

UWS Academic Portal

Virtual observations

Howie, Scott; Gilardi, Marco

Published in:
Virtual Reality

DOI:
10.1007/s10055-020-00463-5

Published: 19/08/2020

Document Version
Publisher's PDF, also known as Version of record

Link to publication on the UWS Academic Portal

Citation for published version (APA):
Howie, S., & Gilardi, M. (2020). Virtual observations: a software tool for contextual observation and assessment
of users actions in virtual reality. Virtual Reality. https://doi.org/10.1007/s10055-020-00463-5

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 30 Nov 2020

https://doi.org/10.1007/s10055-020-00463-5
https://myresearchspace.uws.ac.uk/portal/en/publications/virtual-observations(50382780-f2f5-4432-adca-962922598d3a).html
https://doi.org/10.1007/s10055-020-00463-5

Vol.:(0123456789)1 3

Virtual Reality
https://doi.org/10.1007/s10055-020-00463-5

ORIGINAL ARTICLE

Virtual Observations: a software tool for contextual observation
and assessment of user’s actions in virtual reality

Scott Howie1 · Marco Gilardi1

Received: 29 November 2019 / Accepted: 27 July 2020
© The Author(s) 2020

Abstract
In this paper, we present ‘Virtual Observation’ (VO) a software tool for contextual observation and assessment of user’s
directly from within the virtual reality (VR) simulation framework. Unlike other recording systems, the VO system described
in this paper focuses on recording and reconstructing VR user’s positional, rotational and input data to recreate the same
experience the user had with a VR simulation. Different from animation-based approaches, VO records user inputs and
reconstructs the simulation from them and the user positional data. Moreover, the system allows the broadcast of this infor-
mation to a remote machine enabling remote live observation of the simulation. Datasets recorded by the system can be
shared by exporting them as XML files or, optionally, into a standalone online application, such as browser WebGL, allow-
ing researchers, developers and educators to share and review a VR user simulation through a free-moving camera using a
web browser. In this paper, the consistency of the data generated from the software by the client, server and reconstructed
datasets acquired during real-time live observations was evaluated. We conclude that this Virtual Observation software
offers detailed reconstruction of low-level information and visual information of user actions during simulations for both
live and offline observations. We envision that our system will be of benefit for researchers, developers and educators that
work with VR applications.

Keywords Virtual reality · Virtual Observation · Observing · Replaying · Reviewing · Simulations

1 Introduction

Direct observation of users in their context can offer insight
on design challenges (Lazar et al. 2017) and circumvent the
issue often encountered of users describing inaccurately
what they did due to a lack of awareness or understand-
ing of the task or system under study (Blomberg et al.
2007). The ability to replay and review user’s sessions is
an important tool for assessment (Lazar et al. 2017). How-
ever, when it comes to studying users in virtual reality (VR),
performing contextual studies becomes challenging, as the
user and the observers are positioned in two different con-
texts: the observer is in the real world, whilst the user is in
the VR context. Observing users from inside the same VR

simulation allows insight into their performance (Hanoun
and Nahavandi 2018) and helps in determining the cause
and effect relationships from user actions (Hanoun and
Nahavandi 2018). Unlike desktop computers, VR equipment
has six degrees of freedom (Tromp et al. 2003), and because
of VR’s unrestricted movement, usability issues are common
for inexperienced users (Tromp et al. 2003).

Currently, to observe users using a VR simulation an
observer needs to be physically present to observe the
user’s body movement in the real world, take notes on what
the user does or video record and screen capture the user.
Although rigorous, this type of observation is difficult,
requires large data storage for the videos, can impact the
simulation performance and offers limited insight of the
users experience and interaction. The ideal solution would
be to experience the exact perspective of users, but this
approach has the drawback that it can induce motion sick-
ness on the observer (Lopez et al. 2017). Observations can
be conducted from mirrored perspectives of VR users on 2D
screens, but these recordings cannot guarantee knowledge
of the state and location of the input devices when the user

 * Scott Howie
 Scott.Howie@uws.ac.uk

 Marco Gilardi
 Marco.Gilardi@uws.ac.uk

1 University of the West of Scotland, Paisley, UK

https://orcid.org/0000-0002-4445-670X
https://orcid.org/0000-0001-8220-7432
http://crossmark.crossref.org/dialog/?doi=10.1007/s10055-020-00463-5&domain=pdf

 Virtual Reality

1 3

is not looking at them, limiting studies inside and outside
laboratory conditions. Video recording users offer visual
clarity of their movement in VR, but the point of view of
the recording camera is fixed in position and user actions
can be obscured from the camera point of view. Moreover,
this approach requires the video data be paired and synced
with simulation data, such as 2D-screen recordings of the
VR perspective before it can be analysed.

This paper builds upon Howie and Gilardi’s ‘Virtual
Observation’ system described in Howie and Gilardi (2019).
Howie and Gilardi (2019) system records and reconstructs
virtual actions of users in a simulation, allowing researchers
and developers to virtually observe users in a VR simulation.
The term ‘Virtual Observation’ (VO) is used as observers
are not observing the user directly, but instead they observe
the input, movements and actions conducted by the user
within the simulation. Collected input and movement data
is used to recreate the user experience in the simulation with
synced actions and approximate movement. In Howie and
Gilardi (2019), VO was validated in a detailed simulation
environment for fire safety which tasked the participant
to correctly identify and extinguish fires in a VR training
simulation (Howie and Gilardi 2019) (Fig. 1). VO was used
for reconstructing users movement and actions for review
after-action, meaning the observation was conducted after
the user had completed the simulation (Howie and Gilardi
2019). The VO system in Howie and Gilardi (2019) can
reconstruct VR simulations for a wide range of use cases
(Wobbrock and Kientz 2016).

Building upon the initial version of VO (Howie and
Gilardi 2019), we expanded the system functionalities to

allow for remote live observation of users via WiFi from an
external location in real time using Unity’s default network-
ing architecture, added configuration for full body tracking,
optional hand tracking and an ‘Full Simulation Capture’
recording mode that can record and reconstruct external
tracked object classes and variables. Moreover, controls such
as play/pause and rewind/fast-forward were added to allow
observers control over the reconstructed simulation.

Although there are other popular platforms that facili-
tate the development of VR applications, such as the Unreal
Engine, we chose to develop the system using Unity. This
choice was made for convenience; Unity is one of the popu-
lar and widely used platforms for developing VR and the
platform with which authors are most familiar. However,
the principles underlying VO, i.e. recording user input and
positional tracking data to reconstruct the simulation, can
be transferred to other engines, and Unity should be seen
throughout the paper as the mean that we chose to prove that
a system such as VO can be developed.

This paper contributes to the field of virtual reality by
presenting a new approach to recording VR simulations for
training scenarios. The approach is implemented as a proof
of concept of a versatile tool that will allow researchers,
developers and educators that use VR, to observe, evaluate
and share user actions and interactions within a VR simula-
tion, either live or by reconstructing it via recorded data.
Moreover, we demonstrate that:

1. data generated by VO can be reliably streamed to a
remote machine for real-time live observation of a user
VR session,

2. streamed VO data can be recorded in the observer’s
remote machine and that simulations reconstructed from
this data are identical to the VO data recorded on the
user machine during the user simulation, showing VO
reliability in recording VR user sessions,

3. VO data can be used to share the VR user session after
it has ended on both VR and non-VR platforms, such as
a WebGL visualiser.

