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Abstract: Although vegetation phenology thresholds have been developed for a wide range of 

mapping applications, their use for assessing the distribution of natural bamboo and the related 

carbon stocks is still limited, especially in Southeast Asia. Here, we used Google Earth Engine (GEE) 

to collect time-series of Landsat 8 Operational Land Imager (OLI) and Sentinel-2 images and 

employed a phenology-based threshold classification method (PBTC) to map the natural bamboo 

distribution and estimate carbon stocks in Siem Reap Province, Cambodia. We processed 337 

collections of Landsat 8 OLI for phenological assessment and generated 121 phenological profiles 

of the average vegetation index for three vegetation land cover categories from 2015 to 2018. After 

determining the minimum and maximum threshold values for bamboo during the leaf-shedding 

phenology stage, the PBTC method was applied to produce a seasonal composite enhanced 

vegetation index (EVI) for Landsat collections and assess the bamboo distributions in 2015 and 2018. 

Bamboo distributions in 2019 were then mapped by applying the EVI phenological threshold values 

for 10 m resolution Sentinel-2 satellite imagery by accessing 442 tiles. The overall Landsat 8 OLI 

bamboo maps for 2015 and 2018 had user’s accuracies (UAs) of 86.6% and 87.9% and producer’s 

accuracies (PAs) of 95.7% and 97.8%, respectively, and a UA of 86.5% and PA of 91.7% were obtained 

from Sentinel-2 imagery for 2019. Accordingly, carbon stocks of natural bamboo by district in Siem 

Reap at the province level were estimated. Emission reductions from the protection of natural 

bamboo can be used to offset 6% of the carbon emissions from tourists who visit this tourism-

destination province. It is concluded that a combination of GEE and PBTC and the increasing 

availability of remote sensing data make it possible to map the natural distribution of bamboo and 

carbon stocks. 
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1. Introduction 

Bamboos are evergreen perennial flowering plants that can be found in the tropical and 

subtropical regions of the world [1]. Bamboos provide important ecosystem goods and services to 

people: for example, they serve as sources of food and raw materials for construction [2] and play 

important roles in soil erosion control, water conservation, and land rehabilitation [3]. Bamboo forests 

also have a potential role in climate change mitigation, acting as sinks or sources of atmospheric 

carbon [2,4], depending on how they are managed. Despite such importance, studies on the natural 

distribution of bamboos remain limited, making it difficult to assess their abundance or measure and 

monitor their carbon stocks. Therefore, it is critically important to map bamboo distributions using 

fast and timely technologies for transparent, speedy, and monitoring at scale. Understanding the 

natural distribution of bamboos also allows us to assess the roles of bamboos in climate change 

mitigation and rural community development. 

Bamboos are plants in the subfamily Bambusoideae of Gramineae. More than 1500 species are 

found in the tropical and subtropical regions of Asia [1]. Bamboos are considered non-timber forest 

products (NTFPs) with the ability to provide food, raw materials [2], and other ecosystem services to 

industries and local people [2,5]. Natural bamboo and plantations can be managed to mitigate climate 

change [3,6]: as fast-growing, high-yield plants they are capable of sequestering between 5 and 12 

tCO2 ha−1 year−1 [3,5,6]. Therefore, the management of bamboo forests can be eligible under the 

REDD+ scheme (reducing emissions from deforestation and forest degradation, forest conversation, 

sustainable management of forests, and enhancement of forest carbon stocks) of the United Nations 

Framework Convention on Climate Change (UNFCCC) [6]. It can also contribute to the achievement 

of Sustainable Development Goals (SDGs) 7, 13, and 15 [3]. Nevertheless, effective management of 

bamboo forests requires an understanding of their distribution through accurate mapping [7]. 

Remote sensing imagery has been used for various phenological applications in land use and 

land cover classification [8], mapping of rubber plantations [9], cropland [10,11], and bamboo 

mapping [12]. Researchers have used medium-resolution Landsat satellite data for the assessment of 

land cover changes over the past 40 years. Such data have become freely available in global archives 

that offer detail on land use and land cover dynamics [13–15]. These Landsat data have 30 m spatial 

resolution and a 16-day temporal interval. Launched in February 2013, Landsat 8 is the latest data 

acquired using the Operational Land Imager (OLI) and Thermal Infrared Sensor sensors in addition 

to the existing Landsat series of NASA. The recent launch of the Sentinel-2 satellite mission of the 

European Space Agency in 2015 and 2017 provides a new opportunity for land-based mapping and 

monitoring in the tropics using Sentinel-2′s high-resolution multispectral data and 10-day temporal 

interval. While Landsat 8 OLI data have been used for phenology-based studies, very few studies 

have evaluated the potential use of Sentinel-2 imagery data for phenology-based land cover mapping. 

Previous studies attempted to examine surface phenology for land use and land cover classification 

[13] and rubber plantation [9,16] and cropland mapping [17] in tropical regions [11]. For example, 

Schwieder et al. [18] used remote sensing technologies to assess forest carbon stocks [18]. However, 

challenges remain in determining the phenology-based threshold values for bamboo distribution 

mapping because of the rapid changes in phenological behavior between seasons [19,20]. Such rapid 

changes in phenology make it difficult to avoid the misclassification of bamboo. A recent study 

indicates that the mapping of bamboo distribution needs to employ robust classification methods to 

avoid misclassification [13]. Freely available moderate-resolution remote sensing data in a cloud-

computing platform offers significant potential [12] as a robust methodology, for example in 

developing countries in Southeast Asia such as Cambodia, where remotely sensed reconstructions of 

past land cover change have been limited. 

