

UWS Academic Portal

A partition-based partial personalized model for points of interest recommendations

Naserian, Elahe; Wang, Xinheng; Dahal, Keshav; Alcaraz-Calero, Jose M.; Gao, Honghao

Published in:
IEEE Transactions on Computational Social Systems

Accepted/In press: 19/08/2020

Document Version
Peer reviewed version

Link to publication on the UWS Academic Portal

Citation for published version (APA):
Naserian, E., Wang, X., Dahal, K., Alcaraz-Calero, J. M., & Gao, H. (Accepted/In press). A partition-based partial
personalized model for points of interest recommendations. IEEE Transactions on Computational Social
Systems, 1-12.

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 30 Nov 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Repository and Portal - University of the West of Scotland

https://core.ac.uk/display/351862682?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://myresearchspace.uws.ac.uk/portal/en/publications/a-partitionbased-partial-personalized-model-for-points-of-interest-recommendations(9989072f-b78b-4c25-a104-51504c77c8f2).html

“© © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained

for all other uses, in any current or future media, including reprinting/republishing this material for

advertising or promotional purposes, creating new collective works, for resale or redistribution to

servers or lists, or reuse of any copyrighted component of this work in other works.”

1

A Partition-based Partial Personalized Model for
Points of Interest Recommendations

Elahe Naserian∗, Xinheng Wang†, Keshav Dahal∗, Jose M. Alcaraz-Calero∗, Honghao Gao‡
∗ University of the West of Scotland, Paisley, Scotland, UK

Email: {elahe.naserian, keshav.dahal, jose.alcaraz-calero}@uws.ac.uk
†University of West London, London, UK

Email: {xinheng.wang}@uwl.ac.uk
‡ Shanghai University, Shanghai, China

Abstract—Providing location recommendations has become an essential feature for location-based social networks (LBSNs) because
it helps users explore new places and makes LBSNs more prevalent to users. Existing studies mostly focus on introducing new
features that affect users’ check-in behaviours in LBSNs. Despite the difference in the type of the features exploited, they mostly follow
the same principle - characterizing dependencies between the probability of a user visiting a points-of-interest (POI) and each feature
separately. However, the decision of a user on where to go in an LBSN is driven by multiple features that act simultaneously. On the
other hand, applying a full model which considers all the features jointly suffers from over fitting, as for each user there is limited
available data. We propose an intermediate solution by fragmenting the model into multiple partial models which each takes the subset
of the features as the input. The proposed approach focuses on building the personalized partial models which then combine them by
applying an additive approach. We further introduce a partition-based approach to identify the hidden patterns from the geographically
clustered check-in data. Experiments on two datasets from Foursquare show that our proposed method outperforms the
state-of-the-art approaches on POI recommendation.

Index Terms—Location-based social network (LBSN), Recommendations, Point-of-Interest (POI)

F

1 INTRODUCTION

With the advancement of location acquisition devices
and wireless communications [1], [2] location-based social
networks (LBSNs), such as Foursquare, Gowalla, and Face-
book places, have attracted millions of users. In an LBSN,
users can share experiences of visiting locations, also known
as points-of-interest (POIs), like restaurants, stores, and mu-
seums. The act of visiting a POI is known as a check-in
activity and can be used to learn the preferences of the user
of the LBSN and to utilize them for making POI recommen-
dations [3]. This would help users to explore new places,
and also makes LBSNs more attractive to them by increasing
its effectiveness based on personalized recommendations.

A traditional approach to address the creation of recom-
mendation systems is applying collaborative filtering (CF)
techniques [4], [5], [6], [7], [8], [9], [10] over users’ check-in
data to generated models about their preferences. Although
these techniques are a good starting point for simple recom-
mendation systems, they lack to consider contextual infor-
mation about the check-in actions performed by users, and
instead the merely focus on defining similarity functions to
allow the comparison of behavior between users taking in
considering mainly the visiting places.

There are other more appealing approaches to address
the creation of recommendation systems which make use
of different features available in the check-in data such as
geographical and temporal information [11], [12], [13], [14],
[15].

Despite the difference in the type of features exploited,
most of the existing approaches follow the same principle

Users

Time,
PopularityPopularity

Time,
Transition
PreferenceFeatures

POIs

Check-Ins

Time,
Popularity

Time,
Geographical

Time,
Geographical

Fig. 1: Influential features for visiting various POIs for
different users.

- a Naive Bayes model that characterizes dependencies be-
tween the outcome (probability of a user visiting a POI) and
each feature (geographical, time, transition, etc.) separately.
A clear example is proposed in [15] where authors model the
user preference, social influence, and geographical influence
independently, and then conclude the final result by simply
fusing the individual models.

However, Naive Bayes models are based on the strong
assumption that features are independent. This approach
may be not accurace enough to model scenarios where
a user who mostly visits POIs in nearby locations also
travels long distances for the most popular POIs which is
in fact something very common nowadays []. Therefore, to
model the users’ preferences, incorporating the interactions
between features is essential.

Fig. 1 shows an example of the influential features pre-

2

viously described and how different users are influenced
differently by such features when they carry out different
activities. For example, someone can choose to go for the
nearby bars during the evening time (geographical influence
and time influence), and the other one prefers to go for the
bar after having the dinner (time influence and transition
influence).

In this paper, we argue that the decision of a user on
where to go is driven by multiple features that act simulta-
neously. Also, different users may be affected differently by
these features. These two assumptions are mostly ignored
in state-of-the-art studies. This lead to a significant degra-
dation of accuracy in the existing POI recommendation
systems which has been our main motivation. Therefore,
we aim to propose a personalized POI recommendation
model which takes the features’ interactions into account.
For this purpose, we formulate the POI recommendation
as a supervised learning problem given multiple influential
features. Instead of defining a sophisticated model that
exploits all the features such as the proposed by [16], [17],
[18], we develop a principled way to combine multiple
partial models. The proposed framework has been named
as Additive Personalized Point-of-Interest Recommendator
(APPR) focuses on building partial models about user pref-
erences to learn the binary decision tree classifier from the
subsets of the features. Then, the set of partial models are
combined by applying an additive approach. We finally
apply the proposed model to compute the probability of
a user visiting a POI to recommends the top(K) POIs with
the highest probabilities.

Our APRM Recommendation Model has major differ-
ences with respect to existing methods. First, it exploits
the features’ interactions in POI recommendation and thus
not assuming independence between them assuming that
user mobility in LBSNs is driven by several features act-
ing synchronously. Second, it train the model about the
importance of the different features for differentiating the
interesting POIs for each user from those which do not
attract them. Third, it is a non-parametric approach. Most
of the algorithms in the state-of-art are sensitive to the
values of their parameters. As such, the performance of
the recommendation may easily degrade if the values do
not match the specific dataset. Finally, it does not require
assumptions about the underlying statistical models. Other
proposed methods mostly build the recommendation model
based on the assumption about the form of distribution of
the check-in data.

