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Abstract  There are numerous nature-inspired curves 

representing certain structural behaviour being utilised in 

form-finding process by some famous architects. By 

closely scrutinising these forms, some interrelated 

morphological analogies between different structural 

forms and functions, such as the similarity between 

free-standing tension-only elements and the shape of 

bending moment diagram of a beam under the same load 

condition, can be explored. Most studies in the field of 

statics principles have only focused on developing 

numerical and mathematical approaches which are not 

suitable for practitioners who prefer quick access to the 

general forms. This paper first gives a brief overview of 

the most common archi-structural forms through the 

history of the architecture, and attempts to find the shape 

of bending moment diagrams through a new simple 

heuristic method based on drawing an analogy between 

natural tension-only forms and the diagrams. The purpose 

of this research is to propose a shortcut to diagram 

drawing substituting the general time-consuming methods 

as well as enhance the architects’ perception of bending 

behaviour of a structural element. A holistic approach is 

utilised, integrating the natural curves, bending moment 

diagrams and some rule of thumbs used to define the 

tapered beam or portal frame general shapes. This simple 

non-computational method can ease the design process. It 

will also be useful for educational purposes as well as 

pre-design phase conception including identification of 

the critical points of bending elements as well as 

designing tapered beams and portal frames. 

Keywords  Catenary, Funicular, Heuristic Approach, 

Bending Moment Diagram 

 

1. Introduction 

Funiculars are amongst the important forms which are 

sources of inspiration in sciences, industry and architecture. 

In this context, there are two essential terms: Funicular and 

Catenary. By definition, Funicular form stands for having 

the form of a rope usually under tension only or any form 

associated with. The term Funicular is the adjective of 

Funiculus which means “a bodily structure suggesting a 

cord” [merriam-webster.com]. The Catenary is a curve 

which forms when a cable or chain is supported at its ends 

and subjected to its only weight. The curvature described 

by an even chain hanging from two props in a uniform 

gravitational field is labeled a Funicular, a name apparently 

coined by Thomas Jefferson. If the sag is small, so that the 

weight is about uniformly distributed, the curve is close to a 

parabola (y = ax
2n

, nN), a quadratic curve, but the 

catenary is a hyperbolic cosine curve, y = acosh(x/a
)

1
 

(Figure 1).[1] Etymologically, the word catena, a Medieval 

Latin word which means a series of connected things 

[merriam-webster.com] is the origin of catenary. 

 

Figure 1.  Parabola (in blue) and Hyperbola (in magenta) in Cartesian 

coordinate system 

Generally, when some plummets are hung down from a 

                                                           
1 x is measured from the lowest point. 
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cable or another flexible tension element in horizontally 

equal distances (uniformly distributed on horizontal 

projection), cable forms Parabola (Fig. 2-a) and when 

distances are equal along the cable length (uniformly 

distributed load along the length of the cable), it forms 

Hyperbola (Figure 2-b). In the context of building terms, 

Hyperbola usually named Catenary in both situations only 

tension forces developed in cables. It appears in some 

natural and architectural forms since ancient times. It can be 

seen numerous catenary-inverted arches and vaults in the 

history of architecture all over the world. These forms are 

among lesson learnt from nature to find optimum forms to 

transfer loads efficiently. 

Despite the fact that Galileo guessed the form of a 

pendent chain as a parabolic curve[2], the application of 

the catenary in the fornicate construction is referred to 

Robert Hooke, Jardine says: “Hooke recorded his 

rationale for such a masonry dome shape, based on the 

imagined inversion of a hanging catena.”[3] 

 

Figure 2.  a) Parabola and b) Hyperbola (catenary) 

1.1. Funicular Forms in Building Design 

It could be found mentioned forms everywhere in nature. 

The trajectory of a projectile is an example of a parabola 

shape. When throwing a ball, it tracks a parabolic path to 

fall down on the ground (Figure 3), or a bouncing ball 

along with gyration and air resistance, causes the curve to 

diverge somewhat from the perfect parabola (Figure 4).  In 

addition, the shape of the rise and falling water in fountain 

trajectory is also parabola (Figure 5). The mentioned forms 

are not limited to a movement but also could be found in 

lighting shape (Figure 6). 

