Charge-transfer excited states in the donor/
acceptor interface from large-scale GW
calculations

Cite as: J. Chem. Phys. 151, 114109 (2019); https://doi.org/10.1063/1.5113944
Submitted: 10 June 2019 . Accepted: 13 August 2019 . Published Online: 18 September 2019

Takatoshi Fujita "*/, Yoshifumi Noguchi "=/, and Takeo Hoshi

(7))
L
| .
o3
—
((v]
c
:fU
SE
Qo
L C
Fo

Lock-in Amplitiers up to 600 MHz

starting at piN MFL| N/ Zurich

$6,210 lo —_—— i 7\ Instruments
L w wg m
! Q e Watch the Video

Publishing

J. Chem. Phys. 151, 114109 (2019); https://doi.org/10.1063/1.5113944 151, 114109

© 2019 Author(s).



https://images.scitation.org/redirect.spark?MID=176720&plid=1007006&setID=378408&channelID=0&CID=326229&banID=519757266&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=99567e5f12033a8bf9bd112d025b3f33ba246177&location=
https://doi.org/10.1063/1.5113944
https://doi.org/10.1063/1.5113944
https://aip.scitation.org/author/Fujita%2C+Takatoshi
http://orcid.org/0000-0003-1504-2249
https://aip.scitation.org/author/Noguchi%2C+Yoshifumi
http://orcid.org/0000-0002-9054-1753
https://aip.scitation.org/author/Hoshi%2C+Takeo
http://orcid.org/0000-0002-2487-5245
https://doi.org/10.1063/1.5113944
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5113944
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5113944&domain=aip.scitation.org&date_stamp=2019-09-18

The Journal

of Chemical Physics ARTICLE

scitation.org/journalljcp

Charge-transfer excited states in the
donor/acceptor interface from large-scale
GW calculations

Cite as: J. Chem. Phys. 151, 114109 (2019); doi: 10.1063/1.5113944
Submitted: 10 June 2019 * Accepted: 13 August 2019 -
Published Online: 18 September 2019

@

Takatoshi Fujita,'” "=’ Yoshifumi Noguchi,” "' and Takeo Hoshi*

AFFILIATIONS

TInstitute for Molecular Science, Okazaki, Aichi 444-0865, Japan

2Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University,
Hamamatsu, Shizuoka 432-8561, Japan

*Department of Applied Mathematics and Physics, Tottori University, Tottori 680-8550, Japan

@ Electronic mail: tfujita@ims.ac.jp

ABSTRACT

Predicting the charge-transfer (CT) excited states across the donor/acceptor (D/A) interface is essential for understanding the charge pho-
togeneration process in an organic solar cell. Here, we present a fragment-based GW implementation that can be applied to a D/A interface
structure and thus enables accurate determination of the CT states. The implementation is based on the fragmentation approximation of
the polarization function and the combined GW and Coulomb-hole plus screened exchange approximations for self-energies. The fragment-
based GW is demonstrated by application to the pentacene/Ceo interface structure containing more than 2000 atoms. The CT excitation
energies were estimated from the quasiparticle energies and electron-hole screened Coulomb interactions; the computed energies are in rea-
sonable agreement with experimental estimates from the external quantum efficiency measurements. We highlight the impact of the induced
polarization effects on the electron-hole energetics. The proposed fragment-based GW method offers a first-principles tool to compute the

quasiparticle energies and electronic excitation energies of organic materials.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5113944

I. INTRODUCTION

Charge-transfer (CT) excited states formed across the donor/
acceptor (D/A) interface play a key role in the charge photogen-
eration process in organic photovoltaics."* The charge-separation
and charge-recombination rates largely depend on the nature of
the CT states. Moreover, the energy of the CT state correlates with
the open-circuit voltage value in an organic solar cell.”* Therefore,
understanding the energetics and nature of CT states and correlat-
ing them with interfacial morphologies” are essential. Theoretical
investigations on organic/organic interfaces have provided micro-
scopic information regarding the energies and wave function prop-
erties of the CT states.” ” Nevertheless, first-principles computations
of the CT states in an organic/organic interface remain challeng-
ing because both electron correlation and polarizable environmental
effects must be incorporated.

