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Abstract
Static chambers are often used for measuring nitrous oxide (N2O) fluxes from
soils, but statistical analysis of chamber data is challenged by the inherently het-
erogeneous nature of N2O fluxes. BecauseN2O chambermeasurements are com-
monly used to assess N2O mitigation strategies or to determine country-specific
emission factors (EFs) for calculating national greenhouse gas inventories, it is
important that statistical analysis of the data is sound and that EFs are robustly
estimated. This paper is one of a series of articles that provide guidance on dif-
ferent aspects of N2O chamber methodologies. Here, we discuss the challenges
associated with statistical analysis of heterogeneous data, by summarizing statis-
tical approaches used in recent publications and providing guidance on assessing
normality and options for transforming data that follow a non-normal distribu-
tion. We also recommend minimum requirements for reporting of experimen-
tal and metadata of N2O studies to ensure that the robustness of the results can
be reliably evaluated. This includes detailed information on the experimental
site, methodology and measurement procedures, gas analysis, data and statisti-
cal analyses, and approaches to generate EFs, as well as results of ancillary mea-
surements. The reliability, robustness, and comparability of soil N2O emissions
data will be improved through (a) application, and reporting, of more rigorous
methodological standards by researchers and (b) greater vigilance by reviewers
and scientific editors to ensure that all necessary information is reported in sci-
entific publications.

Abbreviations: EF, emission factor; EFDB, emission factor database;
GAMM, generalized additive mixed model; IPCC, Intergovernmental
Panel on Climate Change; REML, restricted maximum likelihood.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
© 2020 The Authors. Journal of Environmental Quality published by Wiley Periodicals, Inc. on behalf of American Society of Agronomy, Crop Science Society of America,
and Soil Science Society of America

1 INTRODUCTION

Static (or non-steady-state) chambers are the most com-
monly used method for measuring nitrous oxide (N2O)
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fluxes from agricultural soils, as this method is relatively
inexpensive, versatile in the field, and very easy to adopt
(Holland et al., 1999; Hutchinson & Livingston, 1993;
Kanemasu, Powers, & Sij, 1974; Mosier, 1989; Rochette
& Eriksen-Hamel, 2008). Nitrous oxide chamber mea-
surements are often used to assess emissions from a
nitrogen (N) source to determine cumulative emissions,
to provide data for calculating country- or region-specific
N2O emission factors (EFs), to test mitigation strate-
gies, or to investigate drivers of emissions. All of these
objectives require reliable results that can be compared
among different studies, yet many of the challenges of
chamber methodologies have the potential to bias results,
or third-party interpretation of those results. This in turn
limits interstudy comparisons and assessment of the reli-
ability and uncertainty associated with the results of the
individual studies. This paper is part of a special section
of the Journal of Environmental Quality that considers
the challenges associated with all key aspects of chamber
methodologies, including design (Clough et al., 2020),
deployment (Charteris et al., 2020), gas analysis (Harvey
et al., 2020), automated chambers (Grace et al., 2020),
flux calculation methods (Venterea et al., 2020), modeling
(Giltrap et al., 2020), and gap-filling procedures (Dorich
et al., 2020). These papers collectively provide guidance
on best practices and factors that need to be considered
when adopting N2O chamber methodologies. Here, we
discuss some of the pitfalls of statistical analysis of N2O
emissions that are inherently variable and rarely normally
distributed. This violates assumptions of many statistical
tests, and data transformation is often required prior to
statistical analysis. The large variability in N2O emissions
derived from static chamber measurements results in
large CVs in flux data: 13–57% (Yamulki, Goulding, Web-
ster, & Harrison, 1995), 60–81% (Khalil, van Cleemput,
Rosenani, & Schmidhalter, 2007) 8–108% (Chadwick et al.,
2014), and 31–168% (Matthias, Yarger, & Weinbeck, 1978).
Calculation of mean fluxes and statistical analyses of
N2O fluxes from replicated experiments must adequately
represent this variability. Kravchenko and Robertson
(2015) discussed the statistical challenges of N2O chamber
measurements when comparing treatment differences at
individual time points. Here, we focus on the statistical
challenges for comparing cumulative N2O emissions
and N2O EFs between treatments, and their driving
variables.
Emission factors represent the proportion or percentage

of the N applied as a given N source (e.g., urine, manure,
or fertilizer) that is emitted as N2O in excess of background
N2O emissions. The Intergovernmental Panel on Cli-
mate Change (IPCC) methodology for estimating national
greenhouse gas inventories (Eggleston, Buendia, Miwa,
Ngara,&Tanabe, 2006) relies heavily on the use of EFs, and

Core Ideas

∙ N2O chamber measurements are often used for
estimating N2O emission factors (EFs).