Previous studies that employed current mapping techniques for bamboo stands either used very 

high resolution images without regard to temporal spectral behavior [7,19,21] or time-series Landsat 
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data [12,21] and the enhanced vegetation index (EVI) [22–27] with an additional focus on temporal 

information. The majority of these studies also implemented traditional imagery acquisition and 

processing methods, downloading large-sized images and processing them using image processing 

software. This traditional approach is not only time-consuming, especially when dealing with time-

series imagery, but also requires a workstation with a high capacity for image processing and storage 

[13]. Available studies on bamboo mapping were mostly carried out in subtropical China, India, and 

East Africa. Several studies have used remote sensing applications to estimate carbon stocks 

[12,28,29]. Sasaki et al. [30] estimated carbons stocks in Cambodian forest types, including bamboo, 

using four carbon pools—above-ground biomass, below-ground biomass, deadwood, and litter—by 

applying the Intergovernmental Panel on Climate Change (IPCC) method [31]. Attempts have also 

been made to study the natural distribution of bamboo in Cambodia using commercial remotely 

sensed data such as Phased Array type L-band Synthetic Aperture Radar [32] and Light Detection 

and Ranging [33]. Although these studies yielded some information about bamboo distribution, their 

methods are labor-intensive and costly in terms of computation power. 

The recent launch of Google Earth Engine (GEE) offers an enormous opportunity for time-series 

image acquisition and processing in a fast cloud-computing environment [34,35], which can be used 

to study the natural distribution of bamboo free of cost. GEE’s fast cloud-computing technology and 

its available remote sensing data, specifically Landsat and Sentinel satellite products, have been used 

for a wide range of applications at the local and global scales [13,36–38]. Recently, GEE has been 

extensively used for surface phenology mapping [15,39]. However, the literature is limited in studies 

that used the GEE cloud-computing platform for bamboo mapping using the vegetation phenology 

threshold approach. Furthermore, finding low-cost technologies for assessing carbon sequestration 

is important to support mitigation efforts in relation to the ongoing climate crisis [18,40]. 

The present study was designed to determine threshold values for naturally distributed bamboo 

using a GEE harmonic and regression model for Landsat 8 OLI and to map the bamboo distribution 

and related carbon stocks in Siem Reap Province in Cambodia for the years 2015, 2018, and 2019 using 

a phenology-based threshold classification method (PBTC) [13] and freely available Landsat 8 OLI 

and Sentinel-2 collections in GEE. 

2. Study Materials and Methods 

2.1. Study Area 

Siem Reap Province, Cambodia, was chosen for this study because it has all forest types found 

in Cambodia, except Mangrove forest. Siem Reap (Figure 1) is one of the fastest-developing regions 

in Cambodia because of its proximity to the tourist attractions of the Angkor Wat complex and Tonle 

Sap Lake. Although tourism is an important income source for some local people, the majority still 

depend on forest products and agriculture for their livelihoods [41]. 

Bamboo grows naturally in Cambodia’s tropical climate. Cambodia has about 10 species in four 

genera of bamboo, namely, Bambusa, Arundinaria, Dendrocalamus, and Oxytenanthera. Bambusa has a 

more extensive distribution in the country as compared with Oxytenanthera and Arundinaria. Bamboo 

species such as Arundinaria ciliata, Arundinaria pusilla, and Bambusa blumeana grow beneath evergreen, 

semi-evergreen, and deciduous trees [42]. Several bamboo species in the region have commercial 

value as a material for construction and for making agricultural tools, handicrafts, and paper. The 

above three species, as well as Dendrocalamus spp., are used as food and for making kitchen utensils, 

matting, slat traps, and floats [42]. 

The major forest types are deciduous, evergreen, flooded forest, and bamboo. Dense bamboo 

stands are found in the northern part of Cambodia in evergreen and deciduous forests, around Tonle 

Sap Lake, and along stream banks [42]. Some ethnic groups rely heavily on bamboo products for their 

livelihoods, especially in the north and northeast regions, which include some parts of Siem Reap 

Province [42]. Bamboo remains widely distributed in the remaining forested area and continues to 

support rural areas. A recent study by Sasaki et al. [30] showed that Cambodia’s forest carbon stocks, 
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including bamboo, are helping the government’s efforts to reach their national emission reduction 

targets [30,43]. In 2018, the government included bamboo species as a major forest type [43]. 

 

Figure 1. Map of the study area. Note: Light green points indicate phenology sampling points for 

bamboo, evergreen, and rubber plantations. The yellow box indicates the National Park of Phnom 

Kulen mountain. Source: The background map is the bamboo distribution derived from Sentinel-2 

imagery in 2019 in this study. The provincial and district boundaries were obtained from Open 

Development Cambodia [44]. 

2.2. Remote Sensing Data 

Google Earth Engine provides ready-to-use remote sensing data in an up-to-date library with 

moderate to high-resolution imagery. To characterize vegetation phenology, we used 297 moderate-

resolution 30 m Landsat 8 OLI top-of-atmosphere (TOA) collections from 2015 to 2018 (Table 1). Forty 

Landsat 8 OLI collections that cover the study area of Siem Reap Province were sourced between 

December and February of 2015 and 2018 for bamboo threshold-based classification [13] (Table 2). To 

further explore vegetation threshold values for Sentinel-2 products, we accessed 422 Sentinel-2 

images from January to December 2019 (Table 2). 

Table 1. Landsat 8 Operational Land Imager (OLI) collections used for assessing the phenological 

behavior of selected land cover categories. 

