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Abstract
In this paper, we present ‘Virtual Observation’ (VO) a software tool for contextual observation and assessment of user’s 
directly from within the virtual reality (VR) simulation framework. Unlike other recording systems, the VO system described 
in this paper focuses on recording and reconstructing VR user’s positional, rotational and input data to recreate the same 
experience the user had with a VR simulation. Different from animation-based approaches, VO records user inputs and 
reconstructs the simulation from them and the user positional data. Moreover, the system allows the broadcast of this infor-
mation to a remote machine enabling remote live observation of the simulation. Datasets recorded by the system can be 
shared by exporting them as XML files or, optionally, into a standalone online application, such as browser WebGL, allow-
ing researchers, developers and educators to share and review a VR user simulation through a free-moving camera using a 
web browser. In this paper, the consistency of the data generated from the software by the client, server and reconstructed 
datasets acquired during real-time live observations was evaluated. We conclude that this Virtual Observation software 
offers detailed reconstruction of low-level information and visual information of user actions during simulations for both 
live and offline observations. We envision that our system will be of benefit for researchers, developers and educators that 
work with VR applications.

Keywords  Virtual reality · Virtual Observation · Observing · Replaying · Reviewing · Simulations

1  Introduction

Direct observation of users in their context can offer insight 
on design challenges (Lazar et al. 2017) and circumvent the 
issue often encountered of users describing inaccurately 
what they did due to a lack of awareness or understand-
ing of the task or system under study (Blomberg et  al. 
2007). The ability to replay and review user’s sessions is 
an important tool for assessment (Lazar et al. 2017). How-
ever, when it comes to studying users in virtual reality (VR), 
performing contextual studies becomes challenging, as the 
user and the observers are positioned in two different con-
texts: the observer is in the real world, whilst the user is in 
the VR context. Observing users from inside the same VR 

simulation allows insight into their performance (Hanoun 
and Nahavandi 2018) and helps in determining the cause 
and effect relationships from user actions (Hanoun and 
Nahavandi 2018). Unlike desktop computers, VR equipment 
has six degrees of freedom (Tromp et al. 2003), and because 
of VR’s unrestricted movement, usability issues are common 
for inexperienced users (Tromp et al. 2003).

Currently, to observe users using a VR simulation an 
observer needs to be physically present to observe the 
user’s body movement in the real world, take notes on what 
the user does or video record and screen capture the user. 
Although rigorous, this type of observation is difficult, 
requires large data storage for the videos, can impact the 
simulation performance and offers limited insight of the 
users experience and interaction. The ideal solution would 
be to experience the exact perspective of users, but this 
approach has the drawback that it can induce motion sick-
ness on the observer (Lopez et al. 2017). Observations can 
be conducted from mirrored perspectives of VR users on 2D 
screens, but these recordings cannot guarantee knowledge 
of the state and location of the input devices when the user 
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is not looking at them, limiting studies inside and outside 
laboratory conditions. Video recording users offer visual 
clarity of their movement in VR, but the point of view of 
the recording camera is fixed in position and user actions 
can be obscured from the camera point of view. Moreover, 
this approach requires the video data be paired and synced 
with simulation data, such as 2D-screen recordings of the 
VR perspective before it can be analysed.

This paper builds upon Howie and Gilardi’s ‘Virtual 
Observation’ system described in Howie and Gilardi (2019). 
Howie and Gilardi (2019) system records and reconstructs 
virtual actions of users in a simulation, allowing researchers 
and developers to virtually observe users in a VR simulation. 
The term ‘Virtual Observation’ (VO) is used as observers 
are not observing the user directly, but instead they observe 
the input, movements and actions conducted by the user 
within the simulation. Collected input and movement data 
is used to recreate the user experience in the simulation with 
synced actions and approximate movement. In Howie and 
Gilardi (2019), VO was validated in a detailed simulation 
environment for fire safety which tasked the participant 
to correctly identify and extinguish fires in a VR training 
simulation (Howie and Gilardi 2019) (Fig. 1). VO was used 
for reconstructing users movement and actions for review 
after-action, meaning the observation was conducted after 
the user had completed the simulation (Howie and Gilardi 
2019). The VO system in Howie and Gilardi (2019) can 
reconstruct VR simulations for a wide range of use cases 
(Wobbrock and Kientz 2016).

Building upon the initial version of VO (Howie and 
Gilardi 2019), we expanded the system functionalities to 

allow for remote live observation of users via WiFi from an 
external location in real time using Unity’s default network-
ing architecture, added configuration for full body tracking, 
optional hand tracking and an ‘Full Simulation Capture’ 
recording mode that can record and reconstruct external 
tracked object classes and variables. Moreover, controls such 
as play/pause and rewind/fast-forward were added to allow 
observers control over the reconstructed simulation.

Although there are other popular platforms that facili-
tate the development of VR applications, such as the Unreal 
Engine, we chose to develop the system using Unity. This 
choice was made for convenience; Unity is one of the popu-
lar and widely used platforms for developing VR and the 
platform with which authors are most familiar. However, 
the principles underlying VO, i.e. recording user input and 
positional tracking data to reconstruct the simulation, can 
be transferred to other engines, and Unity should be seen 
throughout the paper as the mean that we chose to prove that 
a system such as VO can be developed.

This paper contributes to the field of virtual reality by 
presenting a new approach to recording VR simulations for 
training scenarios. The approach is implemented as a proof 
of concept of a versatile tool that will allow researchers, 
developers and educators that use VR, to observe, evaluate 
and share user actions and interactions within a VR simula-
tion, either live or by reconstructing it via recorded data. 
Moreover, we demonstrate that: 

1.	 data generated by VO can be reliably streamed to a 
remote machine for real-time live observation of a user 
VR session,

2.	 streamed VO data can be recorded in the observer’s 
remote machine and that simulations reconstructed from 
this data are identical to the VO data recorded on the 
user machine during the user simulation, showing VO 
reliability in recording VR user sessions,

3.	 VO data can be used to share the VR user session after 
it has ended on both VR and non-VR platforms, such as 
a WebGL visualiser.

