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Abstract: It is vital to greatly reduce traffic noises emitted by motor vehicles during accelerating
through determining limit values of noises and further improve technical specifications and comforts
of these automobiles for automotive manufacturers. The United Nations Economic Commission
for Europe (UNECE) R51 regulations define the noise limits for all vehicle categories, which are
kept updating, and these noise limits are implemented by governments all over the world; however,
the automobile manufactures need to estimate future values of noise limits for developing their
next-generation vehicles. In this study, a machine learning model using the back-propagation neural
network (BPNN) approach is developed to determine noise limits of a vehicle during accelerating by
using historic data and predict its noise limits for future revisions of the UNECE R51 regulations.
The proposed prediction model adopts the Levenberg-Marquardt algorithm which can automatically
adapt its learning rate to train the model with input data, and at the same time randomly select the
validation data and test data to verify the correlation and determine the accuracy of the prediction
results. To showcase the proposed prediction model, acceleration noise limits from six historic data
are used for training the model, and the noise limits at the seventh version can be predicted and
validated. As the results achieve a required accuracy, vehicle noise limits in the next revision as
the future eighth version can be predicted based on these data. It can be found that the obtained
prediction results are much close to those noise limits defined in current regulations and negative
error ratios are reduced significantly, compared to those values obtained using a quadratic regression
model. As a result, the proposed BPNN model can predict future noise limits for the next revision of
the UNECE R51automotive noise limit regulations.

Keywords: UNECE R51; automotive noise limits; machine learning; BPNN; Levenberg-Marquardt algorithm;
quadratic regression

1. Introduction

Traffic noises, mainly generated by motor vehicle, aircraft, train, ship etc. during operation,
refer to those unwanted sounds that hinder people’s normal life and work. The motor vehicle noises
are much severe when motor vehicles travel on main roads in municipal areas. These noises are
unstable and random, and they greatly contribute sound pollutions to many audiences in urban
regions. Their sound pressure levels keep changing with time and correlating with multiple factors,
e.g., road type, vehicle type, vehicle number, and operating status of motor vehicles. The noise pollutions
of motor vehicles are very large, and they can cause hearing reduction and damage of audiences
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and generate significant impacts on audiences’ emotion, rest and physical health, and interrupt their
conversation and communication [1,2]. Therefore, it is vital to investigate the motor vehicle noises
during operating and formulate and promulgate noise limits that fulfil the requirements regulated in
automotive noise limits regulations.

The automobile manufacturers are always pursuing to lower the noises emitted by their vehicles
to advance the automobile technology and then improve the comfort of urban life, and continuously
reducing adverse effects of noise on humans. Automobiles manufactured should follow the
requirements according to local regulations and standards. These regulations and standards include
International Organization for Standardization (ISO) standards for automobile noise regulations,
American Society of Automotive Engineers (SAE) standards, Japanese regulations, United Nations
Economic Commission for Europe (UNECE) regulations, etc. UNECE regulations are one of the most
influential automotive technical regulations and certification systems in the world today [3]. In this
study, the UNECE regulations were focused, which are based on the UN/ECE/WP29 “1958 Agreement”
framework, and automobile products approved by the UNECE regulations are mutually recognised
among parties to the “1958 Agreement”. The current regulations of UNECE regulations concerning
automobile noise are UNECE R51.03 “Uniform Provisions Concerning the Approval of Motor Vehicles
Having a Least Four Wheels with Regard to their Sound Emissions”, which came into effects on
16 October 1995, and the current revised version came into effects on 5 February 2016. It stipulates
the measurement method on external noises of the vehicle when the vehicle accelerates, and external
noises emitted by stationary road vehicles, respectively. It also specifies the limits of noise emission
with the vehicle when it accelerates, as shown in Table 1.

According to Table 1, the revisions of UNECE R51 regulations are becoming much frequently,
from more than 10 years to recently 4 years as a cycle. It is challenging for the automotive industry to
improve vehicle designs to fully fulfil the requirements.