The main contributions of this paper can be summarized:

• It is proposed an Additive Personalized POI Rec-
ommendation model (APPR) which takes the fea-
tures’ interactions into account. For this purpose, it
is formulated POI recommendation as a supervised
learning problem given multiple influential features.

• It is further designed a partition-based approach
to identify hidden patterns of partitions obtained
from geographically clustered check-in data. This
approach is embedded with a feature selection pro-
cess which chooses the most appropriate features to
represent an underlying PRM pattern.

• It has been conducted extensive experiments to eval-

uate the performance of APPR using two large-scale
real data sets obtained from Foursquare. Experi-
mental results show that APPR outperforms over
other state-of- the-art recommendation techniques
including the Naive Bayes [19], [20], [21], [22], [23],
[24] approaches and Full-joint models [16], [17], [18]
in terms of recommendation precision, recall, and
accuracy.

The remainder of this paper is organized as follows.
Section 2 highlights related work. Section 3 provides the
full explanation of the proposed recommendation approach.
In Section 4 we propose our partition-based approach. We
introduce a set of influential features in Section 5. In Sections
6 and 7, we evaluate the POI recommendation model and
analyze the experimental results. Finally, we conclude the
paper in Section 8.

2 RELATED WORK

With the rapid increase of LBSNs like Foursquare, Gowalla,
Facebook places, etc., POI recommendation has become
prevalent [3]. In a very recent work, Liu in [25] evaluates
the state-of-the-art POI recommendation models. In general,
existing POI recommendation approaches can be divided
according to the features they exploit and the recommenda-
tion model they apply.

Influential features. Existing approaches for location
recommendation in LBSNs differ mainly in terms of the
different aspects of the check-in data that they exploit. The
geographical proximity between POIs affects the check-in
behaviours of users on the POIs. In this regard, several
methods have been proposed to exploit geographical influ-
ence for improving the quality of location recommendation.
Some studies define a distance range for recommended
locations [11], [26], some gives more priority to the closer
locations [27], and some researchers model the distance
between two locations visited by the user as a distribution,
like a multi-center Gaussian model [12], or personalized
distribution [15], [19].

Time is another feature which influences the visiting
behaviour of users in LBSN, i.e. visiting a restaurant at noon
or visiting a bar at night. The time-dependent recommenda-
tion techniques split a day into time slots to infer users’
preferences on locations at each time slot [20], [21], [28],
[29]. It has been shown that the user’s preference transitions
over POIs are not random. In this regard, Some studies
investigate the patterns of users’ preference transitions over
POIs as the influential feature in users’ visiting behaviour
[23], [30], [31].

Different approaches have been developed to exploit
different types of the check-in information, however, these
approaches are usually developed for a specific type of fea-
ture and it is difficult to generalize them to handle another
type of feature.

Recommendation model. Despite the difference in the
type of features exploited, the POI recommendation models
follow one of two strategies: Naive Bayes model, or Full-
joint model.

The first strategy is based on this assumption that fea-
tures are independent given the outcome, such that the
probability of visiting a POI and each influential feature is

3

modelled separately. The final result is then calculated by
fusion of the individual models. Most of the state-of-the-
art studies apply this model [23], [19], [24]. In [22], authors
define a conditional probability model incorporating three
influential features, geographical, social and temporal fea-
tures, which each is modelled independently of the others.
The authors in [31] apply the product fusion rule to combine
the models obtained from geographical, social and sequen-
tial features. In [21] the authors separately consider spatial
and temporal features of user activities and then propose
a context-aware fusion framework to infer user activity
preference. However, the independence assumption does
not match with the characteristics of the check-in data; the
mobility of users in an LBSN is driven by several features
that act simultaneously.

Another direction is to consider the Full-joint model,
in which the probability of visiting a POI depends on all
influential features jointly [16], [17], [18]. In [16] the authors
first define a set of features that may drive users’ behaviour,
then they apply a supervised learning model to predict the
next top-k POIs that user may visit. The same strategy has
been applied in [17] and [18] with incorporating different
influential features. This model could be practical if a user
has sufficient historical check-in data. However, in a real-
world LBSN, users’ check-in data is often sparse, and then
applying the full model might lead to the overfitting and
low accuracy of the POI recommendation.

We can distinguish our work from previous studies as
follows: (1) In contrast with the Naive Bayes models, we
take the features’ interactions into account. (2) Contrary to
the Full-joint models, we fragment the model into multiple
partial models which each takes the subset of the features as
the input.

3 MODELLING ADDITIVE PERSONALIZED POI
RECOMMENDATION (APPR)
In this section, we investigate the POI recommendation
problem through applying a supervised learning frame-
work. First, we build the partial models that capture the
subsets of the influential features. The final model, then, is
obtained by combining the partial models additively. The
recommendation model then is applied to determine the
probability of a user visiting a location.

3.1 Problem Definition

The problem of POI recommendation can be formulated as
finding a function f : X → Y where X is the input feature
space and Y is the output space. In our setting, the input
space is the set of influential features, and the output space
is the set of POIs. Let D = {{x(u, t), y(u, t)}, u = 1, .., N}
be a dataset of N users, which y(u, t) is a visited POI
by the user u at time t and x(u, t) encodes the values
of the features of the visited POI. To calculate the output
y(u, t) of the feature space x(u, t), we can only use data
{x(u, t′), y(u, t′)}t′ = 1, .., t− 1 to learn the function f .

We consider a probabilistic approach where we learn
the distribution, P (Y |X), from the training set where X =
{X1, X2, ..., XF } denotes the set of F features and Y refers
to the POI. To obtain the above distribution, we learn a

supervised model over the feature space to calculate the
probability of a user visiting a POI. To train the model, we
consider all the POIs visited before the prediction time t as
the positive instances. Positive instances are those locations
(POIs) that have been visited by the users and negative
instances are those locations not visited by her. Then, we
retrieve the negative labeled instances by sampling at ran-
dom across all other places in the city up to the point where
there is the same number of positives and negatives. This
approach has been already used by XXXX []. This method
of training a model by providing feedback in the form of
user preference corresponds to an effective reduction of the
ranking problem to a binary classification task which has
been established in the past [32].

Applying the supervised learning for recommendation
problem has been previously used in the literature [16],
[17], [18], and it brings the following advantages; This
approach allows us to train the model what the essential
characteristics are for differentiating the places that attract a
user from those which would not. Contrary to the state-of-
the-art approaches which consider the same set of features
with equal importance for all users, we build a personalized
model for each user which determines the significance of
features according to their influence on the user’s move-
ment. Furthermore, this approach let us take the interactions
between the features into account which is ignored by the
previous works and results in the more accurate recommen-
dation.

Accordingly, we formulate the problem of POI recom-
mendation as follows:

• Given: a dataset containing users’ historical check-in
data; the training and test instances drawn from it.

• Find: a recommendation model based on the training
instances.

• Objective: improving the performance of the recom-
mendation calculated by evaluating the model on the
test instances.