One of the most practically useful excited-state methods
for a large system is the time-dependent density functional the-
ory (TDDFT).'”"" However, TDDFT cannot provide the correct
—1/R asymptotic behaviors for CT states,'” where R denotes the
separation between the donor and acceptor molecules. In addi-
tion, the TDDFT tends to underestimate the CT energies'’ in
large molecules or a molecular cluster. The long-range correc-
tion scheme'*"” can remedy the failure of TDDFT, and long-range
corrected functionals'®"” can yield more reasonable descriptions
for the CT states. As well as a quantum mechanical method for
excited states, the effect of polarizable environments must also
be considered. The considerable charge-density difference between
the CT and ground states induces polarization of the surround-
ing molecules, thereby resulting in screening of the electron-hole
(e-h) Coulomb interaction. Therefore, successful prediction of
the CT states requires the treatment of state-specific polarization
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effects,”
scheme.

The GW many-body Green’s function theory”” ** can offer an
accurate and practical scheme to explore electronic states in a con-
densed phase. The quasiparticle energy directly corresponds to a
charged excitation energy, such as an ionization potential or an
electron affinity. The neutral excitation energy can also be com-
puted in combination with the Bethe-Salpeter equation (BSE).”””°
The GW+BSE approach””* describes the e-h interaction as the
screened Coulomb potential; therefore, it is expected to be a promis-
ing tool for computing the CT states in polarizable environments.
Recently, several attempts have been made to extend the applica-
bility of GW to larger and more complex systems. Owing to the
development of computational algorithms, performing a GW calcu-
lation for a system containing more than 100 atoms has become pos-
sible.”” ** The polarizable continuum model’** and the quantum
mechanical/molecular mechanics (QM/MM)” " approach have
been combined, allowing for applications to molecules in com-
plex environments. In particular, Li et al.”>*° have developed the
QM/MM method merging the GW formalism with the polariz-
able model. Another possible approach toward complex systems
is to utilize a fragment-based electronic structure method,”**’
which approximates the energy or wave functions of an entire
system from subsystem calculations. On the basis of a fragment-
based method," Fujita and Noguchi’' have developed the large-
scale Green’s function method within the static Coulomb-hole
plus screened exchange (COHSEX) approximation and reported
the static COHSEX calculation for a system containing more than
1000 atoms.

In this manuscript, we report on the implementation of GW
based on the fragment molecular orbital (FMO)" method and
the applications to a realistic molecular structure of a D/A bilayer
heterojunction containing more than 2000 atoms. The implemen-
tation is based on the approximation of the polarization func-
tion by fragment molecular orbitals (MOs) and combined GW
and static COHSEX approximations for self-energies. We explore
the quasiparticle energies and CT states in the D/A interface and
investigate the environmental polarization effects on the electronic
states.

" which goes beyond the standard electrostatic embedding

Il. METHOD

We first summarize Hedin’s equations for evaluating self-
energies.”” The GW self-energy for an imaginary frequency axis is
given by the following set of equations: "’

1
Z(rl,rz,iw):—Efdw'G(rl,rz,iw+iw')W(rl,rz,iw'), (1)

[ v (r)yy (n)
G(rl,rz,lw) = ;[W—SP-}-EF N (2)
W(ri, r,iw) = v(ri, ) + f drsdrav(ry, 13)xo(73, 74, iw)
x W(r4, 12, iw), (3)
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xo(ri,r2,iw) = > Z[W(h)%(h)%’*(h)wi(ﬁ) +ee | (4)

spins i,a iw—¢€i+é

Here, G is the Green’s function, W is the screened Coulomb
potential at the random-phase approximation level, v is the bare
Coulomb potential, yo is the noninteracting density-response func-
tion or irreducible polarizability, and Er is the Fermi level. Indices
i, a, and p refer to an occupied, virtual, and generic MO, respec-
tively.