∙ Accurately determining EFs is challenging due
to the inherently variable nature of N2O fluxes.

∙ We provide guidance on statistical analysis and
EF calculation of N2O chamber measurements.

∙ Accurate reporting of data ensures the robust-
ness of N2O results can be reliably evaluated.

∙ Authors should adhere to minimum require-
ments for reporting of experimental and meta-
data.

these are most commonly calculated from N2O field mea-
surements using chamber methodologies (Cardenas et al.,
2010; Chadwick et al., 2018; de Klein, Smith, &Monaghan,
2006; Luo, Saggar, van der Weerden, & de Klein, 2019; Sag-
gar et al., 2015; van derWeerden et al., 2016). To ensure that
the soundness and robustness of the results can be veri-
fied, and that derived EFs can be reliably evaluated, it is
also important that there is a consistent approach to calcu-
lating EFs. This includes how to calculate EFs from single
experiments, how to estimate country- or region-specific
EFs using results from multiple experiments, and/or how
to conduct meta-analyses from published data. As men-
tioned, this paper is part of a series on guidelines for using
N2O chamber methodologies, and here we focus mainly
on minimum requirements for calculating EFs from sin-
gle experiments. However, we also provide some examples
of meta-analyses of results from multiple experiments for
estimating country- or region-specific EFs. The intended
audience of this paper is soil and environmental scientists
that use N2O chamber methodologies, and the paper does
not provide an in-depth analysis of statistical methods but
instead aims to provide an overview of some of the pit-
falls associated with statistical analyses and EF calculation
when using static chamber methodologies.
For EF results to be accepted by the IPCC into the

EF database (EFDB; https://ghgprotocol.org/Third-Party-
Databases/IPCC-Emissions-Factor-Database), the results
must be published in refereed journals. Thus, as to obtain
reliable information for publication purposes, and to allow
comparison of results across the globe, a minimum set
of information must be provided together with the scien-
tific results of specific experiments. In addition, report-
ing the results with experimental data and metadata also
allows researchers around theworld to compare the results
of studies that have generated EFs and determined treat-
ment effects. Buckingham et al. (2014) found that a poor

https://ghgprotocol.org/Third-Party-Databases/IPCC-Emissions-Factor-Database
https://ghgprotocol.org/Third-Party-Databases/IPCC-Emissions-Factor-Database
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description of experimental and environmental data in
published studies restricted their meta-analysis of N2O
emission data. Finally, the development and evaluation
of process-based models also relies on robust reporting
of (meta)data and supporting information (Giltrap et al.,
2020).
This paper reviews (a) statistical considerations for

inherently heterogeneous data; (b) calculation of EFs for
single experiments, as well as current and emerging statis-
tical approaches for analyzing results frommultiple exper-
iments to provide national or regional average EFs; and (c)
requirements for reporting of experimental data, environ-
mental data, andmetadata for verifying and accepting EFs
estimates, or for modeling purposes.

2 STATISTICAL CONSIDERATIONS
FOR HETEROGENEOUS DATA

Accurately determining N2O emissions from agricultural
soils is a major challenge, due to the large variability
of the environmental variables that affect microbial pro-
cesses responsible for the emissions. Charteris et al. (2020)
provide recommendations for experimental design and
deployment of chambers to reduce the uncertainty asso-
ciated with the spatial, temporal, and experimental vari-
ability in N2O fluxes. These authors also discuss the use
of power analysis to determine the required number of
replicates. Here, we consider issues relating to the statisti-
cal analysis of spatially heterogenous cumulative N2O flux
estimates. This spatial variability has been considered log-
normal at different scales, from plot to paddock to farm to
landscape (Oenema, Velthof, Yamulki, & Jarvis, 1997; van
Cleemput, Vermoesen, de Groot, & van Ryckeghem, 1994),
although normal distributions have also been reported
(Petersen, 1999).