There were a certain number of researchers working on the investigation of automotive vehicle
exterior noises. Sottek et al. [4] developed a hybrid model for the calculation of binaural vehicle exterior
noise to simulate the situation of traffic noise in cities and suburbs, and the model used recordings of
the main excitation signals (exhaust system, intake, engine, tires) and binaural filters describing the
transfer paths from the sources to an artificial head standing at a distance of several meters outside the
vehicle. McBride Granda [5] proposed a contact model to predict the tyre-pavement interaction noise
for the pavement and the tyre, which was identified as main sources of vehicle exterior noise. In this
work, a precise tyre model was created considering orthotropic material properties and described
interactions between belt and sidewalls, inflation pressure and rotation of the tyre, etc. Sarkan et al. [6]
carried out a practical measurement on exterior noise of road vehicle in motion and evaluated exterior
noise reductions at various levels of engine speed. Phan et al. [7] used an unsteady computation fluid
dynamics (CFD) simulation to predict vehicle exterior wind noise and obtain quantitative information
about acoustic power of exterior wind noise in vehicle, and indicated the location of the dominant
source of exterior wind noise. Baudet et al. [8] presented a numerical process on the dynamic coupling
of exterior parts of a vehicle to determine flow and pressure around the vehicle and optimised the
vehicle shape for reducing exterior wind noise. Nygren et al. [9] aimed to provide a comparison
of the total environmental impact from exterior noise exposure and energy demand and correlated
effects of exterior noise-level and energy demand along different travel routes. Kerber [10] proposed
a psycho-acoustic test to establish a relationship between the critical distances and the real reaction
times needed to respond to the vehicle exterior noise of various approaching vehicles, and achieved
a sound compromise between the conflicting objectives of pedestrian safety and vehicle exterior
noise-level reduction. Tousignant et al. [11] used exterior transfer path approach to evaluate the
sensitivity of variables, such as speaker location, noise source routing, exterior noise transfer functions,
and sound source design to achieve the required levels and directivity, while minimising overall
exterior noise intrusion.
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Table 1. Limits of motor vehicle noises during acceleration regarding noise emissions in United Nations
Economic Commission for Europe (UNECE) regulations.

UNECE Regulations Limits of Motor Vehicle During Acceleration (dB(A))

Categories
of vehicles

Regulation No. R9/00 R51/00 R51/01 R51/02 R51/03I R51/03II R51/03III
Year 1969 1982 1988 2005 2016 2020 2024

Revision No. 1 2 3 4 5 6 7

M1
PMR ≤ 120 82 80 77 74 72 70 68
120 < PMR ≤ 160 82 80 77 74 73 71 69
PMR > 160 82 80 77 74 75 73 71

M2

M ≤ 2.5 t 84 81 77 74 72 70 69
2.5 t < M ≤ 3.5 t 84 81 77 74 74 72 71
M > 3.5 t; Pn ≤ 135 kW 89 82 80 78 75 73 72
M > 3.5 t; Pn > 135 kW 91 85 83 80 75 74 72

M3
Pn ≤ 150 kW 89 82 80 78 76 74 73
150 kW < Pn ≤ 250 kW 91 85 83 80 78 77 76
Pn > 250 kW 91 85 83 80 80 78 77

N1
M ≤ 2.5 t 84 81 78 76 72 71 69
M > 2.5 t 84 81 79 77 74 73 71

N2
Pn ≤135 kW 89 86 83 78 77 75 74
Pn > 135 kW 89 86 84 80 78 76 75

N3
Pn ≤ 150 kW 89 86 83 78 79 77 76
150 kW < Pn ≤ 250 kW 92 88 84 80 81 79 77
Pn > 250 kW 92 88 84 80 82 81 79

Note: PMR, power-to-mass ratio; M, Mass; Pn, Power; M, Vehicles having at least four wheels and used for the carriage
of passengers (e.g., standard car with 2, 3, 4 doors). M1: Vehicles used for the carriage of passengers, comprising not
more than eight seats in addition to the driver’s seat = 9. (Larger Than Standard Car, e.g., London Cab/E7 Type
Vehicle 8 seat + Driver seat.). M2: Vehicles used for the carriage of passengers, comprising more than eight seats
in addition to the driver’s seat, and having a maximum mass not exceeding 5 tons. (Bus). M3: Vehicles used
for the carriage of passengers, comprising more than eight seats in addition to the driver’s seat, and having a
maximum mass exceeding 5 tons. (Bus). N Power-driven vehicles that have at least four wheels and used for the
carriage of goods. N1: Vehicles used for the carriage of goods and having a maximum mass not exceeding 3.5 tons.
(Pick-up Truck, Van). N2: Vehicles used for the carriage of goods and having a maximum mass exceeding 3.5 tons,
but not exceeding 12 tons. (Commercial Truck). N3: Vehicles used for the carriage of goods and having a maximum
mass exceeding 12 tons. (Commercial Truck).