 

Figure 3.  Parabolic path for the trajectory of a projectile. (Source of 

image: Burlington-Edison School) 

 

Figure 4.  A bouncing ball captured with a stroboscopic flash at 25 

images per second. Its trace shapes a parabola. (Source of image: Physics 

Central.com) 

 

Figure 5.  Parabolic trajectories of water in fountains. (Source: 

Courtesy of Pooya Ale-Davood) 

 

Figure 6.  Light spreading shape on a wall forms a parabola (Source of 

image: authors) 

Many of old or new structural morphologies can be 

characterised as primarily in the state of pure tension or 

compression. These two dimensional (as a flexible cable) or 

three dimensional (as a flexible membrane) structures can 

be built by the form of catenaries (for tension only systems) 

or reversing catenaries (for compression only systems). So 

old-time architects found they could construct a thrust line 
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of arches and domes by inverted catenary (Figures 7 and 8).  

 

Figure 7.  Construction of St. Peter's dome (an early but not modern 

analysis method) by inverting catenary. (Source: [4]) 

Schodeck and Bechthold believe: “The easiest way to 

determine the funicular response for a particular loading 

condition is by identifying the exact shape of flexible string 

which would deform to under a load. Such a shape is 

called the tension funicular. Inverting this shape exactly 

yields a compression funicular.”[5] 

In relation to structural morphology, funicular-based 

systems are forms which depend on the direct effect of forces 

and attain the most optimum structural form. On the other 

hand, the equilibrium static form of cables subjected to forces 

(individual or distributed) defines funicular. The best-known 

application of such an approach in designing structure is 

Colònia Güell designed by Antonio Gaüdí (Figure 7). Motro 

said: “He was inspired by nature, took advantage of the duality 

of compression and tension and defined compressed systems 

by inverting entirely tension systems, in this category, forms 

and forces are biunivoque; each system of distinct forces is 

associated with a different form.”[6] 

1.2. Examples of the Parabola in Structural 

Morphology 

Funiculars have a great influence on Antonio Gaüdí’s 

architecture and make his designs near optimum. He believed 

that he had found optimum forms because the artist God created 

it. Gaüdí used the empirical method of hanging weights, equal to 

the weights of the masonry, from networks of flexible cords and 

then notionally inverting them.[8] (See Figure 8). 

It is telling that such masters of architecture learned when 

they wanted invert catenary to find the form of an arch, the 

cross-sectional dimension should increase. This is the main 

reason why arches are thicker than tension-only systems 

usually. Another reason for making arches thicker was the 

probability of changing loads on the structure. When loads 

change from catenary-made arches, the form of arch wants 

changes slightly and this form changing may cause the arch 

to collapse. By making arch thicker, the probability of 

collapsing decreases because the arch form includes the 

catenary line
2
. 

 

Figure 8.  a) Wire model for study of structural forces. (Source:[7]); b) 

Interior view of Colònia Güell, Catalan, Spain, Antonio Gaüdí, 1899 

(begun) which designed in brick and stone masonry by inverting 

funicular forms to find the best shape of arches (Source of image: 

Gaudidesigner.com) 

Henceforward many designers took this design approach 

to create masterpieces both in classic (masonry) and modern 

architecture (moment resistant materials). So 

Mother-Nature-helped architects to create immanent works 

all over the world through the 19
th
 and 20

th
 centuries. For 

example, Cèsar Martinell i Brunet used parabolic masonry 

arch for a structure to form Celler de Sant Cugat in Spain 

(Figure 9). A parabola is a second-degree function which its 

standard form is:  which has been proved in the 

previous section. If you imagine a classical masonry arch 

subjected to its own weight (Figure 9 and 10), it is provable 

that the best form for transferring load through the arch is the 

parabola[9] because, under this form, arch bears only 

compression stress (which is the best for material properties). 

When a masonry arch transfers the only compression, the 

                                                           
2
 Which is also called thrust line. 
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risk of buckling and tensile cracks mitigates. 

 

Figure 9.  Masonry parabolic arch in Celler de Sant Cugat, Cèsar 

Martinell i Brunet, Spain, 1921. And form of the parabola (in blue) on it. 