We aim to approximate the GW self-energies within the FMO
method.” We summarize the fragment-based self-energy calcula-
tions developed in the earlier study."' In the FMO method, an entire
system is divided into small subsystems referred to as fragments, and
the MO calculations are performed for the fragment monomers and
fragment dimers. For example, the solution of the Fock matrix of a
fragment monomer yields the MOs localized within the fragment,
the monomer MOs (W},), and associated orbital energies (e{,). Here-
after, we use I and J as fragment indices. The FMO-based GW imple-
mentation adapts the monomer MOs to approximate the polariza-
tion function and screened Coulomb potential."" This is in contrast
to a standard GW implementation in which the input orbitals for
the polarization function are delocalized over an entire system. The
total polarization function is approximated as the sum of intrafrag-
ment polarization functions, yo = ¥, /. Here, x/ is an intrafrag-
ment polarization function of fragment J that is calculated from the
localized MOs in the FMO method,

Alrrmie) = Y Z[I/f,[*(fl)%{(h)l/fi*(h)ll’i](ﬁ) +C_C.]. 5)

: J ]
iw—¢ +e;

spins i,a€]

Note that Xol describes the polarization within a fragment J, i.e., both
occupied and virtual MOs belong to the same fragment. Therefore,
the fragmentation approximation neglects the interfragment polar-
ization terms and the delocalization of MOs. The screened Coulomb
potential is obtained from the approximated polarization function.
The self-energies are calculated from a fragment Green’s function
and the screened Coulomb potential, > = 1/271/dw'GI W. The accu-
racy of the approximated screened Coulomb potential has been
confirmed for the molecular aggregates.”’

Herein, we propose a hybrid computational scheme for self-
energies, combining the GW and static COHSEX approximations.
The static COHSEX approximation is the static limit of GW and
tend to overestimate fundamental gaps. Although evaluating the
dynamical-part of self-energy is inevitable, calculating the dynam-
ically screened Coulomb potential of an entire system is still com-
putationally too demanding even when the fragment-based approx-
imation is used. Here, we introduce the hybrid scheme, where the
dynamically screened Coulomb potential is explicitly evaluated for
a target fragment, while the statically screened Coulomb potential
of the entire system is evaluated at the static COHSEX level. A sim-
ilar approach has also been used in the aforementioned QM/MM
method proposed by Li et al,””® in which the GW self-energy is
defined as the gas-phase GW self-energy plus a polarization energy
of the QM/MM total system obtained at the static COHSEX level.
On the basis of this idea, we write the FMO-GW self-energy as
follows:

I I i 1
ZEMO-GWyp = ZGwip T ZCOHSEX,p — ZCOHSEX! p- (6)
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Here, ZICOHSEX,p is calculated from the total screened Coulomb
potential; it includes the induced polarization energy of an entire
system on electron addition or removal in fragment I. On the con-
trary, ZIGWI,‘D or ZICOHSEX;,P is the GW or static COHSEX self-energy
that is defined by the fragment Green’s function and a fragment
screened Coulomb potential, ¥ = 1/271/dw'GIWI. Note that W' is
obtained by the intrafragment density-response function of a target
fragment, W=y + fdrgdrw)(l W', without the polarization func-
tions of the other fragments. Therefore, Xy, or ZICOHSEX,,P does
not include the induced polarization energy of the surrounding frag-
ments. The expression denotes that electron correlation and orbital
relaxation within a target fragment are treated at the GW level,
whereas the associated induced polarization energy of an entire sys-
tem is computed at the static COHSEX level. We have shown that
the static COHSEX can appropriately describe the solid-state effects
on electronic states’ and expect that the combined GW and static
COHSEX approach can provide a reasonable approximation for a
weakly interacting molecular system. The FMO-GW quasiparticle
energy of the fragment is calculated in a perturbation manner as
follows:

1 I I XC
6w = €nryisy + Zp| Zevo-cwp — Vp s (7)

where €/, /ks,p is the Hartree-Fock (HF) or Kohn-Sham (KS) orbital

energy, Z, is the renormalization factor, and foc is the HF exchange
potential or an exchange-correlation potential.