2 � Definitions

The following terms will be used in this paper:

–	 Motion key-frame values are the position, rotation and 
scale of the tracked devices in the virtual simulation 
space. Motion key-frames are recorded through-out the 
duration of the simulation in sequential order, later being 
used to reproduce the movement of the VR user dur-
ing reconstruction. We refer to motion key-frame data 
as high-level information which is acquired from real-

Fig. 1   Screenshot captured from video comparison showing real-time 
video capture of a simulation and rebuilt capture using Virtual Obser-
vation. The full video can be viewed here: https​://www.youtu​be.com/
watch​?v=2YY-d7QMU​VI . The Virtual Observation system can be 
included in any SteamVR compatible Unity project by adding the VO 
component to the default VR camera rig set-up and linking the input 
states of the developers/researchers interaction system (so the actions 
can be recorded and later replicated). Recorded data can be stored in 
XML or JSON file formats and supports all VR headsets and tracked 
controllers that are compatible with SteamVR and the Unity game 
engine

https://www.youtube.com/watch?v=2YY-d7QMUVI
https://www.youtube.com/watch?v=2YY-d7QMUVI
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time values from the Unity transform component during 
a simulation.

–	 Action key-frame are frames in which input from one of 
the controller devices has been modified from a previous 
state, for example, a button on a tracked VR input device 
that changes state from idle to being pressed down would 
be recorded as an action key-frame, since a variable that 
derived from a VR input devices had been altered. We 
consider action key-frame data as low-level information 
since the data acquired is in a raw data format of values 
that correlate as one’s, zero’s or customised values, with 
input values acquired or derived from the VR controller 
button state changes. During reconstruction, the action 
key-frames are reconstructed to replicate the experience 
of a VR controller device being modified.

–	 The terms Rewind and Fast-forward are used to describe 
the functionality in the VO system that allow users to 
jump to a specific time frame, before or ahead of the cur-
rent time position, and see the simulation from that point 
onward. The terms are used for a lack of better words to 
describe the functionality and should not be confused 
with being able to see the simulation replayed backwards 
or at accelerated speed.

3 � Related work

The problem of finding a way to review VR simulations is 
not new, and systems similar to VO have been previously 
proposed in the literature. One of the earliest examples is 
Goldberg et al. (2003), which used early implementations of 
VR technology to replay and review army training simula-
tions in an effort to measure users performance. Goldberg 
et al. (2003) after-action review system used event data col-
lection processes to capture the events that took place during 
a simulation. Whilst this offers a guarantee that an event can 
be triggered repeatedly during the after-action review, the 
input of the VR user is not recorded. Therefore, any usability 
issues experienced by the VR user cannot be replicated and 
therefore prevent usability analyses to be conducted.

Greenhalgh et al. (2002) developed a technique of tem-
poral links which enabled the recording of data in the MAS-
SIVE-3 system (Greenhalgh et al. 2000), with the objec-
tive to link prior recordings to real-time VR environments. 
Greenhalgh et al. (2002) system operates by recording all 
changes made to the virtual environment at run time. The 
focus of Greenhalgh et al. (2002) work was integrating VR 
data for media use in film and television and incorporation 
of previous VR experiences into a real-time VR environ-
ment to create new content or review experiences. Using 
temporal links, Greenhalgh et al. (2002) method allowed 
recorded virtual environment can be replayed and embedded 
into a live virtual environment for purposes of extending 

the live virtual environments content or narrative structure. 
Although not stated, the implementation of temporal links 
(Greenhalgh et al. 2002) appears to be designed for desk-
top VR and not head-mounted display VR. Likewise, the 
description of the temporal links system (Greenhalgh et al. 
2002) hints that the recording and reconstruction of the tem-
poral links use animation-like recording of the virtual envi-
ronment rather than raw data interpretation of the VR users 
as used in VO, which enables usability testing and repeatable 
interactions for development and bug fixing. In a use-case 
example for reviewing virtual experiences (Greenhalgh et al. 
2002), the authors describe the ability to replay the virtual 
environment from any perspective but do not discuss any 
ability for interaction of user input or variable monitoring 
of recorded objects. This lack of clarity suggests the tempo-
ral links system is animation based which suffers from the 
same limitations as other animation reconstruction systems 
(Lopez et al. 2017), such as the lack of raw user-input data, 
which limits the understanding of usability issues from input 
devices.

Similar to Greenhalgh et al. (2002), Von Spiczak et al. 
(2007) expanded upon the OpenTracker framework (Reit-
mayr and Schmalstieg 2005) to create a multi-modal event 
processing system. A feature of Von Spiczak et al. (2007) 
approach is the ability to capture position, orientation and 
interactions of equipment from the multi-modal event data 
structure. This data structure can be used to replay, review 
and document VR interactions in a virtual environment in 
a serialised order. These recordings captured positions and 
orientations of the tracked objects along with other inter-
actable object information within the virtual environment. 
When replayed, these simulations would reconstruct the 
event with a time-delay between the captured data points. 
Von Spiczak et al. (2007) show that their system is viable, 
but only discuss briefly the reconstruction of interactions in 
their paper, using the data reconstruction example as a use 
case for their multi-modal event processing system designed 
for the OpenTracker framework (Von Spiczak et al. 2007; 
Reitmayr and Schmalstieg 2005). Von Spiczak et al. (2007) 
make no mention of rewind or pause ability, observational 
potential, live broadcasting of data, portability of their sys-
tem and functionality of the system beyond the ability to 
replay and log the VR interactions in real time. Both Green-
halgh et al. (2002) and Von Spiczak et al. (2007) imple-
mentations are designed as extensions for specific systems 
and are incompatible with the Unity platform, which relies 
on game engines. In comparison with VO, the discussed 
implementations (Greenhalgh et al. 2002; Von Spiczak et al. 
2007) share some methodological similarities in approach 
for capturing and reconstructing actions; however, Von Spic-
zak et al.’s (2007) study lacks important functionalities for 
allowing effective observations of VR users, such as: control 
the perspective, time and playback of the reconstruction, 



	 Virtual Reality

1 3

live observation, automatic data serialisation, recording 
and reconstructing objects and variable data beyond the VR 
interaction devices, lightweight portability of data and multi-
user data capture.

More recently, Lopez et al. (2017) used a technique that 
creates and stores animation of movement and object manip-
ulations conducted by the user. Although effective, Lopez 
et al. (2017) system is restricted at re-creating the motions 
of the simulation and does not store low-level information 
about the interaction. Because Lopez et al. (2017) system 
stores all data into animation files, the data can only be 
accessed using the Unity game engines animation system, 
preventing statistical data to be collected for state or posi-
tional analysis in external programs.

A system similar to VO was created by Jung et al. (2006). 
Although Jung et al. (2006) system is capable of creating 
reusable animations for animating 3D character models, it 
only records predetermined input states for grasping an iden-
tified object. Unlike our VO system, which aims to capture 
all states from VR input devices, such as the state of input 
buttons, including raw values of analog inputs. Jung et al. 
(2006) system focuses on storing the grasp events so they 
can later be imitated for manipulating virtual scenes with 
different grasping types. Like Lopez et al. (2017), Jung et al. 
(2006) pre-defined input and interaction objects limit the 
high-level information that can be gathered from observing 
the animations, with neither systems aiming to capture all 
states of the VR input devices. Both Lopez et al.’s (2017) 
and Jung et al.’s (2006) methods are limited as for in-depth 
analysis of user’s actions in a simulation knowledge of high-
level information (input and devices states) is necessary.

