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A Bayesian Small Area Model with Dirichlet Processes
on the Responses
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ABSTRACT

Typically survey data have responses with gaps, outliers and ties, and the distributions of the

responses might be skewed. Usually, in small area estimation, predictive inference is done

using a two-stage Bayesian model with normality at both levels (responses and area means).

This is the Scott-Smith (S-S) model and it may not be robust against these features. Another

model that can be used to provide a more robust structure is the two-stage Dirichlet process

mixture (DPM) model, which has independent normal distributions on the responses and

a single Dirichlet process on the area means. However, this model does not accommodate

gaps, outliers and ties in the survey data directly. Because this DPM model has a normal dis-

tribution on the responses, it is unlikely to be realized in practice, and this is the problem we

tackle in this paper. Therefore, we propose a two-stage non-parametric Bayesian model with

several independent Dirichlet processes at the first stage that represents the data, thereby

accommodating some of the difficulties with survey data and permitting a more robust pre-

dictive inference. This model has a Gaussian (normal) distribution on the area means, and

so we call it the DPG model. Therefore, the DPM model and the DPG model are essentially

the opposite of each other and they are both different from the S-S model. Among the three

models, the DPG model gives us the best head-start to accommodate the features of the sur-

vey data. For Bayesian predictive inference, we need to integrate two data sets, one with the

responses and other with area sizes. An application on body mass index, which is integrated

with census data, and a simulation study are used to compare the three models (S-S, DPM,

DPG); we show that the DPG model might be preferred.

Key words: Bayesian computation, bootstrap, predictive inference, robust modeling, com-

putational and model diagnostics, survey data.

1. Introduction

There are many methods in the current statistical literature for making inferences based

on samples selected from a finite population. The most widely used approach is design-

based inference, which is nonparametric but requires large sample sizes. Model-based in-

ference for survey sampling has been proposed as an alternative to the design-based theory,

and this is particularly useful for small area estimation (Rao and Molina 2015) when there

are sparse data from many areas. We consider the simplest version of a small area model,

and we show how to robustify it to fit survey responses with gaps, outliers and ties.
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Figure 1: Dot plots of body mass index (BMI) for thirty-five areas (counties)

Generally, in a unit-level model, the responses from each area might have a distribution

with a mean and a variance. The variance is usually taken constant over areas, but the mean

varies over the areas. Sometimes each mean is written as global constant plus a random

effect, different over areas. The area random effects or means share a common distribution

allowing a borrowing of strength adaptively across areas (sample sizes are generally differ-

ent). Complete pooling is generally a bad idea, because there is usually heterogeneity across

areas. A degree of heterogeneity can be accommodated using covariates, but while useful

covariates are particularly important in any analysis, this is not enough because there will
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still be heterogeneity across areas. So there is a need to model area means, for example,

to provide a small area model. Here, we consider continuous responses from a number of

small areas using a unit-level model.

Our application is on body mass index (BMI), a continuous variable used to measure

lifestyle. (Because of how survey data are collected, the BMI data can be discrete and

there will be gaps, outliers and ties.) We use data from the 35 largest counties (areas) with

at least 500,000 people from the third National Health and Nutrition Examination Survey

(NHANES III), a survey conducted during the period October 1988 through September

1994. We do not have access to data from other smaller counties. In fact, these are the

BMI data from the same 35 counties we analyzed in Nandram and Choi (2005, 2010) and

in other places too numerous to mention. However, we have used data for adults who are

older than 20 years because these data have very few nonresponse, rather than for children

younger than 19 years, because our current study is not about nonresponse. We use BMI

data where the BMI values are given up to the first decimal place. Dot plots of the data from

35 counties are shown in Figure 1. There are three things we observe in these data. First,

there are ties because several adults have the same BMI values. This is clear because an

adult BMI value is some value from about 18.0 kgm−2 to about 40.0 kgm−2 (one decimal

place). Second, there are gaps (i.e. no BMI values between two adjacent values) and this is

especially true in the right extreme areas of the dot plots. Third, there are outliers, which

occur mostly in the right tails of the dot plots, thereby showing some right skewness with

outliers. Therefore, it is clear that these BMI values do not follow normal distributions; a

kernel density estimator will hide these features in the data. The data have natural gaps (e.g.

there are no values in between 20.1 and 20.2) and ties (e.g. several values at say 20.1); these

will exist in the population as well. This is why we model the gaps, outliers and ties in these

data. We note that there are some demographic variables such as age, race and sex, which

we do not study here, but we discuss in the concluding section how to incorporate covariates

into our models.

Our goal is to predict the finite population mean, 85th (overweight) and 95th (obese)

finite population percentiles of BMI for all eligible adults from each county. The sample

from each area is at least about 100; we have a small area problem because these sample

sizes are about a 0.01% of the population. Our problem is how to take care of the gaps,

outliers and ties in the BMI data. To this end, we use two-stage Bayesian models with

one model having a component that addresses directly these non-standard features in the

responses. To do Bayesian predictive inference for the finite population quantities, we also

need a data set with the population sizes of the areas (counties). To achieve this end, we

integrate the NHANES BMI data with the population counts from the US 1990 Census.

Let yi j denote the value for the jth unit within the ith area, i = 1, . . . , �, j = 1, . . . ,Ni.