Our goal is to built a recommendation model, denoted as
H , which takes a POI’s feature vector x as its input and then
outputs the H(x) as the probability of the user visiting the
POI. Then the top(K) POIs with the highest probabilities are
returned as the recommendations. When the recommended
POI is visited by the user, we consider the model to correctly
recommend the POI. The notations used in this paper are
summarized in Table I.

Our approach is focused on an off-line approach where
every given time there is an update the model using the
new historical data in order to allow the model to evolve its
accuracy along the time. It has been decided an off-line ap-
proach to optimize response times into the recommendation
framework.

3.2 Different Approaches
3.3 Theoretical Background
This is obvious that the more accurate the feature space is,
the more precise the recommendation might be. In other
words, incorporating more relevant features, result in more
precise model. For example, considering both popularity
and distance could be more effective than using each one

4

X1 X 2 X F.X 1X 1

Y

(a) Naive Bayes model

X1 X 2 X F.X 1X 1

Y

(b) Full-joint model

X 2 X FX 1

Y

.C1 CL

X i

(c) Fragmented model

Fig. 2: Different Recommendation Models.

alone. However, as the feature space X increases, more data
is needed for accurately estimating the distribution P (Y |X).
Therefore, the primary challenge is to build a model that
can efficiently utilize the available features from the limited
training instances.

A promising way is to consider the full model (Fig. 2b),
such that the output Y , the probability of visiting a POI,
depends on all features Xi jointly, similar to the proposed
model in [16]. Theoretically, if a user has sufficient historical
check-in data, this could be the ideal model. However, in a
real-world LBSN, users’ check-in data is often sparse, and
then applying the full model might lead to the overfitting
and low accuracy of the probability estimation. The opposite
case is considering the Naive Bayes approach in which the
dependencies between the output Y and each feature Xi

is modelled separately, Fig. 2a. Most of the state-of-the-art
studies in the POI recommendation follow this approach
[19], [22], [23], [24]. However, the Naive Bayes model is
based on the strong assumption that features are indepen-
dent given the outcome, which does not match the real
characteristics of the check-in data in LBSN - the mobility
of users in an LBSN is driven by several features that act
simultaneously [16].

Unlike these two extreme approaches, we propose an in-
termediate solution by fragmenting the model into multiple
partial models which each model take the subset of X as
the input features, Fig. 2c. We learn decision tree binary

TABLE 1: KEY NOTATIONS

Symbol Description
X set of features
Y set of POIs
Xi ith feature
D dataset of check-ins
Cl a subset of features
Dl dataset containing the values of features in Cl

M number of iterations

R+
l

probability of visiting a POI considering the feature
subset Cl

R−
l

probability of not visiting a POI considering the
feature subset Cl

h+
m hypothesis learned from R+

l

h−
m hypothesis learned from R−

l

w(i) weight of instance i
H(x) final hypothesis
k number of recommended POIs
g Number of clusters

classifier Rl from the input feature Cl. We call it Partial
Personalized Model (PRM) because it builds the model by
considering not all the features, but the subset of them.
For each user, the model learns the importance of different
features for differentiating the interesting POIs from those
which don’t attract the user. We then formally define a PRM
as follows.

Definition 1 (Partial Personalized Model (PRM)) Let Cl ⊂
X and the training set containing the values of features
in Cl be denoted as Dl. PRM Rl is a decision tree binary
classifier learned from Dl, such that R+

l is used to calculate
the probability of visiting the POI considering the feature
subset Cl, denoted as Prob(1|Cl), and R−l as the probability
of not visiting the POI, denoted as Prob(−1|Cl).

In this section we learn the PRMs from all the possible
subsets of the feature space then combine them to build
the recommendation model. In Section 4, we introduce
a partition-based approach for learning the PRMs in an
efficient manner.

To build PRMs and then collectively utilize them, we
incorporate an additive learning process based on the boost-
ing algorithm [33]. This iteratively process chooses a PRM at
each layer m and builds a predictive model with M layers
of PRMs at the end of M iterations. From each Rm, we
learn hypothesis hm where hm(x) ∈ IR, x is a feature vector
of an instance POI and IR is the domain of real numbers.
Consequently, h+m has been learned from R+

m, and h−m has
been learned from R−m. At the end of M iterations, the final
hypothesis is modelled as:

H(x) =
M∑

m=1

hm(x) (1)

where itself can be divided to H+(x) and H−(x), which
are obtained from h+(x) and h−(x), accordingly. As we
are looking for determining the probability of visiting a
POI, unless otherwise specified,H(x) represents theH+(x).
This additive learning approach mainly applies the same
principle of real-valued confidence-rated boosting approach
[34], which allows using the probability estimates from
decision trees , Rm, to update the additive model. The
objective is to find the best hm at each iteration which yields
the least prediction error on training instances. To this end,
we first recode the output of the training instances with a
2-dimensional vector V = (v1, v2), such that V = (1,−1)
if x is the negative instance, and V = (−1, 1) if x is the
positive instance. Then the generalization of the exponential
loss function L at iteration m follows:

5

L(V, hm) = e

(
−1
2 V Thm

)
(2)

Where V T is defined as the transpose of V. To simplify
the presentation, we use h(x) to represent the hm(x) here-
after. Accordingly, the minimization problem is formulated
as:

argmin
h(x)

E
(
exp

(−1
2

(v1h
−(x) + v2h

+(x))
)
|x
)

subject to h−(x) + h+(x) = 0

(3)

The Lagrange of this constrained optimization problem
can be written as:

exp
(
− h−(x)

)
Prob(−1|x) + exp

(
− h+(x)

)
Prob(1|x)

−λ
(
h−(x) + h+(x)

)
(4)

where λ is the Lagrange multiplier. This model of the error
rate as minimization problem has been already addressed
in [34]. Thus, taking derivatives with respect to h and λ, we
reach

−exp
(
− h−(x)

)
Prob(−1|x)− λ = 0,

−exp
(
− h+(x)

)
Prob(1|x)− λ = 0,

h−(x) + h+(x) = 0

(5)

Solving this set of equations, we obtain the h(x)

h(x) =
1

2

(logProb(1|x)
logProb(−1|x)

)
(6)

unless otherwise specified, h(x) represents the h+(x) and
h−(x) is calculated in opposite way of h+(x). We can use
probability estimates from decision trees, R, as the approxi-
mations to the conditional expectation.

h(x) =
1

2

(logR+(x)

logR−(x)

)
(7)

3.4 Additive Recommendation Model

Based on the theoretical analysis given in Subsection 3-2, we
first propose our POI recommendation model BuildAPPR
which mainly follows the SUMME.R boosting algorithm
[34]. This function will be executed by the dataset of ev-
ery users individually. Then, the function will iteration a
number of times in order to allow the model of user’s pref-
erence to converge. Furthermore, we propose PruneAPPR
function to reevaluate the resulted model, to prevent the
final hypothesis H from overfitting and also reduce the size
of the PRM set. This function will be executed against all
the user’s preference model individually following a similar
iterative approach in order to trade-off time and accuracy.
Accordingly, we divide the dataset of check-in records of
user u,Du, into two subsets, growing dataset (GrowSet) and
validation dataset (PruneSet). The former dataset is used for
the BuildAPPR function and the latter one is used for the
PruneAPPR function.