2 Definitions

The following terms will be used in this paper:

– Motion key-frame values are the position, rotation and
scale of the tracked devices in the virtual simulation
space. Motion key-frames are recorded through-out the
duration of the simulation in sequential order, later being
used to reproduce the movement of the VR user dur-
ing reconstruction. We refer to motion key-frame data
as high-level information which is acquired from real-

Fig. 1 Screenshot captured from video comparison showing real-time
video capture of a simulation and rebuilt capture using Virtual Obser-
vation. The full video can be viewed here: https ://www.youtu be.com/
watch ?v=2YY-d7QMU VI . The Virtual Observation system can be
included in any SteamVR compatible Unity project by adding the VO
component to the default VR camera rig set-up and linking the input
states of the developers/researchers interaction system (so the actions
can be recorded and later replicated). Recorded data can be stored in
XML or JSON file formats and supports all VR headsets and tracked
controllers that are compatible with SteamVR and the Unity game
engine

https://www.youtube.com/watch?v=2YY-d7QMUVI
https://www.youtube.com/watch?v=2YY-d7QMUVI

Virtual Reality

1 3

time values from the Unity transform component during
a simulation.

– Action key-frame are frames in which input from one of
the controller devices has been modified from a previous
state, for example, a button on a tracked VR input device
that changes state from idle to being pressed down would
be recorded as an action key-frame, since a variable that
derived from a VR input devices had been altered. We
consider action key-frame data as low-level information
since the data acquired is in a raw data format of values
that correlate as one’s, zero’s or customised values, with
input values acquired or derived from the VR controller
button state changes. During reconstruction, the action
key-frames are reconstructed to replicate the experience
of a VR controller device being modified.

– The terms Rewind and Fast-forward are used to describe
the functionality in the VO system that allow users to
jump to a specific time frame, before or ahead of the cur-
rent time position, and see the simulation from that point
onward. The terms are used for a lack of better words to
describe the functionality and should not be confused
with being able to see the simulation replayed backwards
or at accelerated speed.

3 Related work

The problem of finding a way to review VR simulations is
not new, and systems similar to VO have been previously
proposed in the literature. One of the earliest examples is
Goldberg et al. (2003), which used early implementations of
VR technology to replay and review army training simula-
tions in an effort to measure users performance. Goldberg
et al. (2003) after-action review system used event data col-
lection processes to capture the events that took place during
a simulation. Whilst this offers a guarantee that an event can
be triggered repeatedly during the after-action review, the
input of the VR user is not recorded. Therefore, any usability
issues experienced by the VR user cannot be replicated and
therefore prevent usability analyses to be conducted.

Greenhalgh et al. (2002) developed a technique of tem-
poral links which enabled the recording of data in the MAS-
SIVE-3 system (Greenhalgh et al. 2000), with the objec-
tive to link prior recordings to real-time VR environments.
Greenhalgh et al. (2002) system operates by recording all
changes made to the virtual environment at run time. The
focus of Greenhalgh et al. (2002) work was integrating VR
data for media use in film and television and incorporation
of previous VR experiences into a real-time VR environ-
ment to create new content or review experiences. Using
temporal links, Greenhalgh et al. (2002) method allowed
recorded virtual environment can be replayed and embedded
into a live virtual environment for purposes of extending

the live virtual environments content or narrative structure.
Although not stated, the implementation of temporal links
(Greenhalgh et al. 2002) appears to be designed for desk-
top VR and not head-mounted display VR. Likewise, the
description of the temporal links system (Greenhalgh et al.
2002) hints that the recording and reconstruction of the tem-
poral links use animation-like recording of the virtual envi-
ronment rather than raw data interpretation of the VR users
as used in VO, which enables usability testing and repeatable
interactions for development and bug fixing. In a use-case
example for reviewing virtual experiences (Greenhalgh et al.
2002), the authors describe the ability to replay the virtual
environment from any perspective but do not discuss any
ability for interaction of user input or variable monitoring
of recorded objects. This lack of clarity suggests the tempo-
ral links system is animation based which suffers from the
same limitations as other animation reconstruction systems
(Lopez et al. 2017), such as the lack of raw user-input data,
which limits the understanding of usability issues from input
devices.

Similar to Greenhalgh et al. (2002), Von Spiczak et al.
(2007) expanded upon the OpenTracker framework (Reit-
mayr and Schmalstieg 2005) to create a multi-modal event
processing system. A feature of Von Spiczak et al. (2007)
approach is the ability to capture position, orientation and
interactions of equipment from the multi-modal event data
structure. This data structure can be used to replay, review
and document VR interactions in a virtual environment in
a serialised order. These recordings captured positions and
orientations of the tracked objects along with other inter-
actable object information within the virtual environment.
When replayed, these simulations would reconstruct the
event with a time-delay between the captured data points.
Von Spiczak et al. (2007) show that their system is viable,
but only discuss briefly the reconstruction of interactions in
their paper, using the data reconstruction example as a use
case for their multi-modal event processing system designed
for the OpenTracker framework (Von Spiczak et al. 2007;
Reitmayr and Schmalstieg 2005). Von Spiczak et al. (2007)
make no mention of rewind or pause ability, observational
potential, live broadcasting of data, portability of their sys-
tem and functionality of the system beyond the ability to
replay and log the VR interactions in real time. Both Green-
halgh et al. (2002) and Von Spiczak et al. (2007) imple-
mentations are designed as extensions for specific systems
and are incompatible with the Unity platform, which relies
on game engines. In comparison with VO, the discussed
implementations (Greenhalgh et al. 2002; Von Spiczak et al.
2007) share some methodological similarities in approach
for capturing and reconstructing actions; however, Von Spic-
zak et al.’s (2007) study lacks important functionalities for
allowing effective observations of VR users, such as: control
the perspective, time and playback of the reconstruction,

 Virtual Reality

1 3

live observation, automatic data serialisation, recording
and reconstructing objects and variable data beyond the VR
interaction devices, lightweight portability of data and multi-
user data capture.

More recently, Lopez et al. (2017) used a technique that
creates and stores animation of movement and object manip-
ulations conducted by the user. Although effective, Lopez
et al. (2017) system is restricted at re-creating the motions
of the simulation and does not store low-level information
about the interaction. Because Lopez et al. (2017) system
stores all data into animation files, the data can only be
accessed using the Unity game engines animation system,
preventing statistical data to be collected for state or posi-
tional analysis in external programs.

A system similar to VO was created by Jung et al. (2006).
Although Jung et al. (2006) system is capable of creating
reusable animations for animating 3D character models, it
only records predetermined input states for grasping an iden-
tified object. Unlike our VO system, which aims to capture
all states from VR input devices, such as the state of input
buttons, including raw values of analog inputs. Jung et al.
(2006) system focuses on storing the grasp events so they
can later be imitated for manipulating virtual scenes with
different grasping types. Like Lopez et al. (2017), Jung et al.
(2006) pre-defined input and interaction objects limit the
high-level information that can be gathered from observing
the animations, with neither systems aiming to capture all
states of the VR input devices. Both Lopez et al.’s (2017)
and Jung et al.’s (2006) methods are limited as for in-depth
analysis of user’s actions in a simulation knowledge of high-
level information (input and devices states) is necessary.