Throughout, we assume that yi j, i = 1, . . . , �, j = 1, . . . ,ni, are the samples from ith area

and are observed, and yi j, j = ni + 1, . . . ,Ni are not observed. Inference is required for the

finite population mean or a finite population percentile. For example, the finite population

mean of the ith area is Ȳi = ∑Ni
j=1 yi j/Ni, i = 1, . . . , �. We use Bayesian predictive inference

that requires specification of parametric distributions. Moreover, to help protect against

posterior impropriety, we use non-informative (vague) independent priors, which are proper,

for all hyper-parameters. Specifically, we have used Cauchy priors for location parameters
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(e.g. Gelman, Jakulin, Pittau and Su 2008) and shrinkage priors for non-negative parameters

(e.g. Nandram and Yin 2016 a, b and the references therein).

Scott and Smith (1969) introduced the basic two-stage model for cluster sampling, but

the same model has been used for small areas. The difference is that in small area estima-

tion, we are interested in inference about the population of each small area, but in cluster

sampling, we are interested in all sub-populations combined into a single one. Nandram,

Toto and Choi (2011) has given a Bayesian analysis of this model. However, the use of mod-

els raises the question of the robustness of the inference to possible model mis-specification.

Again, in particular, survey data tend to have gaps, outliers and ties and we need to rem-

edy this defect. A generalization to include covariates is the model of Battese, Harter and

Fuller (1988) in non-Bayesian survey sampling; for a full Bayesian formulation, see Toto

and Nandram (2010) and Molina, Nandram and Rao (2014); but this is not our key issue

here.

The Bayesian Scott-Smith (S-S) model, as formulated by Nandram, Toto and Choi

(2011), is

yi j|μi,σ2 ind∼ N
(
μi,σ2

)
, j = 1, . . . ,Ni, (1)

μi | θ ,σ2,ρ ind∼ N
(

θ ,
ρ

1−ρ
σ2

)
, i = 1, . . . , �, (2)

π(θ ,σ2,ρ) =
1

π(1+θ 2)

1

(1+σ2)2
, (3)

where −∞ < θ < ∞, σ2 > 0, 0≤ ρ ≤ 1. Here, ρ is the intra-cluster correlation. It is

worth noting that we have taken ρ ∼Uniform(0,1), θ to have a standard Cauchy distribution

and σ2 to have a shrinkage distribution (i.e. f (2,2) distribution), all independent. Here, we

have used vague proper priors on all parameters.

Suppose we have written μi | θ ,δ 2 ind∼ Normal(θ ,δ 2) and define ρ = δ 2/(δ 2 + σ2),

then we will get δ 2 = ρ
1−ρ σ2. Clearly, 0 ≤ ρ ≤ 1 and this makes one variance component

bounded instead of two unbounded ones, σ2 and δ 2. This simplifies the computations by

permitting a random sampler, which requires no monitoring, rather than a Gibbs sampler,

which requires monitoring; see Appendix A.

Another standard model that relaxes some parametric assumptions is the Dirichlet pro-

cess mixture (DPM) model,

yi j|μi,σ2 ind∼ Normal(μi,σ2), j = 1, . . . ,Ni, (4)

μi|G ∼ G, i = 1, . . . , �,

G | θ ,σ2,γ,ρ ∼ DP

{
γ,Normal(θ ,

ρ
1−ρ

σ2)

}
, (5)

π(θ ,σ2,γ,ρ) =
1

π(1+θ 2)

1

(1+σ2)2

1

(1+ γ)2
, (6)

where −∞ < θ < ∞, σ2 > 0,γ > 0, 0 ≤ ρ ≤ 1, and γ is called the concentration

parameter; see Ferguson (1973) for a definition of the Dirichlet process (DP) and Lo (1984),

who extended the DP to DPM. Here, in this formulation the S-S model is a baseline model;
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the DPM model is centred on the S-S model and γ controls how close DPM model gets to the

S-S model. Here, G is a random distribution function, discrete with probability one, and had

distribution DP(·, ·). Escobar and West (1995) proposed a simple (not necessarily efficient)

algorithm by integrating out the random distribution function in the model. Kalli, Griffin

and Walker (2011) suggested slice-efficient samplers, an improved slice sampling scheme

that we use in our work, and it is based on the stick-breaking construction of Sethuraman

(1994); see Appendix B. Nandram and Choi (2004) and Polettini (2017) have applications

on small area estimation, but they did not use the slice-efficient sampler of Kalli, Griffin and

Walker (2011).

However, this DPM model does not address our main concern. It does not model the

responses non-parametrically to take care of gaps, outliers and ties in the survey data in

general, not just BMI data. It models ties among the μi, thereby clustering the μi. Indeed,

this is the strength of the Dirichlet process prior. In reality, we want to do the opposite. That

is, we want to have independent Dirichlet processes on the responses and possibly a normal

distribution on the random effects. This is the key issue we address in this paper, and we

will call this model the DPG model (G refers to the normal assumption on the μi). However,

the DPM model gives a good sense of how to proceed to meet our requirement.

The plan of the rest of the paper is as follows. In Section 2, we discuss the DPG model

with independent Dirichlet processes on the responses. In Section 2.1, we discuss the

methodology and inferences. In Section 2.2, we discuss the prediction for a finite popu-

lation quantity using a data integration. In Section 3, we compare the three models (S-S,

DPM, DPG). Specifically, in Section 3.1, we discuss an illustrative example on the body

mass index (BMI) data and in Section 3.2 a small simulation study. In Section 4, we present

our conclusion and two important extensions.

2. DPG Model, Computations and Prediction

In this section, we describe the DPG model that has independent Dirichlet processes on

the responses and a normal distribution on the area means. This robustifies the S-S model in

the opposite direction to the DPM, our novel contribution. In Section 2.1, we describe the

DPG model, in Section 2.2, we describe how to draw samples from it, and in Section 2.3,

we show how to do the prediction.