(Source: http://patrimoni.gencat.cat) 

 

Figure 10.  Parabola form on a set of repetitive parabolic arches in 

Colegio de las Teresianas, Barcelona, Spain, Antonio Gaüdí, 1890. 

(Source of image: touristeye.com) 

Another example of parabolic optimum structure is the 

Airship hangar by Eugène Freyssinet. The overall form of 

its ribbed reinforced concrete thin shells is a parabola. The 

tapered form of arches decreases upward. Choose of 

catenary form posed pure compressive stress on arches 

and prevented big tensile stresses on the structure (Figure 

11). 

 

Figure 11.  The two hangars are 175m long, 91m wide and 60m high. 

Connecting a series of parabolic arches formed an undulant vault similar to 

corrugated sheet, Orly (near Paris), France, Eugène Freyssinet, 1923. 

(Source of image: arquiscopio.com) 

Some architects use the mentioned approach to design 

modern building and facilities. Two hinged glue-laminated 

timber arches are the main structure of winter garden in 

Sheffield designed by Pringle Richards Sharrat Architects 

(Figure 12). BRT Architekten also designed some buildings 

in a similar approach by different height to span ratios 

(Figure 13). 

 

Figure 12.  Glue-laminated two-hinged parabolic arches in winter 

garden, Sheffield, UK, Pringle Richard Sharrat Architects, 2002. (Source 

of images: prsarchitects.com and sheffieldnewsroom.co.uk) 

 

Figure 13.  A parabolic two-hinged arch in Berliner Bogen Office 

Building, Hamburg, Germany, BRT Architekten. (Source of images: 

brt.de) 

1.3. Hyperbola Form in Contemporary Structural 

Design 

The hyperbolic form also could be seen in nature. 

Lighting on a wall, shapes hyperbola. When light source 

applied on the body of a wall alongside its height, the 

shape of light spreading forms hyperbola (see Figure 6).  

An example of a hyperbolic form of modern structures 

is 192m high Saint Louis Gateway Arch (Jefferson 

Memorial) that is designed by hands of young Finnish 

immigrant named Eero Saarinen. He and Hannskarl 

Bandel inverted a catenary to form the arch (Figure 14). 

Consider one of the Mainstone's opinions about this 

monumental: “Indeed, having been built solely as a 

monument and without any of the stabilizing additions 

that contribute to the stability of most other arches, it goes 

for beyond what would normally be considered the proper 

use of the form.”[10] 
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Figure 14.  Structural expressionism form of the memorial arch 

resulted in inverting catenary in Saint Louis Gateway Arch, Saint Louis, 

Missouri, USA, Eero Saarinen (Architect) and Hannskarl Bandel 

(structural engineer), 1965 and hyperbola form on it. (Source of image: 

interestingamerica.com) 

Using catenaries and optimum tension-only systems for 

structural form-finding is not limited to arches and vaults. 

Some famous engineers like Frei Otto and Heinz Isler took a 

similar strategy to design very successful and efficient 

structural forms that are structurally and aesthetically 

winsome. He also believes structural form-finding 

approaches with respect to architectural aspects. Otto loaded 

a tension net grid with nails to find the best form of his 

concept (Figure 15-a). Then he used this approach again for 

design a gridshell. (Figure 15-b). 

 

Figure 15.  Process of form-finding by Frei Otto: a) The suspended 

model composed of textile threads, loaded with u-nails, for the gridshell; 

b) Built gridshell structure. (Source: Freiotto.com: © Atelier Frei Otto 

Warmbronn) 

Hereafter this form of gridshell would be a pattern for 

designing several timber gridshells. The Savill Gardens 

Gridshell by Glen Howells Architects, The Weald & 

Downland Open Air Museum gridshell by Edward Cullinan 

Architects are examples of using Otto’s gridshell modelling. 

Heinz Isler -a famous Swiss engineer noted for his thin 

shell structures- is another designer who used catenaries 

for form-finding. He is considered as one of the eminent 

pioneers in thin shell structures all over the world. John 

Chilton states: “Architecture and engineering are just two 

aspects of one thing.”[11] So Isler saw architecture and 

structure as two integrated parts of a unity. (Figures 16 

and 17). 