Alternative ‘virtual’ means of observation can be used to 
monitor participants in VR remotely through the use of cam-
eras and remote screen sharing (Lazar et al. 2017), but these 
options cannot guarantee knowledge of the state or location 
of tracked devices. Even with these forms of observation 
available, for remote studies conducted ‘in the wild’, setting 
up software or hardware for observing remote users could 
be a challenge (Petrie et al. 2006). These observation meth-
ods also require the participant to have access to suitable 
recording hardware and accompanying software for remote 
observations to be possible.

Video and audio recordings are a common way for studies 
in laboratory and ‘in the wild’ to document experiments and 
procedures that can be then analysed qualitatively (FitzGer-
ald 2012). These recordings aim to make it possible to ana-
lyse the events in the experiment after the experiment has 
been conducted using a format that is easy to share between 
collaborators and for demonstration purposes (FitzGerald 
2012). Our VO system adopts (FitzGerald 2012) approach 
and innovates the medium to a digital data format designed 
for recording and reconstructing VR simulations that can 
be shared independently of a development system for 

browser-based collaboration. Parallel to transcription work 
that is often applied to audio and video recordings (FitzGer-
ald 2012), VO allows for software detection of user input 
and movement, that in the future, could be paired with AI 
for analysis of participant actions.

Different from the systems discussed, VO focuses on the 
low-level acquisition and reconstruction of data in an easily 
controllable dataset that once implemented into an applica-
tion automatically and non-invasively records the actions of 
a participant in a VR simulation, without any modification 
by the developer or end-user. In VO, the recording of user 
inputs depends exclusively on the input controllers SDK 
(OpenVR, Oculus SDK, Leap Motion or other third-party 
SDK) chosen for the VR simulation, allowing different types 
of controllers to be supported, as shown in Fig. 3 where 
hand tracking is used in place of the VIVE controllers, and 
new controllers can be easily added in the future to adapt to 
the fast evolving VR input modalities. Finally, rather than 
replaying a VR simulation as an animation (Lopez et al. 
2017; Greenhalgh et al. 2002), VO reconstructs the experi-
ence using the low-level data of the VR users movement and 
input. Moreover, the system is designed to be lightweight, 
portable and user-friendly and it is developed using a mod-
ern game engine, namely Unity.

4 � The Virtual Observation system 
functionalities and design

The VO system presented in this paper is a combination 
of unrestricted observation of users (Carranza et al. 2003) 
with an improved form of action capture (Lopez et al. 2017; 
Jung et al. 2006) and allows users to be observed from any 
perspective. Rather than storing information of the entire 
environment, the VO system records users movement and 
changes in low-level information data captures. The low-
level information captured is configurable and as default 
supports all OpenVR hardware input devices, but can easily 
be extended to suit other input devices; for instance, Fig. 3 
shows the integration of Leap Motion. A callback pattern 
allows VO to listen and dynamically record extended input, 
such as additional API input information. In contrast to 
Jung et al. (2006) and Lopez et al. (2017), which record the 
motion of the interacted virtual objects directly, the major 
contribution of the VO system is that only users inputs, 
device states and tracking information is recorded by the 
system. The VO system captures and records an uncon-
strained number of tracked objects and devices in addition 
to three tracked main VR devices: head-mounted display 
(HMD) and two controllers. By adding additional tracked 
objects (Fig. 2),

non-player controlled objects such as AI characters or 
non-deterministic physics-affected objects can be reliably 
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tracked, ensuring that the reconstructed simulation is con-
sistent with the simulation ‘as-experienced’ by the user. 
Unrestricted tracked objects and devices also allow for novel 
or unconventional objects to be tracked, expanding the scope 
of the tracking hardware to include additional interaction 
systems that rely on eye-tracking or hand-tracking (Fig. 3).

The proof of concept for the VO system was implemented 
as a plug-in for the Unity game engine and can operate in 
two modalities, ‘Interaction Capture’ and ‘Full Simula-
tion Capture’. The Interaction Capture mode records and 
reconstructs VR users position, rotation and actions within 

a simulation, isolating data captured to modifications made 
by a single participant. However, as the ‘interaction cap-
ture’ recording technique does not capture non-deterministic 
objects, an advanced method which can be toggled to auto-
matically capture all gameobjects that contain non-deter-
ministic factors, such as AI or physics impacted objects, was 
added to the system. The ‘Full Simulation Capture’ mode 
extends upon the ‘Interaction Capture’ mode by including 
serialisable and custom-assigned variables of additional 
tracked objects, which are optional and can be used for the 
reconstruction of AI driven or physics gameobjects that are 
non-deterministic.

4.1 � Interaction capture

To record a VR simulation in VO, positional and rotational 
data of tracked devices are motion key-frames that are 
recorded at a fixed frame rate interval of 10 milliseconds, 
which is the lowest value of the record and reconstruction 
functions being called during a VR simulation (see Howie 
and Gilardi 2019). Input action key-frame when a modi-
fied input state is detected is also recorded, along with all 
non-deterministic game data, such as modified objects with 
physics properties. The recording process stores the current 
transform of all tracked devices in the VR manager with the 
current input modifications. VR tracking configuration data, 
such the width and depth of the physical assigned VR area, 
is also stored to allow for tracking play-space and headset 
system information to be analysed. Tracking configuration 
data allows to contextualise the tracked movement of users 
relative to their configured tracking space in the real world 
during ‘in the wild’ studies.