Alternative ‘virtual’ means of observation can be used to
monitor participants in VR remotely through the use of cam-
eras and remote screen sharing (Lazar et al. 2017), but these
options cannot guarantee knowledge of the state or location
of tracked devices. Even with these forms of observation
available, for remote studies conducted ‘in the wild’, setting
up software or hardware for observing remote users could
be a challenge (Petrie et al. 2006). These observation meth-
ods also require the participant to have access to suitable
recording hardware and accompanying software for remote
observations to be possible.

Video and audio recordings are a common way for studies
in laboratory and ‘in the wild’ to document experiments and
procedures that can be then analysed qualitatively (FitzGer-
ald 2012). These recordings aim to make it possible to ana-
lyse the events in the experiment after the experiment has
been conducted using a format that is easy to share between
collaborators and for demonstration purposes (FitzGerald
2012). Our VO system adopts (FitzGerald 2012) approach
and innovates the medium to a digital data format designed
for recording and reconstructing VR simulations that can
be shared independently of a development system for

browser-based collaboration. Parallel to transcription work
that is often applied to audio and video recordings (FitzGer-
ald 2012), VO allows for software detection of user input
and movement, that in the future, could be paired with AI
for analysis of participant actions.

Different from the systems discussed, VO focuses on the
low-level acquisition and reconstruction of data in an easily
controllable dataset that once implemented into an applica-
tion automatically and non-invasively records the actions of
a participant in a VR simulation, without any modification
by the developer or end-user. In VO, the recording of user
inputs depends exclusively on the input controllers SDK
(OpenVR, Oculus SDK, Leap Motion or other third-party
SDK) chosen for the VR simulation, allowing different types
of controllers to be supported, as shown in Fig. 3 where
hand tracking is used in place of the VIVE controllers, and
new controllers can be easily added in the future to adapt to
the fast evolving VR input modalities. Finally, rather than
replaying a VR simulation as an animation (Lopez et al.
2017; Greenhalgh et al. 2002), VO reconstructs the experi-
ence using the low-level data of the VR users movement and
input. Moreover, the system is designed to be lightweight,
portable and user-friendly and it is developed using a mod-
ern game engine, namely Unity.

4 The Virtual Observation system
functionalities and design

The VO system presented in this paper is a combination
of unrestricted observation of users (Carranza et al. 2003)
with an improved form of action capture (Lopez et al. 2017;
Jung et al. 2006) and allows users to be observed from any
perspective. Rather than storing information of the entire
environment, the VO system records users movement and
changes in low-level information data captures. The low-
level information captured is configurable and as default
supports all OpenVR hardware input devices, but can easily
be extended to suit other input devices; for instance, Fig. 3
shows the integration of Leap Motion. A callback pattern
allows VO to listen and dynamically record extended input,
such as additional API input information. In contrast to
Jung et al. (2006) and Lopez et al. (2017), which record the
motion of the interacted virtual objects directly, the major
contribution of the VO system is that only users inputs,
device states and tracking information is recorded by the
system. The VO system captures and records an uncon-
strained number of tracked objects and devices in addition
to three tracked main VR devices: head-mounted display
(HMD) and two controllers. By adding additional tracked
objects (Fig. 2),

non-player controlled objects such as AI characters or
non-deterministic physics-affected objects can be reliably

Virtual Reality

1 3

tracked, ensuring that the reconstructed simulation is con-
sistent with the simulation ‘as-experienced’ by the user.
Unrestricted tracked objects and devices also allow for novel
or unconventional objects to be tracked, expanding the scope
of the tracking hardware to include additional interaction
systems that rely on eye-tracking or hand-tracking (Fig. 3).

The proof of concept for the VO system was implemented
as a plug-in for the Unity game engine and can operate in
two modalities, ‘Interaction Capture’ and ‘Full Simula-
tion Capture’. The Interaction Capture mode records and
reconstructs VR users position, rotation and actions within

a simulation, isolating data captured to modifications made
by a single participant. However, as the ‘interaction cap-
ture’ recording technique does not capture non-deterministic
objects, an advanced method which can be toggled to auto-
matically capture all gameobjects that contain non-deter-
ministic factors, such as AI or physics impacted objects, was
added to the system. The ‘Full Simulation Capture’ mode
extends upon the ‘Interaction Capture’ mode by including
serialisable and custom-assigned variables of additional
tracked objects, which are optional and can be used for the
reconstruction of AI driven or physics gameobjects that are
non-deterministic.

4.1 Interaction capture

To record a VR simulation in VO, positional and rotational
data of tracked devices are motion key-frames that are
recorded at a fixed frame rate interval of 10 milliseconds,
which is the lowest value of the record and reconstruction
functions being called during a VR simulation (see Howie
and Gilardi 2019). Input action key-frame when a modi-
fied input state is detected is also recorded, along with all
non-deterministic game data, such as modified objects with
physics properties. The recording process stores the current
transform of all tracked devices in the VR manager with the
current input modifications. VR tracking configuration data,
such the width and depth of the physical assigned VR area,
is also stored to allow for tracking play-space and headset
system information to be analysed. Tracking configuration
data allows to contextualise the tracked movement of users
relative to their configured tracking space in the real world
during ‘in the wild’ studies.

4.2 Full simulation capture

The prototype of the VO system in Howie and Gilardi (2019)
was originally intended for observation of pre-defined train-
ing simulations, which only required the knowledge of the
VR user to operate (Howie and Gilardi 2019). In this paper,
we present an extended version of VO that includes a ‘Full
Simulation Capture’ method of recording external actions
of other non-player controlled objects. Because some simu-
lations rely on the knowledge of external human interac-
tion factors to regenerate the simulation or AI characters,
additional objects and their attached components can also
be recorded and reconstructed to be in sync with the VR
user. This recording process can automatically serialise the
additional tracked component data of serialisable classes and
user-defined data from custom or protected Unity compo-
nents (i.e. Rigidbody or Colliders). This data can be recorded
in sync with the VR user recording motion key-frame. This
‘Full Simulation Capture’ mode is less user-friendly than
the ‘Interaction Capture’ mode because as it requires the

Fig. 2 The VO system is built for the Unity game engine. The com-
ponent can be attached to any VR player object with options for
HMD, HMD Eye and controllers the default options for tracking of
movement. Additional tracking objects offer extension to the prereq-
uisite tracking objects. The variable ‘Full tracking Game Objects’
is used for tracking a hierarchy of objects, this will track the parent
object and all subsequent child objects

Fig. 3 Screenshot captured from a reconstructed simulation that used
a leap motion tracking device to capture the movement of a user’s
hands. This demonstrates VO’s ability to extend recording and recon-
struction to a wide range of interaction devices. A video demonstra-
tion of the VO system can be viewed here: https ://www.youtu be.com/
watch ?v=IX1qj q1R13 4

https://www.youtube.com/watch?v=IX1qjq1R134
https://www.youtube.com/watch?v=IX1qjq1R134

 Virtual Reality

1 3

developer to specifically detail each component and vari-
able that is required to be recorded and reconstructed during
development. At present, ‘Full Simulation Capture’ mode
uses customised classes to store the active status, tag and
name of objects, accessible ‘rigid body’ and ‘collider’ vari-
ables along with fully serialisable custom classes of tracked
objects.

