater. Today 21 [55] 18 (2018), pp. 1042-1063. 19 **1323** 20 21 **1324** S.C. Roy, O.K. Varghese, M. Paulose, C.A. Grimes, ACS Nano 4 (2010), pp. 1259-[56] ²² 23 **1325** 1278. ²⁴ 1326 [57] N.N. Vu, S. Kaliaguine, T.O. Do, Adv. Funct. Mater. 29 (2019), pp. 1901825. ²⁶ 1327 D. Adekoya, M. Tahir, N.A.S. Amin, Renew. Sust. Energ. Rev. 116 (2019), pp.109389. [58] 27 L. Spadaro, F. Arena, A. Palella, Methanol (2018), pp. 429-472, In press, 28 1328 [59] 29 10.1016/B978-0-444-63903-5.00016-9 30 1329 31 J.L. White, , M.F. Baruch, J.E. Pander III, Y. Hu, I.C. Fortmeyer, J.E.Park, T. Zhang, ₃₂1330 [60] ³³ 34 **1331** Chem. Rev. 115 (2015), pp. 12888-12935. ³⁵ 1332 [61] I. Ganesh, Renew. Sust. Energ. Rev. 31 (2014), pp. 221-257. ³⁷ 1333 K. Li, B. Peng, T. Peng, ACS Catal. 6 (2016), pp. 7485-7527. [62] 38 39 1334 [63] A. Corma, H. Garcia, J. Catal. 308 (2013), pp. 168-175. 40 41 1335 S. Sato, T. Arai, T. Morikawa, Inorg. Chem. 54 (2015), pp. 5105-5113. [64] 42 $_{43}^{-}$ 1336 [65] N.T.T. Truc, N.T. Hanh, M.V. Nguyen, N.T.P.L. Chi, N.V. Noi, D.T. Tran, M.N. Ha, ⁴⁴₄₅1337 D.Q. Trung, T.D. Pham, Appl. Surf. Sci. 457 (2018), pp. 968-974. 46 47 1338 [66] P. Melian E,Gonza'lez Dı'az O,OrtegaMe'ndez A,Lo'pez CristinaR, NereidaSua'rez ⁴⁸ 1339 M,Don~aRodri'guez JM,etal. Int. J. Hydrogen Energy 38 (5) (2013), pp. 2144-2155. 49 [67] J.J. Suk, K.H. Gyu, L.J. Sung. Cat. Tod. 185 (2012), pp. 270–277. 50 **1340** 51 Z. Wang, C. Li, K. Domen. Chem. Soc. Rev. 48 (2019), pp. 2109-2125. [68] 52 **1341** 53 ₅₄1342 K. Lalitha, J. K. Reddy, M.V.P. Sharma, V.D. Kumari, M. Subrahmanyam, Int. J. [69] ⁵⁵ 1343 Hydrogen Energy 35 (2010), pp. 3991-4001. ⁵⁷ 1344 [70] T. da S. Veras, T.S. Mozer, A. da S. César, Int. J. Hydrogen Energ. 42 (2017), pp. 2018-⁵⁹ 1345 2033. 60 61 62 44 63 64
- 65

2 3 ⁴ 1346 [71] N.S. Lewis, Sci. 315 (2007), pp. 798-801. 5 ⁶ 1347 I. Roger, M.A. Shipman, M.D. Symes. Nat. Rev. Chem. 1 (2017), pp. 0003. [72] 7 [73] J. Yang, D. Wang, H. Han, C. Li, Acc. Chem. Res. 46 (2013), pp. 1900–1909. 8 1348 9 A. Kudo, & Y.Miseki, Chem. Soc. Rev. 38 (2009), pp. 253–278. 10 **1349** [74] 11 12¹¹1350 S. Chen, T. Takata K. Domen, Nat. Rev. Mater. 2 (2017), pp. 17050. [75] 13 14 1351 V. Hasija, A. Sudhaik, P. Raizada, A.H. Bandegharaei, P. Singh, J. Environ. Chem. [76] ¹⁵ **1352** 16 Eng. 7 (2019), pp. 103272. 17 1353 [77] Y. Zheng, L. Lin, B. Wang, X. Wang, Agew. 54 (2015), pp. 12868-12884. 18 M.S. Nasir, G. Yang, I. Ayub, S. Wang, L. Wang, X. Wang, W. Yan, S. Peng, and S. 19 **1354** [78] 20 ₂₁1355 Ramakarishna. Appl. Catal. B 257 (2019), pp. 117855. ²² 23 **1356** [79] P. Raizada, , P. Thakur, A. Sudhaik, P. Singh, A.A.P. Khan, V.K Thakur, A.H. ²⁴ 1357 Bandegharaei. Arab. J. Chem. (2019), In press, 10.1016/j.arabjc.2019.10.001 ²⁶ 1358 27 [80] P. Raizada, A. Sudhaik, P. Singh, A.H. Bandegharaei, P. Thakur. Sep. Purif. Technol. 28 1359 227 (2019), pp. 115692. 29 Y. Wang, Y. Li, X. Bai, Q. Cai, C. Liu, Y. Zuo, S. Kang, L. Cui, Catal. Commun. 84 [81] 30 **1360** 31 ₃₂1361 (2016), pp. 179-182. ³³ 34 **1362** J. Gao, Y. Wang, S. Zhou, W. Lin, Y. Kong, ChemCatChem, 9 (2017), pp. 1708-1715. [82] ³⁵ 1363 [83] L. Zhou, H. Zhang, H. Sun, S. Liu, M.O. Tade, S. Wang, W. Jin, Catal. Sci. Technol. 6 ³⁷ 1364 (2016), pp. 7002-7023. 38 39 1365 [84] S. Xie, Q. Zhang, G. Liu, Y. Wang, Chem. Commun. 52 (2016), pp. 35-59. 40 C. Acar, I. Dincer, C. Zamfirescu, Int. J. Energ. Res. 38 (2014), pp. 1903-1920. $41\,1366$ [85] 42 4⁻₃1367 [86] N.S. Lewis, D.G. Nocera, Proc. Natl. Acad. Sci. 43 (2006), pp. 15729-15735. ⁴⁴₄₅1368 K. Maeda, J. Photochem. Photobiol. C 12 (2011), pp. 237-268. [87] ⁴⁶ 47 **1369** [88] R.D. Tentu, S. Basu. "Photocatalytic water splitting for hydrogen production, Curr. ⁴⁸1370 Opin. Electrochem. 5 (2017), pp. 56-62. 49 [89] M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Chem. Rev. 95 (1995), pp. 50 **1371** 51 69-96. 52 **1372** 53 5₄1373 [90] Q. Wang, K. Domen, Chem. Rev. (2019), In press, 10.1021/acs.chemrev.9b00201 ⁵⁵ 1374 R. Godin, Y. Wang, Martijn A. Zwijnenburg, Junwang Tang, and James R. Durrant, J. [91] ⁵⁷ 1375 58 Am. Chem. Soc. 139 (2017), pp. 5216-5224. 59 60 61 62 45 63 64 65

- 2 3 ⁴ 1376 [92] J. Shi, J. Chen, Z. Feng, T. Chen, Y. Lian, X. Wang, C. Li, J, Phys. Chem. 111 (2007), 5 ⁶ 1377 pp. 693-699. 7 [93] G. Zhang, G. Li, T. Heil, S. Zafeiratos, F. Lai, A. Savateev, M. Antonietti, X. Wang, 8 1378 9 10 **1379** Angew. Chem. 131 (2019), pp. 3471-3475. 11 12¹¹1380 [94] A. Yamakata, H. Yeilin, M. Kawaguchi, T. Hisatomi, J. Kubota, Y. Sakata, K. Domen, 13 14 1381 J. Photochem. Photobiol. A 313 (2015), pp. 168-175. ¹⁵ **1382** 16 [95] J. Boltersdorf, I. Sullivan, T.L. Shelton, Z. Wu, M. Gray, B. Zoellner, F.E. Osterloh, 171383 P.A. Maggard, Chem. Mater. 28 (2016), pp. 8876-8889. 18 B.M. Hunter, H.B. Gray, A.M. Muller, Chem. Rev. 116 (2016), pp. 14120-14136. [96] 19 **1384** 20 ₂₁ 1385 [97] S.C. Tsang, V. Caps, I. Paraskevas, D. Chadwick, D. Thompsett, Angew. Chem. 43 ²² 23 **1386** (2004), pp. 5645-5649. ²⁴ 1387 [98] F. Dong, Z. Wang, Y. Li, W.K. Ho, S.C. Lee, Environ. Sci. Technol. 48, (2014), pp. ²⁶ 1388 10345-10353. 27 28 **1389** [99] W. Yu, J. Chen, T. Shang, L. Chen, L. Gu, T. Peng, Appl. Catal. B Environ. 219 (2017), 29 pp. 693-704. 30 **1390** 31 [100] B. Qiu, Q. Zhu, M. Du, L. Fan, M. Xing, J. Zhang, Angew. Chem. Int. 56 (2017), pp. ₃₂ 1391 ³³ 34 **1392** 2684-2688. ³⁵ 1393 E. Kroke, M. Schwarz, Coord. Chem. Rev. 248 (2004), pp. 493–532. [101] ³⁷ 1394 C. Dong, C. Lian, S. Hu, Z. Deng, J. Gong, M. Li, H. Liu, M. Xing, J. Zhang, Nat. [102] 38 39 **1395** Commun. 9 (2018), pp. 1-11. 40 J. Zhou, M. Zhang, Y. Zhu, Phys. Chem. Chem. Phys. 16 (2014), pp. 17627–17633. $41\,1396$ [103] 42 4⁻₃1397 S.T. Kochuveedu, Y.H. Jang, D.H. Kim, Chem. Soc. Rev. 42 (2013), pp. 8467-8493. [104] ⁴⁴₄₅1398 W. Ong, L. Tan, Y. Hua, S. Yong, S. Chai, Chem. Rev. 116 (2016), pp. 7159–7329. [105] 46 47 1399 [106] B. Chai, T. Peng, J. Mao, K. Li, L. Zan, Phys. Chem. Chem. Phys. 14 (2012), pp. ⁴⁸ 1400 16745–16752. 49 [107] Y. Zhang, J. Liu, G. Wu, W. Chen, Nanoscale 4 (17) (2012), pp. 5300-5303. 50 **1401** 51
- 52 1402[108]Y. Wang, Z. Wang, S. Muhammad, J. He, Cryst. Eng. Comm. 14 (2012), pp. 5065–535070.
- ⁵⁵₅₆1404 [109] S. C. Yan, Z. S. Li, and Z. G. Zou, Langmuir 26 (6) (2010), pp. 3894–3901.
- ⁵⁷₅₈ 1405 [110] F. Dong, L. Wu, Y. Sun, M. Fu, Z. Wu, S.C. Lee, J. Mater. Chem. 21 (2011), pp. ⁵⁹1406 15171-15174.