2.1. DPG Model

Using DPs in the first level and a parametric distribution as prior gives us,

yi j|Gi
ind∼ Gi, j = 1, . . . ,Ni, (7)

Gi|μi,αi,σ2 ind∼ DP{αi,Normal(μi,σ2)}, i = 1, . . . , �,

μi|ρi.e.θ ,σ2,ρ iid∼ Normal(θ ,
ρ

1−ρ
σ2).
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A full Bayesian model can be obtained by adding prior distributions. We use proper non-

informative priors,

π(αi) =
1

(αi +1)2
, αi > 0, i = 1, . . . , �, (8)

π(θ ,σ2,ρ) =
1

π(1+θ 2)

1

(1+σ2)2
,

−∞ < θ < ∞,0 < σ2 < ∞,0≤ ρ ≤ 1, (9)

with independence. Here, (7), (8) and (9) define the DPG model. Note that the concentration

parameters αi are not included in the S-S model or the DPM model. It is not sensible to

assume that the αi are identically distributed, because they can be very different.

We give a brief comparison of the three models and how they are related. The S-S

model is a special case of the DPG model and the DPM model, and both are centred on the

S-S model. This occurs when the αi are large for the DPG model and when γ is large for

the DPM model. The DPM model is actually the opposite of the DPG model with normal

distribution for the data in each area and a DP prior on the area means. In the DPG model,

each area has a distinct DP (i.e. � DPs with different μi and αi) and there is pooling across

areas because the μi share an effect and σ2 is common.

We look at the sampling process for the DPG model. When we integrate out the random

probability measure (Blackwell and MacQueen, 1973), we get

f (y
˜

i | μi,σ2,αi) =
1

σ
φ(

yi1−μi

σ
)

×
ni

∏
k=2

{
k−1

αi + k−1

∑k−1
j=1 δyi j(yik)

k−1
+

αi

αi + k−1

1

σ
φ(

yik−μi

σ
)

}
, (10)

where δa(y) means that y is a point mass at a and φ(.) is the standard normal density.

Therefore, in each area we are mixing the distributions in (10) using normal mixing dis-

tributions in the DPG model. The DPM is different being a Dirichlet process mixture of

normals. The DPM model actually produces ties among the random effects (clustering),

its major strength, but it does not model gaps, outliers, ties and possibly skewness among

the responses. By putting DPs on the responses in different areas, we are actually taking

a head-start on the data, because they accommodate the gaps, ties and outliers in the data;

see Figure 1. It is important to note that δyi j(yik) is a statement that for each i, yik is a point

mass at yi j, j = 1, . . . ,k−1. That is, for the ith area, yik can be the same as yi j with nonzero

probability and this is crucial in our new model. Therefore, equation (10) is the key to how

we attempt to accommodate gaps, outliers and ties, particularly ties, in the data. The DPG

model is attractive even if there are a few ties (or no ties at all) because the data may have

heavy tails where the normal distribution is not appropriate (true for the BMI data).
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2.2. Computations

Letting ψ
˜
= {μ

˜
,θ ,σ2,ρ} and α

˜
= {α1, . . . ,α�}, it is easy to get a sample from the joint

posterior density of (ψ
˜
,α

˜
), and therefore inference under the DPG model can be easily

performed.

The posterior densities of the αi are independent of the other parameters ψ
˜

in the model,

conditioning on only the distinct values. Let ki denote the number of distinct values for

each area in the observed data, k
˜
= {ki, i = 1, . . . , �} be the vector of ki, y∗i1, . . . ,y

∗
iki

be the

ki distinct sample values for each i and y
˜

∗ = {y∗i1, . . . ,y∗iki
, i = 1, . . . , �} be the vector of y∗i j.

Thus, the joint posterior density is

π(α
˜
,ψ

˜
| k

˜
,y
˜

∗) =

[
�

∏
i=1

π(αi | ki)

]
π(ψ

˜
| y

˜

∗), (11)

where π(αi|ki) ∝ π(ki | αi)π(αi). For the parameters ψ
˜

, we have

y∗i j|μi
ind∼ N

(
μi,σ2

)
, i = 1, . . . , �, j = 1, . . . ,ki, (12)

μi
iid∼ N

(
θ ,

ρ
1−ρ

σ2

)
,

π(θ ,σ2,ρ) =
1

π(1+θ 2)

1

(1+σ2)2
,−∞ < θ < ∞,0 < σ2 < ∞,0≤ ρ ≤ 1.

Therefore, the algorithm for the DPG model is

Step 1 : For each i, i = 1, . . . , �, draw αi from π(αi|ki) ∝ αki Γ(αi)
Γ(αi+ni)

1
(αi+1)2 ; see Antoniak

(1974).

Step 2: Draw ψ
˜

from the parametric model (12), which is easy to fit; see Appendix A for

the S-S model.

Step 1 is easily realized using the grid method (Nandam and Yin 2016 a,b). Step 2 is

accomplished using a random sampler together with the sampling importance resampling

(SIR) algorithm. Therefore, samples can be drawn from the DPG model using a random

sampler rather than a Gibbs sampler (as in the DPM, Markov chain samplers need monitor-

ing).

2.3. Prediction for the Finite Population

We have a simple random sample of size ni from a finite population of size Ni, i =
1, . . . , �. Let yi1, . . . ,yini denote the sampled values. We want to predict yini+1, . . . ,yiNi , the

nonsampled values, and obtain the predictive distribution and the prediction interval for any

finite population quantity (e.g. Ȳi for the ith area). Prediction under the S-S model and the

DPM model is straightforward.

