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Abstract 

Response surface methodology was employed to optimize a total of 13 factors to optimize 

biosorption of Sb(III) onto living Rhodotorula mucilaginosa DJHN070401. The 

mechanism of biosorption and bioaccumulation was also studied. The results showed 

biosorption reached 56.83% under the optimum conditions. In addition, pH, Fe2+ and 

temperature are significant influencing factors , and control of Ca2+ and Fe2+ has 

beneficial impact on Sb(III) biosorption. The characterization explained that physical 

adsorption occurred readily on the loose and porous surface of DJHN070401 where 

carboxyl, amidogen, phosphate group, and polysaccharide C-O functional groups 

facilitated absorption by complexation with Sb(III), accompanied by ion exchange of Na+, 

Ca2+ ions with Sb(III). It was also noted thatthe growing cell not only improved the 
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removal efficiency in the presence of metabolic inhibitors, but also prevented intracellular 

Sb(III) being re-released into environment. The results of this study underpin improved 

and efficient methodology for biosorption of Sb(III) from wastewater. 

Keywords 

Rhodotorula mucilaginosa DJHN070401; enhanced biosorption; response surface 

method; Sb(III); mechanism 

1. Introduction 

Antimony (Sb) is a metalloid belonging to the same group of the periodic Tab. as arsenic, 

it has genetic toxicicity in human and wider biological environment and is identified to 

be carcinogenic (Herath et al., 2017). Together with the characteristics of strong mobility 

and complexation reactions in water and sediments (Henckens et al., 2016), antimony and 

its compounds were ranked with the priority controlled contamination in many countries  

(Macgregor et al., 2015). However, as a non-renewable strategic metal, Sb is widely 

applied to many areas, including flame retardants, metal alloy, semiconductors, pigment 

and therapeutic agents against protozoan disease (He et al., 2019). Therefore, a large 

number of antimony containing compounds enter the aquatic environment each year from 

various sources. China is the largest Sb producer in the world with 114 Sb mines and 

approximately 90% of the world’s production (He et al., 2019; He et al., 2014). Long-

term mining activities have caused a continuous increase in Sb concentrations in water 

and soils near the ore extraction and smelter areas on these sites with, Sb concentration 

in surface water near the Xikuangshan site in Hunan China was as high as 6 384 μg/L (He 

https://fanyi.baidu.com/#en/zh/reinforcement%20method
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et al., 2014), grossly exceeding the value specified by the World Health Organization and 

the Chinese drinking water limit (5 μg/L). Therefore, the removal of Sb from water is an 

important environmental problem affecting people's well-being near many antimony 

mines in China (Urík et al., 2019). In recent years, traditional treatment technologies have 

been proposed and used to remove Sb from aqueous solution, including coagulative 

precipitation, oxidation, electrochemical precipitation, ion exchange and membrane 

filtration (Ungureanu et al., 2015; Henckens et al., 2016). Although these technologies 

play a positive role, they still have some defects such as low efficiency, high cost, 

complicated operation and potential for secondary pollution (Li et al., 2018; Herath et al., 

2017). Therefore, new technologies with low cost, eco-friendly materials and simple and 

effective application is urgently needed to reduce the environmental burdens of this 

contamination (Deng et al., 2017; Ungureanu et al., 2015). 

In various biological processes, antimony inhibits the activity of enzymes or interferes 

with the metabolism of protein and sugar by irreversibly binding to intracellular 

sulfhydryl (-SH) group, thus toxic to living organisms (Li et al., 2018). In addition, Sb 

also inhibits DNA replication and cell metabolism, causing apoptosis (Banerjee et al., 

2018). However, some indigenous microorganisms can able to survive under extremely 

high Sb concentrations stress, and even provide energy for cell growth through 

adsorption, redox and methylation of antimony (Li et al., 2018; Sun et al., 2016). These 

activities and functions are considered as a potential benefit in the remediation of soil and 

water contamination by antimony (Herath et al., 2017; Deng et al., 2018). Lialikova 

(1974) for the first time reported an antimony-oxidizing bacteria Stibiobacter senarmontii 

which opened up a research front on the interaction between microorganisms and 

antimony. Since then, many kinds of antimony-resistant microorganism, such as 
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Sphaerotilus natans (Li et al., 2018), sulfate-reducing bacteria (SRB) (Zhang et al., 2016; 

Wang et al., 2013), aerobic granular sludge-bacteria (Wang et al., 2014; Wan et al., 2014), 

Bacillus cereus  (Li et al., 2012), cyanobacteria Microcystis  (Vijayaraghavan and 

Balasubramanian, 2011; Wu et al., 2012; He and Chen, 2014) and other microorganisms  

(Li et al., 2013; Nguyen et al., 2017), are found to have the potential to remove Sb from 

aqueous solution. Most notably, bioleaching by filamentous fungi is advantageous over 

bacterial action because of its higher efficiency, with the ability of growth over a wide 

pH range and resistance to high concentration of toxic metals (Wang et al., 2014; Li et 

al., 2013; Deng et al., 2018; Wang et al., 2019). However, it is rarely reported the 

biosorption by living fungi can be used to remove antimony from water. Consequently, 

fundamental understanding of theoretical process of biosorption of Sb(III) onto living 

fungi is not clear. It is generally known that microbial growth environment is one of the 

most significant factors affecting microbial adsorption capacity and properties (Li et al., 

2013; Deng et al., 2018). Hence, in order to attain the maximum removal rate of living 

fungi systems, it is crucial to find the maximum fungi production yield, requiring detailed 

understanding of the significance of influencing factors (carbon source, pH, inorganic 

matter, etc.) of fungal culturing and the adsorption process (Wan et al., 2014; Ungureanu 

et al., 2015). In addition, to identify and understand the complexity of the metal 

biosorption process, it is critical to recognize the interactive effects of the factors along 

with the individual effects of the experimental factors (Jaafari and Yaghmaeian, 2019). 