60 61

1

62 63

 ⁴/₁1407 [111] J. Hong, X. Xia, Y. Wang, R. Xu, J. Mater. Chem. 22 (2012), pp. 15006-15012. ⁶/₁1408 [112] F. Dong, Y. Sun, L. Wu, M. Fu, Z. Wu, Sci. Technol. 2 (2012), pp. 1332–1335. ⁸/₁409 [113] Y. Kang, Y. Yang, L.C. Yin, X. Kang, G. Liu, H.M. Cheng, Adv. Mater. 27 (2015), pp. 161410 4572–4577. ¹¹/₁141 [114] D.J. Martin, K. Qiu, S.A. Shevlin, A.D. Handoko, X. Chen, Z. Guo, J. Tang, Angew Chem. Int. Ed. 53 (2014), pp. 9240–9245. ¹⁵/₁413 [115] S. Cao, J. Yu, J. Phys. Chem. Lett. 5 (2014), pp. 2101–2107. ¹⁶/₁414 [116] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Muller, R. Schlogl, J.M. Carlsson, J. Mater. Chem. 18 (2008), pp. 4893–4908. ²⁰/₁414 [117] K. E. Byun, H. J. Chung, J. Lee, H. Yang, H. J. Song, J. Heo, D. H. Seo, S. Park, S. W. Hwang, I. Yoo, K. Kim, Nano Lett. 13 (2013), pp. 4001-4005. ²⁴/₁418 [118] F. Ou , D.B. Buchholz , F. Yi , B. Liu , C. Hseih , R.P.H. Chang , S.T. Ho, ACS App Mater. Inter. 3 (2011), pp. 1341. ²⁶/₁412 [120] P. Zhou, J. Yu and M. Jaroniec, Adv. Mater. 26 (2014), pp. 4920–4935. ²¹/₁412 [121] N. Wei, H. Cui, M. Wang, X. Wang, X. Song, L. Ding, J. Tian, RSC Adv. 7 (2017), pp. 18392-18399. ²¹/₁424 [122] E. Rahmanian, R. Malekfar, M. Pumera, Chem. Eur. J. 23 (2017), pp. 1-15. ²¹/₁425 [123] F. Shi, L. Chen, M.Chen, D. Jiang, Chem. Commun. 51 (96) (2015), pp. 17144-17147. 	1 2		
 ⁵ 1408 [112] F. Dong, Y. Sun, L. Wu, M. Fu, Z. Wu, Sci. Technol. 2 (2012), pp. 1332–1335. ⁶ 1409 [113] Y. Kang, Y. Yang, L.C. Yin, X. Kang, G. Liu, H.M. Cheng, Adv. Mater. 27 (2015), pp. 1410 4572–4577. ¹¹ 1141 [114] D.J. Martin, K. Qiu, S.A. Shevlin, A.D. Handoko, X. Chen, Z. Guo, J. Tang, Angew Chem. Int. Ed. 53 (2014), pp. 9240–9245. ¹⁵ 1413 [115] S. Cao, J. Yu, J. Phys. Chem. Lett. 5 (2014), pp. 2101–2107. ¹⁶ 116] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Muller, R. Schlogl, J.M. Carlsson, J. Mater. Chem. 18 (2008), pp. 4893–4908. ²¹ 1416 [117] K. E. Byun, H. J. Chung, J. Lee, H. Yang, H. J. Song, J. Heo, D. H. Seo, S. Park, S. W. Hwang, I. Yoo, K. Kim, Nano Lett. 13 (2013), pp. 4001-4005. ²⁴ 1418 [118] F. Ou , D.B. Buchholz , F. Yi , B. Liu , C. Hseih , R.P.H. Chang , S.T. Ho, ACS App Mater. Inter. 3 (2011), pp. 1341. ²⁷ 1420 [119] H. Li, W. Tu, Y. Zhou and Z. Zou, Adv. Sci. 3 (2016), pp. 1500389. ²⁰ 1421 [120] P. Zhou, J. Yu and M. Jaroniec, Adv. Mater. 26 (2014), pp. 4920–4935. ²¹ 1423 18392-18399. ²³ 1424 [122] E. Rahmanian, R. Malekfar, M. Pumera, Chem. Eur. J. 23 (2017), pp. 1-15. ²⁴ 1425 [123] F. Shi, L. Chen, M.Chen, D. Jiang, Chem. Commun. 51 (96) (2015), pp. 17144-17147. 	3 ⁴ 1407	[111]	J. Hong, X. Xia, Y. Wang, R. Xu, J. Mater. Chem. 22 (2012), pp. 15006-15012.
 [113] Y. Kang, Y. Yang, L.C. Yin, X. Kang, G. Liu, H.M. Cheng, Adv. Mater. 27 (2015), pp. 4572–4577. [1141] D.J. Martin, K. Qiu, S.A. Shevlin, A.D. Handoko, X. Chen, Z. Guo, J. Tang, Angew Chem. Int. Ed. 53 (2014), pp. 9240–9245. [151413] [115] S. Cao, J. Yu, J. Phys. Chem. Lett. 5 (2014), pp. 2101–2107. [1617] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Muller, R. Schlogl, J.M. Carlsson, J. Mater. Chem. 18 (2008), pp. 4893–4908. [117] K. E. Byun, H. J. Chung, J. Lee, H. Yang, H. J. Song, J. Heo, D. H. Seo, S. Park, S. W. Hwang, I. Yoo, K. Kim, Nano Lett. 13 (2013), pp. 4001-4005. [118] F. Ou , D.B. Buchholz , F. Yi , B. Liu , C. Hseih , R.P.H. Chang , S.T. Ho, ACS App. Mater. Inter. 3 (2011), pp. 1341. [119] H. Li, W. Tu, Y. Zhou and Z. Zou, Adv. Sci. 3 (2016), pp. 1500389. [120] P. Zhou, J. Yu and M. Jaroniec, Adv. Mater. 26 (2014), pp. 4920–4935. [121] N. Wei, H. Cui, M. Wang, X. Wang, X. Song, L. Ding, J. Tian, RSC Adv. 7 (2017), pp. 3341423 18392-18399. [122] E. Rahmanian, R. Malekfar, M. Pumera, Chem. Eur. J. 23 (2017), pp. 1-15. [123] F. Shi, L. Chen, M.Chen, D. Jiang, Chem. Commun. 51 (96) (2015), pp. 17144-17147. 	5 6 1408	[112]	F. Dong, Y. Sun, L. Wu, M. Fu, Z. Wu, Sci. Technol. 2 (2012), pp. 1332–1335.
 4572–4577. 111111111111111111111111111111111111	7 8 1409	[113]	Y. Kang, Y. Yang, L.C. Yin, X. Kang, G. Liu, H.M. Cheng, Adv. Mater. 27 (2015), pp.
 ¹¹/₁₂1411 [114] D.J. Martin, K. Qiu, S.A. Shevlin, A.D. Handoko, X. Chen, Z. Guo, J. Tang, Angew Chem. Int. Ed. 53 (2014), pp. 9240–9245. ¹⁵/₁₄1412 Chem. Int. Ed. 53 (2014), pp. 9240–9245. ¹⁵/₁₄1413 [115] S. Cao, J. Yu, J. Phys. Chem. Lett. 5 (2014), pp. 2101–2107. ¹⁷/₁₄₁₄ [116] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Muller, R. Schlogl, J.M. Carlsson, J. Mater. Chem. 18 (2008), pp. 4893–4908. ²⁰/₁₄₁₆ [117] K. E. Byun, H. J. Chung, J. Lee, H. Yang, H. J. Song, J. Heo, D. H. Seo, S. Park, S. W. Hwang, I. Yoo, K. Kim, Nano Lett. 13 (2013), pp. 4001-4005. ²⁴/₁₄₁₈ [118] F. Ou , D.B. Buchholz , F. Yi , B. Liu , C. Hseih , R.P.H. Chang , S.T. Ho, ACS App. Mater. Inter. 3 (2011), pp. 1341. ²⁸/₁₄₂₀ [119] H. Li, W. Tu, Y. Zhou and Z. Zou, Adv. Sci. 3 (2016), pp. 1500389. ²⁹/₁₄₂₂ [120] P. Zhou, J. Yu and M. Jaroniec, Adv. Mater. 26 (2014), pp. 4920–4935. ³¹/₁₄₂₃ [121] N. Wei, H. Cui, M. Wang, X. Wang, X. Song, L. Ding, J. Tian, RSC Adv. 7 (2017), pp. 1341423 [122] E. Rahmanian, R. Malekfar, M. Pumera, Chem. Eur. J. 23 (2017), pp. 1-15. ³⁷/₁₄₂₅ [123] F. Shi, L. Chen, M.Chen, D. Jiang, Chem. Commun. 51 (96) (2015), pp. 17144-17147. 	9 10 1410		4572–4577.
13 1412 Chem. Int. Ed. 53 (2014), pp. 9240–9245. 15 1413 [115] S. Cao, J. Yu, J. Phys. Chem. Lett. 5 (2014), pp. 2101–2107. 16 1115 S. Cao, J. Yu, J. Phys. Chem. Lett. 5 (2014), pp. 2101–2107. 17 1414 [116] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Muller, R. Schlogl, J.M. 19 1415 Carlsson, J. Mater. Chem. 18 (2008), pp. 4893–4908. 20 11416 [117] K. E. Byun, H. J. Chung, J. Lee, H. Yang, H. J. Song, J. Heo, D. H. Seo, S. Park, S. W. 21 1416 [117] K. E. Byun, H. J. Chung, J. Lee, H. Yang, H. J. Song, J. Heo, D. H. Seo, S. Park, S. W. 22 1417 Hwang, I. Yoo, K. Kim, Nano Lett. 13 (2013), pp. 4001-4005. 24 1418 F. Ou , D.B. Buchholz , F. Yi , B. Liu , C. Hseih , R.P.H. Chang , S.T. Ho, ACS App. 25 1419 Mater. Inter. 3 (2011), pp. 1341. 28 1420 [119] H. Li, W. Tu, Y. Zhou and Z. Zou, Adv. Sci. 3 (2016), pp. 1500389. 29 1421 [120] P. Zhou, J. Yu and M. Jaroniec, Adv. Mater. 26 (2014), pp. 4920–4935. 31 1422 [121] N. Wei, H. Cui, M. Wang, X. Wang, X. Song, L. Ding, J. Tian, RSC Adv. 7 (2017), pp. 33 1423 18392-18399.	$^{11}_{12}$ 1411	[114]	D.J. Martin, K. Qiu, S.A. Shevlin, A.D. Handoko, X. Chen, Z. Guo, J. Tang, Angew.
 ¹⁵/₁₆1413 [115] S. Cao, J. Yu, J. Phys. Chem. Lett. 5 (2014), pp. 2101–2107. ¹⁷/₁₆1414 [116] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Muller, R. Schlogl, J.M. Carlsson, J. Mater. Chem. 18 (2008), pp. 4893–4908. ²⁰/₂₁1416 [117] K. E. Byun, H. J. Chung, J. Lee, H. Yang, H. J. Song, J. Heo, D. H. Seo, S. Park, S. W. Hwang, I. Yoo, K. Kim, Nano Lett. 13 (2013), pp. 4001-4005. ²⁴/₂₅1418 [118] F. Ou , D.B. Buchholz , F. Yi , B. Liu , C. Hseih , R.P.H. Chang , S.T. Ho, ACS Apple Mater. Inter. 3 (2011), pp. 1341. ²⁸/₁₄₂₀ [119] H. Li, W. Tu, Y. Zhou and Z. Zou, Adv. Sci. 3 (2016), pp. 1500389. ³⁰/₁₄₂₁ [120] P. Zhou, J. Yu and M. Jaroniec, Adv. Mater. 26 (2014), pp. 4920–4935. ³¹/₁₄₂₃ 18392-18399. ³⁵/₁₄₂₄ [122] E. Rahmanian, R. Malekfar, M. Pumera, Chem. Eur. J. 23 (2017), pp. 17144-17147. 	$\frac{13}{14}$ 1412		Chem. Int. Ed. 53 (2014), pp. 9240–9245.
 ¹⁶ ¹⁷ 1414 [116] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Muller, R. Schlogl, J.M. ¹⁸ Carlsson, J. Mater. Chem. 18 (2008), pp. 4893–4908. ²⁰ [117] K. E. Byun, H. J. Chung, J. Lee, H. Yang, H. J. Song, J. Heo, D. H. Seo, S. Park, S. W. ²¹ Hvang, I. Yoo, K. Kim, Nano Lett. 13 (2013), pp. 4001-4005. ²⁴ 1418 [118] F. Ou , D.B. Buchholz , F. Yi , B. Liu , C. Hseih , R.P.H. Chang , S.T. Ho, ACS App. ²⁶ 1419 Mater. Inter. 3 (2011), pp. 1341. ²⁸ 1420 [119] H. Li, W. Tu, Y. Zhou and Z. Zou, Adv. Sci. 3 (2016), pp. 1500389. ²⁹ 1421 [120] P. Zhou, J. Yu and M. Jaroniec, Adv. Mater. 26 (2014), pp. 4920–4935. ³¹ 1423 18392-18399. ³⁵ 1424 [122] E. Rahmanian, R. Malekfar, M. Pumera, Chem. Eur. J. 23 (2017), pp. 1-15. ³⁷ 1425 [123] F. Shi, L. Chen, M.Chen, D. Jiang, Chem. Commun. 51 (96) (2015), pp. 17144-17147. 	¹⁵ 1413	[115]	S. Cao, J. Yu, J. Phys. Chem. Lett. 5 (2014), pp. 2101–2107.