2.1 Assessment of normality and
transformation

Before applying any standard ANOVA procedures, several
assumptions must be established concerning the underly-
ing error structure of the data. Among these is the assump-
tion of normality. The effects that violations of the assump-
tion of normality have on the efficacy of parametric statisti-
cal tests, such as the t test, have long beenknown (Cochran,
1947;Hey, 1938). Non-normalitywill influence the ability of
a statistical test to perform at the stated α level—an effect
that Cochran (1947) refers to as the validity of the test.
Non-normality also affects the power of a statistical test to
detect differenceswhen real differences in the data actually
exist.

The high variability of N2O emissions oftenmanifests as
positively skewed distributions, and for individual exper-
iments with a relatively small number of observations
(e.g., <50), you can use statistical packages to generate
diagnostic plots to get a visual assessment of your data
(Albanito et al., 2017). There are also some simple quanti-
tative ways to detect skewed distributions data. For exam-
ple, for positive data that are bounded by zero, the distribu-
tion is likely to be skewed if the mean is less than twice the
standard deviation. Also, if the standard deviation across
different groups in a population increases as the mean
increases, the constant variance assumption required for
linear models is violated. Finally, there are also statisti-
cal tests that can verify normality, such as Kolmogorov–
Smirnov or Shapiro–Wilk tests (Mohd Razali & Yap, 2011).
If a dataset follows a non-normal distribution, data

transformations are commonly used to stabilize variances
prior to statistical analysis. Those often used are logarith-
mic, square root, cube root, and Box–Cox transformations
(Albanito et al., 2017; Chadwick et al., 2018; Luo et al.,
2019; van der Weerden et al., 2016, 2020). The transfor-
mation options can either be selected based on the (bio-
physical) theory that suggests a certain distribution is
most likely for the data, or on an empirical approach to
ensure an approximately normal distribution of residuals.
As N2O measurement data are typically log-normally dis-
tributed, log-transformation is a commonly used method
(Stehfest & Bouwman, 2006). However, the downside of
log-transformation (and also square root and Box–Cox
transformations) is that values ≤0 cannot be transformed.
Some researchers deal with this by setting a minimum
detectable flux limit and setting all smaller measured
fluxes to this limit (Stehfest & Bouwman, 2006), but this
will bias the outcome of any analysis. Others use a log(x
+ a) transformation, where a values are chosen by select-
ing the largest negative value and then adding a very small
amount to this to ensure all values are >0 (IPCC, 2019;
van derWeerden et al., 2016, 2020). Alternatively, cube root
transformations can be used as this can be applied to val-
ues ≤0 (Albanito et al., 2017).
When estimating confidence intervals for log-normally

distributed data, the standard approach is to calculate
the interval on the log-scale and then back-transform the
extremes. However, this poses challenges, as there are
situations where the back-transformed mean value lies
outside the back-transformed confidence interval (Ols-
son, 2005). In such cases, other approaches can be used,
including the Cox method or estimating generalized con-
fidence intervals (Olsson, 2005). Another downside is
that if this back-transformed mean is used as an esti-
mate of the mean on the original scale, it will be biased
(Rothery, 1988). This effect is especially well reported for
log-transformation (Sprugel, 1983), whereas more limited
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information is available for other types of transformations
(Strimbu, Amarioarei, McTague, & Paun, 2018). Kelliher
et al. (2014) usedmultiplicative scaling to bias-correct their
back-transformed estimates and get their weighted mean
to be the same as the overall mean value (N. Cox, personal
communication, 2013).
To deal with these challenges of data transformation,

some researchers have used transformed data for statistical
analysis to assess treatment effects, butuntransformed data
to calculatemean values and uncertainty ranges for assess-
ing country-specific EFs (Chadwick et al., 2018; IPCC,
2019, van der Weerden et al., 2020). Although this may
appear to be an inconsistent approach to data analysis, it is
important to note that there is a subtle but important dif-
ference between the statistical analysis to identify signifi-
cant differences between treatments and other categorical
variables (e.g., N sources, regions, animal types, climates),
and estimating N2O EF values. The former can help jus-
tify the disaggregation of EFs in different categories but
requires data transformation if the data are skewed. How-
ever, the latter needs to provide the best possible estimate
of the true EF for each treatment, N source, and variable
for use in a country’s inventory calculations. Furthermore,
calculation of themeans on theuntransformed scale can be
augmented with bootstrapped confidence intervals (Efron
& Tibshirani, 1986), which would be more robust than
the alternative of back-transforming the confidence limits
from the analysis of the transformed data.