 

Figure 16.  Hanging fabric and inverting its form for thin shells by Isler. 

(Source: designboom.com) 

Isler’s reinforced concrete thin shells are very reputable 

because they are optimum, minimal, beautiful and elegant. 

In relation to free-form thin shells, he proposed 

on-ground-moulded shells instead of moulding upon 

scaffolding (which is very expensive) using an inflated 

rubber membrane-like method Dante N. Bini suggested. 

Isler hung the cloth to find the best form then reversed it 

for the shells. “Many of the shells that Isler designed were 

constructed using these methods. He would build 

small-scale models using hanging fabric, freeze the 

three-dimensional shape using epoxy resins and then just 

scale the model up. At the time when Heinz Isler started 

designing shells, this was the only way one could design 

them. Computers were not powerful enough to support 

structural analysis software for spatial structures. Thus, 

there was no such software developed at the time. 

Therefore, very precise instruments were used to measure 

the small scale models so that the real structures could be 

drawn in full scale as a scaled-up version of the 

models.”[12]  

  

Figure 17.  Detail of Isler’s models for form-finding of shells. (Source: 

[13] and Freiotto.com) 
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He says: “In the design of a building, some rules have to 

be observed: for instance, good proportion, simplicity, 

honesty, etc. The same rules are valid when designing a 

building with shells. The foremost task lies, in the opinion of 

the author, in leaving off everything that is not necessary. A 

well-shaped shell is such a dominant structure, that it needs 

no addition of other dominant elements. On the contrary, it 

forbids them. The shell is the supporting structure and the 

space enclosure at the same time. So it cannot be but 

honest.”[14]  

Allegiance to natural forms makes his thin shells 

structurally efficient as well as aesthetically elegant. 

Whereas the forms were an inversion of catenary (tension 

only) forms, just bear compression thus Isler’s shells were 

pure compressive and because mainly working in 

compression did not need laterally stiffening ribs. This 

was one of the reasons made him able to gain a very low 

thickness to span ratio. 

2. Discussion 

2.1. Catenary-based Form-finding of Bending Moment 

Diagrams of Beams 

Beam diagrams like SFD
3
 and BMD

4
 are very useful 

prerequisites for designing and understanding the 

behaviour of structural elements (especially frames). The 

stresses and deflections in a beam to be a function of 

Bending Moment, so calculating how this quantity differs 

along a beam is important.[15] Knowing the internal shear 

forces and bending moments to be resisted is crucial to 

determine the size of a beam of a given material, and 

determining the deflection of a beam in every points along. 

Hence, we can assume finding the BMD and its peak as 

first step of designing beams. 

Sometimes finding the diagram drawing is the most 

important issue to help us pinpoint the location of 

maximum internal stresses. The key problem with 

conventional approaches is that applying them finding 

diagrams requires hard and time-consuming calculations 

e.g. method of sections
5 

or integral method
6
. By reason of 

such putting over processes, heuristic and simplified 

methods that do not need complicated calculation and 

producing some extra algebra, will accogliered by 

architects and students of civil engineering. 

                                                           
3 Shear Force diagrams 
4 BMDs 
5 In Method of Sections we should cut off some sections (cuts) of the 
beam upon every changing the load and supply equilibrium equations and 
gain equations of shear force and bending moment for every section of 
beam. After that we can draw diagrams. 
6 In Integral Method we should first integrate of loading equation for 
every load changing on beam to find shear force equation. Then integrate 
this equation to find bending moment equation. After that we can draw 
diagrams. 

Sometimes it is necessary to know where maximum 

bending moment occurs without numerical aspects. In 

such cases, fast form-finding approaches can be very 

useful. Particularly, for architects that usually disincline 

numerical and calculative methods. 

As one of the lesson learnt of nature, we found a 

heuristic method, bodes the form of BMD of a beam 

resembles the catenary form that supports the same loads 

posed on a beam. So trying to systemize a new approach 

and define sequential algorithm for nature-inspired 

form-finding for BMD. 