 Carlsson, J. Mater. Chem. 18 (2008), pp. 4893–4908. [117] K. E. Byun, H. J. Chung, J. Lee, H. Yang, H. J. Song, J. Heo, D. H. Seo, S. Park, S. W Hwang, I. Yoo, K. Kim, Nano Lett. 13 (2013), pp. 4001-4005. [118] F. Ou , D.B. Buchholz , F. Yi , B. Liu , C. Hseih , R.P.H. Chang , S.T. Ho, ACS App. Mater. Inter. 3 (2011), pp. 1341. [119] H. Li, W. Tu, Y. Zhou and Z. Zou, Adv. Sci. 3 (2016), pp. 1500389. [120] P. Zhou, J. Yu and M. Jaroniec, Adv. Mater. 26 (2014), pp. 4920–4935. [121] N. Wei, H. Cui, M. Wang, X. Wang, X. Song, L. Ding, J. Tian, RSC Adv. 7 (2017), pp. 18392-18399. [122] E. Rahmanian, R. Malekfar, M. Pumera, Chem. Eur. J. 23 (2017), pp. 17144-17147. 	17 1414	[116]	A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Muller, R. Schlogl, J.M.
 ²⁰ ₂₁ 1416 [117] K. E. Byun, H. J. Chung, J. Lee, H. Yang, H. J. Song, J. Heo, D. H. Seo, S. Park, S. W. Hwang, I. Yoo, K. Kim, Nano Lett. 13 (2013), pp. 4001-4005. ²⁴ ¹⁴¹⁸ [118] F. Ou , D.B. Buchholz , F. Yi , B. Liu , C. Hseih , R.P.H. Chang , S.T. Ho, ACS App. Mater. Inter. 3 (2011), pp. 1341. ²⁶ ¹⁴¹⁹ Mater. Inter. 3 (2011), pp. 1341. ²⁸ ¹⁴²⁰ [119] H. Li, W. Tu, Y. Zhou and Z. Zou, Adv. Sci. 3 (2016), pp. 1500389. ⁹⁰ ¹⁴²¹ [120] P. Zhou, J. Yu and M. Jaroniec, Adv. Mater. 26 (2014), pp. 4920–4935. ³¹ ¹⁴²² [121] N. Wei, H. Cui, M. Wang, X. Wang, X. Song, L. Ding, J. Tian, RSC Adv. 7 (2017), pp. 18392-18399. ³⁵ ¹⁴²⁴ [122] E. Rahmanian, R. Malekfar, M. Pumera, Chem. Eur. J. 23 (2017), pp. 1-15. ³⁷ ¹⁴²⁵ [123] F. Shi, L. Chen, M.Chen, D. Jiang, Chem. Commun. 51 (96) (2015), pp. 17144-17147. 	18 19 1415		Carlsson, J. Mater. Chem. 18 (2008), pp. 4893–4908.
22 1417 Hwang, I. Yoo, K. Kim, Nano Lett. 13 (2013), pp. 4001-4005. 24 1418 [118] F. Ou , D.B. Buchholz , F. Yi , B. Liu , C. Hseih , R.P.H. Chang , S.T. Ho, ACS App. 26 1419 Mater. Inter. 3 (2011), pp. 1341. 27 1419 H. Li, W. Tu, Y. Zhou and Z. Zou, Adv. Sci. 3 (2016), pp. 1500389. 29 1421 [120] P. Zhou, J. Yu and M. Jaroniec, Adv. Mater. 26 (2014), pp. 4920–4935. 31 121 N. Wei, H. Cui, M. Wang, X. Wang, X. Song, L. Ding, J. Tian, RSC Adv. 7 (2017), pp. 33 1423 18392-18399. 35 1424 [122] E. Rahmanian, R. Malekfar, M. Pumera, Chem. Eur. J. 23 (2017), pp. 1-15. 37 1425 [123] F. Shi, L. Chen, M.Chen, D. Jiang, Chem. Commun. 51 (96) (2015), pp. 17144-17147.	20 21 1416	[117]	K. E. Byun, H. J. Chung, J. Lee, H. Yang, H. J. Song, J. Heo, D. H. Seo, S. Park, S. W.
 ²⁴ 1418 [118] F. Ou , D.B. Buchholz , F. Yi , B. Liu , C. Hseih , R.P.H. Chang , S.T. Ho, ACS Apple Mater. Inter. 3 (2011), pp. 1341. ²⁶ 1419 Mater. Inter. 3 (2011), pp. 1341. ²⁸ 1420 [119] H. Li, W. Tu, Y. Zhou and Z. Zou, Adv. Sci. 3 (2016), pp. 1500389. ³⁰ 1421 [120] P. Zhou, J. Yu and M. Jaroniec, Adv. Mater. 26 (2014), pp. 4920–4935. ³¹ 1422 [121] N. Wei, H. Cui, M. Wang, X. Wang, X. Song, L. Ding, J. Tian, RSC Adv. 7 (2017), pp. 18392-18399. ³⁵ 1424 [122] E. Rahmanian, R. Malekfar, M. Pumera, Chem. Eur. J. 23 (2017), pp. 1-15. ³⁷ 1425 [123] F. Shi, L. Chen, M.Chen, D. Jiang, Chem. Commun. 51 (96) (2015), pp. 17144-17147. 	²² 23 1417		Hwang, I. Yoo, K. Kim, Nano Lett. 13 (2013), pp. 4001-4005.
²⁶ 1419 Mater. Inter. 3 (2011), pp. 1341. ²⁸ 1420 [119] H. Li, W. Tu, Y. Zhou and Z. Zou, Adv. Sci. 3 (2016), pp. 1500389. ²⁹ 30 1421 [120] P. Zhou, J. Yu and M. Jaroniec, Adv. Mater. 26 (2014), pp. 4920–4935. ³¹ 32 1422 [121] N. Wei, H. Cui, M. Wang, X. Wang, X. Song, L. Ding, J. Tian, RSC Adv. 7 (2017), pp. ³³ 1423 18392-18399. ³⁵ 1424 [122] E. Rahmanian, R. Malekfar, M. Pumera, Chem. Eur. J. 23 (2017), pp. 1-15. ³⁷ 1425 [123] F. Shi, L. Chen, M.Chen, D. Jiang, Chem. Commun. 51 (96) (2015), pp. 17144-17147.	$\frac{24}{25}$ 1418	[118]	F. Ou , D.B. Buchholz , F. Yi , B. Liu , C. Hseih , R.P.H. Chang , S.T. Ho, ACS Appl.
 ²⁷ ²⁸ 1420 [119] H. Li, W. Tu, Y. Zhou and Z. Zou, Adv. Sci. 3 (2016), pp. 1500389. ³⁰ 1421 [120] P. Zhou, J. Yu and M. Jaroniec, Adv. Mater. 26 (2014), pp. 4920–4935. ³¹ ³² 1422 [121] N. Wei, H. Cui, M. Wang, X. Wang, X. Song, L. Ding, J. Tian, RSC Adv. 7 (2017), pp. 33/34 1423 18392-18399. ³⁵ 1424 [122] E. Rahmanian, R. Malekfar, M. Pumera, Chem. Eur. J. 23 (2017), pp. 1-15. ³⁷ 1425 [123] F. Shi, L. Chen, M.Chen, D. Jiang, Chem. Commun. 51 (96) (2015), pp. 17144-17147. 	²⁶ 27 1419		Mater. Inter. 3 (2011), pp. 1341.
 ²⁹ ³⁰ 1421 [120] P. Zhou, J. Yu and M. Jaroniec, Adv. Mater. 26 (2014), pp. 4920–4935. ³¹ ³² 1422 [121] N. Wei, H. Cui, M. Wang, X. Wang, X. Song, L. Ding, J. Tian, RSC Adv. 7 (2017), pp. ³³ ³⁴ 1423 18392-18399. ³⁵ 1424 [122] E. Rahmanian, R. Malekfar, M. Pumera, Chem. Eur. J. 23 (2017), pp. 1-15. ³⁷ 1425 [123] F. Shi, L. Chen, M.Chen, D. Jiang, Chem. Commun. 51 (96) (2015), pp. 17144-17147. 	28 1420	[119]	H. Li, W. Tu, Y. Zhou and Z. Zou, Adv. Sci. 3 (2016), pp. 1500389.
 [121] N. Wei, H. Cui, M. Wang, X. Wang, X. Song, L. Ding, J. Tian, RSC Adv. 7 (2017), pp 18392-18399. [122] E. Rahmanian, R. Malekfar, M. Pumera, Chem. Eur. J. 23 (2017), pp. 1-15. [123] F. Shi, L. Chen, M.Chen, D. Jiang, Chem. Commun. 51 (96) (2015), pp. 17144-17147. 	30 1421	[120]	P. Zhou, J. Yu and M. Jaroniec, Adv. Mater. 26 (2014), pp. 4920–4935.
33 1423 18392-18399. 35 1424 [122] E. Rahmanian, R. Malekfar, M. Pumera, Chem. Eur. J. 23 (2017), pp. 1-15. 37 1425 [123] F. Shi, L. Chen, M.Chen, D. Jiang, Chem. Commun. 51 (96) (2015), pp. 17144-17147.	³¹ 32 1422	[121]	N. Wei, H. Cui, M. Wang, X. Wang, X. Song, L. Ding, J. Tian, RSC Adv. 7 (2017), pp.
 ³⁵₃₆ 1424 [122] E. Rahmanian, R. Malekfar, M. Pumera, Chem. Eur. J. 23 (2017), pp. 1-15. ³⁷₃₈ 1425 [123] F. Shi, L. Chen, M.Chen, D. Jiang, Chem. Commun. 51 (96) (2015), pp. 17144-17147. 	³³ 34 1423		18392-18399.
³⁷ ₃₈ 1425 [123] F. Shi, L. Chen, M.Chen, D. Jiang, Chem. Commun. 51 (96) (2015), pp. 17144-17147.	³⁵ 36 1424	[122]	E. Rahmanian, R. Malekfar, M. Pumera, Chem. Eur. J. 23 (2017), pp. 1-15.
	³⁷ 1425	[123]	F. Shi, L. Chen, M.Chen, D. Jiang, Chem. Commun. 51 (96) (2015), pp. 17144-17147.
³⁹ 1426 [124] S. Chang, A. Xie, S. Chen, J. Xiang, Electroanal. Chem. 719 (2014), pp. 86–91.	39 1426	[124]	S. Chang, A. Xie, S. Chen, J. Xiang, Electroanal. Chem. 719 (2014), pp. 86–91.
⁴⁰ 41 1427 [125] S. Samanta, S. Martha and K. Parida, Chem. Cat. Chem. 6 (2014), pp. 1453–1462.	41 1427	[125]	S. Samanta, S. Martha and K. Parida, Chem. Cat. Chem. 6 (2014), pp. 1453-1462.
⁴² ₄₃ 1428 [126] W. Li, C. Feng, S. Dai, J. Yue, F. Hu, H. Hou, Appl. Catal. B Environ. 168 (2015), pp	42 43 1428	[126]	W. Li, C. Feng, S. Dai, J. Yue, F. Hu, H. Hou, Appl. Catal. B Environ. 168 (2015), pp.
44_{45} 1429 $465-471$	$^{44}_{45}$ 1429		465–471
⁴⁶ ₄₇ 1430 [127] X. Gao, Y. Shang, L. Liu, W. Nie, Opt. Mater. 88 (2019), pp. 229-237.	$\frac{46}{47}$ 1430	[127]	X. Gao, Y. Shang, L. Liu, W. Nie, Opt. Mater. 88 (2019), pp. 229-237.
⁴⁸ 1431 [128] C. Wang, X. Liu, W. He, Y. Zhao, Y. Wei, J. Xiong, J. Liu et al., J. Catal. 389 (2020)	⁴⁸ 1431 49	[128]	C. Wang, X. Liu, W. He, Y. Zhao, Y. Wei, J. Xiong, J. Liu et al., J. Catal. 389 (2020),
50 1432 pp. 440-449. 51	50 1432 51		pp. 440-449.
52 1433 [129] A. Raza, H. Shen, A.A. Haidry, Appl. Catal. B Environ. 277 (2020), pp. 119239.	52 1433 53	[129]	A. Raza, H. Shen, A.A. Haidry, Appl. Catal. B Environ. 277 (2020), pp. 119239.
⁵⁴ 1434 [130] M. Dong, W. Juan, G. Mengchun, X. Yanjun, M. Tianjin, S. Yuying, Chem. Eng. J. 29	54 54 55	[130]	M. Dong, W. Juan, G. Mengchun, X. Yanjun, M. Tianjin, S. Yuying, Chem. Eng. J. 290
55_{56}^{55} 1435 (2016) 136–146.	55 56 1435		(2016) 136–146.
⁵⁷ 1436 [131] X. Hu, J. Hu, Q. Peng, X. Ma, S. Dong, H. Wang, Mater. Res. Bull. 122 (2020), pp	⁵⁷ 1436 58	[131]	X. Hu, J. Hu, Q. Peng, X. Ma, S. Dong, H. Wang, Mater. Res. Bull. 122 (2020), pp.
⁵⁹ 1437 110682. 60	59 1437 60		<u>110682.</u>
61 62 47	61 62		47
63 64	63 64		