Response surface methodology (RSM) is a useful model to simultaneously study the 

relationships existing between the effects of several individual factors influencing the 

responses by varying these factors simultaneously (Jaafari and Yaghmaeian, 2019; Reddy 

et al., 2008). Moreover, mastering functional mechanisms of adsorption removal heavy 
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metals has contributed to develop desirable microbial strain resources. The current 

research generally assumes that the mechanism of antimony removal by microorganism 

is mainly complexation and ion exchange (Wang et al., 2014; Wu et al., 2012; Uluozlu et 

al., 2010; Zhang et al., 2011), while the adsorption mechanisms of Sb(III)/Sb(V) by iron 

salts is redox and ion exchange (Mittal et al., 2013; Guo et al., 2014; Xu et al., 2011). 

However, there is little clarity on the mechanistic interaction between fungi, iron salts and 

Sb(III) or Sb(V), their interactions, the migration and transformation processes of 

antimony between water and adsorbents, and adsorption mechanism have not been 

reported.  

In this paper, the response surface methodology (RSM) is used to optimize the culture 

conditions and adsorption parameters of Rhodotorula mucilaginosa DJHN070401 

obtained in our previous research. The significant influencing factors and their interaction 

effects in the removal of Sb(III) were determined. The biosorption mechanisms of the 

living DJHN070401 were characterized and determined by modern characterization 

techniques. Finally, in order to confirm that removal of Sb(III) into DJHN070401 in this 

study is due to biosorption, the effect of DCC (N,N’-dicyclohexylcarbodiimide, specific 

ATPase inhibitor) activities on the biosorption efficiency of Sb(III) and re-release of 

intracellular Sb(III) into the environment were studied (Luo et al., 2011). This 

paper presents an enhanced biosorption removal method with  potential applications in 

engineering for better prevention and control of antimony pollution. 

2. Materials and methods 
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2.1. Isolation and culture conditions of Rhodotorula mucilaginosa DJHN070401 

Rhodotorula mucilaginosa DJHN070401 (MH611511) was isolated from a soil sample 

with high Sb content. Because of its ability to produce characteristic carotenoids 

(torulene, torularhodin, γ-carotene and β-carotene), Rhodotorula play an important role 

in aquaculture and in purifying the water environment (Bhosale and Gadre, 2001). 

DJHN070401 was inoculated into 9K liquid medium and activated for 24 h. Then, the 

fungus suspension was inoculated into fresh beef extract peptone liquid medium by 5% 

inoculation dose to obtain a certain concentration of the fungus suspension (Li et al., 

2013). Then, it was stored in a refrigerator at 4 °C before use. 

2.2. Establishing response surface methodology 

2.2.1. Single factor test 

The effects of nutritional and environmental factors on biomass yield and Sb(III) removal 

efficiency of the DJHN070401 strain were investigated using single factor test (Jaafari 

and Yaghmaeian, 2019; Reddy et al., 2008). As shown in Table S1, total of seven 

nutritional factors (carbon source and concentration, nitrogen source and concentration, 

Fe2+ concentration, inorganic salt and inorganic salt concentration) (Bhagwat et al., 2014), 

as well as total of six environmental factors (initial pH, temperature, agitation speed, 

inoculation dose, initial Sb(III) concentration and adsorption time), were taken to identify 

the best growth factors and adsorption condition for strain DJHN070401. 

Single factor test was carried out by batch experiments. To investigate the influence of 

carbon source, 2%(v/v) fungus suspension was inoculated into the beef extract peptone 

liquid medium with different carbon sources (with other factors remaining constant), 

cultured at 30±0.5°C and 150 r/min for 48h, 20 ml of the fungus liquid was centrifuged 
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at 3000 r/min for 20 min, then the biomass was collected and dried in a 60°C thermostat 

drying box to a constant weight (Zaki et al., 2008). The fungus liquid cultured above was 

inoculated into the fresh beef extract peptone liquid medium with Sb(III) concentration 

of 10 mg/L for 24 hours at a 5% inoculation dose, and 20 ml of the sample was centrifuged 

at 8000 rpm for 10 min to determine residual concentration of Sb(III) in the supernatant 

(Xi et al., 2011). The biosorption removal rate of Sb(III) was determined by the Eq. (1). 

100%
0

0

C C
R

C


                           (1) 

Where: R-the biosorption removal rate by DJHN070401 of Sb(III) (%); C0 and C-the 

initial and adsorption equilibrium concentration of Sb(III) (mg/L), respectively. 

2.2.2. Plackett-Burman experiment 

On the basis of single factor testing results, the factors influencing biomass yield and 

Sb(III) removal rate were further investigated using the Plackett-Burman experiment. As 

shown in Table S2, eight influencing factors, including carbon source (glucose), pH, 

temperature, agitation speed, inoculation dose, Fe2+, nitrogen source (beef extract and 

peptone) and CaCl2, were selected as the research objects and divided into two levels as 

-1 and +1 (Jaafari and Yaghmaeian, 2019). 