The environmental effects incorporated in the present method
are now discussed in more detail. In the FMO-HF or FMO-DFT
method,””* self-consistent field calculations are repeated for frag-
ment monomers until all the fragment charges have converged;
thus, the many-body polarization of the ground state can be effec-
tively taken into account. By contrast, the static COHSEX self-
energy term (ZICOHsex,p) represents electronic relaxation of all the
fragments that is induced by the formation of the charged exci-
tation in some fragment. Therefore, the FMO-COHSEX describes
the polarization of charged states. Earlier studies’*’ have dis-
cussed that the molecular packing effect on ionization potential
or the electron affinity can be divided into the electrostatic and
induced polarization energies. The former represents the interac-
tion between a charge and multipole moments of the surround-
ing molecules, while the latter describes the interaction between a
charge and induced dipoles. In the FMO calculation, the electrostatic
effect can be considered by the HF or DFT level, and the induced
polarization effect can be incorporated by the static COHSEX
level.

Our GW implementation relies on the Gaussian atomic orbital
basis and the auxiliary functions.””*" The auxiliary functions and
the three-center electron-repulsion integrals, which are necessary to
evaluate self-energies,”” were obtained from the Cholesky decom-
position with an adaptive metric (CDAM) technique developed by
Okiyama et al."” According to Ren et al.”” and Wilhelm et al.,”
evaluation of the GW self-energy is based on integration along
the imaginary. The FMO-GW method was implemented into the
locally modified version of the ABINIT-MP program.”’ ' Fur-
ther details of the implementation, as well as the working equa-
tions for FMO-GW self-energies, are given in the supplementary
material.

ARTICLE scitation.org/journalljcp

Illl. RESULTS AND DISCUSSION
A. Accuracy of FMO-GW self-energy

In this section, we briefly discuss the accuracy of the FMO-GW
self-energies of a fragment monomer. The present implementation
is based on the fragmentation approximation of the polarization
function and the combined static COHSEX and GW approximation
which neglects the dynamical part of polarization functions of sur-
rounding fragments. To assess the accuracy of two approximations,
monomer self-energies with the approximated screened Coulomb
potential are compared with those with the exact screened Coulomb
potential,

"=1)2n f dw' G'W,y. (8)

Here, the screened Coulomb potential (W) is obtained from the
polarization function with canonical MOs as in Eq. (4) without
the fragmentation approximation. To calculate Eq. (8), the con-
ventional DFT calculations were first performed to obtain canoni-
cal MOs, and the screened Coulomb potential was obtained from
the polarization function without the fragmentation approxima-
tions. The monomer self-energies with the approximated polariza-
tion function were compared with those with the exact screened
potential.

As benchmark systems, the face-to-face PEN tetramer with a
spacing of 4.0 A and the PEN-Cg dimer were considered, as shown
in Fig. 1. The structure of the PEN-Cg pair was extracted from
the PEN/Cgo bilayer heterojunction structure shown in Sec. III B.
The FMO-COHSEX and FMO-GW calculations were performed
with each molecule being assigned as a single independent frag-
ment. The B3LYP was used as a starting point with the 6-31G” basis
set. The benchmark calculations were performed with ABINIT-MP
software.

Table I shows the errors of HOMO, LUMO, and the HOMO-
LUMO (H-L) gap of the molecule in the considered systems. Here,
minus signs on errors indicate that the self-energy with the approx-
imated screened Coulomb is lower than that with the exact one.

FIG. 1. Atomic structures of (a) the PEN tetramer [(PEN)4] and (b) the PEN-Cg
dimer. For the (PEN), structure, the monomer self-energies were computed for the
molecule depicted in red.
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TABLE 1. The errors of FMO-GW self-energies in units of meV, which were obtained
for HOMO, LUMO, and the HOMO-LUMO (H-L) gap.