2.2 Statistical modeling of nitrous oxide
datasets

Statistical or empirical modeling is often used for identi-
fying factors that significantly influence N2O emissions,
in order to estimate country- or region-specific N2O emis-
sions (Giltrap et al., 2020), or aid decisions on disaggrega-
tion of EFs for different N sources and/or soil, climatic,
or landscape features (e.g., soil drainage class, season, or
slope; Chadwick et al., 2018; Saggar et al., 2015; Shrestha
et al., 2014). Statistical modeling can also be used to esti-
mate missing data values in N2O time series datasets (gap
filling). For a detailed description on gap-filling proce-
dures, please refer to Dorich et al. (2020).
To analyze results from individual experiments,

researchers generally apply linear fixed-effects models
(e.g., fixed regression parameter models, multiple linear
regression models, generalized linear models; Albanito
et al., 2017). In contrast, linear mixed-effects models
are now more widely used for analyzing datasets from
multiple experiments (Hafner et al., 2018; IPCC, 2019; van

der Weerden et al., 2020). There are advantages in mixed-
effect models, as they can include parameters that have
either a fixed (i.e., nonrandom) effect or a random effect
on the N2O emission estimates. These random effects may
have a significant effect on the outcome of the analysis,
even if the random variables are generally of little interest
to the researcher. For example, in a single experiment,
random effects could include blocking variables or the site
number, whereas in an analysis of multiple experiments,
the “experiment ID number” or “research institute” could
be considered a random effect. Fixed effects are assumed
to be correlated with independent variables, whereas for
random effects, the assumption is that the individual-
specific effects are uncorrelated with the independent
variables. In a recent analysis of ammonia emission data,
Hafner et al. (2018) used “institute” (i.e., research institute
that conducted the measurements) as a random effect,
and their results showed large apparent difference among
institutes. The authors found that, for their dataset, the
inclusion of random predictors resulted in a significantly
better model. They found that a model with only one
fixed-effect predictor and two random-effect predictors
gave better results than a model with many fixed-effect
predictors but no random-effect predictors (Hafner et al.,
2018). It is yet to be shown if a similar “institute” effect
is important for N2O emission data. Linear mixed-effect
models are relatively complex, and the number and
specification of the fixed- and random-effect factors that
are included can potentially affect the outcomes and inter-
pretability of these models (Philibert, Loyce, & Makowski,
2012). Albanito et al. (2017) used a generalized additive
mixed model (GAMM) to statistically analyze their N2O
emissions data in tropical agricultural systems. Because
a GAMM has fewer assumptions (e.g., no assumption of
normality or constant variances), it provides a more flex-
ible procedure to describe the variability across different
parameters.
Due to recent advances in statistics and computational

power, the literature is now providing many alternative
models to analyze N2O data. The advantage or disadvan-
tage of using a specific approach for statistically analyz-
ing N2O datasets depends on the intended purpose of
the analysis, and any data- or experiment-specific condi-
tions are likely to require a tailored approach. It is rec-
ommended that when conducting (meta-)analyses with
datasets frommultiple experiments, researchers base their
choice of model on published examples that match their
specific purpose and circumstances (e.g., environmental
conditions and methodologies) or, where possible, consult
a statistician for advice on the most appropriate models to
use.
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3 CALCULATING NITROUS OXIDE
EMISSION FACTORS

In single experiments, EF values are calculated by sub-
tracting the cumulative N2O emissions occurring in a con-
trol treatment where no N was added (N2O0) from the
cumulative N2O emissions in a given experimental treat-
ment where N was added (N2Ox), then dividing this by the
amount of N applied (NAppx):

EF (%) =

(
N2O𝑥 − N2O0

NAPP𝑥

)
× 100 (1)

where the units of N2O and N inputs need to be the same
(e.g., N2O in kg N2O-N ha−1 yr−1 and NAppx in kg N ha−1
yr−1).
For estimating EFs from an experimental trial, a control