Artificial neural networks were also utilised by researchers to investigate road traffic noises.
Qi et al. [12] identified a generalised loss of mean absolute error between predicted and expected feature
vectors in Deep Neural Networks (DNN), which is upper bounded by the sum of an approximation error,
and estimation error, and an optimisation error. They performed a set of images denoising, and speech
enhancement experiments as a showcase, and the upper bounds for DNN based vector-to-vector
regression were found valid. Nourani et al. [13] used an emotional artificial neural network to
model road traffic noise. They designed a sensitive analysis experiment and ranked the vitality
of input parameters in the road traffic noise level in two places, followed by the number of cars,
medium vehicles, heavy vehicles, average speed, and percentage of heavy vehicles, respectively.
Jiménez-Romero, et al. [14] proposed two multitask artificial neural network (ANN) models to model
acoustic behaviours of an induction motor as a power system of the vehicle. They demonstrated that
multitask ANN models are effective for extracting common characteristics from multiple tasks and
modelling the noise and acoustic quality of an induction motor. Lu and Wang [15] developed an ANN
prediction model for automobile interior noise based on an extension data mining (EDM) algorithm
considering basic vehicle parameters, such as the total number of engine valves, engine torque, vehicle,
and vehicle speed as inputs of the model. Çelebi et al. [16] used an ANN to predict the sound and
vibration of a diesel engine. This proposed ANN model can be used to predict vibration and sound
pressure level (SPL) in an acceptable accuracy, which used a Levenberg-Marquardt training algorithm
providing more accurate predictions than the regression approach. The number of hidden layers
in an ANN model is usually chosen by using the trial-and-error method for stability and accuracy.
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Huang, et al. [17] used ANN for modelling traffic noise which generates around high-rise building
along the urban expressway. In their research, multi-layer perception (MLP) was used to train the
network, and they found the minimum number of hidden layers is 3 by using the trial-and-error
method. Steinbach and Altinsoy [18] used ANN to conduct annoyance evaluations of electric vehicle
noise generated by single-car pass-by situation with a constant speed. The proposed ANN models
were able to save time, money and resources comparing with linear regression models based on
psycho-acoustic parameter.

Previous research mainly covered vehicle noise prediction, simulation, and co-relation between
noise-level and pedestrian safety for design improvement and noise control. Noise limits of various
categories of vehicles defined in UNECE R51 have important influences on noise control of automotive
vehicles and automotive design. However, limit values of vehicle noises defined in current standards
and regulations need to be reviewed because a newly launched vehicle with improved noise controls
may not comply with these UNECE regulations. From automotive manufacturers’ points of view,
the future revisions of these noise limits are vital for improving their vehicle design, and the estimation
of them would be very helpful to avoid being out-of-date of their products in the aspect of noise control.
Therefore, in this study, by using the data collected on vehicle noise limits in current regulations,
the machine learning model-BPNN (back-propagation neural network) is developed to determine noise
limits of a vehicle by using time series data and to predict the vehicle’s acceleration noise limits for next
revision of UNECE R51. The proposed prediction model adopts the Levenberg-Marquardt algorithm
which can automatically adapt its learning rate to train the model with input data, and at the same time
randomly select the validation data and test data to verify the correlation and determine the accuracy
of the prediction results. As a showcase to use the proposed prediction model, historic acceleration
noise limits available from six versions of UNECE R51 are used for training the model, and then the
acceleration noise limits for its incoming seventh version can be predicted and validated.

2. Artificial Neural Network

Neural networks were fully-connected three layers networks with two biases, trained with simple,
unadorned back-propagation in the literature [19,20]. In 1986, Rumelhart and McCelland proposed
the back-propagation (BP) learning algorithm [21], based on the multi-layer neural network model.
The BP algorithm solves the learning problem of multi-layer neural networks and proves the learning
and computing capabilities of multi-layer neural networks [22].

2.1. Principles and Basic Architecture

The BPNN can learn and store a large number of input-output pattern mapping relationships
without revealing mathematical equations describing such mapping relationships in advance.
The topological structure of the BPNN model has three layers, which include an input layer, hidden layer,
and output layer. Its network architecture is shown in Figure 1. The circle in Figure 1 represents the
artificial neuron. Note that xi, x j and xn represents the inputs of the artificial neural network and they
are the components of the vector x; y represents the actual output of the artificial neural network;
and z represents the expected output of the artificial neural network. The integers i, j, n are the data
pre-processing units of the neural network, and fi, f j, fn are the activation functions, which are the
components of the vector f as the adder or the multiplier. v is the connection weight vector or threshold
vector between the input layer and the hidden layer, and w is the connection weight vector or threshold
vector between the hidden layer and the output layer, respectively. There is no connection between the
same layer of the network and full unidirectional interconnection between different layers. If the layers
of input and the output were proposed, the relationship between the input and the output will be:

y = f (vx + w) (1)
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The activation functions must be a quasi-linear one which is continuous, derivable, and monotonously
incremental. It can be chosen as following Sigmoid function:

f (x) =
1

1 + e−x (2)