Landsat 8 OLI 

PATH ROW 2015 2016 2017 2018 

126 50 17 16 16 15 
 51 21 20 18 16 

127 50 20 20 19 18 
 51 17 22 22 20 

Total Collections 75 78 75 69 
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Table 2. Landsat OLI and Sentinel-2 image collections used in this study for phenology-based 

threshold classification (PBTC). 

Cloud-Free Month 

and Year 

PATH/ROW Sentinel-2 

TILE 

Landsat 8 

Sentinel-2  

Number of 

Images/Tiles 

December–February 126/50 
L-8-OLI-TOA 20 

2014–2015 127/51 

December–February 126/50 
L-8-OLI-TOA 20 

2017–2018 127/51 

January–December 

2019 

48PUA, 48PUV, 48PVA, 

48PVV 
Sentinel-2 442 

Total   482 

Note: OLI is Landsat Operational Land Imager 8, and TOA is top-of-atmosphere; 48PUA, 48PUV, 

48PVA, and 48PVV are Sentinel-2 Military Grid Reference System (MGRS) tiles in the study region. 

2.3. Methodology 

Figure 2 illustrates the methodological framework of selected vegetation phenological 

assessment and phenology-based threshold classification methods for bamboo mapping and bamboo 

carbon stock assessment. 

 

Figure 2. Methodological framework of phenology-based threshold classification to identify the 

natural distribution of bamboo forest. GEE, Google Earth Engine; EVI, enhanced vegetation index; 

EOS, end of season; SOS, start of season; LSP, leaf-shedding phenology stage; LFP, leaf-flushing 

phenology stage. 

Here, we used JavaScript programming in GEE to collect time-series of Landsat 8 OLI image 

collections from 2015 to 2018 and applied cloud mask functions (less than 45%) to exclude cloud 

pixels prior to the assessment of land use classification (Figure 2, Step 1) [10,34,37,45,46]. We then 

applied an image compositing and reducer function to select the most recent pixel in the collections. 

We applied a composite median reducer function to calculate the median value of each image 

collection. The median reducer function removes clouds in the image, which have high values, and 

shadows, which have low values [35,47]. The output composite value is the median in each band over 

time [34,46]. We applied a clip function to subset the image collections within the study region and 

then calculated the EVI using Equation (1) (Figure 2, Step 1) (Appendix A): 

��� = � ×
(��� − ���)

(��� + �� × ��� − �� × ���� + �)
 (1) 
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where G = 2.5 (gain factor) [48–50]; C1 = 6 and C2 = 7.5 (aerosol correction factors); L = 1 (canopy 

background adjustment factor) [48–50]; and NIR (near infrared) is Landsat band 5 and Sentinel-2 

band 8, RED is band 4 in both Landsat and Sentinel-2, and BLUE is band 2 in both Landsat and 

Sentinel-2 [49]. 

In assessing the vegetation phenological profiles of selected land cover classes, we applied a 

time-series analysis for EVI by adapting harmonic and regression model JavaScript algorithms from 

our recent study [13] (Figure 2, Step 2). We selected 65 geometry locations (Figures 1 and 3D), 

including 30 for bamboo forest, 30 for evergreen forest, and 5 for rubber plantations, where no large 

land cover changes had occurred during the phenological analysis period (2015 to 2018). As we 

observed during the field survey in 2019, the larger portion of bamboo distribution was found in and 

around the Kulen Mountain area, including Varin, Banteay Seri, and Svay Leu Districts, and in the 

northern part of Chi Kreng District (Figure 1). Thus, we selected 10 sites with a large homogeneous 

extent of bamboo around the Kulen Mountain for creating the geometry for analyzing the 

phenological behavior of bamboo. 

For the rubber plantation samples, we created four geometry locations in Chi Kraeng District, 

two in the northern part of Varin, two in Angkor Thom, and two locations in Banteay Srei Districts. 

For evergreen forest geometries, we created three in the Angkor Wat region, where there are 

permanent sampling plots for evergreen forest [51], and seven geometries were created within the 

study area (Figure 3). Eventually, we generated the time-series and fitted and original EVI profiles 

for each selected vegetation category to assess phenological behaviors [52] and determine the 

threshold values [13] from Landsat 8 OLI collections during the leaf-shedding phenology stage 

(December to March) from 2015 to 2018 (Figure 2, Step 2). 

 

Figure 3. Example of original and fitted OLI index time-series profile of evergreen forest and bamboo 

between 2015 and 2018 generated by using harmonic regression and a time-series model. (A) is the 

GEE JavaScript code window, (B) is the EVI time-series graph, (C) is the geometry inputs for selected 

forest land cover categories and (D) shows the map window in GEE. 

In Figure 3A, is the code window for the GEE time-series indices and harmonic regression 

JavaScript code developed in GEE to assess the phenological behaviors of selected vegetation 

categories; Figure 3B is the graphical window showing the harmonic and time-series phenological 

behaviors of evergreen, bamboo, and rubber vegetation’s fitted (blue line) and original (red dots) 

vegetation index values from 2015 to 2018; Figure 3C shows geometry inputs of selected vegetation 

categories; Figure 3D is the map window showing the geometry of evergreen (green), bamboo 

(yellow), and rubber plantation (purple) in Siem Reap Province. The background image is Landsat 8 

OLI composite EVI data in GEE. 

A B 

C D 
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Google Earth Engine generates EVI time-series profile datasets in a comma-separated values file 

format (CSV). Using the GEE export option, we exported 25 (10 evergreen, 10 bamboo, and five 

rubber plantations) CSV profiles and used the Pivot Table function of Microsoft Excel to obtain the 

average EVI values per year and month over four years, from 2015 to 2018 (Figure 2, Step 3). 