2.2.3. response surface methodology (RSM) 

The central composite design (CCD), which was the standard RSM, was employed to 

enhance biosorption of Sb(III). According the results of Plackett-Burman experiment, 

three independent variables, i.e. Fe2+ concentration (1.06-1.74 mg/L), pH (3.16-4.84) and 

temperature (24-30℃) were taken to obtain the response on Sb(III) biosorption removal 

rate and biomass yield and their interaction (Jaafari and Yaghmaeian, 2019). The 

complete design consisted of six runs of steepest ascent tests (Reddy et al., 2008) and 
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twenty runs of CCD and these were performed in triplicate to optimize the levels of the 

selected variables. The experimental range of each variable (maximum and minimum) 

and levels (Reddy et al., 2008) of independent variables were considered by CCD and are 

presented in Table S3. The biosorption removal rate of Sb(III) (Y, %) was considered as 

the dependent factor (response). The independent parameters and the dependent output 

response were modeled and optimized using analysis of variance (ANOVA) to justify the 

adequacy of the models by R software RSM package(Jaafari and Yaghmaeian, 2019). The 

quadratic equation model for predicting the optimal conditions can be expressed as Eq. 

(2).  

2
0 i i ii i ij i jYi x x x x                          (2) 

Where: Y is the predicted response of biosorption removal rate of Sb(III) in actual units. 

2.3. Biosorption of Sb(III) by growing DJHN070401 with/without metabolic inhibitors 

Based on the methods modified by Luo et al. (2011), the effect of industrially used 

metabolic inhibitors DCC on the efficiency of biosorption removal of Sb(III) by 

DJHN070401 was assessed. A 5 mL aliquot of cells was withdrawn from exponentially 

homogenous culture of DJHN070401 and inoculated into 100 mL freshly prepared 

liquid beef extract peptone medium in 250 mL conical flasks containing 15 mg/L Sb(III), 

15 mg/L Sb(III) and DCC (0.5 mM), respectively. 10 mL samples were taken from the 

culture flasks at predefined time intervals (0, 6, 12, 18, 24 and 30 h) harvested by 

centrifugation (6000 r/min, 20 min, 4 ℃). The Sb(III) concentration of supernatant was 

analyzed to determine the biosorption removal rate of Sb(III) onto DJHN070401. 
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2.4. Characterization of DJHN070401 before and after adsorption of Sb(III)  

The medium from each culture was centrifuged at 5000 rpm for 1 min to collect the before 

and after adsorption of Sb(III) biological samples. All samples were air-dried in a 

desiccator at ambient temperature (25 °C) (Fan et al., 2016). The samples were coated 

with Pt prior to the field emission-scanning electron microscope (SEM, HITACHI-S4800, 

Japan) analysis. Elemental components of the samples were analyzed by energy 

dispersive X-ray spectroscopy (EDS, XFlash 5010, Burker, German). Surface functional 

groups of the DJHN070401 were tested by fourier transform infrared spectroscopy (FTIR, 

Nicolet 6700, USA) with KBr pellets and a resolution of 1 cm-1 in the range of wave 

numbers in the range of 4000-400 cm-1. X-ray diffraction (XRD, D8 Advance, AXS, 

German) was utilized to analyze the compounds present in the precipitate before and after 

adsorption of Sb(III) by DJHN070401 with Cu Kα radiation (λ=1.5418Ǻ) operating at 40 

kV and 40 mA (Guo et al., 2014). The identification of the crystalline was obtained using 

the X’pert High Score Plus software with PDF-4+ and ICDD datebase. 

2.5. Reagents and chemcial analysis  

Standard stock solution of Sb(III) of 1 g/L was prepared by dissolving C8H4K2O12Sb2 into 

the deionized water. The reagents used in the experiment are analytical pure or superior 

pure reagents, and the experimental water is deionized water. 

Hydride generation atomic fluorescence spectrometry（HG-AFS, AF-9600, Beijing 

Kechuang Haiguang Instrument Co., Ltd., China ） was utilized to determine the 

concentrations of Sb(III) and Sb(V), following the method of Xi et al. (2011). The 

minimum detection concentration of this method was 1 μg L-1. All samples were 

measured within one day after the adsorption experiment, and deionized water was used 
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for the blank. Sb(III) recovery using this test was over 95.0%. Relative standard 

deviations (RSDs) of duplicated samples in solution were less than 7%. For each input 

concentration C0, the tests were performed in triplicates and the mean and standard error 

(SE) of the amount of Sb(III) and Sbtot adsorbed was reported. 

3. Results and discussion 

3.1. Effect of nutritional and environmental factors on Sb(III) biosorption 

Both nutritional and environmental factors can significantly affect the antimony removal 

by biosorption of microorganisms (Wang et al., 2013; Deng et al., 2018). The results 

showed that the nutritional factors as carbon source, nitrogen source, inorganic salt 

concentration and Fe2+ concentration had a great influence on the growth and Sb(III) 

adsorption behavior of DJHN070401 (Fig.1(a~d), while carbon source concentration, 

nitrogen source concentration and inorganic salt had little influence on them (Fig.S1(a-

c)). Glucose as its carbon source, both of the biomass and biosorption removal rate 

reached their maximum values of 7.56 g/L and 16.87% (Fig.1(a)), respectively. 

Compared with without carbon source, they were up 417.81% and 132.69%. Therefore, 

glucose was selected as the best carbon for both DJHN070401 growth and biosorption 

Sb(III). 

It can be observed in Fig.1(b) that the best nitrogen source was 0.75% beef extract and 

0.75% peptone, biosorption reached a removal rate for Sb(III) of 19.47%. It is generally 

known that iron salts, which have potential benefits in the treatment of antimony pollution 

(Deng et al., 2017), provide an essential nutrient element for microbial growth. In 

addition, yeast is a natural carrier with the ability to efficiently enrich the Fe2+ ion (Shin 
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et al., 2001). Therefore, FeSO4·7H2O was added to the culture medium to promote the 

microbial growth and biosorption of Sb(III) by DJHN070401. As expected, both the 

biomass and removal of Sb(III) by biosorption increased at first and then decreased with 

an increase in Fe2+ concentration(Fig.1(c)). When the Fe2+ concentration was in the 

ranged 0.2 to 1.2 g/L, the biomass changed very little (8.45~9.21 g/L), but the maximum 

removal of Sb(III) reached 29.35% at a concentration of 1.2 g/L Fe2+. As shown in Fig. 