4.2 � Full simulation capture

The prototype of the VO system in Howie and Gilardi (2019) 
was originally intended for observation of pre-defined train-
ing simulations, which only required the knowledge of the 
VR user to operate (Howie and Gilardi 2019). In this paper, 
we present an extended version of VO that includes a ‘Full 
Simulation Capture’ method of recording external actions 
of other non-player controlled objects. Because some simu-
lations rely on the knowledge of external human interac-
tion factors to regenerate the simulation or AI characters, 
additional objects and their attached components can also 
be recorded and reconstructed to be in sync with the VR 
user. This recording process can automatically serialise the 
additional tracked component data of serialisable classes and 
user-defined data from custom or protected Unity compo-
nents (i.e. Rigidbody or Colliders). This data can be recorded 
in sync with the VR user recording motion key-frame. This 
‘Full Simulation Capture’ mode is less user-friendly than 
the ‘Interaction Capture’ mode because as it requires the 

Fig. 2   The VO system is built for the Unity game engine. The com-
ponent can be attached to any VR player object with options for 
HMD, HMD Eye and controllers the default options for tracking of 
movement. Additional tracking objects offer extension to the prereq-
uisite tracking objects. The variable ‘Full tracking Game Objects’ 
is used for tracking a hierarchy of objects, this will track the parent 
object and all subsequent child objects

Fig. 3   Screenshot captured from a reconstructed simulation that used 
a leap motion tracking device to capture the movement of a user’s 
hands. This demonstrates VO’s ability to extend recording and recon-
struction to a wide range of interaction devices. A video demonstra-
tion of the VO system can be viewed here: https​://www.youtu​be.com/
watch​?v=IX1qj​q1R13​4

https://www.youtube.com/watch?v=IX1qjq1R134
https://www.youtube.com/watch?v=IX1qjq1R134
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developer to specifically detail each component and vari-
able that is required to be recorded and reconstructed during 
development. At present, ‘Full Simulation Capture’ mode 
uses customised classes to store the active status, tag and 
name of objects, accessible ‘rigid body’ and ‘collider’ vari-
ables along with fully serialisable custom classes of tracked 
objects.

4.3 � Reconstruction system

In order to reconstruct the transform data (position and rota-
tion), data-points are captured during the recording of the 
simulation at motion key-frames and action key-frames. 
Motion key-frame data points are captured every 10ms, 
which was found to be reliable for movement estimations, 
whilst action-frames are captured when an input state change 
is registered. During reconstruction, the system determines 
whether the reconstruction time matches a recorded action 
key-frame or motion key-frame (Fig. 4).

During an action key-frame, the input states of the tracked 
devices are reconstructed by rebuilding the data to a class 
structure readable by Unity and assigning them to the object 
that matches the tracker. In our case, this was a VR Input 
management class, which handled the input of the VR con-
trollers that determined the action, values and states of our 
interaction system. When an action key-frame or motion 
key-frame event is called during the reconstruction process, 
all tracked objects are set to the position recorded during 
the recorded key-frame. The software modifies the tracked 
objects based on the current position of the tracked objects 
and next transforms location based on the next action key-
frame or motion key-frame data point. This technique ena-
bles the motion of the participant between timed gaps in the 
data to be estimated from the previous and next action or 
motion key-frames. See Fig. 4 for a diagram of the recon-
struction process.

To determine whether the simulation is recording or 
being reconstructed, conditional checks are used in the VO 
system along with individual information, thus determining 
whether a user has direct control over an object, i.e. the user 
is holding or interacting with the gameobject. These checks 
are primarily designed to let the system know that simulation 
data is expected to vary from recording data and prevents 
individual object recorded data to override the user-driven 
input actions. During reconstruction, this does not matter 
as the user-driven input actions are reconstructed before 
any other game data; therefore, any variable modification to 
held objects will remain consistent. As such, the checks are 
intended for aiding the debugging process of the simulation.

4.4 � After‑action review

To make it possible to review a simulation at a later date or 
time than the original simulation, an ‘after-action review’ 
(offline) process is implemented. Such system focuses on 
recording the data for reconstruction after the user has com-
pleted the simulation. Action events that are registered from 
a change in input state are recorded along with the current 
position of all tracked objects. Key-frames for action and 
motion are sequentially logged in order of time gap from the 
start of recording and stored immediately on a database or 
recorded locally to XML (once the simulation has finished). 
This data can be retrieved and used for a simulation to be 
reconstructed when desired by the developer or researcher.

To replicate the movement and actions of the input 
devices, rebuilt simulations use user datasets. User move-
ment is smoothed between action key-frames when input is 
modified, and motion key-frames that capture the motion of 
the tracked devices. During instances of input changes, the 
position and rotation of the tracked devices is forcibly set 
to ensure that interaction is correctly mapped at the exact 
position and orientation recorded and is not affected by any 
delays or gaps in the animation smoothing process.

Fig. 4   The reconstruction process of the VO system, demonstrating 
how the reconstructed VR character transforms update based on the 
action or motion key-frame data. Transform data of tracked devices 

are recorded every 10ms as motion key-frames, whilst input manage-
ment data and transform data of all tracked devices are recorded as 
action-frames when the a change of input state is detected
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4.5 � Live‑action review

‘Live-action review’ is the process of virtually observ-
ing a user in a VR simulation in real time. This method 
is based on standard networking set-ups for multi-player 
games, in which a main user hosts the network-configured 
game acting as the server, with other players able connect 
to as clients, allowing data to be transferred continuously 
between client and server. The data structure and process 
of recording and reconstructing the data are the same as 
after-action review, but instead of storing it for later use, 
the data is streamed in real time from the client (user) to 
the server (observer). This process updates the simulation 
in real time by monitoring the actions and movement of 
the user from an external location. During live observa-
tion, actions and movement of users of the simulation who 
are clients on the server can be recorded locally, enabling 
data that is streamed to the server during the live observa-
tion to be stored using the same process as after-action 
review. Live-action review uses the Unity game engine 
networking suite to create the area for multiple clients or 
observers to be present within a simulation. Whilst only 
assessed with one client and one observer, in principle the 
software scales with Unity’s multi-player functionality to 
support multiple members for both roles (simulation user 
or observer).

The VO system can be incorporated into existing infra-
structures, requiring only one component class for data 
allocation. This approach allows the system to use Unity 
2018’s standard Networking Interface UNET for live trans-
mission of data. Unity has since deprecated this Networking 
Interface, but the software will be compatible with Unity’s 
replacement Networking architecture or any alternative that 
allows custom data transmission in real time. Live-action 
simulations use the networking data from the Unity net-
work transform components to update the transforms of 
the tracked objects on the server (Fig. 5). These transforms 
have a send rate of 25 network updates per second, but 
locally saved movement recording of the tracked devices 
remains at 10 ms. When an input state change is registered 
on the client and sent to the server, all tracked objects on the 
server (including any other connected clients) are updated 
to their recorded position when the input state change was 
detected. This ensures that the transform of the objects dur-
ing a received input action is consistent with their position 
on the client and is not affected by any lag or networking 
issues. Due to University firewall settings, we were only able 
to perform tests using a WiFi local area network (LAN); 
therefore, lag may be present when applied in different net-
works configurations depending on the connection of the 
server and client. Different network connections may cause 
potential issues over long distances or bandwidth limita-
tions. However, we show in this paper that these issues are 

not caused by the VO system and are only dependant on the 
networking architecture used.