For example, consider a simple beam under a 

concentrated load at the centre (Figure 18-a). If such a 

load is applied on a weightless cable (Figure 18-b) and 

assume a single plummet hangs down from the centre of 

the cable, it takes V shape; now if by reversing this form
7
, 

bending moment form of that beam is found (Figure 18-d). 

Using of such fast and easy way to find BMD can assist 

architects and structural engineers to save time in the 

understanding critical region of structural elements, reinforcing, 

retrofitting and designing well-designed tapered form beams. 

 

Figure 18.  a) A simple beam with concentrated load at centre; b) 

Catenary of loading (V shape); c) Modelling of BMD upon catenary; d) 

Reversing catenary form to find BMD 

Here to pursue induction approach to develop this 

method to all types of beams. By increasing the number of 

concentrated loads, their weights then will assume 

distributed loads. After that, the examination of our 

method will commence to conclude and systemize it. In 

this step, it will be tested under a combination of several 

loads and several supporting conditions of beams. 

                                                           

7 We take the positive bending diagram upwards. 
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In the second example two concentrated loads on a 

simple beam are applied (Figure 19-a). For fast-finding 

BMD, it is assumed that the mentioned loads are posed on 

a flexible weightless cable. The cable under this loading 

condition takes symmetrical trapezoidal form. Then, by 

converting this form, the BMD is found easily (Figure 

19-d).  

 

Figure 19.  a) A simple beam with two equal concentrated loads 

symmetrically placed; b) Catenary of loading (symmetrical trapezoidal 

form); c) Modelling of BMD upon catenary; d) Reversing catenary form 

to find BMD 

 

Figure 20.  a) A simple beam with two unequal concentrated loads 

symmetrically placed; b) Catenary of loading (asymmetrical trapezoidal 

form); c) Modelling of BMD upon catenary; d) Reversing catenary form 

to find BMD 

In the third example, by changing the magnitude of one 

of the concentrated loads and apply it on the beam (Figure 

20-a), the symmetrical trapezoidal form of cable changes 

will fall under bigger load. So the cable form will be an 

asymmetrical trapezoidal form (Figure 20-b). By 

converting this shape, BMD of a beam under two 

unequally concentrated loads is drawn (Figure 20-d). 

Yet consider cable behaviour under concentrated loads and 

method of finding BMD of beams by using catenary. 

Henceforward distributing loads on the beams and examining 

how cable behaves under such loads is the next step. 

For another example, consider one of the most famous 

beams, a simple beam with simply distributed load (Figure 

21-a). If some similar plummets (with equal horizontal 

distances) are hung down from a weightless cable (Figure 

21-b), as mentioned in the previous section, it takes 

parabola shape. Then by reversing this shape, the form of 

BMD of the beam is found (Figure 21-d). 

 

Figure 21.  a) A simple beam with uniformly distributed load; b) 

Catenary of loading (parabola); c) Modelling of BMD upon catenary;  d) 

Reversing catenary form to find BMD 

In the combination of concentrated with distributed 

loads, by adding a concentrated load at the centre of the 

beam illustrated in Figure 21, the catenary form of the 

cable form changes a little and appears a ridge at the point 

of applying concentrated load and takes shape like a 

Gothic arch (Figure 22-b).  

In Figure 23-a, by removing half of the uniformly 

distributed load posed on the beam, there is a simple beam 

with partly loaded by the uniformly distributed load. For 

modelling catenary with such loading condition, there is a 

cable that half of it is under uniformly similar hanging 

plummets. When we hold a flexible weightless cable in 

our hands and apply some plummets just on half of it, it 

can be seen that the half of cable that is under distributed 
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load, takes parabolic form and another half, takes the 

linear form (Figure 23-b). 

 

Figure 22.  a) A simple beam with uniformly distributed load; b) 

Catenary of loading (ridged parabola); c) Modelling of BMD upon 

catenary; d) Reversing catenary form to find BMD 

 

Figure 23.  a) A simple beam with partly uniformly distributed load; b) 

Catenary of loading (semi parabola and semi line); c) Modelling of BMD 

upon catenary; d) Reversing catenary form to find BMD 

After the mentioned examination, it can be concluded 

some rules of the new method: 

 Concentrated (point) load make a ridge on the cable 

form. 

 Uniformly distributed load bring cable to parabolic 

form. 