S1 (c), other inorganic salts such as MgSO4·7H2O, CaCl2, KCl, K2HPO4·3H2O and 

KH2PO4 had little effect on the biomass, but did influence the removal of Sb(III) . It is 

worth noting that removal by biosorption reached the highest value of 40.50 % at a CaCl2 

concentration of 0.5% (Fig. 1 (c)). Therefore, an increase in the CaCl2 concentration can 

promote the Sb(III) biosorption removal of DJHN070401.  

As shown in Fig.1(E), as the pH value ranges from 1.0 to 10.0, both biomass and 

biosorption removal of Sb(III) shows an initial increase and then decreases, but with 

different optimal pH. The biomass of DJHN070401 reaches the maximum value of 9.66 

g/L at pH 5.0 and also grows well at pH 5.0~8.0 with above 7.58 g/L of biomass 

generated. While the optimal pH range for Sb(III) biosorption by DJHN070401 is 3.0-4.0 

with 51.77-52.73% of biosorption removal rate which is consistent with most 

microorganisms adsorb antimony at the optimum pH value of 3.0-6.0  (Wang et al., 

2014; Wan et al., 2014; Vijayaraghavan and Balasubramanian, 2011; He and Chen, 2014; 

Fan et al., 2016). The reason may be that high concentration of H3O
+ in the solution 

competes with Sb(OH)2
+ on the active sites of the cell surface when the pH<3.0 (Fan et 

al., 2008), resulting in a decrease in adsorption efficiency. When the pH reaches 4.0, 

functional groups, such as carboxyl, hydroxyl and amino groups, with negative charges 

on the cell surface are exposed to provide more lone pair electrons which combined with 
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Sb(OH)3 by complexation reaction (Wang et al., 2014), and this process can effectively 

prevent metals from entering the cell. Therefore, taking both of biomass and biosorption 

removal rate of Sb(III) into consideration, the suitable pH value of 4 was determined for 

subsequent experiments in this study. 

Temperature not only affects the microbial growth, but also affects accumulation and 

biosorption for metal ions [42]. As shown in Fig. 1 (f), both the biomass and biosorption 

removal rate of Sb(III) show an initial increase and then a decrease with increasing 

temperature (20-40 °C), with a simultaneous maximum values at 28 °C of 7.45 g/L and 

58.78%, respectively. The inoculation dose does not have great influences on the 

biomass, DJHN070401 grows well under inoculation dose of 1-8% with the biomass of 

6.86-8.04 g/L (Fig.1(g)). But biosorption removal rate of Sb(III) rises from 13.53% in 1% 

to 52.73% in 4%, then decreases as the dose continues to increase. 

The effect of agitation speed on the biomass and removal of Sb(III) was determined, as 

shown in Fig. S1(d). It can be concluded that both biomass and removal of Sb(III) by 

DJHN070401 increases with speed between 90 to 150 r/min. Both biomass and removal 

of Sb(III) decreased as the speed increased from 150 to 210 r/min. The optimum agitation 

speed is 150 r/min which consistent with the experimental results of Huang et al. (2013). 

This can be explained by the increase in agitation speed during biosorption can bring 

more contact opportunities between the binding sites of microorganism and metal ions, 

thereby promoting the migration of Sb(III) to the surface of microorganism (Guo et al., 

2010; Ucun et al., 2002). But excessive mechanical agitation produces strong shearing 

forces which causes the vortex formation in the solution (Havelcová et al., 2009), and 

inhibits cell growth resulting in a decrease in the biosorption of Sb(III).  
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The effect of initial Sb(III) concentration on biomass and Sb(III) removal rate is shown 

in Fig. S1 (e). The lower the initial Sb(III) concentration, the adsorption sites on 

DJHN070401 are relatively abundant and higher adsorption equilibrium and removal 

results. The metal adsorption sites on the surface of cell wall reached saturation gradually 

at a high Sb(III) concentration (Deng et al., 2019) . So that the adsorption rate was 

reduced. In addition, when the initial Sb(III) concentration greater than 50 mg/L, the 

growth of DJHN070401 was inhibited, but the biomass production remained above 7.0 

g/L, indicating that DJHN070401 is highly resistant to Sb(III) (Milová-žiaková et al., 

2016). 

The biosorption process, as a function of contact time, shows two phases, one fast and 

one slow, similar to that reported in literature (Wan et al., 2014). The fast adsorption 

phase is likely to be due to the availability of active sites on adsorbents. When available 

sorption sites are occupied, adsorption becomes less efficient and leads to a slow 

adsorption phase. As shown in Fig. 1(h), the adsorption capacity of Sb(III) in the initial 

50 min accounts for 81.78%, 64.43%, 53.03% and 72.54% of total adsorption capacities 

under four initial Sb(III) concentration. The adsorption speed is slow in 420-660 min and 

almost no change to reach the adsorption equilibrium. It indicates that the biosorption of 

Sb(III) by DJHN070401 is mainly completed within the first 50 min, as the adsorption 

continued, Sb(III) is transported to the interior of the cell for accumulation. This implies 

that the biosorption of Sb(III) by growing microorganisms is caused by cell surface 

adsorption and internal accumulation (Huang et al., 2013). 

Over all, the investigation showed that the   eight factors, i.e. carbon source (glucose), 

pH, temperature, agitation speed, inoculation dose, Fe2+, nitrogen source and CaCl2, have 
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interdependent influence on biomass yield and Sb(III) removal rate and should further 

investigated using the Plackett-Burman experiment. 