treatment should therefore always be included. Ideally,
the control and N treatments of the experiments are
blocked, so that independent EFs can be calculated for
each replicate block, which allows the calculation of mean
and variance of each treatment EF value, and differences
in the EF among treatments to be examined. Taking
pretreatment N2O flux measurements can provide infor-
mation on preexisting spatial patterns of N2O emissions
and thereby assist with experimental design and blocking
(Charteris et al., 2020). If blocking is not possible, themean
cumulative emission from the control can be subtracted
from the individual replicates of the N treatments, thereby
maintaining replicate-level data, although this reduces
some of the statistical power provided by true replication.
Alternatively, EF values can be calculated using the mean
cumulative emissions of the control treatments and the
mean cumulative emissions for the N treatments over all
replicates, but this is not advisable as it will result in a
single EF value for each experimental treatment with no
indication of variance.
Robust estimates of EF values rely on accurate esti-

mates of cumulative N2O emissions from experimental
trials. Estimating cumulative emissions from noncontin-
uous chamber measurements is challenged by the high
temporal variability in N2O fluxes. This requires careful
consideration of the frequency of sampling throughout
the measurements period, as well as of the method of
interpolating between sampling points (Charteris et al.,
2020; Dorich et al., 2020). Charteris et al. (2020) recom-
mends that, as a minimum, N2O measurements should
be taken at least twice per week when higher emissions
are likely to be occurring, and at even higher intensi-
ties around events (e.g., rainfall, fertilization, cultivation).
When conditions are conducive to near-zero N2O fluxes
(e.g., in dry or cold soils), weekly or biweekly sampling
may be adequate. The most common method for estimat-

ing cumulative emissions from noncontinuous chamber
measurements is linear interpolation (Dorich et al., 2020).
Although this is a simple method, it relies on a sampling
frequency that can adequately capture the temporal vari-
ability in fluxes. The longer the time gap between sampling
points, the more uncertain the estimates will be. More
advanced approaches to estimating cumulative emissions
include “gap-filling” techniques that estimate daily N2O
fluxes when sampling was not conducted. Dorich et al.
(2020) provides detailed guidance on approaches to esti-
mate cumulative emissions using “gap-filling.”
It is normally expected that N2O emissions from treat-

ments receiving added N will be greater than emissions
from no-N control treatments. However, in cases where
cumulative N2O emissions are greater in the control than
in the treatment replicate (resulting in a negative EF
value), we do not recommend simply substituting EF = 0
for these values as this would upwards bias the calcu-
lated mean EF. Rather, we suggest including the actual
value in the subsequent statistical analysis, unless exclud-
ing that value as an outlier is justified. It should also be
noted that some studies have found nonlinear relation-
ships between N2O emissions and synthetic N fertilizer
addition rate (Hoben, Gehl, Millar, Grace, & Robertson,
2011; Philibert et al., 2012; Shcherbak, Millar, & Robert-
son, 2014). This implies that a fertilizer EF calculated for
a single rate of N addition should not necessarily be gen-
eralizable to other fertilizer N addition rates, even within
the same management and cropping system. In contrast,
a recent meta-analysis of EF values for urine and dung
found no relationship betweenN loading rate and EF value
(van derWeerden et al., 2020). Nevertheless, it is important
that in experiments aimed at estimating EFs, the treatment
application rates of both synthetic N fertilizer as well as
animal excreta represent typical agricultural practices and
conditions (Charteris et al., 2020).
A key criterion for EF values to be included in the IPCC

EFDB is the length of time of the measurement period.
Although a recent meta-analysis of global data did not
find a relationship between EF value and length of the
experiment (IPCC, 2019), all experimental information
of greenhouse gas emissions for EF calculation should
ideally be based on at least a year of data, as EFs for the
whole year can be significantly higher than those reported
for the growing season (Shang et al., 2020). In situations
that include different cropping rotations, or productive
seasons, emissions from the full year (including fallow
periods) or the full crop rotation should be calculated.
Where a study involves estimating EFs for a specific N
source on a specific land use (e.g., N fertilizer applica-
tion or a urine deposition onto permanent pasture), the
duration of measurements could be shorter than a year,
as long as the full N-induced “emission envelope” has
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been captured (Charteris et al., 2020). This means that
measurements should continue until the N2O emissions,
as well as the soil mineral N levels in the treatment plots,
are no longer significantly different from those in the
control plots. Considering differences in soil mineral
N as well is important, as N2O emissions might be at
control levels due to other limiting factors, such as low soil
moisture. If soil mineral N levels in the treatment plots
are still higher than in the control plots, measurements
will need to continue to capture any emission difference
that might occur going forward (e.g., after rainfall). It is
also possible that some years or seasons may have atypical
meteorological conditions, leading to drier or wetter, or
warmer or cooler conditions compared with long-term
averages. In such cases, the estimated EF may not neces-
sarily provide a representative average for that system or
region, and multiyear measurements may be required.
To estimate country- (or region-) specific EFs, a meta-