- 2 3 ⁴ 1438 [132] B. Palanivel, and Alagiri Mani, ACS Omega 31 (2020), pp. 19747–19759. 5 ⁶ 1439 F. Shi, L. Chen, M. Chen, D. Jiang, Chem. Comm. 51 (2015), pp. 17144-17147. [133] 7 [134] J. Hong, D.K. Hwang, R. Selvaraj, Y. Kim, J. Ind. Eng. Chem. 79 (2019), pp. 473-481. 8 1 4 4 0 9 P. Raizada, A. Sudhaik, Pardeep Singh, Mater. Sci. Energy Technol. 2 (2019), 509-525. 10 **1441** [135] 11 12 **1442** L. Jin, Z. Xiaosong, M. Lin, X. Limei, D. Zhihua, Z. Jinquan, Mater. Res. Bull. 81 [136] $^{13}_{14}$ 1443 (2016), pp. 16-26. ¹⁵ **144** [137] K. Sharma, V. Dutta, S. Sharma, P. Raizada, A.H. Bandegharaei, P. Thakur, P. Singh, J. 16 17 1445 Ind. Eng. Chem. 78 (2019), pp. 1-20. 18 V. Dutta, P. Singh, P. Shandilya, S. Sharma, P. Raizada, A.K. Saini, V.K. Gupta, A.H. [138] 19 **1446** 20 21 **1447** Bandegharaei, S. Agarwal, A.R. Sani, J. Environ. Chem. Eng. 7 (2019), pp. 103132. ²² 23 **1448** [139] J. Low, B. Dai, T. Tong, C. Jiang, J. Yu, Adv. Mater. 31 (2019), pp. 1802981. ²⁴ 1449 W. Chen, Z. He, G. Huang, C. Wu, W. Cheng, W. Chen X. Liu, Chem. Eng. J. 359 [140] ²⁶ 1450 (2018), pp. 244-253. 27 L. Tian, X. Yang, X. Cui, Q. Liu, H. Tang, Appl. Surf. Sci. 463 (2019), pp. 9-17. 28 1451 [141] 29 N. Shehzad, M. Tahir, K. Johari, T. Murugesan, M. Hussai, J. CO₂ Utilization 26 [142] 30 1452 31 ₃₂ 1453 (2018), pp. 98–122. ³³ 34 1454 Y. Sun, Z. Lin, S. Hong, V. Sage, Z. Sun, J. Nanosci. Nanotechnol. 19 (6) (2019), pp. [143] ³⁵₃₆ 1455 3097-3019. ³⁷ 1456 [144] J. White, M. Baruch, J. Pander, Y. Hu, I. Fortmeyer, J. Park, T. Zhang, K. Liao, J. Gu, 38 39 1457 Y. Yan, T. Shaw, E. Abelev, B. Andrew, Chem. Rev. 115 (23) (2015), pp. 12888-40 41 1458 12935. 42 43 **1459** K. Li, B. Peng, T. Peng, ACS Catal. 6 (2016), pp. 7485–7527. [145] ⁴⁴₄₅ 1460 P. Raizada, S. Sharma, A. Kumar, P. Singh, A.A.P. Khan, A.M. Asiri, J. Environ. [146] ⁴⁶ 47 **1461** Chem. Eng. (2020), pp. 104230. ⁴⁸ 1462 [147] P. Raizada, A. Kumar, P. Singh, Curr. Anal. Chem. 16 (2020), pp. 1-00. 49 50 1463 [148] R. Kumar, A. Sudhaik, P. Raizada, A.H. Bandegharaei, V.K. Thakur, A. Saini, V. Saini, 51 P. Singh, J. Environ. Chem. Eng. (2020), pp. 104291. 52 **1464** 53 P. Raizada, A. Sudhaik, V.P. Singh, V.K. Gupta, A.H. Bandegharaei, R. Kumar, P. ₅₄ 1465 [149] ⁵⁵ 56 1466 Singh, Desalin. Water Treat. 148 (2019), pp. 338-350. ⁵⁷ 1467 [150] W.K. Jo, S. Kumar, S. Eslava, S. Tonda, Appl. Catal. B, 239 (2018), pp. 586-598. 59 60 61 62 48 63 64
 - 65