4.3 Reconstruction system

In order to reconstruct the transform data (position and rota-
tion), data-points are captured during the recording of the
simulation at motion key-frames and action key-frames.
Motion key-frame data points are captured every 10ms,
which was found to be reliable for movement estimations,
whilst action-frames are captured when an input state change
is registered. During reconstruction, the system determines
whether the reconstruction time matches a recorded action
key-frame or motion key-frame (Fig. 4).

During an action key-frame, the input states of the tracked
devices are reconstructed by rebuilding the data to a class
structure readable by Unity and assigning them to the object
that matches the tracker. In our case, this was a VR Input
management class, which handled the input of the VR con-
trollers that determined the action, values and states of our
interaction system. When an action key-frame or motion
key-frame event is called during the reconstruction process,
all tracked objects are set to the position recorded during
the recorded key-frame. The software modifies the tracked
objects based on the current position of the tracked objects
and next transforms location based on the next action key-
frame or motion key-frame data point. This technique ena-
bles the motion of the participant between timed gaps in the
data to be estimated from the previous and next action or
motion key-frames. See Fig. 4 for a diagram of the recon-
struction process.

To determine whether the simulation is recording or
being reconstructed, conditional checks are used in the VO
system along with individual information, thus determining
whether a user has direct control over an object, i.e. the user
is holding or interacting with the gameobject. These checks
are primarily designed to let the system know that simulation
data is expected to vary from recording data and prevents
individual object recorded data to override the user-driven
input actions. During reconstruction, this does not matter
as the user-driven input actions are reconstructed before
any other game data; therefore, any variable modification to
held objects will remain consistent. As such, the checks are
intended for aiding the debugging process of the simulation.

4.4 After‑action review

To make it possible to review a simulation at a later date or
time than the original simulation, an ‘after-action review’
(offline) process is implemented. Such system focuses on
recording the data for reconstruction after the user has com-
pleted the simulation. Action events that are registered from
a change in input state are recorded along with the current
position of all tracked objects. Key-frames for action and
motion are sequentially logged in order of time gap from the
start of recording and stored immediately on a database or
recorded locally to XML (once the simulation has finished).
This data can be retrieved and used for a simulation to be
reconstructed when desired by the developer or researcher.

To replicate the movement and actions of the input
devices, rebuilt simulations use user datasets. User move-
ment is smoothed between action key-frames when input is
modified, and motion key-frames that capture the motion of
the tracked devices. During instances of input changes, the
position and rotation of the tracked devices is forcibly set
to ensure that interaction is correctly mapped at the exact
position and orientation recorded and is not affected by any
delays or gaps in the animation smoothing process.

Fig. 4 The reconstruction process of the VO system, demonstrating
how the reconstructed VR character transforms update based on the
action or motion key-frame data. Transform data of tracked devices

are recorded every 10ms as motion key-frames, whilst input manage-
ment data and transform data of all tracked devices are recorded as
action-frames when the a change of input state is detected

Virtual Reality

1 3

4.5 Live‑action review

‘Live-action review’ is the process of virtually observ-
ing a user in a VR simulation in real time. This method
is based on standard networking set-ups for multi-player
games, in which a main user hosts the network-configured
game acting as the server, with other players able connect
to as clients, allowing data to be transferred continuously
between client and server. The data structure and process
of recording and reconstructing the data are the same as
after-action review, but instead of storing it for later use,
the data is streamed in real time from the client (user) to
the server (observer). This process updates the simulation
in real time by monitoring the actions and movement of
the user from an external location. During live observa-
tion, actions and movement of users of the simulation who
are clients on the server can be recorded locally, enabling
data that is streamed to the server during the live observa-
tion to be stored using the same process as after-action
review. Live-action review uses the Unity game engine
networking suite to create the area for multiple clients or
observers to be present within a simulation. Whilst only
assessed with one client and one observer, in principle the
software scales with Unity’s multi-player functionality to
support multiple members for both roles (simulation user
or observer).

The VO system can be incorporated into existing infra-
structures, requiring only one component class for data
allocation. This approach allows the system to use Unity
2018’s standard Networking Interface UNET for live trans-
mission of data. Unity has since deprecated this Networking
Interface, but the software will be compatible with Unity’s
replacement Networking architecture or any alternative that
allows custom data transmission in real time. Live-action
simulations use the networking data from the Unity net-
work transform components to update the transforms of
the tracked objects on the server (Fig. 5). These transforms
have a send rate of 25 network updates per second, but
locally saved movement recording of the tracked devices
remains at 10 ms. When an input state change is registered
on the client and sent to the server, all tracked objects on the
server (including any other connected clients) are updated
to their recorded position when the input state change was
detected. This ensures that the transform of the objects dur-
ing a received input action is consistent with their position
on the client and is not affected by any lag or networking
issues. Due to University firewall settings, we were only able
to perform tests using a WiFi local area network (LAN);
therefore, lag may be present when applied in different net-
works configurations depending on the connection of the
server and client. Different network connections may cause
potential issues over long distances or bandwidth limita-
tions. However, we show in this paper that these issues are

not caused by the VO system and are only dependant on the
networking architecture used.

4.6 Reviewing observations

Using an inverse kinematic (IK) system, an estimated skel-
eton posture of the user can be generated using the rebuilt
tracking points from the VR equipment (Fig. 8); these track-
ing points map the head, hand and other tracked VR loca-
tions of the user to an avatar for real time or after-action
animation. To implement this, we used the FinalIK (Lang
2019) package for full-body tracking of the participants
head, hands (controllers), torso and feet.

To observe users, the observer can either control a virtual
3D camera or use a separate HMD attached to the server
computer (Fig. 6). Both forms of observation explore the
reconstructed simulation in real time. To reproduce a user
simulation, the rendering and update of the Unity game
engine had to be mimicked to prevent positional data from
being set or timed incorrectly from the original data time-
stamps. This required to modify the fixed update cycle of the
Unity engine which we set to update every 10ms to match
the recording interval.

Time-frame reproduction was improved with respect
to Howie and Gilardi (2019) system, obtaining smoother
transitions of action key-frame and motion key-frame cap-
ture points in after-action review reconstructions. One issue
in Howie and Gilardi (2019) system was that a frame was
skipped between the action and reproduction of the input

Fig. 5 Unity’s networking configuration for sending packets of data
between client and server in real time. Each player VR character is set
as a local player authority on the network, with network transforms
attached for the top hierarchical object, and child network transforms
for all tracked child objects of the VR character. Data packets were
sent for the tracked objects at a send rate network cycle of 25 updates
per second

 Virtual Reality

1 3

which was caused by Unity’s update pipeline. By using a
modified order to the script execution pipeline, the skipped
frame can be avoided with actions registered in the same
action key-frame as the recorded input. To achieve this, the
script execution order in Unity is changed so that the script
that rebuilds the simulation is given priority over the input
action scripts that determine the controller input actions;
this ensures that the movement transforms and input state
of the devices are exact during the time of an input state
change. The execution of physics interactions for collisions
is staggered during the reconstruction so the physics and
events of objects replicate the expectations of the engine,
with movement for physics collisions and triggers executed
prior to input modifications.