4.6 � Reviewing observations

Using an inverse kinematic (IK) system, an estimated skel-
eton posture of the user can be generated using the rebuilt 
tracking points from the VR equipment (Fig. 8); these track-
ing points map the head, hand and other tracked VR loca-
tions of the user to an avatar for real time or after-action 
animation. To implement this, we used the FinalIK (Lang 
2019) package for full-body tracking of the participants 
head, hands (controllers), torso and feet.

To observe users, the observer can either control a virtual 
3D camera or use a separate HMD attached to the server 
computer (Fig. 6). Both forms of observation explore the 
reconstructed simulation in real time. To reproduce a user 
simulation, the rendering and update of the Unity game 
engine had to be mimicked to prevent positional data from 
being set or timed incorrectly from the original data time-
stamps. This required to modify the fixed update cycle of the 
Unity engine which we set to update every 10ms to match 
the recording interval.

Time-frame reproduction was improved with respect 
to Howie and Gilardi (2019) system, obtaining smoother 
transitions of action key-frame and motion key-frame cap-
ture points in after-action review reconstructions. One issue 
in Howie and Gilardi (2019) system was that a frame was 
skipped between the action and reproduction of the input 

Fig. 5   Unity’s networking configuration for sending packets of data 
between client and server in real time. Each player VR character is set 
as a local player authority on the network, with network transforms 
attached for the top hierarchical object, and child network transforms 
for all tracked child objects of the VR character. Data packets were 
sent for the tracked objects at a send rate network cycle of 25 updates 
per second  
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which was caused by Unity’s update pipeline. By using a 
modified order to the script execution pipeline, the skipped 
frame can be avoided with actions registered in the same 
action key-frame as the recorded input. To achieve this, the 
script execution order in Unity is changed so that the script 
that rebuilds the simulation is given priority over the input 
action scripts that determine the controller input actions; 
this ensures that the movement transforms and input state 
of the devices are exact during the time of an input state 
change. The execution of physics interactions for collisions 
is staggered during the reconstruction so the physics and 
events of objects replicate the expectations of the engine, 
with movement for physics collisions and triggers executed 
prior to input modifications.

The VO system is designed as ‘drag and drop’ compo-
nent in Unity; this design choice was taken to simplify the 
integration of the system in VR simulations. The replication 
of movement can be achieved by adding the VO system to 
the top-hierarchy object of the player character and assign-
ing the desired tracked objects (Fig. 2). Every VR player 
controlled character in a scene is individually recorded, 
independent of other users. This streamlines the process of 
storing and re-accessing data that is only applicable to a 
single-user performance and limits damage caused by band-
width constraints or data corruption. For group simulations 
where an observed user interacts with other users in a single 
scenario, each individual dataset for all users can be loaded 
and reconstructed simultaneously, reproducing the move-
ment and actions of all users within a single observation 
session. Recorded audio group communications can also be 
reproduced as VO records from the microphone input of 
each user if a microphone is attached to their VR headset 
and it is active. The audio can also be isolated for individual 
users, which is useful in scenarios where group communica-
tion makes it difficult to hear an individual user speaking.

Data can be acquired in several ways. For live obser-
vation of users, data streamed to the live observer can be 
recorded locally on the server. When data is received by 
the server during live observation, the reconstruction of the 
data is processed in real time and stored by replicating the 
data capture process that is being conducted on the client 
side. Alternatively, data can be acquired from the client by 
retrieving a locally stored XML file, avoiding the need for 
online database hosting. If a study is being conducted in a 
remote location, making the retrieval of data from the cli-
ent computer impossible, an online database can be used to 
host the client data which can then later be retrieved by the 
observer when required. See Fig. 7 for a diagram of the data 
storage options.

4.7 � Review functionalities

Review functionalities for observers allow to control the 
reconstructed simulation playback (play, pause, fast-forward 
and rewind) and observational position during and after-
action review. These functionalities work independently of 
any external VR plug-ins or frameworks, allowing observa-
tions to be conducted on any Unity supported platform. In 
this paper, we show VO being used to observe a recorded 
VR simulation within a VR application, a desktop applica-
tion, WebGL web browser hosted on a website and within 
the Unity game-engine itself and show the potential of VO 
being used for observational purposes in multiple fields.

Rewinding and Replaying a reconstructed simulation 
using the ‘Full Simulation Capture’ mode will result in 
repeated game events being re-simulated. During rewind 
instances, modified variable information will be restored 
back to previous values which will then be re-simulated 
when the reconstruction resumes in forward playmode. 

Fig. 6   Observers can observe users using a virtual 3D desktop cam-
era or by equipping a VR HMD. Observations can take place live in 
real time with the user, or at a later stage for after-action observation. 
User datasets can be observed using the desktop system here: https​://
virtu​alobs​ervat​ionsy​stem.githu​b.io/Virtu​alObs​ervat​ionSy​stem/

Fig. 7   The VO system has multiple methods of storing and retrieving 
data. For live observation, data is streamed to the server, updating the 
simulation in real time and storing the received information locally 
for offline observation later. For after-action review (offline observa-
tion), data is stored on an online database (Firebase) for retrieval by 
the server when necessary. A local XML copy can also be stored on 
the clients PC for recovery in local tests  

https://virtualobservationsystem.github.io/VirtualObservationSystem/
https://virtualobservationsystem.github.io/VirtualObservationSystem/
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Assuming both a fire extinguisher and fire were recorded 
along with the VR user, a reconstruction operating in 
rewind would reverse and the fire extinguisher capacity 
and the fire’s health back to their previous values, along 
with all other recorded data recorded with the individual 
gameobjects. When resuming to play in forward mode, 
the simulation would reconstruct the actions of the user 
extinguishing the fire, since the variable information of the 
gameobjects was reset and the user-driven actions of using 
the fire extinguisher are consistent. This means in the fire 
training simulation demonstrated in Fig. 1, the fire could 
be extinguished and made re-active by the rewinding and 
re-simulating the experience.

Observing a training simulation within VR replicates 
real-world attributes of monitoring a trainee (see video in 
Fig. 9). Moreover, the option for observers to be invisible 
during the observation avoids users’ feelings of discomfort 
caused by the physical presence of the observer. In VR, 
both the observer and VR user share the same context, 
both experiencing the presence and scale of the virtual 
environment. Unlike in the real world, observing in VR 
is non-intrusive, with the ability to monitor the training 
experience from any perspective without interfering with 
the VR training user’s performance.

In desktop applications (Fig.  9), the observation is 
controlled using keyboard and mouse input and operates 
closer to the functionality of video playback, but with 
the functionality of altering the viewing perspective of 
the observation camera. This observational method has 
greater accessibility for observers since the application 
can be operated using standard computer hardware, with 
no additional hardware or programs beyond the simulation 
application.