The time-series analysis of fitted vegetation indices allowed us to quantify the phenological 

behaviors of bamboo, rubber, and evergreen forest categories. To do this, we first assessed the fitted 

vegetation index profiles derived from the time-series harmonic regression model using compressed 

(15-day intervals) Landsat 8 OLI collections. We then calculated the average of the mean fitted 

vegetation index values by creating 120 phenological profiles for selected land use categories (2015, 

2016, 2017, and 2018) during the leaf-flushing phenology stage (LFP) at the start of the season (SOS) 

and the leaf-shedding phenology stage (LSP) at the end of the season (EOS) over four years. Previous 

phenological studies showed that fitted index values have higher accuracy in determining the 

vegetation threshold values for mapping during the LSP stage, locally called EOS [13]. 

We selected the fitted EVI profiles and assessed the phenology-based vegetation index values 

from November to April (EOS) or during the LSP season to determine the separation of bamboo index 

profiles from evergreen forests and rubber plantations from 2015 to 2018. We then created 12 average-

fitted EVI phenological profiles for the three land use categories by year to estimate the average EVI 

profiles and determine the threshold values for bamboo forest, evergreen forest, and rubber 

plantation and to classify bamboo distribution in the region during the mid-dry season (Figure 2, 

Step 3). Because the purpose of this study was to determine the natural distribution of bamboo forest, 

we did not consider the vegetation index values for other land cover categories in this study, which 

fell below the evergreen forest threshold values. 

Since the resulting Landsat 8 OLI phenology threshold values did not match the Sentinel-2 

composite EVI for the selected land use categories, to classify the Sentinel-2 composite EVI data by 

using the PBTC method, we assigned Min = 0.6712 and Max = 0.7760 for bamboo, 0.6695–0.6623 for 

rubber, and 0.555–0.660 for the evergreen forest category by modifying Landsat Thematic Mapper 

(TM) threshold values from our previous phenological study [13]. We used JavaScript to build the 

PBTC algorithm [13] for classifying the median EVI data from composite Landsat OLI and Sentinel-

2 images. As depicted in Figure 2 (Step 4), the steps used for the composite image and pixel-based 

threshold mapping of individual land cover categories were as follows: 

 Imagery preprocessing and time-series collections were filtered for the dry mid-phenology 

season (from December to February). 

 Image filter functions were applied to select image collections in the particular phenological 

period within the study region [13]. 

 To develop the mapping function for EVI data, the GEE image reducer and median function was 

used to form composite time-series images to obtain a median EVI [35,53]. 

 The PBTC function was applied to the bamboo forest, evergreen forest, and rubber plantation 

categories. 

The final PBTC maps were used to map the bamboo distribution and calculate the bamboo 

carbon stocks in Siem Reap Province (Figure 4). 
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Figure 4. Example result of Sentinel-2 imagery phenology-based threshold classified map. Legend: 

(A) Code window showing the PBTC functions developed in GEE. (B) Map window that represents 

the 10 m resolution Sentinel-2 land use map in 2019. Bamboo forest appears in yellow (inset legend). 

The background image is GEE Google Earth imagery.  

2.4. Accuracy Assessment 

Google Earth higher-resolution imagery (VHR) is free of cost and can be used directly as a base 

source for validating land use, land cover maps [54] because it provides the most accurate data for 

selecting the most appropriate reference points that are very important for validation. The images are 

updated whenever new images become available. Depending on the sensor, the image resolution 

ranges from 30 m to 15 cm. Utilizing the time-lapse feature in Google Earth Pro allows the user to 

view zoomable images as far back as 30 years, which is ideal for validating land use, land cover maps 

[55] and performing investigation and preliminary studies with suitable accuracy [56,57] by applying 

recognized protocols, as recommended by [58]. Here, a stratified random sampling technique was 

employed for the validation of phenology-based threshold classified maps. From the number of 

random points generated in ArcGIS, a total of 1500 accuracy points were selected within the 

evergreen forest, bamboo, and rubber plantation land cover categories. We excluded the random 

points that fell within the water and other land cover categories. Because the spatial distribution of 

bamboo and rubber plantation areas is smaller than that of the evergreen forest and other land cover 

classes, we selected random reference points within the three forest categories to acquire a 

considerable number of reference points for the bamboo and rubber plantation category areas to 

better assess mapping accuracy [59]. 

PBTC maps were exported to Google Drive using the export function in GEE, and we used these 

maps in ArcGIS to transform land cover labels into 1500 accuracy points by applying ArcGIS spatial-

join and related tools. We then used these accuracy points in Google Earth Pro to verify and validate 

the 1500 points for Landsat OLI (2015 and 2018) and Sentinel-2 (2019) maps (Figure 5). 

A 

B 
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Figure 5. Imported reference points in Google Earth Pro for PBTC map accuracy assessment. 

These accuracy points were compared to the matching land cover labels using the VHR imagery 

in Google Earth Pro. The percentage of agreement was recorded in an accuracy table, and 

classification accuracy was assessed using a confusion matrix in Microsoft Excel. We then calculated 

overall accuracy, producer’s accuracy, user’s accuracy, and kappa coefficients from the confusion 

matrix [13,58] for PBTC maps. 

2.5. Bamboo Carbon Stock Assessment 

To implement the REDD+ scheme, Cambodia employs a national definition of forest that is 

consistent with the Global Forest Resources Assessment [60] and considers bamboo to be one of the 

main forest categories for net carbon sequestration from land use, land use change, and forestry [60]. 