A sigmoid function is a bounded, differentiable, real function that is defined for all real input
values and has a non-negative derivative at each point [23] and exactly one inflexion point.
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2.2. Neural Network Learning

The learning problem is formulated in terms of the minimisation of mean squared errors (MSE).
It is a function which can be expressed as

MSE =
1
n

n∑
i

(yi − ŷi)
2 (3)

where yi are observed values of the variable being predicted and ŷi are predicted values, respectively.
The performance function is usually used to evaluate how a neural network fits the data set and

prevent overfitting by controlling enough complexity of the neural network. The learning of the BPNN
includes two stages: The first stage is to learn the input samples and calculate the output of each
neuron backward from the first layer of the network through the set network structure and the weight
of the previous iteration. The second stage is to modify the weight vector. Its process is to calculate the
result of the change of weight vector on the total error from the last layer, and then modify the weight
vector according to the process of minimisation of MSE. These two processes repeatedly alternate until
the total error convergence.

3. BPNN Model for Noise Limits Prediction during Vehicle Acceleration

BPNN is mainly used in regression prediction (fitting, data processing analysis, object prediction,
control, etc.), classification recognition (for type division, pattern recognition). In terms of application.
In this study, based on specific data available on vehicle noise limits, the BPNN model is developed
and used to self-learn and generate the data to predict the vehicle’s acceleration noise limits, which are
helpful for next revision of UNECE R51.
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3.1. Architecture of the Proposed BPNN Model

3.1.1. Data Normalisation and Classification

The accuracy of a BPNN model relies on the selection of input data and the preparation of training
samples. For data selection, the representativeness of the samples and the elimination of contradictory
samples should be considered, and then the data need to be normalised. In MATLAB, a built-in
normalisation function is available, which can easily rigidise and convert the data into a data mapping
between [−1, 1] or [0, 1]. Data are classified into three sets: (a) Training data, (b) validation data,
and (c) test data. The training data are used for neural network learning and training. The validation
data are used to confirm that the sample error of the validation data does not fall or rise after six
consecutive iterations. The network training is terminated. It can effectively avoid overfitting, that is,
in learning and training, the neural network achieves a very high approximation accuracy for the
learning samples. However, for non-learning samples, there is a possibility of singular phenomena [12].
For example, generated approximation errors on the outputs by using the validation data decreases
first with the number of training times, but then rises. Therefore, these are also used to measure
network generalisation, and to halt training when the generalisation has no further improvements.
The test data, as the third set, have no effects on training and so provide an independent measure of
network performance during and after training.

3.1.2. Development of Back-Propagation Neural Network

The hidden unit in the BPNN can be set freely according to the objective of this study. A three-layer
network can facilitate continuous functions with an acceptable precision set by a developer [24,25].
In this study, according to the characteristics of the vehicle acceleration noise limits analysed above,
the three-layer neural network is established, that is, the input layer, the hidden layer (only a single-layer
neural unit), and the output layer. In the UNECE R51 regulations, the vehicle acceleration noise limits
were revised seven times so far for six major vehicle categories. If the noise limits in the regulations is
assumed as a function of time to describe its variations, new revised limits can be predicted based on
past known limits. Therefore, in the BPNN model, the data of the previous six noise limits revisions can
be extracted from all revisions as input data, and the output is the newly revised value, which would
be the seventh minor revision value. Then the mapping between input data and output data can
be conducted via the BPNN self-learning until the minimum root mean square value is achieved.
There is no scientific model or formula to determine the number of hidden layer units. In this study,
a trial-and-error method was used to determine the number of hidden layers, which was selected by
the value of MSE results from training data, validation data and test data. The maximum MSE is lower
than 2.0 from hidden layer units 12 to 24, while the maximum MSE is higher than 2.0 from hidden
layer units 6 to 12, as shown in Table 2 (highlighted with grey colour), so the number of hidden layer
neural units is 12, due to the minima of hidden layers. Hereby, the architecture of the BPNN model
was proposed as 6–12–1 (6 inputs, 12 hidden layer units, and 1 output), as depicted in Figure 2.
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Table 2. Mean squared errors (MSE) and regression values with a different number of hidden layers.