The VO system is designed as ‘drag and drop’ compo-
nent in Unity; this design choice was taken to simplify the
integration of the system in VR simulations. The replication
of movement can be achieved by adding the VO system to
the top-hierarchy object of the player character and assign-
ing the desired tracked objects (Fig. 2). Every VR player
controlled character in a scene is individually recorded,
independent of other users. This streamlines the process of
storing and re-accessing data that is only applicable to a
single-user performance and limits damage caused by band-
width constraints or data corruption. For group simulations
where an observed user interacts with other users in a single
scenario, each individual dataset for all users can be loaded
and reconstructed simultaneously, reproducing the move-
ment and actions of all users within a single observation
session. Recorded audio group communications can also be
reproduced as VO records from the microphone input of
each user if a microphone is attached to their VR headset
and it is active. The audio can also be isolated for individual
users, which is useful in scenarios where group communica-
tion makes it difficult to hear an individual user speaking.

Data can be acquired in several ways. For live obser-
vation of users, data streamed to the live observer can be
recorded locally on the server. When data is received by
the server during live observation, the reconstruction of the
data is processed in real time and stored by replicating the
data capture process that is being conducted on the client
side. Alternatively, data can be acquired from the client by
retrieving a locally stored XML file, avoiding the need for
online database hosting. If a study is being conducted in a
remote location, making the retrieval of data from the cli-
ent computer impossible, an online database can be used to
host the client data which can then later be retrieved by the
observer when required. See Fig. 7 for a diagram of the data
storage options.

4.7 Review functionalities

Review functionalities for observers allow to control the
reconstructed simulation playback (play, pause, fast-forward
and rewind) and observational position during and after-
action review. These functionalities work independently of
any external VR plug-ins or frameworks, allowing observa-
tions to be conducted on any Unity supported platform. In
this paper, we show VO being used to observe a recorded
VR simulation within a VR application, a desktop applica-
tion, WebGL web browser hosted on a website and within
the Unity game-engine itself and show the potential of VO
being used for observational purposes in multiple fields.

Rewinding and Replaying a reconstructed simulation
using the ‘Full Simulation Capture’ mode will result in
repeated game events being re-simulated. During rewind
instances, modified variable information will be restored
back to previous values which will then be re-simulated
when the reconstruction resumes in forward playmode.

Fig. 6 Observers can observe users using a virtual 3D desktop cam-
era or by equipping a VR HMD. Observations can take place live in
real time with the user, or at a later stage for after-action observation.
User datasets can be observed using the desktop system here: https ://
virtu alobs ervat ionsy stem.githu b.io/Virtu alObs ervat ionSy stem/

Fig. 7 The VO system has multiple methods of storing and retrieving
data. For live observation, data is streamed to the server, updating the
simulation in real time and storing the received information locally
for offline observation later. For after-action review (offline observa-
tion), data is stored on an online database (Firebase) for retrieval by
the server when necessary. A local XML copy can also be stored on
the clients PC for recovery in local tests

https://virtualobservationsystem.github.io/VirtualObservationSystem/
https://virtualobservationsystem.github.io/VirtualObservationSystem/

Virtual Reality

1 3

Assuming both a fire extinguisher and fire were recorded
along with the VR user, a reconstruction operating in
rewind would reverse and the fire extinguisher capacity
and the fire’s health back to their previous values, along
with all other recorded data recorded with the individual
gameobjects. When resuming to play in forward mode,
the simulation would reconstruct the actions of the user
extinguishing the fire, since the variable information of the
gameobjects was reset and the user-driven actions of using
the fire extinguisher are consistent. This means in the fire
training simulation demonstrated in Fig. 1, the fire could
be extinguished and made re-active by the rewinding and
re-simulating the experience.

Observing a training simulation within VR replicates
real-world attributes of monitoring a trainee (see video in
Fig. 9). Moreover, the option for observers to be invisible
during the observation avoids users’ feelings of discomfort
caused by the physical presence of the observer. In VR,
both the observer and VR user share the same context,
both experiencing the presence and scale of the virtual
environment. Unlike in the real world, observing in VR
is non-intrusive, with the ability to monitor the training
experience from any perspective without interfering with
the VR training user’s performance.

In desktop applications (Fig. 9), the observation is
controlled using keyboard and mouse input and operates
closer to the functionality of video playback, but with
the functionality of altering the viewing perspective of
the observation camera. This observational method has
greater accessibility for observers since the application
can be operated using standard computer hardware, with
no additional hardware or programs beyond the simulation
application.

Like the desktop implementation of VO, the WebGL
browser functionality is an accessible and portable method
of observing VR simulations (Fig. 6). WebGL applications
can run on any web browser platform that supports Unity’s
WebGL platform. WebGL applications have the advantage
of being portable to online websites that can run without
any software being downloaded or installed. The portability
and accessibility of VO enable VR simulations to be shared
online, allowing the observer using the WebGL application
to control their perspective of the observation.

Observing can be also done from within the Unity game
engine (Fig. 3), enabling data analysis of the reconstruction.
We envision this functionality particularly useful for devel-
opers, allowing them to identify bugs and usability issues
during testing phases of VR applications. Moreover, devel-
oper can test their VR experiences on a user-recorded simu-
lation so that, rather than having to frequently re-equip VR
headset every time they need to test bug fixes, developers
can monitor the reconstructed user actions live whilst focus-
ing on the development output of the Unity game-engine log.

In all of these platforms, the core functionality of VO
remains the same in each implementation, enabling playback
to rewind, pause and play the reconstructed simulation that
is controlled by the observer of the simulation.

4.8 Technical configuration

The live observation was incorporated into Unity’s standard
Networking configuration for Unity 2018. Unity’s default
networking handles the transform data of the VR tracked
devices for real time (Fig. 5). To register input actions, the
VO system monitors for changes in input state of the control-
lers. When an input change is detected, such as a button state
from ‘DOWN’ to ‘HELD’, the VR input management class
is converted to a JSON string and sent from the client to the
server, which distributes this to all other clients connected in
the simulation. On the server host, all data received from the
connected clients is recorded and saved locally to an XML
file once the simulation has elapsed.

5 Methodology

Building upon previous work (Howie and Gilardi 2019), we
measure consistency between the data captured on the client
computer, server and reconstructed simulation using data
captured by the server, showing VO reliability in recording
VR user sessions. We are currently only interested in demon-
strating the potential for the software for use by researchers,
educators and developers to aid VR simulation assessment
and development rather than conducting a usability tests
(Greenberg and Buxton 2008).

The assessment of consistent data only used the ‘Inter-
action Capture’ mode of VO because the environment did
not feature any undefined configurations or unknown vari-
able data. A controlled laboratory condition environment
was used to validate consistency between client, server, and
reconstructed datasets. The observer (one of the authors)
hosted a multiplayer session of the simulation (server)
located in a separate room next to the laboratory. A wireless
local area network (LAN) was used to connect client to the
server (observer) machine located in the adjoining room.
Due to restrictions of the University firewall, connection
between the client and server was achieved using a non-
internet-connected router. It is unknown whether this had
any negative or positive impact on networking performance
or loss of data packets.