Conventionally, forest inventories are used for measuring, reporting, and verification (MRV) of 

deforestation and forest degradation in the tropics to provide the needed information for establishing 

baseline emissions against which mitigation measures and performance can be assessed [61–63]. 

Equation (2) was applied for calculating carbon stocks in the existing bamboo areas and is 

presented below [30,60]: 

��� = � ���

��

���

× �� 1) 

 

(2) 

where TCS is the total carbon stocks of bamboo forest in 2015, 2018, and 2019; BFi, is the area of 

bamboo forest in district i in Siem Reap Province at any given time; and CS is the carbon stocks in 

bamboo forest in the respective years (i.e., 2015, 2018, or 2019). Sasaki et al. [30] estimated the bamboo 

carbon stocks in Cambodia to be 57.4 Mg C ha−1 [64] for all pools except organic soil carbon. Here, we 

used the same value to calculate the bamboo carbon stocks in 12 districts in Siem Reap Province in 

2015, 2018, and 2019 (Figure 2, Step 5) [30,60]. 

If natural bamboo forests are completely cleared, total emissions from such clearing were 

estimated using 

�� = ��� ×
44

12
  

 

(3) 

where CE is carbon emission (Mg CO2), TCS is the total bamboo carbon stock at any given time of 

clearing (in 2015, 2018, and 2019) in Equation (2), and 44/12 is the molecular weight ratio of carbon 

dioxide to carbon [30,65]. 
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On the other hand, if all these natural bamboo forests are fully protected and the avoided carbon 

emissions (ACE) are used to offset the carbon emissions from tourists visiting the province, the 

contribution of bamboo forest to climate change mitigation was estimated using 

��� =
 ���

� ×  ��
� 100 (4) 

where COR is carbon offsetting rate (%), T is the total number of tourists visiting Siem Reap in 2015 

(2,100,000) and 2018 (2,200,000) [66]. Due to the lack of data in 2019, tourist-based emissions for 2019 

were not included in our carbon offsetting calculation, EP is the tourist’s per capita emissions for 

traveling to and staying in Siem Reap (4.14 Mg CO2/person) [67]; ACE is the avoided carbon 

emissions. If 100% is avoided, ACE = CE. 

3. Results 

3.1. Phenological Profiles and Threshold Values 

The time-series analysis of fitted vegetation indices allowed us to quantify the differences in 

phenological behavior between bamboo, rubber, and evergreen forest land cover categories, as 

shown in Figures 6–8. 

 

Figure 6. Fitted phenological profile of Landsat 8 OLI EVI composite data for bamboo forest. 

In Figure 6, the yearly average index profiles were generated by analyzing 40 profiles from 10 

geometry locations between 2015 and 2018. The highlighted blue color shows the LFP stage and 

indicates the local start-of-season (SOS) and end-of-season (EOS) periods from May to November. 

The dashed blue lines indicate the SOS and EOS phases. The blue arrow and black dashed line show 

the leaf-shedding phenological stage and the amplitude of the minimum and maximum bamboo 

index profiles from December to April. 
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Figure 7. Fitted mean vegetation index profiles of Landsat 8 OLI EVI composite data for rubber 

plantation. Average index profiles were generated by assessing 40 profiles from 10 geometry locations 

of the bamboo category between 2015 and 2018. 

 

Figure 8. Fitted EVI profile of Landsat 8 OLI EVI composite data for evergreen forest. The average 

vegetation index profiles were generated from 10 geometry locations by assessing 40 profiles from 

2015 to 2018. 

Figure 6 (bamboo), Figure 7 (rubber), and Figure 8 (evergreen) show the overlapping of average-

fitted vegetation index profiles during SOS and EOS and the regular fluctuation of average EVI 

profiles of bamboo, rubber, and evergreen forest during the LSP stage (from December to April) in 

all 30 of the selected geometry locations from 2015 to 2018. The most distinguishable differences in 

the three vegetation cover indices were apparent in the LSP stage. The bamboo average-fitted 

vegetation index values were Min = 0.71 and Max = 0.83 from 2015 to 2017 and Min = 0.71 and Max = 

0.84 in the LFP stage in 2018 (Figure 6). The fitted values for evergreen in the LSP stage reveal lower 

vegetation index values than those for bamboo in all selected phenology years (Figure 8). We found 

that evergreen had fitted average index values of Min = 0.63 and Max = 0.70 in the LFP stage from 

2015 to 2018. The rubber plantation values (Min = 0.75 and Max = 0.80) were higher than the bamboo 

and evergreen forest values in the SOS to EOS season, and its vegetation index values were lower 

than bamboo and evergreen values during the LSP season (Figure 7). 

However, during the start of the LSP stage, bamboo vegetation index values (Max = 0.86 and 

Min = 0.83 from November to January) were greater than those of evergreen (Max = 0.71 and Min = 

0.69) and rubber (Max = 0.80 and Min = 0.76) in the overall SOS and EOS or LFP period. The separation 

of fitted indices of bamboo, rubber, and evergreen phenological profiles in the mid-LSP stage is 

shown in Figure 9. 
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Figure 9. Time-series average index values of bamboo, rubber, and evergreen forest categories during 

the middle LSP season from 2015 to 2018. The average phenology index values were generated by 

validating 120 index profiles. The box surrounding the profiles indicates the phase of separation of 

the EVI profile of the three vegetation categories during the middle-leaf-shedding phenology season. 

Locally, May–October is the rainy season (LFP stage), and November–April is the dry season (LSP 

stage). 

The cumulative average phenology profile of land use categories (Figure 9), namely, bamboo, 

rubber, and evergreen, were assessed by validating 120 index profiles during the LSP and LFP stages. 