(PEN),4 PEN-Ceo
System PEN PEN Ceo
molecule COHSEX GW COHSEX GW COHSEX GW
HOMO —8.6 —26.3 —8.0 —15.2 —6.2 —8.4
LUMO 12.1 6.4 8.3 16.9 7.1 7.8

H-L gap 20.6 32.7 16.3 32.0 13.3 16.1

The errors of the FMO-COHSEX solely result from the fragmen-
tation of the polarization function. The HOMO and LUMO errors
at the static COHSEX level are less than 20 meV, which is satis-
factorily accurate. The overall trend is consistent with our earlier
benchmark study which validates the fragmentation of the polar-
ization function for noncovalent molecular systems."' However, the
HOMO and LUMO self-energies are lower and higher than those
without the approximations, resulting in the overestimation of the
H-L gaps. This overestimation of the H-L gaps implies that the
screening effects are underestimated by the fragmentation approxi-
mation.

Next, we turn to the FMO-GW self-energy errors. In addition
to the fragmentation approximation at the static COHSEX level, the
errors at the GW level also include the neglect of the dynamical part
of polarization functions of the surrounding fragments. Overall, the
GW errors are slightly more pronounced than the COHSEX errors.
However, they are still acceptable, and the HOMO and LUMO self-
energy errors are less than 30 meV. The numerical results have con-
firmed that the two approximations employed in the FMO-GW self-
energy, the fragmentation of polarization function and combined
static COHSEX and GW, can provide reasonably accurate results
for noncovalent molecular systems. Although we expect that this
conclusion is valid for applications to organic molecular aggregates,
the FMO approximation generally deteriorates for shorter interfrag-
ment separations or for covalent systems. A more extensive assess-
ment of the present method, as well as a possible improvement, will
be investigated in a future study.

B. Application to PEN/Cg, interface

In this study, we consider the D/A bilayer heterojunction
structure comprising pentacene as the electron donor and Cso
as the acceptor. The PEN/Cg bilayer heterojunction is one of
the most prototypical organic solar cells;>” the electronic struc-
tures of the PEN/Cg interfaces have been investigated in numer-
ous studies, including ultraviolet photoelectron spectroscopy,””
external quantum efficiency (EQE) measurements,”’ > microelec-
trostatic calculations,”” and ab initio methods.”” According to the
X-ray diffraction measurement,”’ the PEN/Cg interface morphol-
ogy is dominantly an edge-on orientation. Therefore, we employed
the atomic structure of the edge-on configuration of the PEN/Cqgp
bilayer heterojunction, which was prepared using molecular dynam-
ics (MD) simulations.” Figures 2(a) and 2(b) show the total
bilayer heterojunction structure and the local interface structure,
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FIG. 2. (a) Atomic structure of the PEN/Cqg bilayer heterojunction and (b) the local
interface structure treated by the FMO-GW calculation, which was prepared in our
earlier MD simulations.’

respectively. The local interface structure is composed of 36 PEN and
15 C¢o molecules and thus contains 2196 atoms.

The FMO-GW calculation was performed for the local interface
structure in Fig. 2(b), with the surrounding molecules in the total
bilayer heterojunction being described as external point charges.
In the FMO calculations, each molecule was assigned as a sin-
gle independent fragment. Environmental electrostatic potentials
in monomer self-consistent field (SCF) calculations were approx-
imated by using the Mulliken point-charge approximation.” SCF
calculations for fragment dimers were not performed, since we
focused on the local electronic states in which an electron (a hole) is
localized within a fragment monomer. The GW quasiparticle ener-
gies and the screened Coulomb potential were computed with the
B3LYP starting point and the 6-31G™ basis set. Although we note
that the double-zeta quality basis set is insufficient to obtain con-
verged self-energies, the qualitative results of the HOMO-LUMO
gaps can be appropriately deduced using relatively small basis sets. "
The threshold parameter for the CDAM" was set to be 0.01 to
reduce the number of the auxiliary functions. The FMO-GW cal-
culation was performed using the locally modified version of the
ABINIT-MP program.”’”'