2 3 ⁴ 1468 [151] P. Murugesan, S. Narayanan, M. Matheswaran, M. Praveen, S. Ravichandran, Appl. 5 ⁶ 1469 Surf. Sci. 450 (2018), pp. 516-526. 7 D. Xu, B. Cheng, W. Wang, C. Jiang, J. Yu, Appl. Catal. B Environ. 231 (2018), pp. 8 1470 [152] 9 10 **1471** 368-380. 11 12 **1472** [153] N. Sakai, Y. Ebina, K. Takada, T. Sasaki, J. Phys. Chem., 109 (2005), pp. 9651-9655. ¹³₁₄1473 M. Wang, M. Shen, L. Zhang, J. Tian, X. Jin, Y. Zhou, J. Shi, Carbon 120 (2017), pp. [154] ¹⁵ **147**4 23-31. 16 17 1475 [155] R. Rameshbabu, P. Ravi, M. Sathish, Chem. Eng. J. 360 (2019), pp. 1277-1289. 18 Y. Zhu, L. Wang, Y. Liu Y, L. Shao, Appl. Catal. B Environ. 241 (2019), pp. 483-490. 19 **1476** [156] 20 21 **1477** X. Wang, W. Gao, Z. Zhao, L. Zhao, J. Claverie, X. Zhang, J. Wang, H. Liu, Y. Sang, [157] ²² 23 **1478** Appl. Catal. B Environ. 248 (2019), pp. 388-393. ²⁴ 1479 [158] Y. Lai, Y. Dai, J. Jehng, Catal. Today 325 (2019), pp. 41-46. ²⁶ 1480 S. Bellamkonda, N. Thangavel, H. Yusuf, B. Neppolian, G. Ranga, Catal. Today 321 [159] 27 (2019), pp. 120-127. 28 1481 29 Z. Mo, H. Xu, Z. Chen, X. She, Y. Song, J. Lian, X. Zhu, P. Yan, Y. Lei, S. Yuan, H. [160] 30 **1482** 31 ₃₂ 1483 Li, Appl. Catal. B Environ. 241 (2019), pp. 452-460. ³³₃₄ 1484 [161] J. Cui, Y. Qi Y, B. Dong, L. Mu, Q. Ding, G. Liu, M. Jia, F. Zhang, C. Li, Appl. Catal. ³⁵ 1485 B Environ. 241 (2019), pp. 1-7. ³⁷ 1486 S. Navak and K. Parida, Sci. Rep. 9 (2019), pp. 2458. [162] 38 39 **1487** [163] J. Olowoyo, M. Kumar, S. Jain, J. Babalola, A. Vorontsov, U. Kumar, J. Phys. Chem. C 40 123 (2019), pp. 367-378. $41\,1488$ 42 4₃1489 [164] J. Wang, X. Li, Y. You, X. Yang, Y. Wang, O. Li, Nanotechnology 29 (2018), pp. ⁴⁴₄₅ 1490 365401. $\frac{46}{47}$ 1491 [165] S. Bera, S. Ghosh, S. Shyamal, C. Bhattacharya, R. Basu, Sol. Energy Mater. Sol. Cells ⁴⁸ 1492 194 (2019), pp. 195–206. 49 [166] L. F. Garay, L. M. Torres, E. Moctezuma, J. Energy Chem. 37 (2018), pp. 18-28. 50 **1493** 51 X.Ke, K. Dai, G. Zhu, J. Zhang, C. Liang, Appl. Surf. Sci. 481 (2019), pp. 669-677. [167] 52 **1494** 53 ₅₄ 1495 [168] E. Liu, L. Qi, J. Chen, J. Fan, X. Hu, Mater. Res. Bulletin 115 (2019), pp. 27-36. ⁵⁵ 1496 [169] Y. Jiang, F. Li, Y. Liu, Y. Hong, P. Liu, L. Ni, J. Ind. Eng. Chem. 41 (2016), pp. 130-⁵⁷ 1497 58 140. 59 60 61 62 49 63 64 65

2 3 ⁴ 1498 Y. Li, Z. Yin, G. Ji, Z. Liang, Y. Xue, Y. Guo, J. Tian, X. Wang, H. Cui, Appl. Catal. B [170] 5 ⁶ 1499 Environ. 246 (2019), pp. 12-20. 7 [171] J. Xu, Y. Qi, L. Wang, Appl. Catal. B Environ. 246 (2019), pp. 72-81. 8 1500 9 L. Tie, S. Yang, C. Yu, H. Chen, Y. Liu, S. Dong, J. Sun, J. Sun, J. Colloid and 10 **1501** [172] 11 12¹¹1502 Interface Sci. 545 (2019), pp. 63-70. 13 14 1503 G. Zhang, W. Ou, J. Wang, Y. Xu, D. Xu, T. Sun, S. Xiao, M. Wang, H. Li, W. Chen, [173] ¹⁵ **1504** 16 C. Su, Appl. Catal. B Environ. 245 (2019), pp. 114-121. 17 1505 [174] H. Yu, Y. Huang, D. Gao, P. Wang, H. Tang, Ceram. Int. 45 (2019), pp. 9807-9813. 18 Y. Zou, J. W. Shi, D. Ma, Z. Fan, C. Niu, L. Wang, Chem. Cat. Chem. 9 (2017), pp. [175] 19 **1506** 20 ₂₁ **1507** 3752-3761. ²² 23 **1508** [176] A. J. Medford and M. C. Hatzell, ACS Catal. 7 (2017), pp. 2624-2643. ²⁴ 1509 H. Li, J. Shang, Z. Ai, L. Zhang, J. Am. Chem. Soc. 137 (2015), pp. 6393-6399. [177] ²⁶ 1510 L. Z. zhang, H. Li, J. Shang, J. Shi and K. Zhao, Nanoscale 8 (2016), pp. 1986-1993. [178] 27 28 1511 S. Cao, N. Zhou, F. Gao, H. Chen, F. Jiang, Appl. Catal. B Environ. 218 (2017), pp. [179] 29 600-610. 30 1512 31 ₃₂ 1513 [180] S. Liu, S. Wang, Y. Jiang, Z. Zhao, G. Jiang, Z. Sun, Chem. Eng. J. 373 (2019), pp. ³³ 34 1514 572-579. ³⁵₃₆ 1515 Y. Wang, X. Gao, L. Zhang, X. Wu, Q. Wang, C. Luo, G. Wu, Appl. Surf. Sci. 480 [181] ³⁷ 1516 (2019), pp. 830-838. 38 Y. Wang, X. Gao, X. Wu, C. Luo, Ceram. Int. 46 (2020), pp. 1560-1568. 39 1517 [182] 40 Y. Wang, W. Zhang, X. Wu, C. Luo, Q. Wang, J. Li, L. Hu, Synthetic Met. 228 (2017), 41 1518 [183] 42 4⁻₃1519 pp. 18-24. ⁴⁴₄₅ 1520 Y. Wang, X. Gao, Y. Fu, X. Wu, Q. Wang, W. Zhang, C. Luo, Compos. Part B: Eng. [184] $\frac{46}{47}$ 1521 169 (2019), pp. 221-228. ⁴⁸ 1522 Y. Wang, X. Gao, X. Wu, W. Zhang, C. Luo, P. Liu, Chem. Eng. J. 375 (2019), pp. [185] 49 50 **1523** 121942. 51 52 **1524** [186] B. J. Ng, L. K. Putri, L. L. Tan, P. Pasbakhsh, S. P. Chai, Chem. Eng. J. 316 (2017), pp. 53 $_{54}$ 1525 41-49. ⁵⁵ 56 **1526** [187] K. Iwashina, A. Iwase, Y. H. Ng, R. Amal, A. Kudo, J. Am. Chem. Soc. 132 (2015), pp. ⁵⁷ 1527 58 604-607. ⁵⁹ 1528 [188] W. K. Jo, N. C. S. Selvam, Chem. Eng. J. 317 (2017), pp. 913-924. 60 61 62 50 63 64 65

- ⁴₅1529 [189] A. Iwase, Y. H. Ng, Y. Ishiguro, A. Kudo, R. Amal, J. Am. Chem. Soc. 133 (2011), pp. 6 1530 11054-11057.
- 8 1531 [190] K. Kamijyo, T. Takashima, M. Yoda, J. Osaki, H. Irie, Chem. Commun. 54 (2018), pp. 10 1532
 7999-8002.
- ¹¹₁₂1533 [191] D. Lu, H. Wang, X. Zhao, K.K. Kondamareddy, J. Ding, C. Li, P. Fang. ACS Sustain. ¹³₁₄1534 Chem. Eng. 5 (2017), pp. 1436-1445.
- ¹⁵₁₆1535 [192] H. Zhao, X. Ding, B. Zhang, Y. Li, C. Wang, Sci. Bulletin 62 (2017), pp. 602-609.
- ¹⁷ 1536 [193] X. Ma, Q. Jiang, W. Guo, M. Zheng, W. Xu, F. Ma and B. Hou, RSC Adv. 6 (2016),
 ¹⁸ pp. 28263-28269.
- ²⁰₂₁1538 [194] W. Zhao, L. Xie, M. Zhang, Z. Ai, H. Xi, Y. Li, Q. Shi, J. Chen, Int. J. Hydrogen ²²₂₃1539 Energy 41 (2016), pp. 6277-6287.
- ²⁴₂₅1540 [195] J. Wen, J. Xie, H. Zhang, A. Zhang, Y. Liu, X. Chen, X. Li, ACS Appl. Mater.
 ²⁶₂₇1541 Interfaces 9 (2017), pp. 14031-14042.
- ²⁸ 1542 [196] X. Yang, Z. Chen, J. Xu, H. Tang, K. Chen, Y. Jiang, ACS Appl. Mater. Interfaces 7
 ³⁰ 1543 (2015), pp. 15285-15293.
- ³¹ ₃₂1544 [197] Y. He, L. Zhang, B. Teng, M. Fan, Environ. Sci. Technol. 1 (2014), pp. 649-656.
- ³³₄₄1545 [198] Y. Bai, T. Chen, P. Wang, L. Wang, L. Ye, X. Shi, W. Bai, Solar Energy Mater. Sol.
 ³⁵₃₆1546 Cells 157 (2016), pp. 406-414.
- ³⁷ 1547 [199] J. Wang, Y. Xia, H. Zhao, G. Wang, L. Xiang, J. Xu, S. Komarneni, Appl. Catal. B
 ³⁹ 1548 Environ. 206 (2017), pp. 406-416.
- 41 1549 [200] Q. Xu, B. Zhu, C. Jiang, B. Cheng, J. Yu, Sol. RRL 2 (2018), pp. 1800006.
- ⁴²/₄₃1550 [201] X. She, J. Wu, H. Xu, J. Zhong, Y. Wang, Y. Song, K. Nie, Y. Liu, Y. Yang, M. T. F.
 ⁴⁴/₄₅1551 Rodrigues, R. Vajtai, J. Lou, D. Du, H. Li, P. M. Ajayan, Adv. Energy Mater. (2017),
 ⁴⁶/₄₇1552 pp. 1700025.
- ⁴⁸ 1553 [202] Z. Dong, Y. Wu, N. Thirugnanam, G. Li, Appl. Surf. Sci. 430 (2018), pp. 293-300.
- ⁵⁰ 1554 [203] Y. Liu, H. Liu, H. Zhou, T. Li, L. Zhang, Appl. Surf. Sci. 466 (2019), pp. 133-140.
- 52 1555 [204] C. Yang Z. Xue, J. Qin, M. Sawangphruk, S. Rajendran, X. Zhang, and R. Liu, J. phys.
 ⁵³₅₄ 1556 Chemi. C photochem. Rev. (2019), In press, DOI: 10.1021/acs.jpcc.8b10604.
- ⁵⁵₅₆1557 [205] Y. Shi, J. Chen, Z. Mao, B. D. Fahlman, D. Wang, J. Catal. 356 (2017), pp. 22-31.
- ⁵⁷₅₈ 1558 [206] K. He, J. Xie, X. Luo, J. Wen, S. Ma, X. Li, Y. Fang, X. Zhang, Chin. J. Catal. 38 ⁵⁹1559 (2017), pp. 240–252.
- 60 61