Comparing the phenology-based index profiles revealed that bamboo had greater index values over 

the entire LSP period from 2015 to 2018. The amplitude of bamboo minimum and maximum peak 

values (0.860–0.863) occurred at the end of the LSP stage (December–February), and the lowest index 

values (0.707–0.716) were found at the start of the rainy season (SOS) in May–July. 

The rubber plantation vegetation index values (0.784–0.798) were greater than the bamboo 

values (0.707–0.716) in the SOS (monsoon/rainy season) from May to September, and they were 

slightly lower (0.741–0.748) right after the start of the mid-LSP stage (January–April). However, the 

bamboo and rubber vegetation index profiles overlapped in the EOS season between September and 

October, as shown in Figure 9. The evergreen phenological values and the phase of amplitudes are 

smaller than those for bamboo and rubber in all phenological stages. Therefore, classification 

confusion of evergreen forest and that of bamboo or rubber is not likely to occur. 

Bamboo was found to have the highest vegetation index in the mid-dry phenological phase. 

Amplitudes of the minimum and maximum threshold values were determined (0.854–0.882) and are 

shown in Figure 10. Similarly, rubber plantations showed the highest vegetation index, but the range 

of the threshold amplitude (0.815–0.841) between bamboo and evergreen forest was smaller (0.581–

0.648) (Figure 10). 
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Figure 10. Minimum and maximum threshold values for bamboo forest, rubber plantation, and 

evergreen forest determined using Landsat 8 OLI EVI time-series data during the mid-LSP stage from 

2015 to 2018. 

3.2. Natural Distribution of Bamboo Forest 

Using the obtained threshold values of selected land cover categories, we were able to derive 

the natural bamboo distribution for the entire Siam Reap Province in 2015 (Figure 11), 2018 (Figure 

12), and 2019 (Figure 13). 

The PBTC map of land use in Siem Reap in 2015 and 2018 (Figures 11 and 12) represents the 

bamboo, rubber, evergreen, and other land cover distributions. Evergreen forest is widely distributed 

around Kulen Mountain and the Angkor Wat temple. Bamboo distribution was found largely in the 

mountain region, and some patches can be observed around the Angkor Wat temple. Rubber 

distribution can be seen in only a small area (Figure 11C) in 2015, whereas the increase in rubber is 

clearly seen in 2018 (Figure 12C). 
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Figure 11. Maps showing the bamboo distribution in Siem Reap in 2015. Inset maps show the locations 

of the natural bamboo distributions around the Kulen Mountain (A) and Boeng Peae Wildlife 

Sanctuary (B) and of dense evergreen forests in southeastern region of the Boeng Peae Wildlife 

Sanctuary (C) and Angkor Wat temple (D). 

In Figure 11A, the map represents the distribution of bamboo around Kulen Mountain and 

Kulen National Park. Figure 11B (Boeng Peae Wildlife Sanctuary) shows the distribution of bamboo 

in natural evergreen forests in the northwestern part of the study region, including Chi Kraeng 

District. Figure 11C shows a mix of vegetation of evergreen forest (green) and rubber (purple) in Chi 

Kraeng District. Figure 11D shows the rich evergreen forest cover and small bamboo distribution 

around the Angkor Wat temple. 
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Figure 12. Maps showing the bamboo distribution in Siem Reap in 2018. Inset maps show natural 

distribution of bamboo in Kulen Mountain (A) and Boeng Peae Wildlife Sanctuary regions (B), rubber 

plantation in southeastern region (C) and evergreen forest around the Angkor Wat temple (D). 

 

Figure 13. Maps showing the bamboo distribution using the Sentinel-2 in Siem Reap, 2019. Inset maps 

show natural distribution of bamboo around the Kulen Mountain (A) and Boeng Peae Wildlife 
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Sanctuary areas (B), rubber plantation (C) and dense evergreen forest around the Angkor Wat temple 

(D). 

As shown in Figure 13, bamboo distribution was higher in 2019 compared with that in 2015, and 

the distribution of rubber plantations can be seen clearly in Varin and Chi Kraeng Districts (Figures 

12C and 13C). Figure 13 shows a higher bamboo distribution area compared with that in the Landsat 

OLI maps (2015 and 2018) in most of the study region. On the other hand, rubber plantation 

distribution can be seen clearly in Varin and Chi Kraeng Districts (Figure 13C). Our analysis found 

that the bamboo cover was 2674 ha in 2015, 2711 ha in 2018, and 2672 ha in 2019. A larger area of 

bamboo was in upland areas and along riverbanks [42], especially in Phnom Kulen National Park 

and the northern part of Chi Kraeng District. 

3.3. Accuracy Assessment 

Validation of the 2015 and 2018 maps using VHR imagery in Google Earth revealed that for 

bamboo classification, producer’s accuracy (PA) is 95.7% and user’s accuracy (UA) is 86.6% for 2015, 

with values of 97.8% (PA) and 87.9% (UA) for 2018. The Sentinel-2 map shows that the PA is 91.7% 

with a UA of 86.5% for 2019. The evergreen forest has a UA of 95.7%–89.7% and PA of 84.3%–89.9% 

(2015–2018). Rubber plantation PA is 93.6%–68.1% and UA is 81.5%–95.5% (2015–2018) for the 

Landsat 8 OLI maps. We found that the overall accuracy in VHR is 89.72%–89.56% (2015–2018) with 

a kappa coefficient of 0.83–0.82 for the Landsat OLI phenology-based threshold maps of 2015 and 

2018 (Table 3, Figure 14). 