Like the desktop implementation of VO, the WebGL 
browser functionality is an accessible and portable method 
of observing VR simulations (Fig. 6). WebGL applications 
can run on any web browser platform that supports Unity’s 
WebGL platform. WebGL applications have the advantage 
of being portable to online websites that can run without 
any software being downloaded or installed. The portability 
and accessibility of VO enable VR simulations to be shared 
online, allowing the observer using the WebGL application 
to control their perspective of the observation.

Observing can be also done from within the Unity game 
engine (Fig. 3), enabling data analysis of the reconstruction. 
We envision this functionality particularly useful for devel-
opers, allowing them to identify bugs and usability issues 
during testing phases of VR applications. Moreover, devel-
oper can test their VR experiences on a user-recorded simu-
lation so that, rather than having to frequently re-equip VR 
headset every time they need to test bug fixes, developers 
can monitor the reconstructed user actions live whilst focus-
ing on the development output of the Unity game-engine log.

In all of these platforms, the core functionality of VO 
remains the same in each implementation, enabling playback 
to rewind, pause and play the reconstructed simulation that 
is controlled by the observer of the simulation.

4.8 � Technical configuration

The live observation was incorporated into Unity’s standard 
Networking configuration for Unity 2018. Unity’s default 
networking handles the transform data of the VR tracked 
devices for real time (Fig. 5). To register input actions, the 
VO system monitors for changes in input state of the control-
lers. When an input change is detected, such as a button state 
from ‘DOWN’ to ‘HELD’, the VR input management class 
is converted to a JSON string and sent from the client to the 
server, which distributes this to all other clients connected in 
the simulation. On the server host, all data received from the 
connected clients is recorded and saved locally to an XML 
file once the simulation has elapsed.

5 � Methodology

Building upon previous work (Howie and Gilardi 2019), we 
measure consistency between the data captured on the client 
computer, server and reconstructed simulation using data 
captured by the server, showing VO reliability in recording 
VR user sessions. We are currently only interested in demon-
strating the potential for the software for use by researchers, 
educators and developers to aid VR simulation assessment 
and development rather than conducting a usability tests 
(Greenberg and Buxton 2008).

The assessment of consistent data only used the ‘Inter-
action Capture’ mode of VO because the environment did 
not feature any undefined configurations or unknown vari-
able data. A controlled laboratory condition environment 
was used to validate consistency between client, server, and 
reconstructed datasets. The observer (one of the authors) 
hosted a multiplayer session of the simulation (server) 
located in a separate room next to the laboratory. A wireless 
local area network (LAN) was used to connect client to the 
server (observer) machine located in the adjoining room. 
Due to restrictions of the University firewall, connection 
between the client and server was achieved using a non-
internet-connected router. It is unknown whether this had 
any negative or positive impact on networking performance 
or loss of data packets.

Participants for the test were equipped with a VR HMD, 
two VIVE controllers and three VIVE trackers (for a total 
of six tracking points) and were asked to start a standalone 
build of the application on the client machine. After partici-
pants entered the local IP address of the LAN server hosted 
by the observer, they joined the simulation session hosted by 
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the observer. The measured datasets consisted of the client 
who run the local version of the simulation (Client Dataset, 
Fig. 7), the server who hosted the multi-player simulation 
and observed the client in real time (Server Dataset), and 
reconstruction data generated from an after-action review 
simulation (Reconstructed Dataset) from the data captured 
by the server.

Once ethics approval was received by the university, stu-
dents and staff from the university were recruited via email 
and word-of-mouth. Five participants volunteered and gave 
consent to take part. After consent, they were equipped 
with the VR headsets and allowed to start the session. Dur-
ing the experiment, they were asked to perform the same 
task repeatedly 35 times, picking up and dropping a sword 
in a virtual environment. This type of task was chosen as 
the system captures data only when an input state change 
is detected. Captured data is guaranteed at points of input 
state change in client, and, if the system is reliable, these 
data points should be replicated identically in the server and 
in the reconstruction, ensuring that the observed interactions 
and actions in the simulation are as close as they can be to 
the user interactions and actions. Each participant conducted 
the test in the laboratory room alone with the observer as the 
only other (invisible) character within the VR simulation. 
The observer could move in VR or using the desktop camera 
to observe the participant from any perspective.

To validate the consistency of the position and rotation 
data of each tracked VR object, local data captures were 
recorded on client and server and the server dataset was used 
to reconstruct the simulation and recapture the data. Local 
data captures were saved as XML files and were readable by 
the VO software to reconstruct the actions during a given 
time action key-frame.

As the client dataset stored inputs and devices states 
recorded directly from the hardware, it was used as the base-
line to determine the consistency of the server dataset. The 
value d

i
 , obtained as the absolute difference of values of 

corresponding data linked to tracker i stored in the server s
i
 

and in the client c
i
 datasets, as given in Eq. 1, was interpreted 

as a measure of data consistency between the two datasets; 
any difference between these datasets was attributed to the 
live broadcasting of the simulation via the LAN network.

The difference v
i
 , computed between the server s

i
 and the 

reconstructed r
i
 datasets, as given in Eq. 2, is to be attributed 

to our reconstruction system.

The datasets for the five participants containing the changes 
in inputs and states for each tracked device were used for the 
validation of the VO software, the client dataset had in total 

(1)d
i
= |s

i
− c

i
|.

(2)v
i
= |s

i
− r

i
|.

4,869 entry points, whilst the server and reconstructed data-
sets had 4,866. Three packets were lost during the broad-
casting between the client and the server; those data were 
removed from the client dataset during analysis.

6 � Results

The difference d
i
 , as given in Eq. 1, between the client 

and server datasets and the difference v
i
 , as given in Eq. 2, 

between server and reconstructed datasets were analysed 
by identifying the maximum (worst) difference between 
the datasets for position and rotation. In the worst case, the 
client–server difference d

i
 was of the order of 10−7 for posi-

tion and of the order of 10−3 for rotations (recorded as Euler 
angles), showing that the broadcasting introduced some 
errors in the data. Despite these small differences between 
client and server data, we consider the two datasets to be 
consistent as these small discrepancies are unlikely to be 
noticed by a human observer. The differences v

i
 between 

data in the server and reconstructed datasets were consist-
ently zero for all data points, showing that the reconstruction 
system preserves the data used for the reconstruction.