3.2. Plackett-Burman statistical analysis 

Plackett-Burman design of eight influencing factors and results on Sb(III) biosorption by 

DJHN070401 are present in Table 1. Correlation of the environmental parameters to Sb(III) 

removal rate (Y) by linear regression analysis results in the empirical equations (Eq.3). 

Y 54.45 0.0352 3.199 0.548 0.0152

0.323 0.0941 9.996 0.03

1 2 3 4

5 6 7 8

X X X X

X X X X

    

   
               (3) 

F value is generally used for statistical significance detection, and P value is used to detect 

the significance of each regression coefficient (Jaafari and Yaghmaeian, 2019). P<0.0001 

indicates that the model is very significant, while values greater than 0.0500 indicate that the 

model is not significant under selected conditions, and 0.0001<P<0.05 indicate that the 

model is significant (Jaafari and Yaghmaeian, 2019). A determination coefficient (R2) of 

0.9915 of (Eq.3) indicates that only 0.85% cannot be explained by the regression model. 

Both of R2 and RAdj
2 (0.9687）are close to 1, indicating that the predicted value is highly 

consistent with the experimental results. Coefficient of variation of 4.68% is less than 

10%, indicating that the model has high reliability and accuracy (Pan et al., 2008). Table 

S4 analysis shows that pH, Fe2+ concentration and temperature have noticeable effects on 

the Sb(III) removal by DJHN070401 (P<0.05), the contribution rate are 48.57%, 42.69% 

and 5.70%, respectively. However, the influencing factors, such as nitrogen concentration, 

inoculation dose, glucose concentration, agitation speed and CaCl2 , have almost no 

effects on Sb(III) removal by DJHN070401 (P>0.05). 



15 

3.3. RSM for optimal biosorption conditions 

In order to obtain the best response area for the removal of Sb(III), the central values 

of levels in the biosorption process are confirmed by a steepest ascent experiment (Table 

S5) (Bhagwat et al., 2014). The 4th group levels (pH of 4, temperature of 27 ℃ and Fe2+ 

concentration of 1.4 g/L) have the highest removal of 48.83%, at the design center point 

of the significant factors (Jaafari and Yaghmaeian, 2019).  

Through central composite design (CCD) of response surface methodology (RSM), the 

biosorption conditions of DJHN070401 were optimized. The experimental range of X1, 

X2 and X6 (maximum and minimum) and levels (α = 1.68 (Li et al., 2009)) of independent 

variables considered as required for the CCD design is presented in Table S6. The 

complete experiment design matrix and the output responses for Sb(III) biosorption are 

shown in Table 2. Three replicate runs were used at the center of the design to obtain an 

estimate of the pure error variance. The quadratic regression models for Sb(III) removal 

(Y, %) in terms of actual factors as a function of X1 (Fe2+ concentration), X2 (pH) and X3 

(Temperature) is given as Eq. (4). 

1 2 3 1 2 1 3 2 3

2 2 2

1 2 3

=51.13+0.97 -4.25 +3.23 -0.14 +0.44 -0.86

-1.27 -2.11 -2.64

Y X X X X X X X X X

X X X
       (4) 

The model equations were evaluated by t-test and the analysis of variance (ANOVA) 

which revealed that these regressions were statistically significant at 95% confidence 

level. The values of R2 for actual and the predicted adsorption efficiency were found to 

be 0.9643. High R2 value close to 1, which indicates an adequate agreement between the 

predicted values obtained from the model and the experimental values. As shown in Table 

3, the significance of each coefficient was evaluated by the applying F-value and P-values 
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(Bhagwat et al., 2014). In this case, the model was highly significant (P<0.0001). The 

lack-of-fit was also calculated from the experimental error (pure error) and residuals. The 

lack of fit P-value of 0.3274 greater than 0.05 indicating that lack-of-fit for the 

mathematical models are the insignificant and the quadratic model was valid and 

significance of the model correlation between the variable and process response for the 

biosorption of Sb(III) using DJHN070401 (Pan et al., 2008). 

The interaction effects between observed variables Fe2+ concentration, pH and 

temperature on biosorption removal rate of Sb(III) are shown in Fig. 2. The removal rate 

is directly proportional to temperature (Fig. 2(a)), and is inversely proportional to pH (Fig. 

2(c)). With Fe2+ concentration enrichment, the removal rate increased first (1.2-1.5g/L) 

and then decreased slightly (1.5-1.6g/L). Moreover, contour plots in Fig.2(b,d) is almost 

circular, indicating that interaction effects between temperature and pH, Fe2+ 

concentration and pH are not significant (Bhattacharjee and Joshi, 2016; Tomas et al., 

2004). Meanwhile, contour plots in Fig. 2(f) is elliptical, indicating that interaction effects 

between temperature and Fe2+ concentration is significant. Therefore, appropriately 

increasing Fe2+ concentration and temperature, and reducing the pH  can enhance 

biosorption removal rate of Sb(III) by DJHN070401. The total adsorption sites in 

DJHN070401 cells increased with Fe2+ enrichment and is favorable for adsorption (Iqbal 

et al., 2013), but the biomass yield and iron enrichment ability of DJHN070401 decreases 

with the increase of Fe2+ in the medium and is unfavorable for adsorption (Iqbal et al., 

2013; Lopičic´ et al., 2013). As highlighted in section 3.1, the most suitable pH for Sb(III) 

biosorption is between.3.0 and 4.0 (Urík et al., 2019). The effect of temperature on 

biosorption generally expressed as diffusion coefficients of adsorbates increase with 
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increasing temperature, enhancing Sb(III) diffusion in adsorbent channels improving the 

removal efficiency. 