For the DPG model, the sampling process is

yi j|Gi
ind∼ Gi, i = 1, . . . , �, j = 1, . . . ,Ni,

Gi|μi
ind∼ DP{αi,G0(μi)}.
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Predictive inference for the DPG model simply uses the generalized Polya urn scheme

(Blackwell and MacQueen 1973) for each i, since all areas are independent (see Nandram

and Yin 2016 a,b). Once the nonsampled yi j, j = ni+1, . . . ,Ni, i= 1, . . . , �, are obtained, one

can now calculate any finite population quantity of interest. Here, we are interested in the

finite population mean, the 85th percentile (overweight individuals) and the 95th percentile

(obese individuals). The Ni are assumed known, and they can be obtained from a census.

Binder (1982), a very nice paper, frustrated with the bootstrap method (discussed later)

that does not produce values different from the sample values, introduced the Dirichlet

process into finite population sampling. We note that when prediction is done using any

of the three models, including the DPG model, new values different from the samples will

be generated. For the S-S model and the DPM model, this will happen with probability

one, but for the DPG model with just a positive probability. For the DPG model, because

the nonsample values are generated from the generalized Polya urn scheme, values already

sampled can be repeated. However, for the DPG model, as the prediction proceeds in an

order for a long run (population sizes are large here), the αi will be dominated, thereby

making the process draw more and more values that have already been drawn as in “the rich

gets richer scheme”.

Letting fi =
ni
Ni
, i= 1, . . . , �, denote the sample fractions, the finite population mean is the

composite, Ȳi = fiȳi,s +(1− fi)Ȳi,ns, where ȳi,s =
1
ni

∑ni
j=1 yi j, the mean of the sample values,

and Ȳi,ns =
1

Ni−ni
∑Ni

j=ni+1 yi j, the mean of the non-sample values. To obtain the percentiles,

one simply sorts all the data (sample values and predicted non-sample values) in increasing

order. Then, for the 85th percentile, pick the value at .85Ni (nearest integer) position, and

for the 95th percentile, pick the value at .95Ni (nearest integer) position.

It is worth noting that it is easy to estimate the finite population mean; it is more difficult

to estimate the two percentiles because they are in the right tail of the posterior distributions.

It is interesting that in finite population mean, the sample mean, ȳi,s, is constant a posteriori

but ȳi,ns is dynamic (i.e. changes with the iterations). However, when the finite population

percentiles are estimated, all the sample values and the predicted values are ordered at each

iteration (i.e. the actual positions of the sample values in the ordering will change). There-

fore, computation of the finite population percentiles at each iteration takes more time than

the finite population mean.

3. Empirical Studies

In this section, we compare the three models (S-S model, DPM model and DPG model).

Specifically, in Section 3.1, we describe an application on body mass index (BMI) data, and

in Section 3.2, we present a small simulation study.

3.1. Application to Body Mass Index Data

As described in the introduction, we use the example on BMI data for illustration. Since

the predictive inference for the overweight and obese population is very important, the heavy

tail of the distribution cannot be ignored. Thus, we cannot automatically use the S-S model
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nor the DPM model to accommodate the gaps, outliers and ties in the BMI data; see Figure 1.

A more robust assumption on the responses, such as the DPG model, needs to be considered.

For the DPM, we ran 10,000 MCMC iterations, used 5,000 as a “burn in” and thinned

every 5th to obtain 1,000 converged posterior samples. We have monitored the parameters,

σ2, θ , δ 2 and γ , for the DPM model. The Geweke test of stationarity gives p-values of

.483, .414, .459, 0.620 respectively; therefore the iterates pass the test of stationarity. The

effective sample sizes are 1000, 1000, 698, 1084 respectively, thereby showing that the iter-

ates form an efficient sample. Numerical summaries such as trace plots and auto-correlation

plots (not shown) indicate that the MCMC chains converge and mix well, and a ‘random

sample’ is obtained from the joint posterior density. To get samples from the S-S model and

the DPG model, we do not need a Gibbs sampler; a random sampler suffices and monitoring

of a Gibbs sampler is not needed.

As a comparison, we also use the Bayesian bootstrap to do prediction in each county

individually without borrowing across counties. This will allow us to see how much im-

provement we can have over direct estimation. Note that for each area (county), all sample

sizes are over 100. Here, we describe the Bayesian bootstrap (see Rubin 1981 for more

details). Momentarily we consider a single subscript (drop subscript i), so that we have

y1, . . . ,yn (sample values) from an area and we need to predict yn+1, . . . ,yN (nonsample val-

ues), where N is the population size of this area. First, we find the distinct values among

y1, . . . ,yn and we assume that there are d distinct values, denoted by y∗1, . . . ,y
∗
d . Let n j denote

the number of times the jth value occurs in the sample. In the bootstrap it is assumed that

only y∗1, . . . ,y
∗
d can occur, and let Nj denote the number of times the jth distinct value occurs

in the population; the Nj are unknown. The Bayesian bootstrap has the following model,

n
˜
| p

˜
∼Multinomial(n, p

˜
), p

˜
∼ Dirichlet(0

˜
),

where the improper Haldane’s prior is used. Then, the posterior density of p
˜

is

p
˜
| n

˜
∼ Dirichlet(n

˜
),

which is proper. The Bayesian bootstrap has the following steps,

1. Sample p
˜
| n

˜
∼ Dirichlet(n

˜
);

2. Sample (N1−n1, . . . ,Nd−nd) | p
˜
,n
˜
∼Multinomial(N−n, p

˜
);

3. Repeat (1) and (2) a large number of times.

We have repeated the bootstrap procedure 1000 times. At each repetition, for the nonsam-

ples, y∗j occurs Nj − n j times, j = 1, . . . ,d; so we have got the entire population with y∗j
occurring Nj times with 1000 repetitions. It is worth noting that the Bayesian bootstrap is

different from the DPG model (one-level DP model) when it is applied to an individual area

because while the Bayesian bootstrap cannot produce new values, the DPG model can do

so.