We start our discussion by presenting the one-shot GW+BSE
results for the single molecule. The corresponding GW+BSE cal-
culation was performed for the isolated PEN or Cg molecule,
whose molecular geometry was optimized at the B3LYP/6-31G**
level using Gaussian software.”” The HOMO/LUMO quasiparticle
energies were obtained as —5.56/-0.74 eV for the pentacene and
—-6.74/-1.84 eV for the Cg. In Table II, the computed HOMO-
LUMO gap and the S; excitation energy (optical gap) are compared
with those of the experiments. As shown, both the HOMO-LUMO
and optical gaps are underestimated for the PEN by 0.21-0.38 eV,
while both gaps are well reproduced for the Cgo. Although the error
of the PEN is marginal, the difference between the HOMO-LUMO
and optical gaps, which represents the exciton binding energy, is
compared well with that from the experiments. Furthermore, the
difference between Cqp LUMO and PEN HOMO, which is respon-
sible for the interfacial CT energy, was calculated as 3.72 eV, which
is in reasonable agreement with the experimental value of 3.91 eV.
Because the CT energies are determined by the exciton binding
energy and the Cqo HOMO-PEN LUMO gap, the energy diagram
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TABLE Il. GW HOMO-LUMO gaps and S; excitation energies for the isolated
pentacene and Cgy molecules in comparison with the experimental results.

PEN Ceo
GW'+BSE’ Exp.‘ GW'+BSE’ Expt.

H-L gap 4.82 5.20 4.90 4.94

Si 2.08 2.29 1.71 1.83

*One-shot GW calculations with the B3LYP starting point and the 6-31G”* basis set.
YBSE calculations within the Tamm-Dancoff approximation and the statically screened
Coulomb potential.

“References 61-63.

dReferences 64-66.

for the charge separation can be appropriately described at the
present calculation level.

We then examine the HOMO and LUMO quasiparticle ener-
gies in the PEN/Cgo interface. Figure 3 shows the HOMO and
LUMO quasiparticle energies with respect to the direction perpen-
dicular to the interface [see Fig. 2(b)]. In the vicinity of the inter-
face, the averaged HOMO/LUMO energies are —4.26/-0.87 eV for
PEN molecules and —6.12/-2.75 eV for Cgyp molecules. The HOMO
and LUMO energies are significantly increased and decreased,
respectively, compared with their gas-phase values. As a result, the
HOMO-LUMO gap is reduced, known as the gap renormalization
by polarizable environments.”"” In particular, the PEN HOMO-
Cgo LUMO gap was estimated as 1.51 eV; this is significantly reduced
compared with the corresponding gas-phase value of 3.72 eV. The
results have confirmed the previous findings that the induced polar-
ization effect results in the large gap reduction from the gas to the
condensed phase.””*

Having investigated the quasiparticle energies, we now turn
to the CT states across the PEN/Cgo interface. Assuming that
the CT excited state can be well described as the intermolecular
HOMO-LUMO transition between the donor-acceptor molecules,
we defined a CT energy from the GW quasiparticle energies and the
e-h screened Coulomb potential,

ECT(ES + IP) = GIGW,a - Géwﬂ- - Wii,au; (9)

T T Tomd !

10 % 086 -
< 1.0 LUMO
2 20} 555
§ 30 -2.75 - '5_
(0]
s 40 P 426 T
o -50¢f .
> i

-6.0 #6.12 1.6.24]

7.0 1 1 1 1 1

05 00 05 1.0 15 20

Z (nm)

FIG. 3. FMO-GW quasiparticle energies for HOMO and LUMO of PEN or Cg
molecule in the local interface structure.
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where a and i denote the LUMO and HOMO, respectively, in this
case. Wii 4q is the statically screened Coulomb potential,

Wz‘i,uu:fd’ldlel/i*(fl)%](ﬁ)w(ﬁ)rZ)Wﬁ*(rZ)Wi(h% (10)

where I and ] refer to PEN and Ceo, respectively. As discussed earlier,
the CT energy defined by Eq. (9) includes both electrostatic (ES) and
induced polarization (IP) effects labeled as “ES+IP.” To separate the
electrostatic and induced polarization effects, the CT energy without
the environmental polarization energy was introduced as
_ I J 7

ECT(ES) = €Gwia ~ €qwi; + Wii,aa' (11)
Here, the self-energy in eJGWI)P was defined by the GW self-
energy for a fragment I without the environmental polarization
energy (ZICOHSEX,p - ZICOHSEX;,I,); eng)}, does not contain the polar-
izability of all the other fragments including fragment J. The e-
h Coulomb interaction was calculated without the environmen-
tal polarization contributions, WV o= 4 dmdmv(xé + )((f )WU .
Therefore, the CT energy from Eq. (11) does not include the
induced polarization energy associated with the formation of a CT
complex.