The main purpose of the experimental studies was to obtain the optimal values of 

variables for Sb(III) removal using DJHN070401. The theoretical optimal biosorption 

conditions for removal Sb(III) was calculated from the Eq.(4), for which Fe2 

concentration of 1.51 g/L, pH=3.50, and temperature of 28.60 ℃, and the maximum 

predicted value (Ypre) of Sb(III) removal rate was 55.2% in this study. A series of three 

sets of experiments were repeated under optimal conditions to determine the maximum 

Sb(III) removal experimentally, the average removal of Sb(III) was found to be 56.83%, 

only 1.63% difference between the predicted and the observed values. The capacity for 

and removal of Sb(III) by DJHN070401 was compared with other microorganisms 

reported in the literature and listed in Table 4. If only the effect of biosorption is 

considered, DJHN070401 show comparable with and higher ability than many living 

microorganisms reported in the literature, such as Sphaerotilus natans (Li et al., 2018), 

sulfate-reducing bacteria (Zhang et al., 2016), aerobic granules (Wang et al., 2014), fungi 

aerobic granules (Wan et al., 2014). The results indicate that the optimization method 

based on RSM is feasible and Sb(III) removal was greatly improved. 

3.4. Identifying the mechanism of Sb(III) Biosorption  

SEM-EDS characterization of DJHN070401 before and after Sb(III) biosorption are 

shown in the Fig.S2. The surface morphology of DJHN070401 before Sb(III) was uneven 

and the blocky texture provides a multi-site adsorption surface for the Sb(III) biosorption 

(Fig.S2(a)). Moreover, large contact area for adsorbing Sb(III) created due to the presence 

of various gaps, pores, void structures. After biosorption (Fig. S2(b)), the surface 
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morphology of DJHN070401 was changed, which was mainly reflected in the obvious 

reduction of voids and blurring of surface edges. The main elements of DJHN070401 

were O (29.85%) and C (34.48%), which provides a possibility for the complexation of 

Sb(III) by groups. As shown in Fig. S2(b), it can be seen that the absorption peak of 

antimony appears near the binding energy of 3.0-3.5 KeV after adsorption. Moreover, the 

sorbed mass of antimony increases to 1.58% after biosorption, indicating that Sb(III) is 

complexed with functional groups on the surface of cell wall (Iqbal et al., 2013; Sun et 

al., 2011). The decrease in Na, Ca and Fe indicated ion exchange reactions take place 

during the biosorption process (Deng et al., 2018; Iqbal et al., 2013). It is speculated that 

the addition of Ca2+ and Fe(II) forms a ternary complex Fe(OH)3-Ca-Sb (Guan et al., 

2009), was also tentatively verified by XRD (Fig.4), which may promote Sb(III) 

biosorption.  

Because extracellular adsorption was the dominating Sb(III) adsorptive mode, FTIR 

analysis was used to identify functional groups for biosorption and postulate the 

mechanism by reviewing the functional groups identified and their displacement, as 

shown in Fig.3. Characteristic absorption peaks were identified at 3394, 1711, 1540, 

1409, 1031 cm-1, respectively. After biosorption, these absorption peaks shifted to 3398, 

1745, 1560, 1383, and 1045 cm-1, respectively. Among them, the peak of 3394 cm-1 

shifted 4 cm-1 indicated that the amino group (-NH) and the hydroxyl group (-OH) in the 

polysaccharide, fatty acid and protein reacted with Sb(III) (Wu et al., 2012; Iqbal et al., 

2013; Sun et al., 2011). But this reaction had little effect on Sb(III) biosorption by 

DJHN070401. A strong absorption peak at 2924 cm-1, which was assigned to the C=H 

bonds of aliphatic acids, symmetric or asymmetric (Ma et al., 2011; Wu et al., 2012), was 

not obvious change before and after biosorption. The peak at 1711 cm-1 may cause by the 
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stretching vibration of the C=O bond in carboxylic acid, and shifted 34 cm-1 indicates that 

the carboxylic acid group on the cell wall surface chemically reacts with Sb(III) (Huang 

et al., 2013; Wan et al., 2014). The -NH bending vibration in amide-II band was shown 

by the peak at 1540 cm-1 (Sun et al., 2011; Wu et al., 2012), and it was shown by the peak 

at 1560 cm-1 after biosorption which indicated the amino group in the protein participated 

in biosorption. The peak at 1409 cm-1 represents symmetrical stretching of-COOH 

(Anand et al., 2006; Wu et al., 2012), and moved to 1383 cm-1 indicates that carboxyl 

group provided a biosorption site on the cell wall surface. Besides, the effects of pH 

values on the biosorption largely depend on the speciation of Sb and protonation of 

functional groups on the cell surface of the biosorbent. At pH 4, the carboxyl group could 

be protonated and exists in the molecular state (-COOH), and surface complexed with 

neutral Sb(OH)3 via Sb-O-C bond to establish a linear or five cyclic bidendate complexes 

(Tella et al., 2008), Sb(OH)3 also undergoes hydrogen bonding with carboxyl or hydroxyl 

groups (Wu et al., 2012). The peak at 1031 cm-1, which represents the stretching vibration 

of the C-O group of cell wall polysaccharides, shifted significantly to 1045 cm-1, 

indicating that the polysaccharide molecules may complex with Sb(III) during the 

biosorption (Xu et al., 2015). A new peak at 1153 cm-1, mainly causing by symmetric and 

asymmetric stretching vibration of PO2- and P(OH)2 on the phosphate group after Sb(III) 

biosorption (Choudhary et al., 2009), implied that the phosphate group was complexed 

with Sb(III). Moreover, the bending vibration absorption peak at 607 cm-1 disappeared 

after biosorption, hinting that the phosphate group (PO4
3-) has completely reacted 

(Pradhan et al., 2007). Changes of protein peaks (1653, 1242 cm-1) is 

not distinct after biosorption (Lin et al., 2012; Huang et al., 2013), indicating that the 

main components and structure of DJHN070401 are still intact after biosorption of 
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Sb(III). Overall, these results indicated that the chemical interactions of ion exchange 

between the metal ions and the hydrogen atoms of carboxylic acid group, hydroxyl, amino 

groups of the biomass engage in  the biosorption process. 