The 85th and 95th percentiles are also important and the methodology is essentially the

same. We perform the predictive inference of the population mean, 85th and 95th percentiles
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for each area using the three models (S-S, DPM, DPG). We have compared the DPG model

to the S-S model, the DPM model and Bayesian bootstrap. We have computed summary

statistics, posterior mean (PM), posterior standard deviation (PSD), and coefficient of vari-

ation (CV = 100× PSD/PM), as a measure of reliability.

We have looked at the five-number summaries (Min, Q1, Med, Q3, Max) of the shrink-

age coefficients over the areas; for example, see Appendix A. For the S-S model and the

DPM model, these are virtually the same (.48, .55, .58, .60, .84) but there is only a small

difference from the DPG model, which has (.52, .59, .62, .64, .87). These numbers indi-

cate that there is comparable and moderate pooling for all three models.

In Table 1, as a further measure of shrinkage, we have presented five-number summaries

over the areas of PB = (PM−B)/B, where B is the posterior mean from the Bayesian boot-

strap method; recall that the bootstrap is a method to obtain the finite population quantities

for each area separately (no pooling). We observe that for the finite population mean, the

five-number summaries are virtually the same with 50% negative PBs and 50% positive

PBs. The three models are almost the same for the finite population 85th percentile; Min

is negative for all three models but they are different. They differ for the finite population

95th percentile; virtually all the PBs are positive under the DPG model, but 25% are positive

under the S-S and DPM models. Therefore, there is some evidence that the DPG model is

more responsive to the gaps, outliers and ties in the BMI data. The assumption of indepen-

dent normal responses in the S-S and DPM models is overly restrictive, especially when we

get out into the tails of the BMI data.

Table 1: Five-number summaries of PB = (PM−B)/B of the finite population mean, 85th

percentile and 95th percentile for BMI data by three models (S-S, DPM, DPG)

Mean 85th Percentile 95th Percentile

Model Min Q1 Med Q3 Max Min Q1 Med Q3 Max Min Q1 Med Q3 Max

S-S -0.02 -0.01 0.00 0.01 0.02 -0.05 0.00 0.01 0.02 0.05 -0.11 -0.04 -0.01 0.00 0.04

DPM -0.02 -0.01 0.00 0.01 0.02 -0.05 0.00 0.01 0.03 0.05 -0.11 -0.04 -0.01 0.00 0.04

DPG -0.02 -0.01 0.00 0.01 0.02 -0.02 0.01 0.02 0.03 0.05 -0.05 0.00 0.01 0.02 0.04

NOTE: Min=Minimum; Q1= 1st quartile; Med=median; Q3=3rd quartile; Max=

Maximum.

In Table 2, as a measure of reliability, we present the five-number summaries of the

coefficient of variation (CV = 100×PSD/PM) over the areas. Overall these are very good

for all finite population quantities and models (including the bootstrap) although under the

bootstrap these CVs should be a bit bigger because the bootstrap generally underestimates

variability. For the finite population mean, the CVs from the three models are mostly similar

and those under the S-S, DPM and DPG models are mostly smaller than the bootstrap. For

the finite population 85th percentile and the finite population 95th percentile, the S-S model

and DPM model are similar, but their CVs are mostly to the left of those of the bootstrap.

However, the five-number summaries of DPG model for estimating the finite population

95th percentile are to the right of those of the S-S and DPM models, but still to the left of

the bootstrap. Nevertheless, all three models appear to show good reliability.
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Table 2: Five-number summaries of coefficient of variation (CV = 100×PSD/PM), of the

finite population mean, 85th percentile and 95th percentile for BMI data by three models

(S-S, DPM , DPG) and Bayesian bootstrap (Boot)

Mean 85th Percentile 95th Percentile

Model Min Q1 Med Q3 Max Min Q1 Med Q3 Max Min Q1 Med Q3 Max

S-S 0.62 1.20 1.26 1.37 1.57 0.59 1.11 1.19 1.25 1.48 0.60 1.12 1.18 1.27 1.46

DPM 0.66 1.28 1.36 1.45 1.60 0.60 1.20 1.29 1.32 1.52 0.63 1.21 1.25 1.30 1.53

DPG 0.61 1.18 1.23 1.30 1.55 1.13 1.60 1.84 2.24 2.65 1.85 2.19 2.44 2.54 3.97

Boot 0.61 1.34 1.49 1.62 1.97 1.19 2.04 2.67 3.04 4.49 2.17 2.99 3.58 4.10 7.39

NOTE: Min=Minimum; Q1= 1st quartile; Med=median; Q3=3rd quartile; Max=

Maximum, Boot=Bootsrap.