62

1 2		
$\frac{3}{4}$ 1560	[207]	W. Chang, W. Xue, E. Liu, J. Fan, B. Zhao, Chem. Eng. J. 362 (2019), pp. 392-401.
5 ⁶ 1561	[208]	J. Dong, Y. Shi, C. Huang, Q, Wu, T, Zeng, W. Yao, Appl. Catal. B Environ. 243
7 8 1562		(2018), pp. 27-35.
9 10 1563	[209]	Z. Chen, P. Chen, P. Xing, X. Hu, H. Lin, L. Zhao, Y. Wu, Y. He, Fuel 241 (2019), pp.
$^{11}_{12}$ 1564		1-11.
$\frac{13}{14}$ 1565	[210]	J. Fu, Q. Xu, J. Low, C. Jiang, J. Yu, Appl. Catal. B Environ. 243 (2018), pp. 556-565.
¹⁵ ₁₆ 1566	[211]	D. D. Yang, X. J. Sun, H. Dong, X. Zhang, H. L. Tang, J. L. Sheng, J. Z. Wei, F. M.
17 1567		Zhang, Mater. Sci. Semicond. Process. 85 (2018), pp. 76-82.
18 19 1568	[212]	M. W. Kadi and R. M. Mohamed, Ceram. Int. 45 (3) (2019), pp. 3886-3893.
20 21 1569	[213]	E. Liu, J. Chen, Y. Ma, J. Feng, J. Jia, J. Fan, X. Hu, J. Colloid Interface Sci. 524
²² 23 1570		(2018), pp. 313-324.
²⁴ 1571 25	[214]	X. Wanga, Z. Zhaoa, Z. Shua, Y. Chena, J. Zhoua, T. Lic, W. Wanga, Y. Tana, N. Sun,
²⁶ 1572 27		Appl. Clay Sci. 166 (2018), pp. 80-87.
28 1573 29	[215]	X. Lu, J. Xie, A. A. Jeffery, X. Chen, and X. Li, Appl. Catal. B Environ. (2019), In
30 1574		press, 10.1016/j.apcatb.2019.04.012
32 1575	[216]	J. U. Choi, Y. G. Kim, W. K. Jo, Appl. Surf. Sci. 473 (2019), pp. 761-769.
33_{34}^{33} 1576	[217]	J. Wang, G. Wang, X. Wang, Y. Wu, Y. Su, H. Tang, Carbon 149 (2019), pp. 618-626.
³⁵ 1577 36	[218]	R. Cao, H. Yang, S. Zhang, X. Xu, Appl. Catal. B 258 (2019), pp. 117997.
³⁷ 1578 38	[219]	P. Mishra, A. Behera, D. Kandi, K. Parida, Nanoscale Adv. 1 (2019), pp. 1864-1879.
39 1579 40	[220]	Y. Jiao, Q. Huang, J. Wang, Z. He, Z. Li, Appl. Catal. B 247 (2019), pp. 124-132.
41 1580	[221]	F. Raziq, Y. Qu, M. Humayun, A. Zada, H. Yu, L. Jing, Appl. Catal. B Environ. 201
4 ₃ 1581		(2017), pp. 486-494.
44 45 1582	[222]	N. Nie, L. Zhang, J. Fu, B. Cheng, J. Yu, Appl. Surf. Sci. 441 (2018), pp. 12-22.
$\frac{46}{47}$ 1583	[223]	Y. Huo, J. Zhang, K. Dai, Q. Li, J. Lv, G. Zhu, C. Liang, Appl. Catal. B Environ. 241
⁴⁸ 1584 49		(2018), pp. 528-538.
50 1585 51	[224]	Y. Meng, L. Zhang, H. Jiu, Q. Zhang, H. Zhang, W. Ren, Y. Sun, D. Li, Mater. Sci.
52 1586 53		Semicond. Proc. 95 (2019), pp. 35-41.
54 55	[225]	T. Di, B. Zhu, B. Cheng, J. Yu, J. Xu, J. Catal. 352 (2017), pp. 532-541.
56 56 1588	[226]	X. Yang, W. Xin, X. Yin, X. Shao, Chem. Phys. Lett. 651 (2016), pp. 127-132.
57 1589 58		
⁵⁹ 1590 60		
61 62		52
63 64		
65		

Fig. 1. (a) Schematic illustration of basic principle of photocatalysis. Traditional heterojunction photocatalysis illustrating double charge transfer mechanism in: (b) Type-I heterojunction, (c)

type-II heterojunction and (c) representation of broken band gap situation in type-III heterojunction, SC-I and SC-II represents semiconductor-I and semiconductor-II, respectively.

Fig. 2. Schematic illustration showing progression of Z-scheme photocatalysis from 1^{st} generation to current 3^{rd} generation. A/D, Acceptor/Donor pair.

Fig. 3. (a) A schematic representation of double excitation process occurring on P680 and P700 through Natural Photosynthesis. (b) Charge transfer mechanism in traditional Z-scheme system with liquid-phase redox mediators, A and D represents Acceptor and donor pairs, respectively. (c) Charge transfer mechanism in all-solid-state Z-scheme system with solid state electron mediator and (d) Scheme of charge transfer and separation in direct Z-scheme system.

Fig. 4. (a) Total publications from 2009 to January, 2020 through Scopus Search Engine using keywords "All solid state Z-scheme Photocatalysts" and "Direct Z-Scheme Photocatalysts". Environmental and energy applications representing the total percentage of; (b) All solid state Z-scheme photocatalysts and (b) Direct Z-scheme photocatalysts.

Fig. 5. Schematic illustration of visible light driven water splitting process carried on a single photocatalyst system.

Fig. 6. Diagrammatic representation of basic aspects involved in selectivity of photocatalyst.

Fig. 7. Representation of redox potentials of various photocatalysts for their application in environmental and energy remediation.

Fig. 8. Schematic illustration of: (a, b) TEM images of g-C₃N₄/Ag/LaFeO₃ nanohybrid, (c) EIS spectrum and (d) photoinduced fluorescence spectroscopic analysis of g-C₃N₄, g-C₃N₄/LaFeO₃

and g-C₃N₄/Ag/LaFeO₃ nanohybrid. Adapted from Elsevier under License No. 4891440827977) [127].

Fig. 9. Schematic illustration of: (a) mechanistic insight into the synthesis process of 3DOM-CNPTC photocatalyst, (b) Photocurrent responses of various samples, (c) LSV curves of various samples under dark and light illumination, adapted with permission from Elsevier (License no. 4891450608052) [128], and (d) distinct charge migration modes for photocatalytic CO₂ reduction in CZ/3 wt% PCN heterostructures, reproduced with permission from Elsevier (License no. 4891450418062) [129].

Fig. 10. (a) SEM image, (b) TEM image and (c) HR-TEM image of CN/C/ZIS nanocomposite. TG curves of the samples: (d) ZIS, CN/ZIS, C/ZIS and CN/C/ZIS; (e) CN and C/CN. (f) Raman spectra of CN/C/ZIS nanocomposite. CN represents g-C₃N₄. Reprinted with permission from RSC [133].

Fig. 11. Schematic illustrating the high-resolution XPS of: (a) Ti 2p and (b) Cd 3d in TiO₂/CdS nanocomposite, Reproduced with permission from Elsevier (License no. 4891850467496) [139] (c) Typical double charge transfer in MnIn₂S₄/g-C₃N₄ (MnIS/CN) heterojunction system, which do not form. (d) Direct Z-scheme MnIS/CN photocatalyst for H₂ production, reprinted with permission from Elsevier (Licence no. 4566470506559) [140]. (e) Ag₃PO₄/MoS₂/g-C₃N₄ ternary Z- scheme photocatalyst for O₂ evolution from overall water splitting, ECN represents modified g-C₃N₄ nanosheets.

Fig. 12. (a) Comparison of the photoassisted CO, CH₄, H₂, and O₂ production rates of all the synthesized photocatalysts under visible light illumination for 5 h. (b) Photocurrent responses of CN, BWO, BWO/CN, RGO/CN, and BWO/RGO/CN photocatalysts. (c) Schematic illustration of the proposed mechanism for CO₂ photoreduction in the BWO/RGO/CN nanohybrid. Reproduced with permission from Elsevier (License No. 4700150753077) [150].

Fig. 13. Synthesis route along with spatial charge separation of a direct Z-scheme AgCl@g-C₃N₄ photocatalyst for CO₂ reduction into CH₄, CH₃COOH and C₂H₅OH, reproduced with permission from Elsevier (Licence no. 4566480298200) [151].

Fig. 14. Schematic representation of: (a) A novel ternary $Ag_2CrO_4/g-C_3N_4/GO$ Z-scheme photocatalyst for CO₂ reduction into CH₃OH and CH₄, reproduced with permission from Elsevier (Licence no. 4566481143580) [152]. (b) Charge carrier migration in g-C₃N₄/MnO₂ photocatalyst through interfacial ohmic-contact, reprinted with permission from ACS [154], (c) Charge transfer pathway in metal free C₃N/g-C₃N₄ photocatalyst for overall water splitting [164].

Fig. 15. Schematic representation of: (a) Au mediated all-solid-state Z-scheme photocatalyst for H_2 production, reprinted with permission from Wiley (license no. 4566490300093) [175], (b) 3,4-dihydroxybenzaldehyde (DBD) as an electron mediator in Ga₂O₃/g-C₃N₄ for visible light assisted photocatalytic N₂ fixation. (c) DMPO spin-trapping ESR spectra recorded for \cdot CO₂⁻ in 0.2 mol L⁻¹ methanol aqueous solution. (d) Photocurrent transient responses of 2.4%Ga₂O₃/g-C₃N₄ and 2.4%Ga₂O₃-DBD/g-C₃N₄, reproduced with permission from Elsevier (Licence no. 4703761323347) [179],

Fig. 16. (a) Rates of NH₃ generation of GCN, GF-400, GF-450, GF-500, GF-550, G-500, and HCl solution treated GF-500 (GF-500_A) as well as GF-500 in a control experiment with Ar. (b) Photocurrent generation analysis of different composites. (c) Schematic representation of photocatalytic N₂ reduction over Fe₂O₃ loaded g-C₃N₄. Reprinted with permission from Elsevier (License No. 4703770265600) [180].

Fig. 16. Conclusive overview of $g-C_3N_4$ based Z-scheme photocatalytic system.