analysis that combines N2O EF results from a range of
trials can be conducted (Buckingham et al., 2014; Chad-
wick et al., 2018; Kelliher et al., 2014; van derWeerden et al.,
2020; Wang et al., 2018). The determination of the average
EF for a country or region is challenging, as different stud-
iesmayuse different treatments ofN sources and/or collate
different sets of ancillary data. This can result in unbal-
anced datasets and gaps in the dataset of explanatory vari-
ables. For example, Kelliher et al. (2014) used the results
of 185 field trials from a wide range of studies to estimate
the mean EF of N2O from N sources applied to pastoral
soils across New Zealand. However, for some N sources,
N2O EF results were only available for certain land types
(e.g., lowland sites for some N sources and hill country
sites for other sources). To deal with such issues, Kelliher
et al. (2014) used a mixed-effects model with a restricted
maximum likelihood (REML) method on log(EF) data
using trial, site, N source, topographic type, drainage class,
rain ratio, season, and the interaction between N source
and topographic type as random effects. The mixed-effects
linear model was fitted to log-transformed EF values, and
the results were reported as bias-corrected best linear
unbiased predictions. The bias correction involved scaling
the back-transformed estimates by the amount required
to get their weighted mean to be the same as the overall
mean of the EF value. Chadwick et al. (2018) also used
a mixed-effects model with REML but used Box–Cox
transformations to normalize their data.

4 DATA REPORTING REQUIREMENTS

Reporting of experimental data and metadata allows
researchers around the world to compare the results of
studies that have generated EFs and/or determined treat-

ment effects. Furthermore, the development and eval-
uation of process-based models at different scales also
requires the reporting of experimental and environmen-
tal conditions of N2O emission studies. This section sum-
marizes the minimum requirements for reporting of data
for calculating EFs and for development of process-based
models (Table 1). The recommendations are a combination
of those listed in the earlier version of the Global Research
Alliance guidelines (refer to de Klein et al., 2020) and those
suggested by Buckingham et al. (2014).

4.1 Reporting requirements for
calculating emission factors

The experimental setup should include a control treat-
ment, so that EF can be calculated. Treatments, includ-
ing the control, should be reported in detail, indicating the
number of replicates, N and, where relevant, carbon (C)
application rates; the application date; the gas sampling
starting date; and the length of the measurement period.
The N and C loading rates should be determined from N
and C analysis of the N source (e.g., slurry, manure, urine,
dung) from samples that are taken at the time of appli-
cation onto the soil (as it may differ from the N and C
loading rates that may have been determined from sam-
ples taken during the collection of the N source). When
using animal manures, the application method should be
reported (e.g., subsurface, slurry surface broadcast, trailing
shoe, incorporated). Reporting on control and treatment
plots should also include previous management history of
grazing, nutrient applications, and crops, including winter
cover crops.
Reporting of the chamber methodology should include

details on the design and use of the chambers as recom-
mended in these guidelines (Charteris et al., 2020; Clough
et al., 2020). This should include details on treatments,
replication and trial design; gas sampling procedure
(including t0 measurements; Charteris et al., 2020), deploy-
ment time, and timing and duration of the experiment; and
N2O flux results for each sampling date, with indication
of variability (standard error or standard deviation). For
studies using animal urine or dung patches, information
of the treatment application method should be provided,
including details on the treated area inside the chamber
base (e.g., centrally applied only, thus leaving a diffusional
area; spread over the entire area; one larger patch vs. a
number of smaller patches; see Charteris et al., 2020)
Reporting of ancillary data should include key crop

and soil information, including crop yield and N con-
tent. If the experiment is related to mown pasture or
crops, information should be provided on the height and
frequency of cut, and whether the residues were left or
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TABLE 1 Recommended minimum requirements for reporting of experimental and metadata of N2O studies for calculating emission
factors and for development of process-based models

Parameter Desirable for emission factors (EFs)
Desirable for process-based model
development

Experimental
site and setup

Latitude, longitude, altitude All data from the previous column, plus:

Soil type and classification Historic information on site and soil
management and climatic variables
for at least 3 yr