We have looked at plots (not shown) of the posterior densities of the finite population

mean, 85th and 95th percentiles for the three models (S-S, DPM and DPG) and Bayesian

bootstrap for the 35 areas of BMI data. For the population mean, most parts of the density

under the S-S, DPM and DPG models are similar, the DPG model has slightly smaller

variation. Plots of the estimated densities of the population 85th and 95th percentiles under

the DPG model are not smooth and the estimated densities of the population 85th and 95th

percentiles under the S-S and DPM models are similar. Because the BMI data have some

gaps, ties and outliers in the right tails, the estimations given by parametric models may be

incorrect. Thus, based on a belief that the parametric model is too restrictive, we prefer the

analysis based on the nonparametric DPG model.

Finally, we compare predictive inference of the finite population mean, 85th and 95th

percentile for each area by the three models (S-S, DPM and DPG). We use three plots (not

shown), which contain posterior means with credible bands versus direct estimates for BMI

data. The posterior means are very similar under the S-S, DPM and DPG models and the

predictive inferences of the population percentile are similar under the S-S and DPM mod-

els. For the finite population mean, the points (plot not shown) are all roughly on a straight

line crossing the 45-degree straight line with slightly smaller slope, as it is should be. For

the 85th percentile, the points (plot not shown) are a little bit more spread out. However, as

expected, the DPG model tends to have higher predictions (closer to the 45-degree straight

line) of the population percentiles with similar credible bands when it is compared to the

other two models. We suspect that S-S and DPM model might underestimate the 85th and

95th population percentiles when the data are right skewed. Without the restrictive para-

metric assumptions, the DPG model tends to provide less biased estimation with similar

variation comparing to the other candidate models, thereby showing a distinct advantage of

the DPG model; see Figure 2 for the finite population 95th percentile. We investigate this

issue in a small simulation study.
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Figure 2: Comparison for body mass index (BMI) data (posterior means with credible bands

versus direct estimates): the predictive inference of the finite population 95th percentile for

each county under the three models (S-S, DPM, DPG)

3.2. Simulation Study

We conduct a small simulation study. We choose � = 50 and the sample sizes, ni, for

50 areas. The sample sizes are 35 for each of the first 10 areas, 50 for each of the second

10 areas, 100 for each of the third 10 areas, 200 for each of the fourth 10 areas and 500 for

each of the last 10 areas. Then, the population sizes are selected as Ni = 100ni, i = 1, . . . , �.

These are comparable to the BMI data. For convenience, we have taken θ = 0.0, σ2 = 0.01,

δ 2 = 0.04, thereby making ρ = 0.8. For the concentration parameters of the Dirichlet

processes, we have selected γ = 0.5, and αi
ind∼ 0.5+Beta(5,5), i = 1, . . . , �. These choices

allow us to have data similar to the BMI data with some flexibility to get gaps, outliers and

ties when data are simulated from the DPG model.

We have simulated the entire finite population separately under the three models. This

is done the same way under each model separately. For example, under the S-S model,

because we have set θ , σ2 and ρ , we have generated μ1, . . . ,μ� from (2) and for the ith area,

we have generated yi j, j = 1, . . . ,Ni from (1). Therefore, we have all three finite population

quantities. Given the parameters, because the observations are independent and identically

distributed within each area, we simply take the first ni values as the sample. In the case

of the DPG model, the population values are exchangeable and so we still take the first ni

values as our sample.

When data are generated from the S-S model and the DPM model, there could be gaps

and outliers in different areas. We note, in particular, there will be no ties because two data

values cannot be the same (this happens with probability zero). Of course, the data from

distinct areas will show some differences. However, as we have explained in this paper,

when data are generated from the DPG model, there will be gaps, outliers and ties because
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the data values are generated via the Polya urn scheme. By the nature of a DP, two values

can be the same with nonzero probability; so there can be ties.

We fit the three models to the simulated data in exactly the same manner as for the

NHANES-III BMI data. When the DPM model was fit, the Geweke tests show stationar-

ity and the effective sample sizes are comparable to 1000. We have looked at plots (not

shown) of the posterior means with 95% credible bands and true population means for the

simulated S-S, DPM and DPG data under three different models (S-S, DPM and DPG mod-

els). The values are close to the true population mean. We also use absolute bias (AB)

and posterior root mean squared error (PRMSE) to compare the models. We know the

true value of the finite population quantities, denoted by T . Then, AB =| PM− T | and

PRMSE =
√
(PM−T )2 +PSD2. We compute these quantities for each of the fifty coun-

ties for the finite population mean and the 85th and 95th finite population percentiles, and

respectively we average them. We present AB and PRMSE in Table 3; note that the entries

in the table must be divided by 10,000.

First, consider the finite population mean in Table 3 (a). We observe that AB is always

too large when the DPM model is fit to any of the three simulated data sets. The S-S model

and DPG model show comparable AB, much smaller than those for DPM. The PRMSEs

under the DPG model are larger than those from S-S model and the DPM model (first two

rows) by about 7% (marginal) but they are not larger than that of the DPM model when

data are generated from the S-S model (0.01272 vs. 0.01008). The DPG is almost always

better when data are generated from it; there is only a minor difference for AB under the

S-S model and the DPG model (0.0001409 vs. 0.0001484).

Second, consider the finite population 85th percentile in Table 3 (b). When data are

generated from the S-S model, the S-S model and the DPG model are comparable and

better than the DPM model. When data are generated from the DPM model, the three

models are comparable with the PRMSE under the DPG model slightly higher than the

other two models. When data are generated from the DPG model, the DPG model is a clear

winner by far.

Third, consider the finite population 95th percentile in Table 3 (c). When data are gener-

ated from the S-S model, the S-S model and the DPG model are comparable and better than

the DPM model. When data are generated from the DPM model, the three models are more

comparable. When data are generated from the DPG model, the DPG model is enormously

better than the S-S model and DPM model.