Table 3. User’s accuracy and producer’s accuracy assessment for classifying the bamboo, rubber, and 

evergreen forest in Siem Reap. 

Forest Category Evergreen Rubber Bamboo User’s Accuracy 

Landsat OLI imagery in 2015 

Evergreen 268 5 7 95.70% 

Rubber 17 88 3 81.50% 

Bamboo 33 1 220 86.60% 

Producer’s accuracy 84.30% 93.60% 95.70% Overall Accuracy 89.72% 
    Kappa 0.83 

Landsat OLI imagery in 2018 

Evergreen 286 29 4 89.70% 

Rubber 2 64 1 95.50% 

Bamboo 30 1 225 87.90% 

Producer’s accuracy 89.90% 68.10% 97.80% Overall Accuracy 89.56% 
    Kappa 0.82 

Sentinel-2 imagery for 2019 

Evergreen 273 11 14 91.60% 

Rubber 7 88 5 88.00% 

Bamboo 28 5 211 86.50% 

Producer’s Accuracy 88.60% 84.60% 91.70% Overall Accuracy 89.10% 
    Kappa 0.82 

Note 1: Bold cells indicate the agreement of the accuracy metrics. Note 2: Total reference points 642. 
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Figure 14. Example of Landsat 8 PBTC 2018 map with 89% overall accuracy. Green indicates 

evergreen forest, and yellow represents the distribution of bamboo. The background image is very 

high resolution (VHR) imagery in GEE. 

3.4. Area of Bamboo Forest and Its Carbon Stocks by Districts 

We estimated a total bamboo area of 2674 ha in 2015, 2711 ha in 2018, and 2672 ha in 2019. Carbon 

stocks in bamboo forest were estimated at 153,511; 155,583; and 153,367 Mg C in 2015, 2018, and 2019, 

respectively. Specifically, among the 12 districts, the Banteay Srei District had a higher amount of 

bamboo carbon stocks (47,500 Mg C) between 2015 and 2019, and Svay Leu and Varin Districts had 

more than 41,600 Mg C in the same period. Other districts covered smaller portions of bamboo, and 

their carbon stocks were less than 3000 Mg C (Table 4). 

Table 4. Total carbon stocks and emission reductions in bamboo forests by districts in Siem Reap 

Province in 2015, 2018, and 2019. 

District Name 

2015 2018 2019 

Area (ha) (Mg C) Area (ha) (Mg C) 
Area 

(ha) 
(Mg C) 

Angkor Chum 26 1504 20 1137 20 1142 

Angkor Thum 36 2061 18 1039 55 3134 

Banteay Srei 826 47,395 862 49,479 831 47,682 

Chi Kraeng 270 15,521 253 14,522 215 12,335 

Kralanh 2 121 2 126 3 189 

Puok 3 149 1 75 1 69 

Prasat Bakong 3 178 3 189 5 258 

Krong Siem Reab 20 1165 22 1246 30 1693 

Soutr Nikom 14 798 8 448 53 3054 

Srei Snam 11 603 2 86 1 63 

Svay Leu 757 43,469 787 45,145 734 42,132 

Varin 706 40,547 733 42,091 725 41,615 

Total 2674 153,511 2711 155,583 2672 153,367 

Bamboo Emissions (Mg CO2) 562,872  570,470  562,346 

Carbon Emissions by tourists visiting 

Siem Reap (Mg CO2) 
8,693,652  9,107,635   

Carbon Offsetting Rate (from 

Tourists-Based Emissions) 
6.5%  6.3%   

Siem Reap is a popular tourist destination in Cambodia because of its rich historical temple 

attraction, Angkor Wat heritage, and natural attractions. Siem Reap welcomed 2.2 million tourists in 

2018, increasing from 2.1 million in 2015. These visiting tourists accounted for carbon emissions of 
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8,693,652 Mg CO2 in 2015 and 9,107,635 Mg CO2 in 2018. Carbon emission reductions from the full 

protection of natural bamboo forests can offset 6% of carbon emissions from tourists visiting Siem 

Reap Province. 

The spatial distribution of bamboo forest by districts in 2015, 2018, and 2019 is shown in Figure 

15. 

 

Figure 15. Maps showing carbon stock distribution at the district level using Landsat OLI data (A) in 

2015 and (B) in 2018, while (C) used Sentinel-2 data in 2019. 

4. Discussion 

Our method has limitations in identifying bamboo in dense and tall vegetation areas such as 

evergreen forest, as well as in smaller bamboo patches in other forests. There are possible errors in 

our study due to data limitation and the occurrence of natural stands of bamboo. Limited ground-

based data also constrains potential accuracy. Different stages of bamboo growth in the study areas 

were obtained through remotely sensed temporal data. Different species at various growing stages 

show different phenological behaviors [20], and their spectral values vary during phenological stages 

[19,20]. Nath et al. [20] found that ground-based data are needed to reduce the possible errors while 

increasing the map accuracy. For example, in Sichuan Province, China, where small patch of bamboo 

could be identified through the use of ground-based data and k-nearest neighbor classifier for the 

Worldview-2 imagery [21]. Even in such a difficult situation, they achieved a bamboo map producer’s 

accuracy of 82.65% and a user’s accuracy of 93.10%. 

The second source of error could be the distribution of bamboo mixed with other vegetation 

types. During the field survey, we found that other lowland areas in Siem Reap have small bamboo 

patches, usually along riverbanks and intermingled with tall, dense areas of evergreen and deciduous 

forests. This makes it difficult to identify bamboo from moderate-resolution satellite imagery, which 

might account for the omission errors in Tables 3 and Figure 16. 