A minor loss of packets was noticed when large data 
was streamed continuously over the network, and happened 
when a participant left their finger on the controller track-
pad during the entirety of the simulation, generating small 
changes in input states for the track-pad. Considering the 
large amount of data sent, the loss was negligible in terms 
of data acquisition with only three instances out of 4,869 
(0.0006%) packets lost for all participants data transmitted 
live. This is likely to be caused by excessive bandwidth used. 
During instances of packet loss, the system continued to 
operate using previous data received with follow-up data 
after the 10ms continuing the live reconstruction. Because 
the instances of packet loss were only noticed during con-
tinuous input state modification, threshold values can in 
future be used to prevent small changes from registering 
a state of input change. On a stable and reliable network 
connection, we do not anticipate that any issues will hin-
der the live observation for normal input usage once the 
threshold change value has been included. Because loss of 
streamed data could be a critical failure in the simulation 
process, networking features could be implemented to allow 
for lost packets to be resubmitted to keep the simulations in 
sync. Alternatively, local client data can be submitted for 
after-action review if networking issues prevent real-time 
observation. These limitations are caused by the network 
transmission of data and out of the scope of this paper.

The reconstruction of tracked VR object motions and 
input states allow for serial observation of user(s) actions. 
Rather than restricting analysis to after-action review, live 
observation allows for instantaneous visual clarification 
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to user’s actions and their resulting performance in a VR 
simulation.

7 � Discussion

The validation of the after-action system (Howie and Gilardi 
2019) highlighted the potential uses of the VO system, 
user’s actions and motions relative to their real-world pos-
ture (Fig. 8) and discovered cases of participants failing to 
interact with objects, using the wrong input command/but-
ton, as well as ‘magical interaction’ (Bowman et al. 2012), 
which removes the senses of weight and cumbersomeness 
from real-life equipment. Participants were also observed to 
frequently attempt to interact with objects in incorrect posi-
tions. During our live observation tests, we noticed similar 
findings regarding user inputs, but were able to address prob-
lems immediately by communicating to the participant using 
voice communication through an open doorway that con-
nected both rooms that they were pressing the wrong button.

From a developer perspective, the ability to view and 
replay the input, actions and movement of users offers the 
chance to directly observe the process that lead to bugs or 
errors, as well as observe human behaviour during simula-
tions. The problem with noticing issues during and after-
action review is that the user has already completed the 
simulation by the time identifiable issues are found. If the 
user is observed live in real time, as allowed by the system in 
the paper, issues can easily be noticed and resolved without 
the user struggling and becoming frustrated by the lack of 
guidance caused by interaction or usability issues, which 
can be especially true for novice users (Tromp et al. 2003).

For simulations to be replicated as experienced by the 
user, the same build version of the application must be used 
during the live observation or after-action review reconstruc-
tions. If a different build version is used to reconstruct user 
data, it may result in the motions and actions of the recon-
struction not replicating the same experience as the user. The 
need for consistent build versions only applies to situations 
where the changes from the reconstructed simulation build 
have a direct impact on the user interactive experience. For 
example, if a user picked up a box in a dataset (Build v1), 
but the box was no longer present in the updated version 
(Build v2), the actions and motions of the user would remain 
during reconstruction but no context would be available to 
understand what is happening from the observers perspec-
tive as the box is no longer exists. Therefore, backups of the 
published simulations should be archived to ensure when 
reviewing participant performance, the reconstructed simu-
lations are not impacted by modified conditions.

In this study, we used the ‘Interaction Capture’ mode 
of VO for the recording and reconstruction of data. It is 
important to highlight, however, that any type of tracking 

Fig. 8   Side-by-side comparison of an estimated skeleton posture 
obtained from the VO system (left) and a participants posture from 
GoPro video footage with OpenCV’s pose estimation (right). The 
skeleton posture will deteriorate as and when the participant moves 
untracked joints of their body. In Howie and Gilardi’s case, the lack 
of torso tracking caused the entire structure to rotate to match that of 
the HMD. Because feet and knee joints were untracked the IK sys-
tem estimated the position of the knee joints relative to the ground 
and height of the HMD. Therefore, if the participant moved their feet 
from the default standing pose as seen above, the lower parts of the 
body would stay rigid

Fig. 9   VO was used in a commercial project for remote observation 
of a VR simulation during development giving the client the opportu-
nity to monitor progress using VO WebGL and Desktop builds of the 
VR application. VO was later used to review trainee VR experiences, 
as seen here: https​://www.dropb​ox.com/s/uaako​vec35​18cvx​/Virtu​
alObs​ervat​ionVR​Demon​strat​ion.mp4?dl=0  

https://www.dropbox.com/s/uaakovec3518cvx/VirtualObservationVRDemonstration.mp4?dl=0
https://www.dropbox.com/s/uaakovec3518cvx/VirtualObservationVRDemonstration.mp4?dl=0
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device that supports the Unity object system for updating 
the transforms of the tracking device(s) will be supported 
by the system. This functionality aims to offer universal 
support to suit the needs of researchers and developers 
working with novel technology. To demonstrate the flex-
ibility of the system, we used a Leap Motion hand tracking 
device to capture the object references our hands in Unity, 
whilst we interacted with a virtual car desktop screen to 
modify the car configuration. The movement of the hands 
whilst interacting with the virtual desktop screen was 
reconstructed, repeating the motions and button presses 
conducted during the recording (Fig.  3). This type of 
functionality can extend to other areas of tracking devices 
such as Face Tracking (Li et al. 2015; Olszewski et al. 
2016) and Eye-Tracking (Meißner et al. 2017) which can 
offer greater insight into user experience. Jacob and Karn 
(2003) have stated that with eye-tracking, the scan path, 
gaze interest and fixation interest can indicate a user’s 
intended target before they could ‘actuate any other input 
device’ (Jacob and Karn 2003, p. 589]. The inclusion of 
VO software will allow for these interaction devices to 
be saved and reconstructed, improving the data collec-
tion and analysis for studies. Using the VO software, it 
can streamline the process of assessing users, with recon-
structed simulations able to accommodate several tracked 
devices and reconstruct them simultaneously with relative 
contextualisation to the other devices in the simulation.

In Howie and Gilardi (2019), the skeleton posture cre-
ated using Unity’s IK system was assessed, concluding that 
head and hands were tracked accurately with data provided 
from the VR equipment, but torso and feet tracking proved 
lacking since no real-world object was used to calibrate 
their position or orientation (Howie and Gilardi 2019). In 
this study, we rectified this issue by using three additional 
trackers, attached to both feet and the torso. Using all six 
tracking positions (HMD, two controllers, two feet track-
ers and torso tracker), we were able to achieve ‘full-body’ 
tracking of users in real-time observation and after-action 
review simulations. This tracking set-up could be used to 
monitor a user’s location of core body points relative to the 
local tracked physical ‘play-space’ they have configured for 
their VR set-up.