When data are generated from the DPG model, in terms of AB and PRMSE, it performs

much better than the S-S model and the DPM model for all three finite population quantities.

This is strong evidence that when there are gaps, outliers and ties, the DPG model is the best.

It is risky to use the S-S model or the DPM model for such data. The DPG model does not

have to do better for data that are generated from the S-S model or the DPM model. By

drawing a dot plot, one can see clearly which model is appropriate; data generated from the

DPG model will have gaps, outliers and ties. Therefore, it is safe to conclude that the DPG

model will perform better for data like the BMI data; see Figure 1.
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Table 3: Comparison of absolute bias (AB) and posterior root mean squared error (PRMSE)

of the finite population mean, 85th percentile and 95th percentile for each simulated data by

three models (S-S, DPM and DPG) averaged over areas

(a) Mean

S-S DPM DPG

Data AB PRMSE AB PRMSE AB PRMSE

S-S 6.172 94.21 87.32 127.2 6.536 100.8

DPM 6.169 93.82 43.27 85.44 6.32 100.70

DPG 1.409 42.88 28.95 64.55 1.484 27.64

(b) 85th Percentile

S-S DPM DPG

Data AB PRMSE AB PRMSE AB PRMSE

S-S 70.21 130.7 111.2 155.1 77.39 137.4

DPM 69.93 133.9 75.49 123.4 78.38 141.3

DPG 379.0 385.9 384.1 394.6 18.05 40.0

(c) 95th Percentile

S-S DPM DPG

Data AB PRMSE AB PRMSE AB PRMSE

S-S 120.6 182.1 150.3 203.5 133.8 188.4

DPM 104.0 168.9 114.9 166.0 118.9 176.1

DPG 550.2 556.3 555.3 563.7 35.5 101.0

NOTE: Each row gives a model that generates the data and each column gives a model that

is fit to the simulated data. The same three data sets are used in (a), (b) and (c). [The

numbers in the table must be multiplied by 10−4.]

4. Concluding Remarks and Future Work

If the parametric distribution assumption does not hold, the model is mis-specified and

the inference may be invalid. The Bayesian nonparametric methods are motivated by the de-

sire to avoid overly restrictive assumptions. We believe that our DPG model, which has in-

dependent Dirichlet processes on the responses and a normal distribution on the area means,

can accommodate survey responses with gaps, outliers and ties reasonably well.

Our illustration using the BMI data in our novel DPG model is a step forward. Our

simulation shows the advantage of the DPG model when the finite population mean and the

85th and 95th finite population percentiles are being estimated. In the illustrative example

on BMI data, it is interesting that Bayesian predictive inference can be performed using a

data integration because the area sizes are available from the 1990 census. In future, we

can adjust the DPG model to include a DP prior on the area means, rather than a normal

distribution (Nandram and Yin 2019).

For future work, we may also include covariates in the DPG model in a manner in

which Battese, Harter and Fuller (1988) actually extended the model of Scott and Smith

(1969) to include covariates. The two-stage nonparametric alternative of the DPG model
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with p covariates and an intercept, xij = (1,x′ij
(0))′, is

yi j−x′ij
(0)β (0)|Gi

ind∼ Gi, i = 1, . . . , �, j = 1, . . . ,Ni,

Gi|β0i
ind∼ DP

{
αi,Normal(β0i,σ2)

}
,

β0i | θ ,σ2,ρ ind∼ Normal(θ ,
ρ

1−ρ
σ2),

π(αi) =
1

(αi +1)2
, αi > 0, i = 1, . . . , �,

π(β (0),θ ,σ2,ρ) ∝
1

1+θ 2

1

(1+σ2)2
,

−∞ < θ ,β (0)
s < ∞,s = 1, . . . , p,0 < σ2 < ∞,0≤ ρ ≤ 1, where ρ is the intra-cluster correla-

tion, xij
(0) and β (0) denote xij and β without the intercepts. Note also that a priori the αi are

independent and there is a flat prior on β (0). This is how we can incorporate demographic

variables (age, race and sex) for the BMI data from NHANES III.

In many complex surveys, there are also survey weights; this is also true for NHANES

III. We may include the survey weights in the model using a normalized composite like-

lihood. However, if the survey weights for the nonsampled values are unknown, it is not

obvious how to perform predictive inference under the model. One solution may be to use

surrogate sampling (Nandram 2007).
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APPENDICES

A: Fitting the S-S Model

Let y
˜
= (y

˜
s,y

˜
ns), where y

˜
s = {yi j, i = 1, . . . , �, j = 1, . . . ,ni} is the vector of observed values

and y
˜

ns = {yi j, i = 1, . . . , �, j = ni + 1, . . . ,Ni} vector of unobserved values. First, define

the sample means and sample variances, ȳi =
1
ni

∑ni
j=1 yi j and s2

i =
1

ni−1 ∑ni
j=1(yi j− ȳi)

2,ni >

1, i = 1, . . . , �. Second, let λi =
ni

ni+(1−ρ)/ρ , i = 1, . . . , �, ỹ = ∑�
i=1 λiȳi/∑�

i=1 λi, and A1 =
1−ρ

ρ ∑�
i=1 λi(ỹ− ȳi)

2 +∑�
i=1(ni−1)s2

i . Here, the λi are shrinkage coefficients.