Number of
Hidden
Layers

Training Data Validation Data Test Data

MSE Regression
Values MSE Regression

Values MSE Regression
Values

6 0.601 0.996 0.340 0.950 2.08 0.999
7 9.61 × 10−3 0.999 1.39 0.905 2.26 0.899
8 3.92 × 10−3 0.999 7.27 × 10−2 0.996 2.36 0.976
9 0.167 0.992 3.92 0.772 1.28 0.999

10 0.127 0.995 2.88 0.965 2.25 0.945
11 4.74 × 10−2 0.999 2.22 −0.694 2.39 −0.761
12 3.64 × 10−2 0.999 1.20 0.995 1.18 0.999
13 9.61 × 10−2 0.995 1.23 0.915 0.536 0.991
14 1.86 × 10−7 0.999 0.178 0.999 1.12 0.969
15 0.133 0.998 0.785 0.999 1.77 0.997
16 0.1.0040 0.993 8.99×10−2 0.997 1.45 0.974
17 9.99 × 10−4 0.999 0.439 0.999 1.25 0.997
18 2.97 × 10−8 0.999 0.869 0.927 1.44 0.946
19 5.03 × 10−5 0.999 1.09 0.992 0.899 0.981
20 9.77 × 10−12 0.999 1.49 0.994 1.49 0.976
21 0.219 0.994 0.957 0.952 1.99 0.997
22 0.857 0.971 1.31 0.998 1.16 0.999
23 1.32 × 10−4 0.999 0.619 0.998 1.21 0.995
24 0.277 0.998 0.488 0.999 1.07 0.999
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3.2. Training of the Neural Networks

Before conducting the training, the parameters of the BPNN need to be set and initialised.
The training target accuracy was set to 0.001. Levenberg-Marquardt algorithm with an adaptive
learning rate were selected for the training function. The Levenberg-Marquardt algorithm combines
two numerical minimisation algorithms: The gradient descent method and the Gauss-Newton method.
It can automatically adapt its learning rate to train the model with input data and is used to solve
nonlinear least squares curve-fitting problems [26]. The performance of the learning algorithm is very
sensitive to the selection of the learning rate. If the learning rate is too large, the algorithm may oscillate
and unstable; while the learning rate is too low, the convergence speed is slow, and the training time
is long.

Like the quasi-Newton methods, the Levenberg-Marquardt algorithm is developed to have a
second-order training speed without computing the Hessian matrix (H). When the performance
function has the form of a sum of squares, then the Hessian matrix can be approximated as

H = JT J (4)

and the gradient can be computed as
g = JTe (5)

where, J is the Jacobian matrix that contains first derivatives of the network errors with respect to the
weights and biases, and e is a vector of network errors and it is equal n product MSE. The Jacobian
matrix can be computed through a standard back-propagation technique that is much less complex
than computing the Hessian matrix.

The Levenberg-Marquardt algorithm uses this approximation to the Hessian matrix in the
following Newton-like update with the following expression.

Wk+1 = Wk − [JT J + µI]
−1

JTe (6)

where, µ is a learning rate that ensures the positiveness of the Hessian matrix and I is the identity
matrix, respectively. When the learning rate µ is zero, it degenerates to the Newton method, using the
approximate Hessian matrix. When µ is large, it becomes the gradient descent method with a small
step size. The Newton method is faster and more accurate, and thus, the aim is to get it close to
the Newton method as quickly as possible. Thus, µ is set to be decreased after each successful step
(reduction in the performance function) and to be increased only when a tentative step would increase
the performance function. In this way, the performance function is always reduced at each iteration of
the algorithm to accelerate the training.

3.3. Performance Analysis on Machine Learning Models

There are several commonly used machine learning models in engineering practice, and thus,
it is important to perform a comparative analysis to choose an appropriate one, which is specifically
suitable to learn noise limits in ECE R51 regulations [27]. These machine learning models, including the
support vector machines (SVM) [28,29], the gaussian process regression (GPR) [30,31], the ensembles
of trees (ET) [32,33], and the regression trees (RT) [34,35], are compared and discussed.

The comparative analysis for these aforementioned machine learning models aimed to investigate
their performance in terms of accuracy of the predicted responses they made, more precisely, by a
five-fold cross-validation procedure. All the four mentioned-above models were employed to learn
noise limits described in Table 1, and each one was checked with the classic five-fold cross-validation
procedure. The yielded MSE values of the predicted responses are shown in Table 3. The performance
evaluation in terms of accuracy of predicted response was based on the MSE values between true and
predicted values.
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Table 3. Comparison of MSE values for five machine learning models.