Participants for the test were equipped with a VR HMD,
two VIVE controllers and three VIVE trackers (for a total
of six tracking points) and were asked to start a standalone
build of the application on the client machine. After partici-
pants entered the local IP address of the LAN server hosted
by the observer, they joined the simulation session hosted by

 Virtual Reality

1 3

the observer. The measured datasets consisted of the client
who run the local version of the simulation (Client Dataset,
Fig. 7), the server who hosted the multi-player simulation
and observed the client in real time (Server Dataset), and
reconstruction data generated from an after-action review
simulation (Reconstructed Dataset) from the data captured
by the server.

Once ethics approval was received by the university, stu-
dents and staff from the university were recruited via email
and word-of-mouth. Five participants volunteered and gave
consent to take part. After consent, they were equipped
with the VR headsets and allowed to start the session. Dur-
ing the experiment, they were asked to perform the same
task repeatedly 35 times, picking up and dropping a sword
in a virtual environment. This type of task was chosen as
the system captures data only when an input state change
is detected. Captured data is guaranteed at points of input
state change in client, and, if the system is reliable, these
data points should be replicated identically in the server and
in the reconstruction, ensuring that the observed interactions
and actions in the simulation are as close as they can be to
the user interactions and actions. Each participant conducted
the test in the laboratory room alone with the observer as the
only other (invisible) character within the VR simulation.
The observer could move in VR or using the desktop camera
to observe the participant from any perspective.

To validate the consistency of the position and rotation
data of each tracked VR object, local data captures were
recorded on client and server and the server dataset was used
to reconstruct the simulation and recapture the data. Local
data captures were saved as XML files and were readable by
the VO software to reconstruct the actions during a given
time action key-frame.

As the client dataset stored inputs and devices states
recorded directly from the hardware, it was used as the base-
line to determine the consistency of the server dataset. The
value d

i
 , obtained as the absolute difference of values of

corresponding data linked to tracker i stored in the server s
i

and in the client c
i
 datasets, as given in Eq. 1, was interpreted

as a measure of data consistency between the two datasets;
any difference between these datasets was attributed to the
live broadcasting of the simulation via the LAN network.

The difference v
i
 , computed between the server s

i
 and the

reconstructed r
i
 datasets, as given in Eq. 2, is to be attributed

to our reconstruction system.

The datasets for the five participants containing the changes
in inputs and states for each tracked device were used for the
validation of the VO software, the client dataset had in total

(1)d
i
= |s

i
− c

i
|.

(2)v
i
= |s

i
− r

i
|.

4,869 entry points, whilst the server and reconstructed data-
sets had 4,866. Three packets were lost during the broad-
casting between the client and the server; those data were
removed from the client dataset during analysis.

6 Results

The difference d
i
 , as given in Eq. 1, between the client

and server datasets and the difference v
i
 , as given in Eq. 2,

between server and reconstructed datasets were analysed
by identifying the maximum (worst) difference between
the datasets for position and rotation. In the worst case, the
client–server difference d

i
 was of the order of 10−7 for posi-

tion and of the order of 10−3 for rotations (recorded as Euler
angles), showing that the broadcasting introduced some
errors in the data. Despite these small differences between
client and server data, we consider the two datasets to be
consistent as these small discrepancies are unlikely to be
noticed by a human observer. The differences v

i
 between

data in the server and reconstructed datasets were consist-
ently zero for all data points, showing that the reconstruction
system preserves the data used for the reconstruction.

A minor loss of packets was noticed when large data
was streamed continuously over the network, and happened
when a participant left their finger on the controller track-
pad during the entirety of the simulation, generating small
changes in input states for the track-pad. Considering the
large amount of data sent, the loss was negligible in terms
of data acquisition with only three instances out of 4,869
(0.0006%) packets lost for all participants data transmitted
live. This is likely to be caused by excessive bandwidth used.
During instances of packet loss, the system continued to
operate using previous data received with follow-up data
after the 10ms continuing the live reconstruction. Because
the instances of packet loss were only noticed during con-
tinuous input state modification, threshold values can in
future be used to prevent small changes from registering
a state of input change. On a stable and reliable network
connection, we do not anticipate that any issues will hin-
der the live observation for normal input usage once the
threshold change value has been included. Because loss of
streamed data could be a critical failure in the simulation
process, networking features could be implemented to allow
for lost packets to be resubmitted to keep the simulations in
sync. Alternatively, local client data can be submitted for
after-action review if networking issues prevent real-time
observation. These limitations are caused by the network
transmission of data and out of the scope of this paper.

The reconstruction of tracked VR object motions and
input states allow for serial observation of user(s) actions.
Rather than restricting analysis to after-action review, live
observation allows for instantaneous visual clarification

Virtual Reality

1 3

to user’s actions and their resulting performance in a VR
simulation.

7 Discussion

The validation of the after-action system (Howie and Gilardi
2019) highlighted the potential uses of the VO system,
user’s actions and motions relative to their real-world pos-
ture (Fig. 8) and discovered cases of participants failing to
interact with objects, using the wrong input command/but-
ton, as well as ‘magical interaction’ (Bowman et al. 2012),
which removes the senses of weight and cumbersomeness
from real-life equipment. Participants were also observed to
frequently attempt to interact with objects in incorrect posi-
tions. During our live observation tests, we noticed similar
findings regarding user inputs, but were able to address prob-
lems immediately by communicating to the participant using
voice communication through an open doorway that con-
nected both rooms that they were pressing the wrong button.

From a developer perspective, the ability to view and
replay the input, actions and movement of users offers the
chance to directly observe the process that lead to bugs or
errors, as well as observe human behaviour during simula-
tions. The problem with noticing issues during and after-
action review is that the user has already completed the
simulation by the time identifiable issues are found. If the
user is observed live in real time, as allowed by the system in
the paper, issues can easily be noticed and resolved without
the user struggling and becoming frustrated by the lack of
guidance caused by interaction or usability issues, which
can be especially true for novice users (Tromp et al. 2003).

For simulations to be replicated as experienced by the
user, the same build version of the application must be used
during the live observation or after-action review reconstruc-
tions. If a different build version is used to reconstruct user
data, it may result in the motions and actions of the recon-
struction not replicating the same experience as the user. The
need for consistent build versions only applies to situations
where the changes from the reconstructed simulation build
have a direct impact on the user interactive experience. For
example, if a user picked up a box in a dataset (Build v1),
but the box was no longer present in the updated version
(Build v2), the actions and motions of the user would remain
during reconstruction but no context would be available to
understand what is happening from the observers perspec-
tive as the box is no longer exists. Therefore, backups of the
published simulations should be archived to ensure when
reviewing participant performance, the reconstructed simu-
lations are not impacted by modified conditions.