Developers and researchers can use VO to analyse feasibil-
ity and usability of systems. Educators that adopt VR in their 
classrooms can use the data to check and assess how users have 
completed training procedures and verify they are correctly 
handling equipment or safety procedures. In Howie and Gilardi 
(2019), it was highlighted that participant data recorded of a 
fifteen-minute simulation using the VO system was always 
significantly smaller (around 80MB) than equal length video 
recordings using GoPro equipment (around 5.8GB). This con-
tinues to be true, and we demonstrated that the data can be 

transmitted on a network to obtain a real-time live simulation 
of what users are doing within a VR simulation.

To test the portability the VO system, we exported the pro-
ject to a separate Unity development project which we used 
to create a WebGL application that replayed the data recorded 
during one of the validation sessions (see Fig. 6 for control-
lable observation demonstration). Because SteamVR does 
not support WebGL, VO bypasses these restrictions enabling 
the VR simulation to be reconstructed and observed in web 
browsers, which animation capture of simulation data for input 
modification would be unable to achieve due to the lack of 
SteamVR compatibility (see example in Fig. 6). The examples 
presented in this paper show the flexibility of VO for record-
ing VR user simulations and reconstructing them on multiple 
platforms.

Datasets recorded from users with the VO system can be 
used to replicate the actions and motions of the user, simulat-
ing the use of VR equipment without relying on the equip-
ment resources. The ability to share the user sessions allows 
external observers to analyse datasets without having access 
to the equipment, software and development area of the pro-
ject and allowing researchers (after ethical approval and user 
consent) to share data with collaborators and reviewing panels, 
as well as allow other researchers validate research findings. 
Using our system, software houses can report bugs accurately 
to the relevant department and educators to document trainee 
assessments.

An issue we faced during this study was the variation of 
positional data of tracked objects during the action of picking 
up and dropping objects. We originally intended to compare 
the transform of each tracked device during the instance of the 
pickup or drop action being completed; however, we noticed 
slight inconsistencies in positional and rotational data between 
the datasets. After investigating the data recorded on the client 
PC and server PC, we discovered that the issue was caused by 
the minor modification of the controllers in real space during 
the fractional time difference of input state recorded and an 
action being captured. We anticipate this minor discrepancy in 
data was caused by the real-time updating of the render models 
which aims to keep the virtual controls consistent with their 
position in real world to satisfy the user experience. This minor 
discrepancy in pickup position does not affect the VO system 
as the action transform positions were consistent for both the 
client and server datasets. To keep action and input persistent 
during reconstruction the transform of the interaction devices 
were modified prior to the physics update of the game engine.

8 � Limitations

Packet loss during the transmission of data could result in 
loss or corruption of simulation data as an action-frame 
would be skipped from the reconstructed simulation during 



Virtual Reality	

1 3

live observation. Like any set of data submitted over a wire-
less connection, there is potential for individual packets data 
to be lost. Unfortunately, this is a networking issue with the 
Unity game engine networking architecture and not our VO. 
We have provided potential solutions in Sect. 6, to mitigate 
this issue.

Recording of non-serialisable Unity components requires 
the developer to extend within the source-code the required 
variables, potentially making the ‘Full Simulation Capture’ 
mode too complex for non-technical users. We hope to 
improve this in the future, making the ‘Full Simulation Cap-
ture’ mode as user-friendly as the standard mode. One of the 
difficulties faced with the Full Simulation Capture version of 
the software was the inability to record data of the additional 
tracked objects dynamically. We were able to successfully 
record all data (variables) from objects and reconstruct them 
using system reflection. However, system reflection has an 
unavoidable impact on system performance and caused too 
much lag in the simulation during reconstruction.

9 � Conclusion

This paper built on Howie and Gilardi’s Virtual Observation 
system (Howie and Gilardi 2019) for observing the motions, 
inputs and actions of users in virtual reality simulations. 
VO was validated in Howie and Gilardi (2019) for after-
action review of users performance in a detailed fire training 
simulation scenario (Fig. 1), proving that the VO system 
was capable of reconstructing detailed simulation from only 
the input and actions of a participant with no other track-
ing data required. In this paper, we have demonstrated the 
capability of the VO system for reconstructing simulations 
in real time with consistent datasets for live and after-action 
(offline) review of user sessions, capable of both full body 
tracking and hand tracking set-ups. We also demonstrated 
the ability for researchers, developers and educators to share 
VR simulation data to conventionally unsupported platforms 
(WebGL).

We conclude that these recordings are on par with Lopez 
et al. (2017), but offer greater clarity into high-level tech-
nical details of the simulation and the role played by the 
VR user (how the actions of the user affect the simulation 
procedure), offering context from cause and effect relation-
ships of user’s actions (Hanoun and Nahavandi 2018). With 
the inclusion of live observation, user performance can be 
immediately assessed with the potential for observers to have 
instant clarification to issues the user may be experiencing. 
For research purposes, the ability to generate visual data 
output to contextualise VR research can also be a key benefit 
for researchers and study validations. Given that screenshots 
and videos can often have limited contextual awareness, the 

ability for researchers to control the observation of user data 
themselves can help clarify authors’ findings.

VO was incorporated into a commercial product to let 
clients review the functionality of a VR simulation through 
a WebGL visualiser without need for software to be down-
loaded or without the constraints of pre-recorded videos. 
Using the VO software, the client was able to view for them-
selves the interactions and protocols of a training simulation 
remotely from the development location without requiring 
VR equipment or additional software. Unfortunately, due 
to confidentiality agreements, we are not able to share any 
additional data or details at the moment (Fig. 9). 

For researchers, the VO system offers greater scope for 
experiment complexity and reach, allowing for studies to 
be conducted in external locations (‘in the wild’) with data 
retrievable for analysis. For development of VR applica-
tions, this software can be of use to allow identification and 
replication of bugs with consistent repeatable simulations 
from a single capture dataset to ensure reliable analysis is 
conducted. After resolving a bug or issue experienced by the 
user, the same user dataset can be rerun to ensure that the 
issue captured originally is not repeated, indicating when 
the issue is resolved.

We conclude that VO of reconstructed simulations is a 
highly effective and versatile tool for researchers, educators 
and developers which is enhanced by the ability to observe 
simulations in real time. The streaming of data in real time 
during live observations also circumvents the need for data 
to be stored on external services, avoiding the issues faced 
by bandwidth usage experienced in Howie and Gilardi 
(2019).

For future work, it will be interesting to determine 
whether and how the VO system could be incorporated 
directly into an automated evaluation system that provides 
instant feedback (Hanoun and Nahavandi 2018) for situa-
tions where an observer is not available.
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