Algorithm 1 : BuildAPPR

Input:
GrowSet: Growing dataset.

Output:
H: The hypothesis of the final model.
RList: Set of PRMs.

1: buldAPPR(user u, iterations M)
2: for m = 1..M do
3: Normalize the weights of the training instances.
4: Learn the Partial Personalized Models (PRMs).
5: Select a PRM as Rm.
6: Obtain the probability estimates from Rm.
7: Set:

hm(x) = 1
2

(
logR+

m(x)

logR−m(x)

)
8: Update weights:

wm+1(i) = wm(i).exp
(
− 1

2V
T
i logRm(xi)

)
9: end for

10: Final hypothesis is defined as:

11: H(x) =
M∑

m=1
hm(x)

12: Return: RList

3.4.1 BuildAPPR Function
According to the Algorithm1, we first normalize the weight
of the training instances at each iteration m to make it
a probability distribution such that

∑
i
wm(i) = 1, where

wm(i) is the weight of instance i at iteration m. The set of
PRMs, then, is learned from the training data. Afterwards,
we choose a PRM R randomly and add that to the RList.
According to the probability estimates calculated from the
chosen PRM, R+ and R−, hm(x) is obtained, equation
7. To give the data instances which are not recognized
by hm correctly, more attention in the next iteration, we
exponentially lower the weights on those instances which
are correctly recognized by hm and increase the weight of
those which are incorrectly recognized by hm. The weights
of the instances are updated as follows:

wm+1(i) = wm(i).exp
(
− 1

2
V T
i logRm(xi)

)
(8)

At the end, the result is a list of PRMs, RList =
{R1, R2, ..., RM} , which their corresponding hypothesis
are {h1, h2, ..., hM}. The final hypothesis can be obtained
according to the equation 1. To convert the H(x) to a
probability distribution, we set H(x) = exp

(
H(x)

)
, and

then we normalize it.

3.4.2 PruneAPPR Function
This part addresses the question of whether all of the
resulted PRMs are improving the performance of our model.
PruneAPPR function, shown in Algorithm 2, is used to
reevaluate the PRM set returned by BuildAPPR through
calculating the error rate error on the PruneSet to solve
a possible overfitting problem. The goal is obtaining the
subset of PRMs which gives the best performance on Prune-
Set. We take h+(x) > 0 as the positive prediction, and

6

Algorithm 2 : PruneAPPR

Input:
PruneSet: Validation dataset.
RList: The output of the BuildAPPR.

Output:
RList: Pruned PRM set.

1: pruneAPPR(user u, iterations M)
2: Stop = False.
3: Calculate error using PruneSet.
4: Set errormin = error.
5: repeat
6: Pop the top R from the queue of RList.
7: Calculate error using PruneSet.
8: if error < errormin then
9: set errormin = error

10: else:
11: Push R back to RList
12: Set Stop = True
13: end if:
14: until (Stop = True) or (only one PRM left in
15: RList)
16: Return: RList

h−(x) > 0 as the negative result. The error then is calcu-
lated as the number of instances which are not recognized
correctly by the model. This function repeatedly removes an
R from RList until the minimum value of error is reached
or there is only one PRM left in RList. In the end, the RList
with the minimum error is returned. The error is defined
as the number of incorrect recommendations given to the
user, i.e. recommendations that has not been converted to
real check-in activities.

4 PARTITION-BASED ADDITIVE PERSONALIZED
POI RECOMMENDATION (P-APPR)
The process of building the PRMs is very efficient in terms
of accuracy but it is inefficient in terms of scalability as we
identify PRMs from all the possible subsets of the feature
space. In this section, we propose an partition-based ap-
proach to learn the partial models. This approach improves
the performance of the recommendation, and also reduces
the training time while keeping and even improve accuracy.

For the partition-based approach, instead of identifying
the PRMs from all the combinations of features, we identify
one PRM for each partition. The important features auto-
matically be learned from the data, instead of randomly
choosing them.

This approach is possible due to the fact that Users’
activities in LBSNs often present strong preference bias in
the areas that they frequently visit [21], [10]. In other word,
similar activities are driven by the similar influential fea-
tures. Users only perform a few types of activities (i.e., visit
POIs of a few categories) in each of their frequented areas.
For example, the area(s) a person goes for the shopping is
different from the the area(s) he/she goes for visiting the
museums or art galleries. Fig. 3 shows check-ins of three
users (represented by red, green, blue colors) in Tokyo in
our dataset. First, we realize that most of the user’s check-
ins are occurring in certain geographic areas, as plotted in

1)shopping
2)restaurant

3)theatre

1)shopping
2)restaurant

1)shopping and restaurant
2)park and museum

(a) Tokyo

Fig. 3: Spatial Distribution of checking of three users in
Tokyo which are plotted in red, green, and blue colors,
respectively

the Figure. This observation shows the strong geographic
preference of the check-in behaviors. It also indicates that
different users usually have their own frequented areas.
Second, by examining users’ activities in their frequented
areas, we find out that their activities are often limited to a
few kinds of activities for the majority of their frequented
areas. The dominant activities for the frequented areas for
each user is shown in Fig. 3. Third, the check-ins from
the same frequented area show strong similarities in their
influential features.

To this end, we design a partition-based approach to
identify the hidden patterns of partitions obtained from
geographically clustered check-in data. Assuming that there
exists a pattern within each partition, we learn a binary
decision tree classifier from each partition to represent the
underlying pattern, that we call it Partition-based Partial
Personalized Model (PPRM). Thus, a feature selection pro-
cess is embedded in our Partition-based PRM Discovery
which chooses the most appropriate features to represent
the underlying PPRM. We then formally define a PPRM as
follows.

Definition 2 (Partition-based Partial Personalized Model
(PPRM)) Let Pl be a partition of the check-in data. PPRM
Rl is a decision tree binary classifier learned from Pl, which
involves the feature subset Cl. Accordingly, R+

l is used to
calculate the probability of visiting the POI considering the
feature subset Cl, Prob(1|Cl), and R−l as the probability of
not visiting the POI, Prob(−1|Cl).