We investigate herein the environmental effects on the CT
state, taking an example of the representative state comprising a
nearest-neighbor PEN-Cg pair (see the supplementary material for
visualization). The results of the representative CT state in the dif-
ferent environmental treatments are presented in Table ITI, in which
the excitation energy is decomposed into the orbital-energy differ-
ence (Ae = eé - ei]) and the e-h interaction (E.—j, = —Wii,aq). The
results of the gas phase [Ecr(gas)] were obtained from the cor-
responding FMO-GW calculation for the isolated PEN-Cgp pair,
which do not include any environmental effects. The bare e-h
Coulomb interaction (—vij,qq) for this CT state is —1.19 eV. The
orbital-energy difference of gas-phase value (3.18 eV) is lower than
that estimated from isolated PEN and Cg molecules (3.52 eV);
the deformation of their molecular structure leads to the reduc-
tion of Ae. The magnitude of the screened Coulomb interaction
is close to the e-h bare Coulomb interaction, indicating that the
static screening within the CT complex has a minor effect on the
intermolecular e-h interaction. The comparison between Ecr(gas)
and Ecr(ES) indicates that the environmental electrostatic effect
marginally decreases the orbital-energy difference by 0.22 eV, but
leaves the e-h interaction unchanged. By contrast, the polarization
effect significantly decreases the orbital-energy difference by 1.38 eV
and weakens the e-h interaction by 0.58 eV, resulting in a decrease of
the CT excitation energy by 0.89 eV. Note that the screening of e-h

TABLE lll. Excitation energy, orbital-energy difference, and exciton binding energy in
units of eV for the representative CT state.

Ecr Ae Ee—y,
Gas" 1.91 3.18 —1.27
ES" 1.70 2.96 —1.26
ES+IP 0.91 1.58 —0.68

*Results for the isolated PEN-Cg pair.
PResults without the environmental polarization energy [Eq. (11)].
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interaction cannot be described without the induced polarization of
the environment. We found that the inclusion of the environmental
polarization effects is essential for computing the CT states.

Finally, we consider the energetics of the e-h separation. The
energy diagram was obtained by calculating the CT states of all the
PEN-Cgp pairs in Fig. 2(b), where the three degenerate LUMOs of
a Cgp molecule were included to define the CT states. Figure 4(a)
shows the CT energy as a function of the e-h separation (R,,), where
R,;, was defined as the center-of-mass distance between the electron
and hole wave functions.” The CT states of the nearest-neighbor
PEN-Ce pairs, which contribute slightly to the CT absorption spec-
trum,” were obtained in the energy range of 0.8-1.1 eV. According
to the EQE measurement of the PEN/Cyo bilayer heterojunction,”
the low-energy CT absorption can be fitted to a Gaussian peak at
0.96 eV with 0.20 eV reorganization energy. Therefore, the CT ener-
gies calculated from the FMO-GW are in reasonable agreement with
the experimental estimates. The energy landscape for the e-h sepa-
ration can be characterized by the bound e-h pairs at a low distance
(Ren < 2.0 nm) and the relatively flat energy profile (R, > 2.0 nm)
compared with that in the earlier study.”