Then, using Bayes’ theorem, the joint posterior density of μ
˜
,θ ,σ2,ρ is

π(μ
˜
,θ ,σ2,ρ |y

˜
s) ∝

(
1

σ2

)(n+�)/2 (
1−ρ

ρ

)�/2

exp

{
− 1

2σ2

{ �

∑
i=1

{
(ni−1)s2

i

+

(
ni +

1−ρ
ρ

)
(μi− [λiȳi +(1−λi)θ ])2

+ λi

(
1−ρ

ρ

)
(ȳi−θ)2

}}}
× 1

(1+σ2)2
× 1

π(1+θ 2)
. (A.1)

We use a simple method called the sampling importance resampling (SIR) algorithm to draw

from the posterior distribution π(μ
˜
,θ ,σ2,ρ|y

˜
s) in (A.1). That is, we take a sample of draws

from a proposal density πa(μ
˜
,θ ,σ2,ρ|y

˜
s), then use these draws to produce a sample from

π(μ
˜
,θ ,σ2,ρ|y

˜
s). As a well-known result, one would need π(μ

˜
,θ ,σ2,ρ|y

˜
s)/πa(μ

˜
,θ ,σ2,ρ|y

˜
s)

to be uniformly bounded in its parameters. A reasonable approximation to the joint poste-

rior density (A.1) and one from which it is easy to draw samples will suffice. We use the

same likelihoods (1) and (2) in the two-level normal model together with an improper prior

π(θ ,σ2,ρ) ∝ 1
σ2 ,−∞ < θ < ∞,0 < σ2 < ∞,0≤ ρ ≤ 1 as a Bayesian model from which we

use the posterior density as a proposal density,

πa(μ
˜
,θ ,σ2,ρ|y

˜
s) ∝ πa(μ

˜
|θ ,σ2,ρ,y

˜
s)πa(θ |σ2,ρ,y

˜
s)πa(σ2|ρ,y

˜
s)πa(ρ|y

˜
s) (A.2)

∝
�

∏
i=1

N
[

μi;λiȳi +(1−λi)θ ,(1−λi)
ρ

1−ρ
σ2

]

× N
(

θ ; ỹ,
σ2ρ

∑�
i=1 λi(1−ρ)

)
× IG

[
σ2;(n−1)/2,A1/2

]

× Γ[(n−1)/2]

(A1/2)(n−1)/2

�

∏
i=1

(1−λi)
1/2

[
ρ

∑�
i=1 λi(1−ρ)

]1/2

.

Note that π(μ
˜
,θ ,σ2,ρ|y

˜
s)/πa(μ

˜
,θ ,σ2,ρ|y

˜
s) =

1
π(1+θ 2)

σ2

(1+σ2)2 ≤ 1
π (uniformly bounded

as required). We draw a sample from the approximate joint posterior density (A.2) by first

drawing a sample from πa(ρ|y
˜

s) using the grid method and continue using the multiplication

rule of probability. The algorithm works fine because the sub-sampling weights are nearly

uniform.
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B: Fitting the DPM Model

Kalli, Griffin and Walker (2011) suggested slice-efficient samplers, and it is based on the

stick-breaking algorithm (Sethuraman 1994). Letting G = ∑∞
s=1 πsδμ∗s , where

π1 = β1, πs = βs

s−1

∏
j=1

(1−β j), βs
iid∼ Beta(1,γ), μ∗s

iid∼ G0,

and G0 is a baseline distribution. Here, for convenience, we will use a short-hand nota-

tion for the formulas below, h(yi j; μi) = Normalyi j(μi,σ2), j = 1, . . . ,ni, i = 1, . . . , � and so

h(y
˜

i; μi)=∏ni
j=1{Normalyi j(μi,σ2)}, i= 1, . . . , �. Also, we use g(μi)=Normalμi(θ ,

ρ
1−ρ σ2),

i = 1, . . . , �.

The idea is to introduce latent variables {u1,u2, . . . ,u�}, which allows us to sample a fi-

nite number of variables at each iteration. One can introduce further latent variables,

{d1,d2, . . . ,d�} that indicate the components of the mixture from which observations are

to be taken to give a general class of slice samplers,

f (y
˜

i,ui,di|π,μ∗) = 1(ui < ξdi)πdi/ξdih(y
˜

i; μ∗di
),

where ξ1,ξ2, . . . is any positive sequence. Typically, the sequence will be deterministic de-

creasing sequence. In our computation, we use ξs = (1−κ)κs−1 where the tuning constant

κ is between 0 and 1; other choices are possible. Let K = max�i=1(Ki), where Ki is the

largest integer t such that ξt > ui.

Specifically, for our DPM model, the joint posterior distribution is proportional to

π(θ ,σ2,ρ,γ)
K

∏
s=1

Beta(βs;1,γ)g0(μ∗s )
�

∏
i=1

1(ui < ξdi)πdi/ξdih(y
˜

i; μ∗di
).

The variables {(μ∗s ,βs),s = 1,2, . . . ,K;(di,ui), i = 1, . . . , �} need to be sampled at each

iteration. The Gibbs sampler is obtained by drawing samples, each in turn, from the

conditional posterior distributions, (a) π(ui| . . .) ∝ 1(0 < ui < ξdi); (b) π(μ∗s | . . .) ∝
g0(μ∗s )∏{i|di=s} h(y

˜
i; μ∗s ); (c) π(βs| . . .) ∝ Beta(as,bs), where as = 1+∑�

i=1 1(di = s) and

bs = γ +∑�
i=1 1(di > s); (d) P(di = r| . . .) ∝ 1(r : ξr > ui)πr/ξrh(y

˜
i; μ∗r ), r = 1, . . . ,K.

The other parameters are included in the Gibbs sampler, and the grid method is used to

draw some of them (e.g. γ).