Photocatalyst	Solid-state electron mediator	Synthesis route	Active species	Application	Enhanced photocatalytic efficiency (%)/ Activity	Ref.
Zn0.5Cd0.5S- MWCNT-TiO2	multi-walled carbon nanotubes (MWCNTs)	coating and hydrothermal route	-	H ₂ production	Zn0.5Cd0.5S-MWCNT-TiO ₂ : 21.9 μmol h ⁻¹	[186]
TiO2/RGO/Metal sulphide	RGO	Photodeposition method		Overall water splitting	H_2 production :19.8 µmol h ⁻¹	[187]
					O_2 production : 10.3 µmol h ⁻¹	
CdS/RGO/g-C ₃ N ₄	RGO	Hydrothermal process	$e^{-}and h^{+}$	<i>H</i> ₂ production and <i>Atrazine</i>	H ₂ production :	[<u>188]</u>
				degradation	$CdS/RGO/g$ - C_3N_4 : 1980.2 $\mu mol g^{-1}$	
					Atrazine degradation : CdS/RGO/e-C3N4 : 90 50 %	
PRGO/Ru/SrTiO3 : Rh (BiVO4)	Photoreduced graphene oxide (PRGO)	Photoreduction method	h^+ and e^-	Overall water splitting	H2production : Ru/SrTiO ₃ :Rh/PRGO(BiVO ₄) : 11 μmol	[<u>189</u>]
	(1100)				O2 production : Ru/SrTiO3:Rh/PRGO(BiVO4) : 5.5 µmol	
ZnRh ₂ O ₄ /Au/Bi ₄ V ₂ O ₁₁	Au	Calcination method	$e^{-}and h^{+}$	Overall water splitting	H ₂ production :	[<u>190]</u>
					ZnRh ₂ O ₄ /Au/Bi ₄ V ₂ O ₁₁ : 0.016 μmol h ⁻¹	
					O_2 production :	

Table 1: Summary of ASS Z-scheme photocatalytic systems for H₂ production and CO₂ reduction.

 $ZnRh_2O_4/Au/Bi_4V_2O_{11}$: 0.088 $\mu mol \ h^{-1}$

g - $C_3N_4/Ag/MoS_2$	Ag	Calcination followed by photodeposition	• <i>O</i> ₂ ⁻ , • <i>OH</i> , <i>e</i> ⁻ and <i>h</i> ⁺	RhB degradation, H ₂ production	MoS ₂ : 16.2% g-C ₃ N ₄ : 50.02%	[191]
					g-C ₃ N ₄ /Ag/MoS ₂ : 95.8 %	
					H ₂ production:	
					g-C ₃ N ₄ /Ag/MoS ₂ : 10.40 μmol h ⁻¹	
$Cd_xZn_{1-x}S/Au/g-C_3N_4$	Au	Deposition method	e_{CB}^-	H_2 production	Cd _{0.8} Zn _{0.2} /Au/g-C ₃ N ₄ : 123 µmol h ⁻¹ g ⁻¹	[192]
					$(52.2 \times Au/g - C_3N_4)$	
					$(8.63 \times CdS/Au/g-C_3N_4)$	
C ₃ N ₄ /Au/CdZnS	Au	Hydrothermal	e ⁻ and	H_2 production	C ₃ N ₄ /Au/CdZnS : 24.6 mmolg ⁻¹	[<u>193]</u>
		Johowea by Deposition	n		$(6.3 \times \ C_3N_4/CdZnS)$	
g-C ₃ N ₄ /Au/P25	Au	Calcination method	e	H_2 production	g-C ₃ N ₄ /Au/P25 : 259 µmol h ⁻¹	[194]
		теточ			$(30 \times c_{\alpha} C_{\alpha} N_{\alpha})$	
g-C ₃ N ₄ -Ni-NiS	Ni	In-situ process	e	H ₂ production	$g-C_3N_4: 0.5\%$	[195]
					Ni :1.0 %	
					NiS : 515 µmol h ⁻¹ g ⁻¹	
					(2.8 <mark>×~g-C₃N₄-1.0 % NiS</mark>)	
Ag ₃ PO ₄ /Ag/g-C ₃ N ₄	Ag	In-situ process	h^+	O ₂ evolution	(4.6 <mark>×~g-C₃N₄-0.5 %N</mark> i) Ag ₃ PO ₄ /Ag/g-C ₃ N ₄ : 19 μmol	[<u>196]</u>
					L^{-1}	
g-C ₃ N ₄ /Au/C-TiO ₂	Au	Photodeposition	• <i>OH</i>	H_2	20 % g-C ₃ N4/2 % Au/C-TiO ₂ : 129 µmol h ⁻¹ g ⁻¹	[175]

$Ag_3PO_4/g-C_3N_4$	Ag	In-situ deposition	• O_2^-an $d h^+$	CO_2 reduction	CO ₂ reduction : 57.5 µmol	[<u>197]</u>
		method			h ⁻¹ gcat ⁻¹	
g-C3N4/BiOBr/Au	Au	Xe lamp	$\bullet O_2^-$	CO ₂ reduction	g - $C_3N_4/BiOBr/Au$ - S :	[198]
		indutation			CO : 0.39 µmol h ⁻¹ g ⁻¹	
					CH4: 0.05 µmol h ⁻¹ g ⁻¹	

Photocatalyst	Synthesis route	Active species	Application	Enhanced photocatalytic efficiency (%)/ Activity	Ref.
LaMnO3/g-C3N4	Heat-treatment method	h^+ and $\bullet O_2^-$	TC degradation	LaMnO ₃ (4.6 Wt %)/g-C ₃ N ₄ : 56.3 %	[<u>201</u>]
				LaMnO ₃ (9.8 Wt %)/g-C ₃ N ₄ : 61.4 %	
				LaMnO ₃ (14.6 Wt%)/g-C ₃ N ₄ : 43.1 %	
β-CoOOH/g-C ₃ N ₄	Thermal	• O_2^- , • OH	MO and phenol	MO degradation:	[202]
	followed by exfoliation	una n	aegraaanon	15 % β-CoOOH/g-C ₃ N ₄ : 92.1 %	
				Phenol degradation:	
				15%β-CoOOH/g-C ₃ N ₄ : 72.2 %	
2D/2D g-C ₃ N ₄ /MnO ₂	In-situ method	•O2 ⁻ and •OH	RhB and phenol degradation	RhB degradation:	[203]
			0	g-C ₃ N ₄ /MnO ₂ : 91.3 %,	
				g-C ₃ N ₄ : 19.6 %,	
				MnO ₂ : 22.3 %	
				Phenol degradation:	
				<i>g-C</i> ₃ <i>N</i> ₄ / <i>MnO</i> ₂ : 73.6 %,	
				g-C ₃ N ₄ : 12.3 %,	
				MnO ₂ : 35.4 %	
g-C ₃ N ₄ /NiWO ₄	Hydrothermal method	• <i>OH</i>	Toluene degradation	Removal efficiency:	[204]
				g-C ₃ N ₄ /NiWO ₄ (1C/1N): 95.3 %	
				Mineralization efficiency:	
				g-C ₃ N ₄ /NiWO ₄ (1C/1N): 99.1 %	

Table. 2. Summary of direct Z-scheme photocatalytic systems for various applications.

g - C_3N_4/CeO_2	Calcination method	• OH and h^+	Methylene blue (MB)	Degradation rates:	[205]
			degradation	$g-C_3N_4/CeO_2$: 0.246 h^{-1}	
1D/2D V ₂ O ₅ /g-C ₃ N ₄	Impregnation method	•O2 ⁻ and •OH	Congo red (CR) degradation	V ₂ O ₅ nanorods (VONRs):	[206]
			0	5 %	
				g-C ₃ N ₄ nanosheets (CNNs): 34 %	
				4-VONRs/CNNs: 90 %	
La2NiO4/g-C3N4	Mixed calcination route	h^+ and $\bullet O_2^-$	MO degradation	La2NiO4(33 wt. %)/g-C3N4: 36.2 %	[207]
				g-C ₃ N ₄ : 12.4 %	
PTCDA(Perylene- 3,4,9,10-tetracarboxylic	Calcination followed by hydrothermal	h^+ and $\bullet O_2^-$	Photooxidation of benzylamine		[208]
dianhydride)/g-C ₃ N4 Fe ₂ O3-xS _x /S-doped g- C ₃ N4 (CNS)	One-pot in-situ process	•O2 ⁻ and •OH	MB degradation	$Fe_2O_3-xS_{*}/(CNS)$ (6.6 wt. % Fe_2O_3): 82 %	[209]
				Fe ₂ O ₃ : 28 %	
				CNS: 54 %	
$LaFeO_3/g-C_3N_4$	In-situ growth	h^+ and $\bullet O_2^-$	MO and TC degradation	MO degradation:	[210]
				LaFeO3/g-C3N4: 85 %	
				TC degradation:	
$(BiO)_2CO_3/g-C_3N_4$	Hydrothermal route	• <i>O</i> ₂ ⁻ , • <i>O</i> H	RhB	LaFeO ₃ (2.0wt %)/g-C ₃ N ₄ : 65.4 %	[211]
$a C_{2}N/Bi_{2}O_{2}@N$	Thermal process	and h^+	degradation Tetracycline	TCH degradation	[2]2]
HMCs (CBH)	Inerniai process	and h^+	hydrochloride	1 CH uegraaanon.	[212]
			(TCH) and ciprofloxacin	СВН: 90 %,	
			hydrochloride (CFH)	g-C3N4/Bi2O3: 68.78 %,	
			degradation	g-C3N4/N-HMCs: 53.30%,	
				Bi2O3/N-HMCs: 37.35%	

CFH degradation:

CBH: 78.06%

Bi ₂ WO ₆ /g-C ₃ N ₄	Hydrothermal process	• <i>O</i> ₂ -	RhB degradation	4% Bi ₂ WO ₆ /g-C ₃ N ₄ : 68%	[37]
BiOI/g-C ₃ N ₄	In-situ transformation process	•O2 ⁻ and •OH	Phenol degradation		[213]
β -Bi ₂ O ₃ /g-C ₃ N ₄ (BC)	Combined hydrothermal-	h^+ and $\bullet O_2^-$	RhB degradation	BC70: 98%	[2 <u>1</u> 4]
	calcination method			<i>g-C</i> ₃ <i>N</i> ₄ : 87%	
				β-Bi ₂ O ₃ : 67%	
Bi_2O_3/g - C_3N_4	In-situ fabrication	h^+ and $\bullet O_2^-$	Phenol degradation		[215]
$Bi_2O_3/g-C_3N_4$	One-step calcination method	• O_2^- , • OH and h^+	MB degradation	Photocatalytic activity rate constant : 0.063 min ⁻¹	[2 <u>1</u> 6]
WO_3/g - C_3N_4/Bi_2O_3 (CWB)	One-step co- calcination method	• O_2^- , • OH and h^+	TC degradation	<i>CWB:</i> 80.2%,	[217]
				$WO_{3}/g-C_{3}N_{4}$: 48.54%,	
				Bi ₂ O ₃ /g-C ₃ N ₄ : 44.53%	
FeWO4 nanorodg-C ₃ N ₄ (FWO/g-CN)	In-situ hydrothermal method	• O_2^- , • OH and h^+	Salicylic acid (SA)	FWO/g-C ₃ N ₄ : 95 %	[2 <u>1</u> 8]
			degradation	$g-C_3N_4: 36\%$	
N-K ₂ Ti ₄ O ₉ /g-C ₃ N ₄ /UiO- 66	Calcination	• O_2^- , • OH and h^+	RhB degradation		[219]
$g-C_3N_4/\alpha$ - Fe_2O_3	In-situ	h^+ and $\bullet O_2^-$	RhB degradation	g-C ₃ N ₄ /α-Fe ₂ O ₃ : 99 %,	[<u>123</u>]
				<i>g-C</i> ₃ <i>N</i> ₄ : 67 %,	
				α-Fe ₂ O ₃ : 6 %	
Monoclinic-	One-step	h^+ and $\bullet O_2^-$	MO and phenol	MO degradation:	[50]
Bl_2O_4 /nitrogen doped	nydrothermal method		degradation	$m Pi O (MCD_{0} 4, 0.4.2.0)$	
$Bi_2O_4/NCDs)$				<i>m-bl</i> ₂ 04/NCDS-4: 94.5 %, <i>m-Bl</i> ₂ MO ₃ : 8.64 %	
				Phenol degradation:	

m-Bi₂O₄/NCDs-3: 96.8 %, m-

*Bi*₂*MO*₃: 70.4 %,

3:7 BiVO4/g-C3N4	Calcination	•O2 [:] and •OH	RhB degradation	$3:7 BiVO_4/g-C_3N_4 = 10.36 \times g-C_3N_4$ $3:7 BiVO_4/g-C_3N_4 = 10.68 \times BiVO_4$	[220]
MnIn ₂ S ₄ /g-C ₃ N ₄ (MnISCN)	Hydrothermal route	h^+ and $\bullet O_2^-$	TCH degradation and H ₂	TCH degradation: MnIn ₂ S ₄ : 60.5 %	[<u>116]</u>
			production	H ₂ production:	
				MnISCN-20: 200.8 μmol h ⁻¹ g ⁻¹	
$g-C_3N_4/0D-ZnO$	Solution conversion,	• O_2^- and	4-chlorophenol	(3.5 <mark>×~MnIS)</mark> 4CP degradation:	[221]
(CN/0DZnO)	exfoliation	•0H	on and H ₂	CN-10/0D-ZnO: 95 %,	
			ргоаисноп	0D-ZnO: 64.2 %,	
				g-C ₃ N ₄ : 34.2 %	
				H ₂ production:	
				CN-20/0D-ZnO: 32.2 µmol h ⁻¹	
Fe_2O_3/g - C_3N_4	Electrostatic self- assembly method	e^{-} and h^{+}	H_2 production	(5 <mark>×~g-C₃N₄)</mark> 10 % Fe ₂ O ₃ /g-C ₃ N ₄ : 398.0 μmol h ⁻¹ g ⁻¹	[222]
				$(13 \times -g - C_3 N_4)$	
α -Fe ₂ O ₃ /g-C ₃ N ₄	Solvothermal and	• O_2^- and	Overall water	H ₂ production: 38.2 μmol h ⁻¹ g ⁻¹	[223]
	calcination	• <i>OH</i>	splitting	O ₂ production: 19.1 μ mol $h^{-1} g^{-1}$	

ZnO/ZnS/g-C ₃ N ₄	Two-step chemical route		H_2 production	ZnO/ZnS/g-C ₃ N ₄ : 1205 8 μmol g ⁻¹ ZnO/ZnS: 768 μmol g ⁻¹	[224]
N - ZnO/g - C_3N_4	calcination	•O2 ⁻ and •OH	H_2 production	N-ZnO/g-C ₃ N ₄ : 152.7 μmol h ⁻¹ ZnO/g-C ₃ N ₄ : 36.4 μmol h ⁻¹ g-C ₃ N ₄ : 28.6 μmol h ⁻¹	[225]
Bi ₂ O ₂ CO ₃ /g-C3N4	In-situ thermal growth	e ⁻ , h ⁺ and •OH	<i>H</i> ² production	Bi ₂ O ₂ CO ₃ /g-C ₃ N ₄ : 965 µmol h ⁻¹ g ⁻¹ g-C ₃ N ₄ :337 µmol h ⁻¹ g ⁻¹	[226]
g-C ₃ N ₄ /PSi	Magnesiothermic reduction and polycondensation	e	H ₂ production	g-C ₃ N ₄ /(2.50 wt. %) PSi: 870.4 μmol h ⁻¹ g ⁻¹ (2 <mark>×~g-C₃N₄)</mark>	[227]
WO_{3}/g - $C_{3}N_{4}/Ni(OH)_{x}$	Calcination and photodeposition	•O2 ⁻ and •OH	H ₂ production	20 wt. % WO ₃ /g-C ₃ N ₄ /4.8 wt. % Ni(OH) _x : 576 μmol h ⁻¹ g ⁻¹ (10.8 × 20 wt. % WO ₃ /g-C ₃ N ₄)	[228]
NiCo ₂ O ₄ /g-C ₃ N ₄	Calcination and hydrothermal method	h^+	H_2 production	17.5 wt %-NiCo ₂ O ₄ /g-C ₃ N ₄ : 5480 μmol h ⁻¹ g ⁻¹	[229]
Mo-Mo ₂ C/g-C ₃ N ₄	Ultrasound assisted deposition method		H_2 production	2.0 wt % Mo-Mo ₂ C/g-C ₃ N ₄ : 219.7 μ mol h ⁻¹ g ⁻¹ (440×-g-C ₃ N ₄ , 3.6×-2.0 wt. %	[230]
KTa _{0.75} Nb _{0.25} (KTN)/g- C ₃ N ₄	Microwave heating		H ₂ production	$(KTN)/g-C_3N_4: 1673 \ \mu mol \ h^{-1} \ g^{-1}$ $(2.5 \times KTN)$ $(2.4 \times g-C_3N_4)$	[231]
2D/2D WO3/g-C ₃ N ₄	Ultrasonication and two-step thermal- etching	•O2 ⁻	H ₂ production	15 % WO ₃ /g-C ₃ N ₄ : 982 μmol h ⁻¹ g ⁻¹ (1.7 <mark>×~g-C₃N₄)</mark>	[232]
g-C ₃ N ₄ -CoNiSe	Calcination under N ₂ atmosphere	e	H_2 production	$CN-CoNiSe = 87.4 \times 2 g-C_3N_4$	[233]

$WO_{3}/g-C_{3}N_{4}$	Pyrolysis		H_2 production	9 % WO ₃ /g-C ₃ N ₄ : 11,000 μmol g ⁻¹	[234]
$2D SnS_2/g-C_3N_4$	Microwave assisted	e	H_2 production	5wt % SnS ₂ /g-C ₃ N ₄ : 972.6 μ mol h ⁻¹ g ⁻¹	[235]
Metakaolin/g-C ₃ N ₄ (MK/CN)	One-pot heating treatment	e	H_2 production	MK/CN-70.4 % : 288 µmol h ⁻¹ g ⁻¹ (1.5 <mark>×~g-C₃N4</mark>)	[<u>23</u> 6]
g-C ₃ N ₄ -Ni ₂ P-MoS ₂	In-situ phosphorization reaction		<i>H</i> ² production	g-C ₃ N ₄ -1 % Ni ₂ P-1.5 % MoS ₂ : 532.41 μmol h ⁻¹ g ⁻¹ (2.47×~g-C ₃ N ₄ -1.5 % MoS2) (5.15×~g-C3N4-1 % Ni ₂ P)	[237]
Cu-loaded g-C3N4/1D hydrogenated black TiO2 nanofiber (CuCNBTNF)	Electrospinning process followed by thermal treatment	• <i>O</i> 2 ⁻	H ₂ production	CuCNBTNF-5: 3.3 mmol h ⁻¹ g ⁻¹	[238]
SnO2-coupled boron and phosphorus co- doped g-C ₃ N4(SO/B-P- CN)	Calcination	•OH	CO ₂ reduction	$6SO/0.12B-0.2P-CN: 49 \ \mu mol \ h^{-1}$ g^{-1} $(9 \times g^{-1}C_{3}N_{4})$	[239]
$g-C_3N_4/ZnO$	Hydrothermal- calcination process	•OH and e ⁻	CO ₂ reduction	CH ₃ OH production: g-C ₃ N ₄ /ZnO: 1.32 μmol h ⁻¹ g ⁻¹ , (2.1×~ZnO), (4.1×~μmol h ⁻¹ g ⁻¹)	[240]
Porous g- C ₃ N ₄ /Sn ₂ S ₃ ⁻ diethylenetriamine (Pg- C ₃ N ₄ /Sn ₂ S ₃ ⁻ DETA)	Hydrothermal process	e^{-} and h^{+}	CO ₂ reduction	5 % Pg-C ₃ N ₄ /Sn ₂ S ₃ ⁻ DETA : CH ₄ : 4.93 μmol h ⁻¹ g ⁻¹ CH ₃ OH: 1.49 μmol h ⁻¹ g ⁻¹	[241]
<i>g-C</i> ₃ <i>N</i> ₄ / <i>ZIF-</i> 67	Aging process	e^{-} and h^{+}	CO ₂ reduction	$C_{2}H_{5}OH \ production:$ g-C ₃ N ₄ /ZIF-67: 325.5 µmol. gcat ⁻¹ $(2 \times g - C_{3}N_{4})$	[242]
g-C ₃ N ₄ /SnS ₂	Hydrothermal process	e^{-} and h^{+}	CO ₂ reduction	CH ₃ OH production: g -C ₃ N ₄ /SnS ₂ : 2.3 μ mol g ⁻¹ CH ₄ production: g -C ₃ N ₄ /SnS ₂ : 0.64 μ mol g ⁻¹	[243]
$Cu_2V_2O_7/g$ - C_3N_4	Hydrothermal and calcination	e ⁻ and h ⁺	CO ₂ reduction	CH4 production: $50 Cu_2V_2O_7/50 g-C_3N_4$: $305 \mu mol.$ $g^{-1}cat. h^{-1}$ CO production: $50 Cu_2V_2O_7/50 g-C_3N_4$: $166 \mu mol.$ $g^{-1}cat. h^{-1}$ $O_2 production:$ $50 Cu_2V_2O_7/50g-C_3N_4$: $706 \mu mol.$ $g^{-1}cat. h^{-1}$	[58]
CdS/g-C ₃ N ₄	Polycondensation and hydrothermal method	e^{-} and h^{+}	CO ₂ reduction	Methyl formate production: 1 % CdS/2 % g-C ₃ N ₄ : 1352.07 μ mol. g ⁻¹ cat. h ⁻¹	[244]