Machine
Learning Kernel Function MSE Model Type

SVM

Linear 0.663
Quadratic 0.599

Cubic 0.997
Fine Gaussian 8.65 Kernel scale: 0.61

Medium Gaussian 1.59 Kernel scale: 2.4
Coarse Gaussian 2.02 Kernel scale: 9.8

GPR

Rational Quadratic 0.331
Squared Exponential 0.312

Matern 5/2 0.524
Exponential 0.876

ET
Boosted Trees 23.6 Minimum leaf size: 8; Number of learners: 30;

learning rate: 0.1
Bagged Trees 14.8 Minimum leaf size: 8; Number of learners: 30

RT
Fine Tree 4.76 Minimum leaf size: 4

Medium Tree 14.4 Minimum leaf size: 12
Coarse Tree 14.4 Minimum leaf size: 36

BPNN Levenberg-Marquardt
algorithm 0.444 Hidden layer units: 12

According to Table 3, the SVM, GPR and BPNN models have much better performances than
the ET and RT models. On the one hand, the MSE values from ET models using Boosted Trees and
Bagged Trees algorithm are 23.6 and 14.8, respectively, while the MSE value of Regression Trees are
4.76, 14.4 and 14.4, respectively. The two models–the ET models and RT model were found not suitable
for the noise limit prediction. On the other hand, the BPNN and GPR models have high accuracy on
the noise limit prediction, and better than the SVM models. As a result, the BPNN model was chosen
because it has a small MSE value and quite good performances in training data set, compared to the
GPR model.

4. Prediction of Acceleration Noise Limits by Using the Proposed BPNN Model

4.1. Validation of Noise Limit Outputs

Seventeen datasets, including all vehicle categories, were calculated and simulated by using the
proposed BPNN model in this study. To improve the representativeness of data samples, the dividevec
function was used to randomly sort the original data, and randomly extracted 70% of the data as the
training data, 15% as the validation data, and the other 15% as the test data. In other words, the training
data, validation data and test data were counted as 11, 3, 3, respectively. The predicted results by using
the proposed BPNN model are shown in Table 4. For comparison, the quadratic regression model was
also used, and its predicted results are also given in the same time, in which the least squares method
were used to fit the first six historic noise limits to obtain a quadratic regression model, and then
the predicted value for the variable set was calculated. In addition, the percentage error (PE) can be
determined by

PE =
(CNL− PV)

CNL
× 100% (7)

where, CNL is the current noise limit in UNECE regulations, and PV is predicted value by using the
proposed BPNN model or the quadratic regression model, respectively.
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Table 4. Comparisons on prediction values extracted from the proposed BPNN model and quadratic
regression model.

Categories
of Vehicle CNL

BPNN Model Quadratic Regression Model

Data
Classification PV PE Prediction Model PV PE

M1
1 68 Test data 68.34 −0.50% y = 0.0714x2

− 2.9857x + 85.2 67.80 0.30%
2 69 Training data 69.00 0.00% y = 0.1429x2

− 3.2571x + 85.4 69.60 −0.86%
3 71 Validation data 70.96 0.05% y = 0.2857x2

− 3.8000x + 85.8 73.20 −3.10%

M2

1 69 Training data 69.00 0.00% y = 0.2321x2
− 4.4821x + 88.5 68.50 0.73%

2 71 Training data 71.00 0.00% y = 0.3750x2
− 5.0250x + 88.9 72.10 −1.55%

3 72 Training data 72.00 0.00% y = 0.3750x2
− 5.5679x + 93.3 72.70 −0.97%

4 72 Validation data 71.09 1.26% y = 0.2321x2
− 4.9964x + 95.3 71.70 0.42%

M3
1 73 Training data 73.00 0.00% y = 0.4464x2

− 5.8393x + 93.5 74.50 −2.05%
2 76 Test data 75.61 0.51% y = 0.4464x2

− 5.8107x + 95.9 77.10 −1.45%
3 77 Training data 77.00 0.00% y = 0.5000x2

− 5.8714x + 95.8 79.20 −2.86%

N1
1 69 Training data 69.00 0.00% y = 0.1071x2

− 3.4357x + 87.4 68.60 0.58%
2 71 Training data 71.00 0.00% y = 0.1071x2

− 2.9786x + 86.8 71.20 −0.28%

N2
1 74 Test data 74.15 −0.21% y = 0.2321x2

− 4.5393x + 93.7 73.30 0.95%
2 75 Training data 75.00 0.00% y = 0.0893x2

− 3.2821x + 92.3 73.70 1.73%

N3
1 76 Training data 76.00 0.00% y = 0.3750x2

− 5.0821x + 94.1 76.90 −1.18%
2 77 Validation data 77.00 0.00% y = 0.5357x2

− 6.3214x + 98.0 79.99 −3.90%
3 79 Training data 77.57 1.81% y = 0.6964x2

− 7.0750x + 98.7 83.30 −5.44%

According to the data, shown in Table 4, the following research findings can be obtained:

(1) For the training data, the predicted values by using the proposed BPNN model with network
learning is almost the same as the values of the current noise limits except for one case for N3
with a percentage error of 1.81%. The quadratic regression model extracted the predicted values
with much higher errors from −5.44% to 1.73%. It demonstrated the proposed BPNN model
was accurate.

(2) As for those validation data and test data, since there was no network learning, the predicted
values have much larger errors compared with those training data. However, the maximum
deviation is still smaller than the results obtained by the quadratic regression model in most
cases. Again, the proposed BPNN model provides a better accuracy than the quadratic regression
model in the prediction of noise limits during vehicle acceleration.

(3) The proposed BPNN model can predict noise limits for all learned categories of vehicles, which are
only related to historic values of the noise limits of a vehicle, but not depending on its category.
Differently, the quadratic regression model is strongly related to both historic values of noise
limits of a vehicle and its vehicle category.

(4) The proposed BPNN model has a migration ability on the prediction of noise limits and can
be used to predict the backward trend of noise limits defined in the UNECE regulations. If the
inputs of the BPNN model are moved one unit backward, it provides predicted values of noise
limits in the next revisions of the UNECE regulations.

Furthermore, a regression analysis of the outputs of the proposed BPNN model was conducted,
and the results are shown in Figure 3. The dots in Figure 3 are the abscissa as the vehicle acceleration
noise limits as the expected outputs, and the ordinates are the corresponding data points of the
predicted limits by using the BPNN model. The dotted line is the ideal curve assuming that the actual
output is equal to the expected output; and the solid line is the data point regression analysis and
gives the linear regression equation and correlation coefficient. Table 5 provides the correlations of the
results from the proposed BPNN and those from its regression analysis.
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It can be found from Table 5 and Figure 3 that the correlation coefficient of each data is very high,
and the regression curve of the output point of the neural network is also close to the ideal output
curve, indicating that the proposed BPNN model has a strong capability in predicting noise limits
emitted by motor vehicles.

Table 5. Correlations of the prediction values from the proposed BPNN and those from its
regression analysis.

Item
Training Data Validation Data Test Data All Data

BPNN Regression BPNN Regression BPNN Regression BPNN Regression

Correlation 1 0.995 0.995 0.999 0.999 0.987 0.993 0.952
Two-tailed test 0.000 0.000 0.013 0.006 0.006 0.013 0.009 0.007Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 15 
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4.2. Prediction of Noise Limits for Future Revision of UNECE Regulations

In this section, according to the development trend of noise limits defined in UNECE R51
regulations, the proposed BPNN model is employed to predict the new noise limits of motor vehicles
for the future revisions of UNECE regulations. By using its migration ability, shifting one unit of
values from the original noise limits backwards, that is, the proposed BPNN model updates the noise
limits specified in the second to seventh as inputs to replace those from first to sixth in the regulations,
and they are used to predict the noise limits for the next eighth revision of the regulations.

The predicted values of these noise limits of all vehicle categories are shown in Table 6. To better
express the trend and law of the future noise limits, a change rate (CR) can be determined by

CR =
CNLn+1 −CNLn

CNLn
× 100% (n = 1, 2, 3, 4, 5, 6, 7) (8)

where, CNLn is noise limits with revision number n standing for different versions of UNECE regulations.
According to the CR with revision number 7, there are two scenarios, either positive or negative:

(1) The negative rate of change indicates that the vehicle noise limits are becoming stricter, which is
conducive to the popularisation and promotion of new automotive technology on vehicle vibration
control and noise reduction. It is in line with the development theme of traffic noise control in an urban
city, but the cost of noise control would be high.

(2) On the contrary, a positive rate of change indicates that automotive noise limits become looser,
which is not conducive to provide better automobile products. In such four cases in M1, M2 and N1
categories, the existing noise limits are suggested being maintained reasonably, and it also suggests the
current noise limits are already very strict.