To capture the PPRMs from the partitions at different
granularity levels, we cluster the check-ins with different
similarity degrees in terms of geographical location by
varying the number of clusters. It makes natural grouping of
data by different locations in order to better understand the
user’s preferences. Notice that every of the dataset analyzed
contains the check-in preferences for a given city. It means
that such city will be cluster in different geographically per
each user. It should be noted that the extracted partitions
are not-mutually-exclusive from which the features can be
learned more efficiently. For example, we cluster the check-
ins of a user in Fig. 4 at different levels which different
cluster numbers, g =1,2,3 and 4. The patterns then are iden-
tified from the extracted clusters. In order to combine the

7

X1

g = 1

X4

X5

X1 X3

X4

X5 X2

X1

X3

X7

X8

X4

g = 2 g = 3 g = 4

Fig. 4: An illustration of the PPRM construction. Through the partitioning process, the check-in instances are segmented
into non-mutually-exclusive clusters (the points filled with the same color). We learn a decision tree binary classifier from
this type of spatial distribution to represent a Partition-based Partial Personalized Model (PPRM).

TABLE 2: DATASET STATISTIC

Dataset New York (Foursquare) Tokyo (Foursquare)
Users 824 1, 939

POIs 38,336 61,858
Check − ins 227,428 573,703

obtained PPRMs, we apply the same strategy as Subsection
3.3. Applying a partition-based approach for identifying the
PPRMs take the spatial characteristics of the check-in data
into account, which leads to the more accurate recommen-
dation. Besides, it reduces the training time in comparison
with the previous approach which considers all the possible
subsets of the feature space.

5 INFLUENTIAL FEATURES

We define a set of features X = {X1, X2, ..., XF } such that
cover different aspects of users’ movements in LBSNs; the
features covering an individual user’s preferences, such as
historical visits, and those derived taking the knowledge
about the whole system into account such as the popularity
of places, their geographic distance and user transitions
between the places. We also define a set of features that
exploit the temporal information of users’ movements. We
consider t

′
and y

′
as the time and location of the current

check-in, where C(y
′
) determines the category of POI y

′
,

and tod(t
′
) returns the hour of a day, and dow(t

′
) returns

the day of the week of time t
′
. The value of all the features

is calculated regarding data up to the current time, t
′
. Note

that employed features depend on the task, and different
type of features can be defined according to the application.

POI Preferences: The number of visits of user u at POI p.
This feature measures to what extent the next check-in of a
user is likely to appear at a place that has been visited by
the user in the past. Formally we have:

X1(p) = |{(y, t) ∈ Du : t < t
′
∧ y = p}|

Categorical Preferences: To identify the importance of dif-
ferent categories of POIs (cinema, coffee shop, restaurant
etc.) for a given user u, we consider the number of check-ins
user u has performed at a specific category:

X2(p) = |{(y, t) ∈ Du : t < t
′
∧ C(y) = C(p)}|

where C(p) is the category of POI p.
POI Popularity: The total number of check-ins that have

been performed by all the users U in the dataset in a POI p:

X3(p) = |{(y, t) ∈ D : t < t
′
∧ y = p}|

Geographic Distance: Considering y
′

as the current loca-
tion of user u, we measure the distance between POI p and
the current location as an influential feature:

X4(p) = dist(y
′
, p)

POI Transition Preference: The user’s transition between
the POIs is not random [23]. Considering Tu as the set
of tuples for the POIs involved in consecutive transitions
before the current time t

′
for user u, we define the following

feature:

X5(p) = |{(v1, v2) ∈ Tu : v1 = y
′
∧ v2 = p}|

8

Category Transition Preference: Identifies the preference of
a given user u in transition between the category of the
current location and the target POI’s category:

X6(p) = |{(v1, v2) ∈ Tu : C(v1) = C(y
′
) ∧ C(v2) = C(p)}|

POI Transition Popularity: The total number of transitions
that has been done between the the current location ant the
target POI p, by all the users:

X7(p) = |{(v1, v2) ∈ T : v1 = y
′
∧ v2 = k}|

Category Transition Popularity: The total number of tran-
sitions that has been done between the POIs with the same
category of the current location, and the POIs with the same
category as the target location’s category, by all the users:

X8(p) = |{(v1, v2) ∈ T : C(v1) = C(y
′
) ∧ C(v2) = C(p)}|

POI Time-aware Popularity: We also take the temporal
pattern of visiting a POI into our consideration as the
influential feature. We define the POI Hour Popularity and
POI Day Popularity, as the sum of past check-ins at a POI in
a given hour h of the day and a given day d of the week.

X9(p) = |{(y, t) ∈ D : t < t
′
∧ y = p ∧ tod(t) = tod(t

′
)}|

X10(p) = |{(y, t) ∈ D : t < t
′
∧ y = p ∧ tow(t) = tow(t

′
)}|

where tod(t) returns the hour of a day, and dow(t) returns
the day of the week of time t.

Category Time-aware Popularity: Determining the tempo-
ral pattern of visiting a specific category during different
hours and different days of the week:

X11(p) = |{(y, t) ∈ D : t < t
′
∧ C(y) = C(p)∧

tod(t) = tod(t
′
)}|

X12(p) = |{(y, t) ∈ D : t < t
′
∧ C(y) = C(p)∧

tow(t) = tow(t
′
)}|

For the specific user u, we extract the above feature
set X for each of the visited POIs. Following the steps in
Subsection 3-3, the recommendation model for user u is
obtained.

For each POI, then, we extract the feature set X , and cal-
culate the probability of visiting the POI by the user. Finally,
the top-k POIs with the highest probability is returned as
the recommendation list, PList.

6 EXPERIMENTAL SETTINGS

In this section, we describe our experimental settings for
evaluating the performance of proposed POI recommenda-
tion models against the state-of-the-art POI recommenda-
tion techniques.

6.1 Datasets and Influential Features

We use two publicly available real check-in datasets 1

that were crawled from Foursquare between April 2012 to
February 2013 [21]. It contains the check-ins of active users
(defined as users who have visited at least three POIs per
week) in two big cities, New York and Tokyo. The statistics
of the datasets are shown in Table II.

6.2 Baselines

The baseline recommendation techniques implemented in
our experiments are divided into two categories based on
the employed strategy for the POI recommendation.

Naive Bayes approach (base1): This approach characterizes
dependencies between the probability of visiting the POI
and each influential feature, Xi, separately. This technique
is widely used in the literature [19], [20], [21], [22], [23], [24].
To implement this approach, we rank the POIs based on
different features, and the final rank is the multiplication of
the individual rankings.

Full-joint model (base2): This approach characterizes de-
pendencies between the probability of visiting the POI and
all the influential features, X , jointly, i.e. [16], [17], [18]. We
implemented this model according to [16], which applies
the M5 decision tree to predict the next − k POIs of a user.
It should be noted that this approach is the most similar
model to our proposed method.

6.3 Evaluation Metrics

To evaluate the quality of POI recommendations, we employ
three standard metrics: accuracy, precision and recall. First,
we assess the quality of recommending exactly the next
location. To this end, we define accuracy:

• Accuracy is 1, if the next POI is discovered among
the top-k POIs, PList. Average accuracy is then
calculated as the fraction of successful instances over
the total number of recommendation tasks.