Previous and current site and soil management,
including crop and catch crop type, and fertilizer
management; going back at least 1 yr, preferably over 3
yr

Site management: weed and pest
control; drainage limitations or other
relevant aspect

Initial soil chemical conditions: available N (NH4 and
NO3), total N and C contents, pH; at relevant depths

Other relevant aspects of soil fertility

Initial soil physical characteristics: texture, bulk density;
macro- and microporosity, at relevant depths

Field capacity or soil moisture release
curve, soil conductivity wilting point,
soil hydraulic conductivity

Number and depth of soil layers
Methodology Details of chamber design (see Clough et al., 2020) and

deployment (see Charteris et al., 2020)
All data from the previous column, plus:

Treatment details: rates of application; total N and total C
inputs; NH4–N and NO3–N inputs; dates of application
and method of application; fertilizer or manure type
and composition (C content, total N and inorganic N
contents, pH, and dry matter content); and indication
of how representative these are for their circumstances

For control treatments, all information
described for treatment plots should
be clearly provided

Trial (statistical) design and replication, number of
chambers per plot

Duration of experiment (see Charteris et al., 2020)
Number of samples taken to estimate the flux from a
single chamber

Chamber closure period
Time elapsed between measurements
Number of background control measurements
Average concentration of background control
measurements over the measurement period
N2O emissions for each sampling date, with
indication of variability and associated errors for
treatment results

Ancillary
measurementsa

Average (max. and min.) soil temperature, at relevant
depth for crops or pastures, for each sampling date

All data from the previous column, plus:

Average (or max. and min.) air temperature, at relevant
height, for each sampling date

Daily min. and max. temperatures

Total daily rainfall and irrigation Daily rainfall intensity information
Average (max. and min.) soil and air temperature within
the chamber, (when applicable) for each sampling
date, at relevant height and depth

Daily solar radiation

Soil moisture content at relevant depth, for each
sampling date

Daily wind speed

Soil available N (NH4 and NO3) at relevant depth as
frequently as possible (e.g., weekly)

Daily relative humidity

Bulk density in arable soils at key stages throughout the
season (cultivation effects)

Soil drainage, if available

(Continues)
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TABLE 1 (Continued)

Parameter Desirable for emission factors (EFs)
Desirable for process-based model
development

Total yield and dry matter production for each
component of the crop (e.g., straw and grain)

Seeding system for crops (no tillage,
conventional tillage, other)

Total N export in yield or dry matter production Planting date
Harvest date for crops and cutting and
grazing dates for pastures

In the case of pastures, an indication of
dominant plant species

If possible, an indication of material left
on the field and its composition
should be also noted, in relation to
the seeding system used

Gas analysis Equipment details including detector and precision of
analyzer

Same as previous column

For gas chromatography determinations, information on
column used, temperatures in detector and oven

Detection limit for the method
Quality control information for gas analysis

Data analysis Flux calculation method Same as previous column
Statistical analysis procedures and the software package
used

Uncertainty ranges of the results, including standard
errors and the number of replicates

aMeasurements of soil water content, bulk density, and temperature allows researchers to apply the chamber bias correction (CBC) flux calculation method as
discussed in Venterea et al. (2020).

F IGURE 1 Example of experimental plot layout for N2O flux measurements

removed from the area. If the experiment includes grazing,
information on animal type and category, stocking rate,
forage species, and the number of grazing days should also
be included. Key climate and soil characteristics should
be monitored and reported for the trial (see Table 1 for
details). It is important to note that measurements of soil
water content, bulk density, and temperature will allow
researchers to apply the chamber bias correction (CBC)
flux calculation method, as discussed in Venterea et al.
(2020). These measurements should be taken as close as
possible to, but outside, the chamber area to avoid any soil
disturbance for gas determinations (Charteris et al., 2020).
Soil samples taken for nutrients determination should

also be taken outside the chamber area but should be
representative of the chamber area and receive the same
treatments. For example, when small experimental plots
are used, split the plot in half so that one side can be used
for gas determinations, whereas the other side can be used
for destructive sampling (Figure 1).
Reporting of the gas analysis procedure should include

details on the analytical equipment and its precision and
detection limit (Harvey et al., 2020). The data analysis
reporting should include details on the flux calculation
methods used (see also Venterea et al., 2020), the statistical
analysis performed (see sections above), and adequate
information on the uncertainty of the N2O emission
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TABLE 2 Summary of guidance on statistical analysis, calculating emission factors (EFs), and data reporting of N2O measurements
using chamber methodologies

Topic or issue Guidance and recommendations
Statistical analysis of inherently
heterogeneous data

Assess the distribution of the dataset.

