

UWS Academic Portal

Flavonoids as potential anti-MRSA agents through modulation of PBP2a

Alhadrami, Hani A.; Hamed, Ahmed A.; Hassan, Hossam M.; Belbahri, Lassaad; Rateb, Mostafa E.; Sayed, Ahmed M.

Published in: Antibiotics

DOI: 10.3390/antibiotics9090562

Published: 31/08/2020

Document Version Publisher's PDF, also known as Version of record

Link to publication on the UWS Academic Portal

Citation for published version (APA):

Alhadrami, H. A., Hamed, A. A., Hassan, H. M., Belbahri, L., Rateb, M. E., & Sayed, A. M. (2020). Flavonoids as potential anti-MRSA agents through modulation of PBP2a: a computational and experimental study. *Antibiotics*, *9*(9), [562]. https://doi.org/10.3390/antibiotics9090562

General rights

Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Supplemental Material

Flavonoids as Potential anti-MRSA Agents through Modulation of PBP2a: A Computational and Experimental Study.

Hani A. Alhadrami ^{1,2}, Ahmed A. Hamed ³, Hossam M. Hassan ⁴, Lassaad Belbahri ⁵, Mostafa E. Rateb ⁶, *, Ahmed M. Sayed ⁷, *

¹ Faculty of Applied Medical Sciences, Department of Medical Laboratory Technology, King Abdulaziz University, P. O. Box 80402, Jeddah, 21589, Kingdom of Saudi Arabi,

² King Fahd Medical Research Centre, King Abdulaziz University, P. O. Box 80402, Jeddah, 21589, Kingdom of Saudi Arabia, <u>hanialhadrami@kau.edu.sa</u> (HAA)

³ Microbial Chemistry Department, National Research Centre, 33 El-Buhouth Street, P.O. Box 12622, Dokki, Giza, Egypt, <u>ahmedshalbio@gmail.com</u> (AAH)

⁴ Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt, <u>abuh20050@yahoo.com</u> (HMH)

⁵ Laboratory of Soil Biology, University of Neuchatel, 2000 Neuchatel, Switzerland, <u>lassaad.belbahri@unine.ch</u> (LB)

⁶ School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK,

⁷ Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt.

* Correspondence: <u>Mostafa.Rateb@uws.ac.uk</u> (MER) and <u>Ahmed.Mohamed.Sayed@nub.edu.eg</u> (AMS).

Table S1. List of the	potential anti-MRSA	targets suggested	by idTarget.
-----------------------	---------------------	-------------------	--------------

Target name	Target PDB ID	Predicted for	Biological activity	$\Delta G_{Vina} kcal/mol^*$
Penicillin-Binding Protein 2a (PBP2a)ª	4DKI, 6Q9N, 3ZFZ	Compounds: 2- 11, 17	Cell wall synthesis	-8.9, -8.8, -7.5
D-alanine-D-alanine ligase (Ddl)	3N8D	Compounds :1, 2, 14	Cell wall synthesis	-9.6
DNA gyrase-B (Gyr-B)	5D6P	Compounds: 1, 2, 3, 7-9	Negative supercoiling of the DNA	-9.2

*Binding energy scores of the co-crystalized ligands of each protein after the re-docking by Audodock Vina.

^aPBP2a was selected as the most possible target because it was the best-predicted protein (predicted for 10 compounds of 20), particularly, the flavonoids.

Compound name	∆G* kcal/mol	ΔG Vina**	ΔG_{Vina}^{**} kcal/mol	Chemical	Subclass
		kcal/mol	(Allosteric site	class	
		(Active site)	site)		
Myricetin (1)	-	< -7.0	-7.0	Phenolics	Flavonoid
Quercetin (2)	-7.1	-7.2	-7.2	Phenolics	Flavonoid
Kaempferol (3)	-7.8	-7.6	< -7.0	Phenolics	Flavonoid
Apigenin (4)	-7.8	-8.1	< -7.0	Phenolics	Flavonoid
Chrysin (5)	-7.0	-7.9	< -7.0	Phenolics	Flavonoid
Hesperetin (6)	-7.3	-7.8	-7.2	Phenolics	Flavonoid
Astragalin (7)	-8.3	-9.0	-8.2	Phenolics	Flavonoid
kaempferol 7-O-glucoside (8)	-8.2	-9.1	-7.9	Phenolics	Flavonoid
Quercitrin (9)	-8.3	-9.0	-8.1	Phenolics	Flavonoid
Rutin (10)	-8.2, (-7.9)#	-9.4	-8.8	Phenolics	Flavonoid
Diosmin (11)	-8.5, (-9.1) #	-9.6	-9.8	Phenolics	Flavonoid
Hesperidin (12)	-8.4, (-9.5) #	-9.5	-10.3	Phenolics	Flavonoid
Silibinin A (13)	-8.0	-8.8	-9.5	Phenolics	Flavonolignan
Resveratrol (14)	> -7.0	> -7.0	> -7.0	Phenolics	Stilbene
Caffeic acid (15)	> -7.0	> -7.0	> -7.0	Phenolics	Cinnamic acid derivative
Sinapic acid (16)	> -7.0	> -7.0	> -7.0	Phenolics	Cinnamic acid derivative
Rosmarinic acid (17)	-7.2	> -7.0	> -7.0	Phenolics	Cinnamic acid derivative
Gallic acid (18)	> -7.0	> -7.0	> -7.0	Phenolics	Benzoic acid derivative
Syringic acid (19)	> -7.0	> -7.0	> -7.0	Phenolics	Benzoic acid derivative
Trimethoxy benzoic acid (20)	> -7.0	> -7.0	> -7.0	Phenolics	Benzoic acid derivative
Gentisic acid (21)	> -7.0	> -7.0	> -7.0	Phenolics	Benzoic acid derivative
Benzyle anisate (22)	> -7.0	> -7.0	> -7.0	Phenolics	Benzoic acid derivative

Table S2. List of compounds that predicted to be possible inhibitors for certain Staphylococcal protein target.

*Binding energy predicted by idTarget.

**Binding energy predicted by Autodock Vina.

Binding energy predicted by idTarget for the allosteric site

Figure S1. RMSDs of PBP2a-ligand complexes and the ligands. (**A**) Apigenin (4), (**B**) Chrysin (5), (**C**) Hesperetin (6).

Figure S2. RMSDs of PBP2a-ligand complexes and the ligands. (**A**) Rutin (10), (**B**) Diosmin (11), (**C**) Hesperidin (12), (**D**) Slibinin A (13).