To evaluate the quality of location recommendations,
it is also essential to find out how many locations visited
by the target user in the testing dataset are identified by
the recommendation method. For this purpose, we define
precision and recall:

• Precision defines the ratio of the number of discov-
ered POIs to the k recommended POIs, such that:

precision =
numberofdiscoveredPOIs

k

• Recall defines the ratio of the number of discovered
POIs to the number of positive POIs, which have
been visited by the target user in the testing set, such
that:

recall =
numberofdiscoveredPOIs

numberofpositivePOIs

1. The check-in datasets used for our experiments can be downloaded
from https://sites.google.com/site/yangdingqi/home/foursquare-
dataset

9

APPR P−APPR base1 base2

5 10 20 30 40 50 60 70 80 90 100

0
10

20
30

40
50

60
70

80
P

re
ci

si
on

 %

(a) Tokyo

APPR P−APPR base1 base2

5 10 20 30 40 50 60 70 80 90 100

0
10

20
30

40
50

60
A

cc
ur

ac
y

%

(b) Tokyo

APPR P−APPR base1 base2

5 10 20 30 40 50 60 70 80 90 100

0
5

10
15

20
25

R
ec

al
l %

(c) Tokyo

Fig. 5: Recommendation performance with respect to top-k recommended values for Tokyo Dataset

APPR P−APPR base1 base2

5 10 20 30 40 50 60 70 80 90 100

0
10

20
30

40
50

60
70

80
P

re
ci

si
on

 %

(a) New York

APPR P−APPR base1 base2

5 10 20 30 40 50 60 70 80 90 100

0
10

20
30

40
50

60
A

cc
ur

ac
y

%

(b) New York

APPR P−APPR base1 base2

5 10 20 30 40 50 60 70 80 90 100

0
5

10
15

20
25

R
ec

al
l %

(c) New York

Fig. 6: Recommendation performance with respect to top-k recommended values for New York Dataset

6.4 Evaluation Plan

As we can only use the past check-in data to predict the
future check-ins, each dataset is divided into the training set
and the testing set regarding the check-in time. We use the
first eight-month check-ins as training dataset and the last
two months check-ins as the test dataset. The training set is
used to learn the recommendation model as it is described
in Section 3 to predict the testing data. In our experiments,
we examine the accuracy, precision and recall of evaluated
recommendation techniques concerning a range of top-k
from 5 to 100. The number of iteration, M , is set to 50, and
number of clusters, g, for evaluating the P-APPR is set to 4.

7 EXPERIMENTAL RESULTS

This section analyzes the experimental results. First, we
compare our APPR against two POI recommendation base-
lines regarding the recommendation accuracy, precision and
recall. We then address some important findings. Finally, we
study the impact of M , number of iterations, on the quality
of the recommendation of APPR.

7.1 Comparison of Performance

In this section, we compare the performance of evaluated
POI recommendation techniques, considering a range of
top-k values as it is shown in Fig.5 and Fig.6 for the Tokyo
and New York datasets respectively.

Naive Bayes Approach: This approach simply assumes
that features are independent given the outcome. It mod-
els the probability of visiting a POI and each feature Xi

separately, and then combine them by multiplying. As a
result, it cannot take advantage of the interaction between
the features in POI recommendations. Considering that user
behaviour in an LBSN is influenced by multiple features
acting synchronously, base1 returns the less accurate POIs,
regarding precision (Fig. 5a and Fig. 6a) and accuracy (Fig.
5b and Fig. 6b), than APPR. This model also misses more
POIs visited by the target users, regarding the recall, than
APPR. This has been represented in Fig. 5c and Fig. 6c. This
approach also neglects the fact that different users may be
affected differently by the features and considers the same
importance for all the features.

Full-joint Model: To overcome the limitation of Naive
Bayes approach, this model characterizes dependencies be-
tween the probability of visiting a POI and all the influential
features Xi jointly. Similar to our work, it applies a super-
vised learning strategy to model the POI recommendation.
Therefore, it considers the features’ interaction and also
distinguishes the importance of different features on users’
behaviour. However, it returns the most inaccurate POIs
in terms of precision and accuracy and misses most POIs
actually visited by target users regarding the recall. The
reason is that users’ check-in data is often sparse in an
LBSN and Full-joint Model leads to the overfitting and low
performance of the probability estimation.

Additive Personalized POI Recommendation (APPR): In con-

10

Precision Recall Accuracy

10 20 30 40 50 60 70 80 90

0
10

20
30

40
50

60
P

er
fo

rm
an

ce
 %

(a) Tokyo

Precision Recall Accuracy

10 20 30 40 50 60 70 80 90 100

0
10

20
30

40
50

60
P

er
fo

rm
an

ce
 %

(b) New York

Fig. 7: Effect of M (number of iterations) on quality of APPR

trast, APPR inherits the superiorities of both Naive Bayes
approach and Full-joint model including the combining
the individual models, taking the features interactions into
account, and distinguishing the features’ importance for
different users. Thus, it substantially exhibits the better per-
formance regarding various top-k values on both datasets.

Partition-based Additive Personalized POI Recommendation
(P-APPR): In comparison with APPR, partition-based ap-
proach substantially improves the precision of the recom-
mendation in both datasets, Fig. 5a and Fig. 6a. However,
considering the recall and the accuracy of the recommen-
dation, P-APPR is a bit less than the APPR approach. As
only the most appropriate features are involved in the
partition-based APPR, not all of them, it results in the more
precise recommendation than APPR. On the other hand, all
the possible subsets of the feature space are involved in
building the APPR. This results in a model that can identify
more POIs that the user would like to visit which leads to
the higher recall. The same reason goes for the accuracy.
Nevertheless, APPR-P closely follows the APPR regarding
the recall and accuracy.

7.2 Discussion on Quality of the Proposed Framework
Is Naive Bayes or Full-joint more effective? According to
Figures 5 and 6, base1 applying the Naive Bayes strategy is
inferior to base2 applying the Full-joint approach on both
datasets. The main reason is, as base1 models each feature
separately, it deals better with the data sparsity problem.
On the other hand, because of the limited available training
set, base2 faces the overfitting which results in the poor
performance. Fortunately, the superiorities of both strategies
can be integrated into a unified recommendation framework
through APPR.

Recommendation performance on various top-k val-
ues. From Figures 5 and 6, we can see that with rising k,
the recall is gradually increasing, but the precision decreases
steadily on two datasets. Our explanation is that, when more
POIs are returning to users, it can identify more locations
that users would like to visit which results in the higher
recall. On the other side, since the recommendation tech-
niques return the POIs with the top-k highest probabilities
(scores), the additional recommended POIs are less likely
to be visited by the users because of the lower visiting
probabilities of these POIs which results in lower precision.

The same explanation as the recall goes for the accuracy, by
returning more locations, the chance of discovering the next
location that user visits increases.

Another interesting observation is that with rising the
number of recommended POIs, k, the superiority of APPR-P
regarding the precision becomes more evident. On the other
side, recall of the APPR-P goes below the APPR. It shows
that, with increasing the k, more true-positive POIs are
discovered by APPR; however, more false-positive results
also are returned by it. This leads to the higher recall and
lower precision than the APPR-P.