Due to the complex composition of DJHN070401 thallus, biosorption occurs when 

contacting with the Sb-containing liquids and produces compounds as XRD spectrum 

shows (Fig. 4). Ca2Fe(SbO6), Ca11Sb10, FeSb2O6 and FeSbO4 have strong diffraction 

peaks, indicating that the chemical interaction happened between CaCl2, Sb(III) and Fe(

Ⅱ) enriched in the yeast. It is concluded that Ca2+ is beneficial to promote Sb(III) 

biosorption and verified with Fig. S1 (c), which was consistent with Miao et al. (2014). 

Ca(II) induced adsorption enhancement of antimony possibly resulted from the formation 

of HFO-Ca-Sb complexes (Miao et al., 2014) or form secondary minerals with Ca2+, 

Mg2+, K+, etc. (Okkenhaug et al., 2012), which precipitates on the cell surface. Guan et 

al. (2009) revealed that the improvement of As(III) removal in the KMnO4-Fe(II) process 

by Ca2+ was associated with the formation of monodentate complex of Fe(OH)3-Ca-As 

and Ca2+ increased the surface charge. 

3.5. Effect of DCC inhibitor on Sb(III) biosorption efficiency  

Metabolic inhibitors, such as DCC, can greatly inhibit the growth of the microbes and 

may reduce the continuous metabolic metals uptake of the living cells which may be used 

for bioremediation (Luo et al., 2011). The Sb(III) biosorption removal rates were analyzed 

and compared in culture medium with or without DCC (Fig. 5). It is noticed that the 

biosorption of Sb(III) by DJHN070401 can be divided into two stages. In the adaptation 

period (0-6 h), the Sb(III) biosorption rates of without and with DCC were 31.13% and 
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27.22%, respectively. The possible reason was that DCC inhibited the microbial growth, 

so that the extracellular binding site in the cell wall was reduced (Guo et al., 2010), which 

resulted in induced biosorption rates. These results also indicated that there was biological 

adsorption independent of energy metabolism during adaptation period (Luo et al., 2011). 

In the logarithmic growth phase, the Sb(III) biosorption rates of with DCC was about 5% 

higher than that of without DCC. It implied that DCC can improve the Sb(III) biosorption 

rates in the later growth stage, and there was bioaccumulation based on energy 

metabolism during the logarithmic growth phase. Some studies had indicated that DCC 

did not damage the cell wall structure of microorganisms (Huang et al., 2014; Luo et al., 

2011), but inhibited the ion efflux process of microorganisms (Anand et al., 2006; Xiao 

et al., 2010). As a result, as more and more Sb(III) ions accumulate in the interior of the 

cells, which resulted in increasing biosorption. In conclusion, cell wall adsorption 

(biosorption independent of energy metabolism) plays a leading role in the Sb(III) 

biosorption process of DJHN070401. To the best of our knowledge, few reported microbe 

(Luo et al., 2011; Huang et al., 2013), whose metal bioremediation efficiency did not 

decrease like any other reported strains (Anand et al., 2006; Radhika et al., 2006; 

Malekzadeh et al., 2002) but increase in the presence of metabolic inhibitors. Therefore, 

DJHN070401 may be a potential resource of highly efficient candidates for heavy metal 

bioremediation due to their unique characteristics which were obtained in their original 

special inhibition niches of hyperaccumulator. 
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4. Conclusion 

We report on the method and approach to enhance biosorption of Sb(III) onto living 

Rhodotorula mucilaginosa strain DJHN070401 using RSM with CCD statistical analysis. 

The influence of the nutritional and environmental factors such as the Fe2+ concentration, 

pH and temperature were considered. The results revealed that the CCD design could be 

successfully applied for the modeling and optimizing the process variables and 

interactions in the response. Additionally appropriate calcium and ferrous ion 

concentrations are beneficial for Sb(III) biosorption onto strain DJHN070401. Surface 

complexation and ion exchange are main mechanism for biosorption. DJHN070401 is a 

suitable, candidate for antimony removal in industrial effluents where it is robust against 

increasing loading of metabolic inhibitors.  
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Table 1: Placket-Burman design and results 

Run 

no. 

Variables and levels Y/(%) 

X1 X2 X3 X4 X5 X6 X7 X8 Yexp Ypre 

1 +1 +1 +1 -1 -1 +1 -1 +1 20.13 18.53 

2 +1 +1 -1 -1 +1 +1 +1 -1 23.83 24.28 

3 -1 -1 +1 -1 +1 +1 +1 -1 48.82 48.37 

4 -1 +1 +1 +1 +1 -1 -1 -1 25.53 23.72 

5 +1 -1 -1 -1 +1 -1 -1 +1 11.19 10.54 

6 +1 +1 -1 +1 -1 -1 +1 -1 7.24 6.79 

7 -1 +1 -1 +1 +1 +1 -1 +1 41.61 43.42 

8 +1 -1 +1 +1 -1 +1 -1 -1 25.72 27.33 

9 -1 -1 -1 +1 -1 +1 +1 +1 52.39 50.58 

10 +1 -1 +1 +1 +1 -1 +1 +1 12.83 13.48 

11 -1 -1 -1 -1 -1 -1 -1 -1 27.29 27.94 

12 -1 +1 +1 -1 -1 -1 +1 +1 20.47 22.07 
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Table 2: experimental factors in coded units and experimental responses 

Run 

no. 

Codes values 
Sb(III) removal 

(%) 
Run 

no. 