Large fluctuations in the rate of change mainly occur in such a category of vehicles with
higher current noise limits than others. The objective of next revision of the regulations on noise
limits will focus on reducing the noise limits of these categories of vehicle, such as N2 and N3,
sharing technologies to reduce vibrations and noises on all categories of vehicles, and improving the
quality of automobile products.

Table 6. Predicted values by using the proposed BPNN model.

Categories of Vehicle Current Noise Limits
with Revision Number 7

Predicted Noise Limits for Next
Revision (Revision Number 8) CR

M1
1 68 69.14 1.68%
2 69 69.40 0.58%
3 71 69.83 −1.65%

M2

1 69 69.89 1.28%
2 71 69.95 −1.48%
3 72 69.59 −3.34%
4 72 69.82 −3.03%

M3
1 73 70.45 −3.49%
2 76 72.23 −4.97%
3 77 72.26 −6.15%

N1
1 69 69.19 0.27%
2 71 69.16 −2.59%

N2
1 74 69.57 −5.99%
2 75 70.73 −5.70%

N3
1 76 70.63 −7.07%
2 77 73.03 −5.15%
3 79 73.75 −6.64%
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4.3. A Case Study of Noise Control for a Light Commercial Truck

The noise levels of two light commercial trucks made in 2013 and 2016 were measured by
Applus+ IDIADA according to the ECE R51 regulations, respectively. There two tested vehicles
are the two-generation products from the same motor manufacturer–Jiangling Motors Co., Ltd.
(JMC, Nanchang, China). The maximum engine power of the two tested vehicles is 80 kW, and the
masses are 4.5 and 4.3 tons, respectively. Therefore, they can be classified to a light commercial truck
(vehicle category N2). The sound pressures of the vehicle during accelerating were collected. The sound
pressure of the truck made in 2013 (The 2013 model) is 77.3 dB (A), while that of its descendent made in
2016 (The 2016 model) is 76 dB(A) as shown Figure 4. The noise level of the 2013 model is lower than
the noise limit specified in UNECE regulations at the time (2005) with a value of 0.7 dB(A), in which
the regulations maintained unchanged until 2016. The noise level of the 2016 model is lower than
that of specified in the regulations in 2016 with a larger value of 1 dB(A). Apparently, both two tested
vehicles meet the requirements of the UNECE regulations. Note that the noise limits in the regulations
increase, and become much stricter than before, and the noise level of the Category N2 vehicles during
accelerating decreases by 1.3 dB(A). To make sure the fulfilment of the UNECE regulation requirements,
the automotive industry strictly follows the regulations on their next-generation product development.
The 2020 model could be able to meet the requirements of the current regulations in 2020 and even
2024, if the manufacturer has its product improvements achieved. Unfortunately, the 2020 model
was not measured, due to the impacts of COVID-19. However, the next-generation models will face
challenges to satisfy the predicted limit of the next revised regulations in future years for the change
may be 4.43 dB(A), by using the proposed BPNN model in this research. The predicted value of 69.57
can be used as a reference noise limit for the motor manufacturer to use for their next-generation
vehicle design.

Figure 4. Comparisons on limits and test values for light commercial trucks (Category N2).
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5. Concluding Remarks

This study has established a BPNN machine learning model for predicting external noise limits
during motor vehicles’ acceleration. The proposed model includes three layers, in which the input
layer uses the first six historic data of the vehicle noise limits as inputs, the single hidden layer with
12 neural units id located in the middle, and the output layer is to output the predicted noise limits of
motor vehicles.

For validation and verification, the BPNN model was compared with the quadratic regression
model. The maximum deviation of the predicted values of the BPNN was found much smaller than
those obtained by the quadratic regression model. Those results also demonstrated that the predicted
value of the noise limits by using the BPNN model is much close to the expected value of vehicle noises
and superior to the quadratic regression model as the percentage errors are much smaller. The BPNN
model can also provide a unified function suitable for all learned categories of vehicle and related to
the previous noise limits of a car type.

Limits of the external noise limits of all categories of vehicle during accelerating have been
predicted by following the trend of noise limits in UNECE R51 regulations. The predicted results show
that some categories of vehicles, including N2 and N3, have higher vehicle noise limits defined in the
regulations currently and they were predicted to be significantly smaller than the current limits in their
next revisions and meanwhile the noise limits of other vehicle categories with low noise limits might
be changed slightly.

The proposed BPNN model also has deficiencies, such as the determination of the structure of
the neural networks, especially the algorithm of determining the number of hidden layer neurons,
in which an optimal value cannot be determined. It would be part of the future work as an extension
of current research. For improving the accuracy of the proposed BPNN model for prediction of noise
limits of motor vehicles.
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