7.3 Effect of Number of Number of Iterations (M)
In this part, the convergence of our approach is indicated by
the number of iterations needed to reach certain recommen-
dation performance. For this experiment we set k = 20 (The
number of recommended POIs). As represented in Fig. 7
and Fig. 8, for both datasets, the performance obtained from
the APPR and P-APPR reaches its ceiling around M = 50,
and setting the M > 50 doesn’t necessarily improve the
performance of the recommendation models.

7.4 Effect of Number of Clusters (g)
In this section, we evaluate the impact of the number of
clusters on the performance of APPR. The number of clus-
ters, g, is usually decided based on the amount of available
training data, which is equal to the number of check-ins that
have been performed by the user. During this experiment,
we set the other two parameters M = 50 (The number
of iterations) and K = 20 (The number of recommended
POIs). g is evaluated using the two obtained datasets- New
York and Tokyo. The results of these experiments are shown
in Fig. 9. When g = 1, there is essentially no clustering and
the entire data set is the only cluster. This is equal to the Full-
joint Model. Therefore, the results obtained from the settings
of g = 1 are then used as the baseline to compare with other
setting of g. We observe that using clustering yields better
overall precision, recall and accuracy. This is because using
clustering to find PRMs successfully captures the hidden
patterns from frequented areas visited by the user.

We also find that the performance converges at a cer-
tain level around g = 4 for both datasets. On the other
side, setting with g > 4 doesn’t necessarily improve the
performance. The reason is when the size of the cluster is
too small, the PRM fits the training data too precisely which
may cause overfitting. However, as it’s mentioned before,
the convergence level depends on the amount of available
training data, the more check-in data is available, the more
clusters can be extracted.

7.5 Complexity Analysis
To construct the APPR, the BuildAPPR function has to
identify PRMs from all the possible subsets of the feature
space. Let’s assume that there are F features, then in every
iteration, 2F PRMs should be identified. Therefore, this
process is computationally expensive. According to the P-
APPR, the BuildAPPR function only needs to identify the
PRMs from the extracted clusters. Considering there are g
clusters, only g PRMS then should be identified. It should be

11

Precision Recall Accuracy

10 20 30 40 50 60 70 80 90 100

0
10

20
30

40
50

60
P

er
fo

rm
an

ce
 %

(a) Tokyo

Precision Recall Accuracy

10 20 30 40 50 60 70 80 90 100

0
10

20
30

40
50

60
P

er
fo

rm
an

ce
 %

(b) New York

Fig. 8: Effect of M (number of iterations) on performance of
P-APPR

Precision Recall Accuracy

1 2 3 4 5 6 7 8

0
10

20
30

40
50

60
P

er
fo

rm
an

ce
 %

(a) Tokyo

Precision Recall Accuracy

1 2 3 4 5 6 7 8

0
10

20
30

40
50

60
P

er
fo

rm
an

ce
 %

(b) New York

Fig. 9: Effect of g (number of clusters) on recommendation
performance of P-APPR

noted, g < 2F , specially when many features are involved.
Fig. 10 shows the training time of APPR and P-APPR on
Tokyo dataset. As it is clear, the training time of P-APPR is
significantly lower than the APPR, while it also improved
the precision of the recommendation, and showed the com-
parable recall and accuracy in comparison with APPR. It
should be noted, with increasing the number of features,
the training time difference will increase further.

APPR P−APPR

10 20 30 40 50 60 70 80 90 100

1
20

40
60

80
10

0
12

0
Tr

ai
ni

ng
 T

im
e

(s
ec

on
ds

)

Fig. 10: Average training time of APPR and P-APPR for
each user with respect to M (number of iterations) on Tokyo
dataset

8 CONCLUSION AND FUTURE WORK

In this paper, we have explored the problem of POI rec-
ommendation in LBSNs. Unlike the Naive Bayes based ap-
proaches, APPR does not put this assumption that features
are independent given the output. On the other hand, con-
sidering all the features jointly might lead to the overfitting,
as each user visited the limited number of POIs. We have
proposed APPR, an intermediate solution, which learns the
partial personalized models (PRMs) from different subsets
of the feature space, then combines them to build the recom-
mendation model. To construct PRMs and then collectively
utilize them, our approach iteratively chooses a PRM, at
each layer m and builds a recommendation model with M
layers of PRMs at the end of M iterations. Furthermore, to
solve a possible overfitting problem, we reevaluate the PRM
set to prune the unnecessary PRMs. The final hypothesis is
the sum of the single hypothesis obtained from the final
PRM set. We further propose a partition-based approach to
identify the hidden patterns of partitions obtained from ge-
ographically clustered check-in data, Partition-based Partial
Personalized Model (PPRM). Unlike considering all the pos-
sible subsets of the feature space, only the most appropriate
features are involved in a PPRM, not all of them. Finally, we
have conducted experiments to evaluate the performance
of APPR using two real datasets from Foursquare. Experi-
mental results show that APPR provides much better POI
recommendations than other recommendation techniques
evaluated in our experiments. We have two directions for
future study: (1) Although choosing the PRMs randomly at
each iteration represents the high performance; we would
like to propose more advances selection strategy. (2) In this
work, we applied some general features directly extracted
from the data. In our future work, we will obtain more
sophisticated features.

REFERENCES

[1] X. Wang, C. Zhang, F. Liu, Y. Dong, and X. Xu, “Exponentially
weighted particle filter for simultaneous localization and mapping
based on magnetic field measurements,” IEEE Transactions on
Instrumentation and Measurement, vol. 66, no. 7, pp. 1658–1667,
2017.

[2] S. M. Ghoreyshi, A. Shahrabi, and T. Boutaleb, “Void-handling
techniques for routing protocols in underwater sensor networks:
Survey and challenges,” IEEE Communications Surveys & Tutorials,
vol. 19, no. 2, pp. 800–827, 2017.

[3] J. Bao, Y. Zheng, D. Wilkie, and M. Mokbel, “Recommendations in
location-based social networks: a survey,” GeoInformatica, vol. 19,
no. 3, pp. 525–565, 2015.

[4] M. Ye, P. Yin, and W.-C. Lee, “Location recommendation for
location-based social networks,” in Proceedings of the 18th SIGSPA-
TIAL international conference on advances in geographic information
systems. ACM, 2010, pp. 458–461.

[5] E. H.-C. Lu, C.-Y. Chen, and V. S. Tseng, “Personalized trip
recommendation with multiple constraints by mining user check-
in behaviors,” in Proceedings of the 20th International Conference on
Advances in Geographic Information Systems. ACM, 2012, pp. 209–
218.

[6] D. Zhou, B. Wang, S. M. Rahimi, and X. Wang, “A study of
recommending locations on location-based social network by col-
laborative filtering,” in Canadian Conference on Artificial Intelligence.
Springer, 2012, pp. 255–266.