A B C 
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Figure 16. Images showing the locations of our field survey and unmanned aerial vehicle (UAV) 

Phantom 4’s captured locations for detecting bamboo. (A). evergreen forest and bamboo patches (red 

boxes outline bamboo distribution). (B). field survey of bamboo distribution along the river. (C). 

dense evergreen forest and bamboo distribution. (D). young bamboo patches in a deciduous forest. 

When observing Figures 9 and 10, the rubber category is the main source of confusion for the 

bamboo category because the ranges of the minimum and maximum threshold values are close to 

each other. To avoid this problem, big data [35] and deep learning-based technology [68,69] may be 

employed. In addition, because bamboo is usually mixed with evergreen forest in most of the study 

region, selection of ground-reference points for accuracy assessment without ground data can create 

confusion between bamboo and evergreen forests. If such incidence occurs, evergreen or bamboo can 

be mistakenly classified into just one category. One possible solution would be to use very high 

resolution imagery such as Planet’s daily imagery for bamboo phenological assessment and IKONOS, 

QuickBird, WorldView [21], GeoEye, and Pleiades, with 0.5 meter or finer spatial resolutions, or to 

acquire ground-based inventory data [30] or imagery from advanced unmanned aerial vehicles 

(UAV) [70,71]. Apart from the problems stated earlier, other possible errors when classifying the 

bamboo forests could occur if we want to classify the bamboo distribution by ages. Chen et al. [28] 

and Langner et al. [72] noted the difficulty in obtaining an integrated phenological cycle for young 

and mature bamboo using moderate-resolution remote sensing data. 

Errors in estimating carbon stocks in bamboo forest could arise from the use of generalized data 

of carbon stocks per unit area from Sasaki et al. [30] which was based on average data for the whole 

country. To improve the accuracy of carbon stocks assessment, field measurement of the targeted 

bamboo forest in the study region could be a solution, but this is costly and time consuming. 

5. Conclusions 

Using PBTC method and GEE with remote sensing imagery from Landsat 8 OLI in 2015, 2016, 

2017, and 2018, we were able to determine the minimum and maximum vegetation thresholds for 

bamboo forest, evergreen forest, and rubber plantation in Siem Reap province, Cambodia. With these 

thresholds, we could classify and map the distribution of natural bamboo forest in 2015 and 2018. We 

achieved the overall Landsat 8 OLI bamboo maps for 2015 and 2018 UAs of 86.6% and 87.9% and PAs 

of 95.7% and 97.8%, respectively. Similarly, we achieved UAs of 86.5% and PAs of 91.7% for Sentinel-

2 imagery for 2019. Accordingly, spatial distribution of carbon stocks by districts in the Siem Reap 

was estimated and mapped across the province. We found that area of bamboo was 2674 ha in 2015, 
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2711 ha in 2018, and 2672 ha in 2019. Total carbon stocks in the respective years were 153,511, 155,583, 

and 153,367 Mg C. 

It can be concluded that GEE can be used to classify and map the natural distribution of the 

natural bamboo forest and related carbon stocks with the aid of PBTC method, multi-spectral 

Sentinal-2 and Landsat 8 OLI imagery. However, using very high-resolution imagery, UAV, big data 

technology, and deep learning could improve the misclassification during the closer ranger of 

threshold values of various land cover categories. To avoid confusion between natural bamboo and 

evergreen forests, it is important to select the ground reference points through field visit, forest 

measurement, and/or using UAV. 

If bamboo forest is fully protected, the avoided emissions could offset about 6% of carbon 

emissions by tourists visiting the province, indicating that bamboo can also play an important role in 

climate change mitigation in addition to providing non-timber forest products to the local people. As 

bamboo forest has multiple roles in local livelihood improvement as well as climate change 

mitigation, management of this forest through proper mapping and zoning could increase awareness 

of the benefits of the bamboo forests, which could help promote effective management for long-term 

sustainable use. 
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Appendix A 

Table A1. GEE JavaScript function for calculating the Landsat 8 OLI EVI. 

Landsat 8 OLI EVI function 

// Add an EVI function for the Landsat 8 TAO collections. 

function addEVI(Landsat8){ 

return Landsat8.addBands(Landsat8.expression) 

‘2.5 * ((NIR - RED) / (NIR + 6 * RED - 7.5 * BLUE + 1))’, 

{ 

‘NIR’: Landsat8.select(‘B5’), 

‘RED’: Landsat8.select(‘B4’), 

‘BLUE’: Landsat8.select(‘B2’) 

}).rename(‘L8EVI’)).float(); 

}; 

Sentinel-2 EVI function 

// Add an EVI function for the Sentinel-2 (SNL) collections. 

function addEVI(SNL){ 

return SNL.addBands(SNL.expression( 

‘2.5 * ((NIR - RED) / (NIR + 6 * RED - 7.5 * BLUE + 1))’, 

{ 

‘NIR’: SNL.select(‘B8’), 

‘RED’: SNL.select(‘B4’), 
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‘BLUE’: SNL.select(‘B2’) 

}).rename(‘SNLEVI’)).float(); 

}; 

where L = 1 (canopy background adjustment factor) [49,50]; C1 = 6 and C2 = 7.5 (aerosol correction factors) 

and G = 2.5 (gain factor) [49–51]; and NIR (Landsat band 5 and Sentinel-2 band 8 (B8), RED (band 4 (B4) in 

both Landsat and Sentinel-2), and BLUE (band 2 (B2) in both Landsat and Sentinel-2) are atmospherically 

corrected for surface reflectance in near-infrared, red, and blue bands of Sentinel-2 imagery in GEE [50]. 
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