If required, transform the data (most commonly log transformation).
If negative values, use (x + a) for log, square root, or Box–Cox transformations; or use cube
root transformation.

Back-transform the data and bias correct the means (e.g., by adjusting so that their weighted
mean is the same as the overall mean value).

Calculating EFs Always include control plots (ideally for each replicated block; otherwise ensure sufficient
replication for estimating mean cumulative emission from control treatment).

Ensure adequate sampling frequency, trial duration, and interpolation methods (Charteris
et al., 2020; Dorich et al., 2020) for estimating cumulative emissions.

Calculate EFs as indicated in Equation 1.
Do not substitute negative EF values with zero but use the actual value in the statistical
analysis.

Mean EF values that are calculated from untransformed data can be augmented with
bootstrapped confidence intervals.

For individual trial data, use fixed-effect models to analysis treatment effects and estimate
best average EF.

For a meta-analysis of data from a range of different trials, use mixed-effects models to
provide the best estimate of country- or region-specific EFs.

Data reporting Provide sufficient details (see Table 1) on the experimental setup, methodology, and statistical
analysis to enable:

Inclusion of the results in the IPCC EF database
Assessment of reliability and robustness of results
Comparison with results obtained under similar conditions and with similar treatments
Incorporation of the results in EF meta-analyses
Use of the results for developing or refining process-based models

estimates (i.e., the standard error and the number of
replicates; missing values). All replicated measurements
should be recorded and reported on an individual plot
basis (not averaged).

4.2 Information required to evaluate
process-based models

Because models must be sensitive enough to account for
temporal and spatial variability, they requiremore detailed
information than reporting of EF results. A summary of the
additional information that is required for evaluatingmod-
els is included in Table 1. Information requirements vary
between models, so users should check with model devel-
opers, or documentation, for the necessary model-specific
data. If sensitivity analyses have been previously published
for a particular model, these can provide a useful guide
regarding parameter values that can have a large influence
on the model output. On the other hand, if a given model
has not previously been calibrated for the system and con-

ditions beingmeasured, then your data may be used to cal-
ibrate the model. In this case, it is helpful if the data can be
divided into two independent subsets (e.g., different treat-
ments or different years) so that onemay be used formodel
calibration and one for validation. Before testing any spe-
cificmodel, appropriate data requirements and underlying
model assumptions should be discussed among modelers
and empirical researchers. Giltrap et al. (2020) includes an
overview of some of the key points for three commonly
used process-based models.
As stated above, general information on the experimen-

tal site location and similar details should be reported
explicitly. At least one full year of experimental informa-
tion should be reported, to account for temporal variability,
unless the objective of the study allows for shorter periods
of analysis. Ideally, a number of experimental sites would
be established over different soil and weather conditions,
to provide variability for the model to be tested and make
it applicable to different conditions. If possible, this should
include a history of site and soil management for the pre-
vious 3 yr. Information on weed and pest control, drainage
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limitations, and other site-specific characteristics is also
valuable.

5 CONCLUSION

Statistical analysis of N2O data from static chambers is
challenged by the inherently heterogeneous nature of N2O
fluxes, which often requires data transformation. It is rec-
ommended that researchers conduct a careful visual exam-
ination of the data and the residuals, to assess the appropri-
ateness of any transformation applied. Back-transformed
means should be bias corrected, by multiplicative scal-
ing, if their weighted mean is not the same as the over-
all mean. Alternatively, researchers can use transformed
data to assess significant differences between treatments
and use untransformed data to calculate mean values and
uncertainty ranges for country-specific EFs (Table 2). For
statistical analysis of multiple experiments, it is recom-
mended to usemixed-effectsmodels. To calculate N2OEFs
from single experiments, control plots need to be included,
and the sampling frequency, trial duration, and interpola-
tion methods need to be appropriate for estimating cumu-
lative emissions (Table 2). The reliability, robustness, and
comparability of soil N2O emissions data will be improved
through (a) application, and reporting, of more rigorous
methodological standards by researchers, and (b) greater
vigilance by reviewers and scientific editors to ensure that
all necessary information is reported in scientific publica-
tions (Table 1).
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