In this study, we used the ‘Interaction Capture’ mode
of VO for the recording and reconstruction of data. It is
important to highlight, however, that any type of tracking

Fig. 8 Side-by-side comparison of an estimated skeleton posture
obtained from the VO system (left) and a participants posture from
GoPro video footage with OpenCV’s pose estimation (right). The
skeleton posture will deteriorate as and when the participant moves
untracked joints of their body. In Howie and Gilardi’s case, the lack
of torso tracking caused the entire structure to rotate to match that of
the HMD. Because feet and knee joints were untracked the IK sys-
tem estimated the position of the knee joints relative to the ground
and height of the HMD. Therefore, if the participant moved their feet
from the default standing pose as seen above, the lower parts of the
body would stay rigid

Fig. 9 VO was used in a commercial project for remote observation
of a VR simulation during development giving the client the opportu-
nity to monitor progress using VO WebGL and Desktop builds of the
VR application. VO was later used to review trainee VR experiences,
as seen here: https ://www.dropb ox.com/s/uaako vec35 18cvx /Virtu
alObs ervat ionVR Demon strat ion.mp4?dl=0

https://www.dropbox.com/s/uaakovec3518cvx/VirtualObservationVRDemonstration.mp4?dl=0
https://www.dropbox.com/s/uaakovec3518cvx/VirtualObservationVRDemonstration.mp4?dl=0

 Virtual Reality

1 3

device that supports the Unity object system for updating
the transforms of the tracking device(s) will be supported
by the system. This functionality aims to offer universal
support to suit the needs of researchers and developers
working with novel technology. To demonstrate the flex-
ibility of the system, we used a Leap Motion hand tracking
device to capture the object references our hands in Unity,
whilst we interacted with a virtual car desktop screen to
modify the car configuration. The movement of the hands
whilst interacting with the virtual desktop screen was
reconstructed, repeating the motions and button presses
conducted during the recording (Fig. 3). This type of
functionality can extend to other areas of tracking devices
such as Face Tracking (Li et al. 2015; Olszewski et al.
2016) and Eye-Tracking (Meißner et al. 2017) which can
offer greater insight into user experience. Jacob and Karn
(2003) have stated that with eye-tracking, the scan path,
gaze interest and fixation interest can indicate a user’s
intended target before they could ‘actuate any other input
device’ (Jacob and Karn 2003, p. 589]. The inclusion of
VO software will allow for these interaction devices to
be saved and reconstructed, improving the data collec-
tion and analysis for studies. Using the VO software, it
can streamline the process of assessing users, with recon-
structed simulations able to accommodate several tracked
devices and reconstruct them simultaneously with relative
contextualisation to the other devices in the simulation.

In Howie and Gilardi (2019), the skeleton posture cre-
ated using Unity’s IK system was assessed, concluding that
head and hands were tracked accurately with data provided
from the VR equipment, but torso and feet tracking proved
lacking since no real-world object was used to calibrate
their position or orientation (Howie and Gilardi 2019). In
this study, we rectified this issue by using three additional
trackers, attached to both feet and the torso. Using all six
tracking positions (HMD, two controllers, two feet track-
ers and torso tracker), we were able to achieve ‘full-body’
tracking of users in real-time observation and after-action
review simulations. This tracking set-up could be used to
monitor a user’s location of core body points relative to the
local tracked physical ‘play-space’ they have configured for
their VR set-up.

Developers and researchers can use VO to analyse feasibil-
ity and usability of systems. Educators that adopt VR in their
classrooms can use the data to check and assess how users have
completed training procedures and verify they are correctly
handling equipment or safety procedures. In Howie and Gilardi
(2019), it was highlighted that participant data recorded of a
fifteen-minute simulation using the VO system was always
significantly smaller (around 80MB) than equal length video
recordings using GoPro equipment (around 5.8GB). This con-
tinues to be true, and we demonstrated that the data can be

transmitted on a network to obtain a real-time live simulation
of what users are doing within a VR simulation.

To test the portability the VO system, we exported the pro-
ject to a separate Unity development project which we used
to create a WebGL application that replayed the data recorded
during one of the validation sessions (see Fig. 6 for control-
lable observation demonstration). Because SteamVR does
not support WebGL, VO bypasses these restrictions enabling
the VR simulation to be reconstructed and observed in web
browsers, which animation capture of simulation data for input
modification would be unable to achieve due to the lack of
SteamVR compatibility (see example in Fig. 6). The examples
presented in this paper show the flexibility of VO for record-
ing VR user simulations and reconstructing them on multiple
platforms.

Datasets recorded from users with the VO system can be
used to replicate the actions and motions of the user, simulat-
ing the use of VR equipment without relying on the equip-
ment resources. The ability to share the user sessions allows
external observers to analyse datasets without having access
to the equipment, software and development area of the pro-
ject and allowing researchers (after ethical approval and user
consent) to share data with collaborators and reviewing panels,
as well as allow other researchers validate research findings.
Using our system, software houses can report bugs accurately
to the relevant department and educators to document trainee
assessments.

An issue we faced during this study was the variation of
positional data of tracked objects during the action of picking
up and dropping objects. We originally intended to compare
the transform of each tracked device during the instance of the
pickup or drop action being completed; however, we noticed
slight inconsistencies in positional and rotational data between
the datasets. After investigating the data recorded on the client
PC and server PC, we discovered that the issue was caused by
the minor modification of the controllers in real space during
the fractional time difference of input state recorded and an
action being captured. We anticipate this minor discrepancy in
data was caused by the real-time updating of the render models
which aims to keep the virtual controls consistent with their
position in real world to satisfy the user experience. This minor
discrepancy in pickup position does not affect the VO system
as the action transform positions were consistent for both the
client and server datasets. To keep action and input persistent
during reconstruction the transform of the interaction devices
were modified prior to the physics update of the game engine.

8 Limitations

Packet loss during the transmission of data could result in
loss or corruption of simulation data as an action-frame
would be skipped from the reconstructed simulation during

Virtual Reality

1 3

live observation. Like any set of data submitted over a wire-
less connection, there is potential for individual packets data
to be lost. Unfortunately, this is a networking issue with the
Unity game engine networking architecture and not our VO.
We have provided potential solutions in Sect. 6, to mitigate
this issue.

Recording of non-serialisable Unity components requires
the developer to extend within the source-code the required
variables, potentially making the ‘Full Simulation Capture’
mode too complex for non-technical users. We hope to
improve this in the future, making the ‘Full Simulation Cap-
ture’ mode as user-friendly as the standard mode. One of the
difficulties faced with the Full Simulation Capture version of
the software was the inability to record data of the additional
tracked objects dynamically. We were able to successfully
record all data (variables) from objects and reconstruct them
using system reflection. However, system reflection has an
unavoidable impact on system performance and caused too
much lag in the simulation during reconstruction.

9 Conclusion

This paper built on Howie and Gilardi’s Virtual Observation
system (Howie and Gilardi 2019) for observing the motions,
inputs and actions of users in virtual reality simulations.
VO was validated in Howie and Gilardi (2019) for after-
action review of users performance in a detailed fire training
simulation scenario (Fig. 1), proving that the VO system
was capable of reconstructing detailed simulation from only
the input and actions of a participant with no other track-
ing data required. In this paper, we have demonstrated the
capability of the VO system for reconstructing simulations
in real time with consistent datasets for live and after-action
(offline) review of user sessions, capable of both full body
tracking and hand tracking set-ups. We also demonstrated
the ability for researchers, developers and educators to share
VR simulation data to conventionally unsupported platforms
(WebGL).

We conclude that these recordings are on par with Lopez
et al. (2017), but offer greater clarity into high-level tech-
nical details of the simulation and the role played by the
VR user (how the actions of the user affect the simulation
procedure), offering context from cause and effect relation-
ships of user’s actions (Hanoun and Nahavandi 2018). With
the inclusion of live observation, user performance can be
immediately assessed with the potential for observers to have
instant clarification to issues the user may be experiencing.
For research purposes, the ability to generate visual data
output to contextualise VR research can also be a key benefit
for researchers and study validations. Given that screenshots
and videos can often have limited contextual awareness, the

ability for researchers to control the observation of user data
themselves can help clarify authors’ findings.