Codes values 
Sb(III) removal 

(%) 

X1 X2 X3 Yexp Ypre X1 X2 X3 Yexp Ypre 

1 1 -1 -1 45.44 45.94 11 0 0 0 49.15 51.13 

2 0 0 0 52.25 51.13 12 -1 -1 -1 44.33 44.6 

3 -α 0 0 45.18 45.92 13 0 0 -α 39.25 38.25 

4 1 1 -1 38.72 38.88 14 0 0 0 50.57 51.13 

5 0 0 0 50.7 51.13 15 0 0 0 51.6 51.13 

6 0 +α 0 37.14 38.03 16 0 -α 0 51.98 52.31 

7 0 0 +α 46.88 49.11 17 -1 1 1 43.28 41.96 

8 +α 0 0 48.72 49.18 18 1 -1 1 55.98 55 

9 1 1 1 45.57 44.5 19 0 0 0 52.7 51.13 

10 -1 1 -1 37.95 38.1 20 -1 -1 1 52.88 51.9 
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Table 3: ANOVA analysis for variance of the model  

Source of 

variations 
Mean square 

Degrees of 

freedom 
Sun of squares  F P 

Model 570.64 9 63.40 30.04 <0.0001 

X1 12.80 1 12.80 6.07 0.0335 

X2 246.94 1 246.94 117.01 <0.0001 

X3 142.40 1 142.40 67.48 <0.0001 

X1X2 0.17 1 0.17 0.079 0.7840 

X1X3 1.55 1 1.55 0.73 0.4115 

X2X3 5.98 1 5.98 2.83 0.0131 

X1
2 23.16 1 23.16 10.97 0.0078 

X2
2 64.38 1 64.38 30.51 0.0003 

X3
2 100.61 1 100.61 47.67 <0.0001 

Residual error 21.10 10 2.11   

Lack of fit 12.74 5 2.55 1.52 0.3274 

Pure error 8.36 5 1.67   

Total error 591.75 19    

R2 0.9643     

RAdj
2 0.9322     
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Table 4: comparison of biosorption capacities of various microorganism for antimony 

Microorganism 

Initial con- 

centration 

(mg/L) 

Sb oxidation 

state 
pH 

Temperature 

(K) 

Adsorbent 

dose (g/L) 

Contact 

time 

(h) 

Dead or living 

bacteria 

Removal 

Rate (%) 
Reference 

Sphaerotilus natans 40 Sb(V) 7 30 2% 72 living 5.4* [9] 

Bacillus sp. 120 Sb(V)  2 30 5% 96 living 99.75** [16] 

Sulfate-reducing 

bacteria 
      living  [15] 

Sulfate-reducing 

bacteria 
5 Sb(V) 7.2 30 - 96 living 32* [12] 

Turbinaria conoides 5 Sb(III) 7.2 30 0.2-0.8 96 living 13* [17] 

Aerobic granules 20 Sb(V) 2.0 35 - 3 living 21* [14] 

Fungi aerobic 

granules 
20 Sb(V) 3.4 35 - - living 23.2* [15] 

Freshwater Cyanobacteria 10 Sb(V) 2.5 25 50 2 dead 32* [53] 

Microcystis biomass 10 Sb(III) 4.0 25 50 1 dead 85** [18] 

Physcia tribacia 10 Sb(III) 3.0 20 4.0 0.5 dead 96** [27] 

Turbinaria conoides 100 Sb(III) 6.0 23 2.0 0.75 dead 95** [17] 

Sargassum sp. 100 Sb(III) 6.0 23 2.0 0.75 dead 72.1** [17,19] 

DJHN070401 20 Sb(III) 3.5 28.6 0.5% 24 living 56.8* 
This 

study 
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Fig. 1: Effect of nutritional factors ((a) carbon source, (b) nitrogen source, (c) CaCl2 

concentration, (d) Fe2+ concentration) and environmental factors ((e) initial pH, (f) 

temperature, (g) inoculation dose, (h) time) on biomass and Sb(III) biosorption of living 

Rhodotorula mucilaginosa DJHN070401. 

Fig. 2: 3D response surfaces (a) and 2D contour line (b) for Sb(III) removal rate as 

function of pH and Fe2+ concentration; 3D response surfaces (c) and 2D contour line (d) 

for Sb(III) removal rate as function of temperature and pH; 3D response surfaces (e) and 

2D contour line (f) for Sb(III) removal rate as function of temperature and Fe2+ 

concentration. 

Fig. 3: FTIR spectrum of Rhodotorula mucilaginosa DJHN070401 before and after Sb(III) 

biosorption.  

Fig. 4: XRD analysis for Rhodotorula mucilaginosa DJHN070401 after Sb(III) 

biosorption.  

Fig. 5: Effect of metabolic inhibitor (DCC) on Sb(III) biosorption. (0-6h: adaptation 

period; 12-18h: logarithmic growth phase; 18-30h: stable growth phase.) 
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Fig. 1 
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Fig. 2 
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Fig. 3 
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Fig. 4  
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Fig. 5   
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Fig. S1: Some nutritional and environmental factors((a) carbon source concentration, (b) 

nitrogen source concentration, (c) inorganic salt, (d) agitation speed, (e)initial Sb(III) 

concentration) on Sb(III) biosorption 

Fig. S2: SEM-EDS images of DJHN070401 before(a) and after(b) Sb(III) biosorption 
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Fig. S1: Some nutritional and environmental factors((a) carbon source concentration, (b) 

nitrogen source concentration, (c) inorganic salt, (d) agitation speed, (e)initial Sb(III) 

concentration) on Sb(III) biosorption 
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Fig. S2: SEM-EDS images of DJHN070401 before(a) and after(b) Sb(III) biosorption 

 

 

 