[7] L. Yao, Q. Z. Sheng, X. Wang, W. E. Zhang, and Y. Qin, “Collabo-
rative location recommendation by integrating multi-dimensional
contextual information,” ACM Transactions on Internet Technology
(TOIT), vol. 18, no. 3, p. 32, 2018.

12

[8] E. Naserian, X. Wang, K. Dahal, Z. Wang, and Z. Wang, “Personal-
ized location prediction for group travellers from spatial–temporal
trajectories,” Future Generation Computer Systems, vol. 83, pp. 278–
292, 2018.

[9] E. Naserian, X. Wang, X. Xu et al., “A framework of loose travelling
companion discovery from human trajectories,” IEEE Transactions
on Mobile Computing, 2018.

[10] Y. Liu, W. Wei, A. Sun, and C. Miao, “Exploiting geographical
neighborhood characteristics for location recommendation,” in
Proceedings of the 23rd ACM International Conference on Conference
on Information and Knowledge Management. ACM, 2014, pp. 739–
748.

[11] J. Bao, Y. Zheng, and M. F. Mokbel, “Location-based and
preference-aware recommendation using sparse geo-social net-
working data,” in Proceedings of the 20th international conference on
advances in geographic information systems. ACM, 2012, pp. 199–
208.

[12] C. Cheng, H. Yang, I. King, and M. R. Lyu, “Fused matrix factor-
ization with geographical and social influence in location-based
social networks.” in Aaai, vol. 12, 2012, pp. 17–23.

[13] X. Li, G. Cong, X.-L. Li, T.-A. N. Pham, and S. Krishnaswamy,
“Rank-geofm: A ranking based geographical factorization method
for point of interest recommendation,” in Proceedings of the 38th
International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, 2015, pp. 433–442.

[14] Z. Lu, H. Wang, N. Mamoulis, W. Tu, and D. W. Cheung,
“Personalized location recommendation by aggregating multiple
recommenders in diversity,” GeoInformatica, vol. 21, no. 3, pp. 459–
484, 2017.

[15] J.-D. Zhang and C.-Y. Chow, “igslr: personalized geo-social loca-
tion recommendation: a kernel density estimation approach,” in
Proceedings of the 21st ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems. ACM, 2013, pp.
334–343.

[16] A. Noulas, S. Scellato, N. Lathia, and C. Mascolo, “Mining user
mobility features for next place prediction in location-based ser-
vices,” in Data mining (ICDM), 2012 IEEE 12th international confer-
ence on. IEEE, 2012, pp. 1038–1043.

[17] J. J.-C. Ying, E. H.-C. Lu, W.-N. Kuo, and V. S. Tseng, “Urban point-
of-interest recommendation by mining user check-in behaviors,”
in Proceedings of the ACM SIGKDD International Workshop on Urban
Computing. ACM, 2012, pp. 63–70.

[18] J. J.-C. Ying, W.-N. Kuo, V. S. Tseng, and E. H.-C. Lu, “Mining user
check-in behavior with a random walk for urban point-of-interest
recommendations,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 5, no. 3, p. 40, 2014.

[19] J.-D. Zhang and C.-Y. Chow, “Geosoca: Exploiting geographical,
social and categorical correlations for point-of-interest recommen-
dations,” in Proceedings of the 38th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval. ACM,
2015, pp. 443–452.

[20] Q. Yuan, G. Cong, Z. Ma, A. Sun, and N. M. Thalmann, “Time-
aware point-of-interest recommendation,” in Proceedings of the 36th
international ACM SIGIR conference on Research and development in
information retrieval. ACM, 2013, pp. 363–372.

[21] D. Yang, D. Zhang, V. W. Zheng, and Z. Yu, “Modeling user
activity preference by leveraging user spatial temporal character-
istics in lbsns,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 45, no. 1, pp. 129–142, 2015.

[22] J.-D. Zhang and C.-Y. Chow, “Ticrec: A probabilistic framework
to utilize temporal influence correlations for time-aware location
recommendations,” IEEE Transactions on Services Computing, vol. 9,
no. 4, pp. 633–646, 2016.

[23] X. Liu, Y. Liu, K. Aberer, and C. Miao, “Personalized point-of-
interest recommendation by mining users’ preference transition,”
in Proceedings of the 22nd ACM international conference on Information
& Knowledge Management. ACM, 2013, pp. 733–738.

[24] J.-D. Zhang, C.-Y. Chow, and Y. Li, “igeorec: A personalized and
efficient geographical location recommendation framework,” IEEE
Transactions on Services Computing, vol. 8, no. 5, pp. 701–714, 2015.

[25] Y. Liu, T.-A. N. Pham, G. Cong, and Q. Yuan, “An experimental
evaluation of point-of-interest recommendation in location-based
social networks,” Proceedings of the VLDB Endowment, vol. 10,
no. 10, pp. 1010–1021, 2017.

[26] Q. Fang, C. Xu, M. S. Hossain, and G. Muhammad, “Stcaplrs:
a spatial-temporal context-aware personalized location recom-

mendation system,” ACM Transactions on Intelligent systems and
technology (TIST), vol. 7, no. 4, p. 59, 2016.

[27] H. Wang, M. Terrovitis, and N. Mamoulis, “Location recommenda-
tion in location-based social networks using user check-in data,”
in Proceedings of the 21st ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems. ACM, 2013, pp.
374–383.

[28] H. Gao, J. Tang, X. Hu, and H. Liu, “Modeling temporal effects
of human mobile behavior on location-based social networks,” in
Proceedings of the 22nd ACM international conference on Conference on
information & knowledge management. ACM, 2013, pp. 1673–1678.

[29] ——, “Exploring temporal effects for location recommendation
on location-based social networks,” in Proceedings of the 7th ACM
conference on Recommender systems. ACM, 2013, pp. 93–100.

[30] J.-D. Zhang and C.-Y. Chow, “Spatiotemporal sequential influ-
ence modeling for location recommendations: A gravity-based
approach,” ACM Transactions on Intelligent Systems and Technology
(TIST), vol. 7, no. 1, p. 11, 2015.

[31] J.-D. Zhang, C.-Y. Chow, and Y. Li, “Lore: Exploiting sequential
influence for location recommendations,” in Proceedings of the
22nd ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems. ACM, 2014, pp. 103–112.

[32] W. W. Cohen, R. E. Schapire, and Y. Singer, “Learning to order
things,” in Advances in Neural Information Processing Systems, 1998,
pp. 451–457.

[33] Y. Freund and R. E. Schapire, “A decision-theoretic generalization
of on-line learning and an application to boosting,” Journal of
computer and system sciences, vol. 55, no. 1, pp. 119–139, 1997.

[34] T. Hastie, S. Rosset, J. Zhu, and H. Zou, “Multi-class adaboost,”
Statistics and its Interface, vol. 2, no. 3, pp. 349–360, 2009.