VO was incorporated into a commercial product to let
clients review the functionality of a VR simulation through
a WebGL visualiser without need for software to be down-
loaded or without the constraints of pre-recorded videos.
Using the VO software, the client was able to view for them-
selves the interactions and protocols of a training simulation
remotely from the development location without requiring
VR equipment or additional software. Unfortunately, due
to confidentiality agreements, we are not able to share any
additional data or details at the moment (Fig. 9).

For researchers, the VO system offers greater scope for
experiment complexity and reach, allowing for studies to
be conducted in external locations (‘in the wild’) with data
retrievable for analysis. For development of VR applica-
tions, this software can be of use to allow identification and
replication of bugs with consistent repeatable simulations
from a single capture dataset to ensure reliable analysis is
conducted. After resolving a bug or issue experienced by the
user, the same user dataset can be rerun to ensure that the
issue captured originally is not repeated, indicating when
the issue is resolved.

We conclude that VO of reconstructed simulations is a
highly effective and versatile tool for researchers, educators
and developers which is enhanced by the ability to observe
simulations in real time. The streaming of data in real time
during live observations also circumvents the need for data
to be stored on external services, avoiding the issues faced
by bandwidth usage experienced in Howie and Gilardi
(2019).

For future work, it will be interesting to determine
whether and how the VO system could be incorporated
directly into an automated evaluation system that provides
instant feedback (Hanoun and Nahavandi 2018) for situa-
tions where an observer is not available.

Acknowledgements The authors would like to thank Swagelok Scot-
land Ltd. for using our VO system to review simulation procedures,
protocols and interactions during development of their training applica-
tion and allowing the screenshot from their application to be included
in this paper.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/

 Virtual Reality

1 3

References

Blomberg J, Burrell M, Guest G (2007) The human-computer interac-
tion handbook. L. Erlbaum Associates Inc., Hillsdale, NJ, USA,
chap An Ethnographic Approach to Design, pp 964–986. http://
dl.acm.org/citat ion.cfm?id=77207 2.77213 3

Bowman DA, McMahan RP, Ragan ED (2012) Questioning naturalism
in 3d user interfaces. Commun ACM 55(9):78–88

Carranza J, Theobalt C, Magnor MA, Seidel HP (2003) Free-viewpoint
video of human actors. ACM TOG 22:569–577

FitzGerald E (2012) Analysing video and audio data: existing
approaches and new innovations. Surface Learning Workshop
2012, Bristol, UK

Goldberg SL, Knerr BW, Grosse J (2003) Training dismounted com-
batants in virtual environments. Technical report, Army Research
Development and Engineering Command Orlando FL Simulation

Greenberg S, Buxton B (2008) Usability evaluation considered harmful
(some of the time). In: Proceedings of the SIGCHI conference on
Human factors in computing systems. ACM, pp 111–120

Greenhalgh C, Purbrick J, Snowdon D (2000) Inside massive-3: flex-
ible support for data consistency and world structuring. In: Col-
laborative virtual environments: proceedings of the third interna-
tional conference on collaborative virtual environments, vol 2000.
CiteSeer, pp 119–127

Greenhalgh C, Flintham M, Purbrick J, Benford S (2002) Applications
of temporal links: recording and replaying virtual environments.
In: Proceedings IEEE virtual reality 2000. IEEE, pp 101–108

Hanoun S, Nahavandi S (2018) Current and future methodologies of
after action review in simulation-based training. In: Proceeding of
the 2018 annual IEEE international systems conference (SysCon).
IEEE, pp 1–6

Howie SR, Gilardi M (2019) Virtual observation of virtual reality
simulations. In: Extended abstracts of the 2019 CHI conference
on human factors in computing systems, association for comput-
ing machinery, New York, NY, USA, CHI EA’19, pp 1–6. https
://doi.org/10.1145/32906 07.33128 36

Jacob RJ, Karn KS (2003) Eye tracking in human–computer interac-
tion and usability research: ready to deliver the promises. In: The
mind’s eye, Elsevier, pp 573–605

Jung B, Amor HB, Heumer G, Weber M (2006) From motion capture to
action capture: a review of imitation learning techniques and their

application to VR-based character animation. In: Proceedings of
the ACM symposium on Virtual reality software and technology.
ACM, pp 145–154

Lang P (2019) Final IK. https ://asset store .unity .com/packa ges/tools /
anima tion/final -ik-14290 . Accessed 04 Apr 2019

Lazar J, Feng JH, Hochheiser H (2017) Research methods in human–
computer interaction. Morgan Kaufmann, Burlington

Li H, Trutoiu L, Olszewski K, Wei L, Trutna T, Hsieh PL, Nicholls A,
Ma C (2015) Facial performance sensing head-mounted display.
ACM ToG 34(4):47

Lopez T, Dumas O, Danieau F, Leroy B, Mollet N, Vial JF (2017) A
playback tool for reviewing VR experiences. In: Proceedings of
the 23rd ACM symposium on virtual reality software and technol-
ogy. ACM, p 83

Meißner M, Pfeiffer J, Pfeiffer T, Oppewal H (2017) Combining virtual
reality and mobile eye tracking to provide a naturalistic experi-
mental environment for shopper research. J Bus Res 100:445–458

Olszewski K, Lim JJ, Saito S, Li H (2016) High-fidelity facial and
speech animation for VR HMDs. ACM TOG 35(6):221

Petrie H, Hamilton F, King N, Pavan P (2006) Remote usability evalu-
ations with disabled people. In: Proceedings of the SIGCHI
conference on human factors in computing systems. ACM, pp
1133–1141

Reitmayr G, Schmalstieg D (2005) Opentracker: a flexible software
design for three-dimensional interaction. Virtual Real 9(1):79–92

Tromp JG, Steed A, Wilson JR (2003) Systematic usability evaluation
and design issues for collaborative virtual environments. Presence
Teleoper Virtual Environ 12(3):241–267

Von Spiczak J, Samset E, DiMaio S, Reitmayr G, Schmalstieg D,
Burghart C, Kikinis R (2007) Multimodal event streams for virtual
reality. In: Multimedia computing and networking 2007, interna-
tional society for optics and photonics, vol 6504, p 65040M

Wobbrock JO, Kientz JA (2016) Research contributions in human–
computer interaction. Interactions 23(3):38–44

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://dl.acm.org/citation.cfm?id=772072.772133
http://dl.acm.org/citation.cfm?id=772072.772133
https://doi.org/10.1145/3290607.3312836
https://doi.org/10.1145/3290607.3312836
https://assetstore.unity.com/packages/tools/animation/final-ik-14290
https://assetstore.unity.com/packages/tools/animation/final-ik-14290

	Virtual Observations: a software tool for contextual observation and assessment of user’s actions in virtual reality
	Abstract
	1 Introduction
	2 Definitions
	3 Related work
	4 The Virtual Observation system functionalities and design
	4.1 Interaction capture
	4.2 Full simulation capture
	4.3 Reconstruction system
	4.4 After-action review
	4.5 Live-action review
	4.6 Reviewing observations
	4.7 Review functionalities
	4.8 Technical configuration

	5 Methodology
	6 Results
	7 Discussion
	8 Limitations
	9 Conclusion
	Acknowledgements
	References