We now clarify the impact of induced polarization on the
charge separation. The induced polarization energy Erp of a CT state
was introduced as follows:

Epp = ECT(ES + IP) - ECT(ES). (12)

Figure 4(b) presents the induced polarization energy for the CT
states, indicating that Ejp decreases with increasing R,;. This orig-
inates from the fact that the two separated charges are more strongly
stabilized by their respective environments than a bound e-h pair.
As shown in Fig. 4(b), Ejp decreases from —0.7 eV at 1.3 nm to
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FIG. 4. (a) Energies and (b) induced polarization energies for CT states with
respect to the e-h separation in the PEN/Cg interface.
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—1.1 eV at 2.5 nm, favoring separated charges by ~0.4 eV. Although
the convergence of Epp with respect to R,, might arise from the
limited QM system size in our calculation, the similar convergence
behavior can also be observed in the earlier microelectrostatic study
by D’Avino et al.** (see Dj; of Fig. 8 in Ref. 44). The magnitude of the
relative stabilization of the separated charges (~0.4 eV) is also com-
parable to their results on the P3HT/Ce interface. " The results may
support an earlier suggestion that induced polarization energy does
not strongly depend on the materials.”’

We note that the disorder in the electronic states is a key fac-
tor for the charge separation.”” The standard deviations of the PEN
HOMO and Cg LUMO are 57 and 108 meV, respectively, leading
to the variation in the CT energies. The variations in the MO ener-
gies is due to the molecular geometries and local disorder in the
electrostatic and polarizable environments. In this study, the FMO-
GW calculation was performed only for the local interface structure
[Fig. 2(b)], and the induced polarization effects within the local
structure is described. By contrast, the other molecules in the total
heterojunction structure [Fig. 2(a)] were treated as the fixed point
charges; the induced polarization effects from them are not incorpo-
rated. Therefore, the induced polarization effects on the molecules
at the boundary between QM and MM regions are not fully taken
into account, which may emphasize the disorder in the electronic
states. In particular, we note from Fig. 4(b) that the induced polar-
ization energies are not well evaluated for some of the CT states of
large e-h separation, which comprise the molecules at the QM/MM
boundary. The role of the disorder, as well as the asymptotic behav-
ior of the CT states, will be clarified by employing a more extensive
structure as a QM system or using a polarizable model as a MM
system.” "

IV. CONCLUSIONS

We have developed the fragment-based implementation of GW
which enables the GW calculations for the system containing more
than 2000 atoms. Our implementation is based on the fragmenta-
tion approximations for the total polarization function and com-
bined GW and static COHSEX approximations for self-energies. In
addition to the ground-state polarization, the state-specific polar-
ization effects can be treated in the present development, allowing
for descriptions of the HOMO-LUMO gap renormalization and
screening of the e-h Coulomb attractions. The fragment-based GW
method was demonstrated by application to the PEN/Cg interface
structure in which we have highlighted the environmental polar-
ization effects on the CT states. The FMO-based formalism can
be applied to any disordered or heterogeneous molecular aggre-
gates and thus will offer a promising tool to explore the electronic
processes.

In this article, we have considered the induced polarization
effect on the localized electronic states in which an electron or a
hole is localized within a single molecule. However, the electron
or hole can be delocalized by intermolecular orbital interactions,
and the roles of charge delocalization in the CT states have been
discussed.”””" Indeed, the delocalization of the CT states modu-
lates the e-h energy diagram.”” To explore the role of delocal-
ization, self-energy corrections to delocalized states must be cal-
culated. In the FMO method, such delocalization effects can be
recovered by constructing a total Fock matrix using fragment MOs’”
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in which the total Fock matrix is approximated from Fock matri-
ces of fragment monomers and dimers. In the same fashion, a total
self-energy matrix can be also approximated from self-energy matri-
ces of fragment monomers and dimers.”' Indeed, the total self-
energy matrix at the static COHSEX level was considered in our
earlier study.’ Although the implementation at the GW level is
straightforward, this manuscript focused on the monomer states
because of the larger computational cost for GW self-energies of
fragment dimers. In addition, the delocalized excited states can
be computed by constructing the excited-state Hamiltonian”""*
of an entire system. The combined effects of charge delocaliza-
tion and state-specific polarization will be investigated in a future
study.

SUPPLEMENTARY MATERIAL

See supplementary material for working equations for the
FMO-GW self-energies, the visualization of the representative CT
state, and the e-h energy diagram without the induced polarization
energy.
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