 The region of cable is not under loading takes 

inclined linear form
8
. 

After form-finding, in the next step, categorising of 

modelling supports condition, as a rule, is aimed. The 

experiences showed that there are three general rules for 

modelling supports: 

 The free end of beams should model as ground 

support (Figure 24-a). 

 Fixed (rigid) supports of beams should model as a 

pylon (Figure 24-c).  

 When there is a simple end-support (hinged or roller) 

it should be assumed it as headland support (Figure 

24-b).  

 

Figure 24.  a) Free end of beam models as ground support; b) Simple 

support (hinged or roller models as headland support; c) Fixed (rigid) 

support models as pylon 

It worth noting that during the support modelling it 

should be observed height scale of support that ground 

support should be the lowest one, then headland support 

should have moderate height and pylon support should be 

the highest one. It is an exception for modelling support 

that we should treat simple supports placed in the 

inter-mediation of beam-like pylon (see Figure 26). 

Hence, to draw BMD by this proposed method, first 

supports (ground, headland or pylon) should be modelled, 

then assuming a flexible weightless cable between 

                                                           
8 There are some exceptions in symmetrical beams with no load region 
that diagram shapes a horizontal direct line. 
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supports and finally apply loading of the beam on the 

cable finds the catenary form of cable. Afterwards 

considering a lower level of support as x axis, mirror the 

catenary around it.  

As another example, consider a cantilever beam under 

uniformly distributed loading (Figure 25-a). In the first 

step, supports are defined and simulated. The left support 

is a rigid one so it should be modelled as a pylon. The 

right support is a free-end one so modelled as ground 

support. In the second step assuming a cable tied between 

pylon and ground is posed some plummets similarly 

distanced. The cable takes a parabolic form that falls 

down from pylon but cannot go down beneath the ground. 

So it abuts the ground (Figure 25-b). Should keep in mind 

that our simulation method is an abstract method and the 

ground should not be thought of as the earth which 

plummets cannot hang down aside. In the last step, the 

BMD is drawn. Between ground and pylon, the ground is 

the lower, so the ground was assumed as x axis and mirror 

the shape of catenary around it (Figure 25-c).  

 

Figure 25.   A cantilever beam with uniformly distributed load 

This method is not limited to determinate beams and 

hyperstatic beams which can be simulated as well. 

Another example is Figure 26-a, a beam is constrained by 

rigid and simple support at its ends and is subjected to 

uniformly distributed load. Left support will be modelled 

as a pylon and right support is like headland support. 

Uniformly distributed load makes cable parabola and will 

fall down about both supports (Figure 26-b). In the final 

step, lower support (headland) will play the role of x axis 

to mirror the shape. This process also occurs about any 

other beam. As mentioned before, simple supports at 

intermediate of the beam is treated like a rigid one (Figure 

26-c). 

A continues hyperstatic beam which is very usual in 

multi span buildings is simulated in Figure 27 under the 

same considerations described before. 

 

Figure 26.  A hyperstatic beam with uniformly distributed load 

 

Figure 27.  Finding BMD of another three supported hyperstatic beam 

with uniformly distributed load 



566 Heuristic Catenary-based Rule of Thumbs to Find Bending Moment Diagrams  

 

 

It should be noted that the proposed method has two 

exceptions in modelling. So, a number of important 

limitations need to be considered. First, when there are 

beams fixed at both ends beams, the mirror axis (x axis) 

should be taken in the lower half of pylon (between base 

and middle) instead of its head support (Figure 28). 

Another exception is when there are three types of 

supports (pylon, headland and ground) in modelling.  

 

Figure 28.  A hyperstatic fixed at both ends beam with uniformly 

distributed load as an exception to the method 

In this case, it should be assumed the level of the 

headland and ground the same; each support retains their 

characteristics but at the same level to another (Figure 29). 

So, in this case, the ground support should not be located 

lower than the headland one. All other rules will not void 

at all.  

 

Figure 29.  An overhanging beam with uniformly distributed load as 

another exception to the method 

2.2. Catenaries in Portal Frames Form Finding 

Masonry materials (stone, brick, adobe, etc.) just can 

bear compressive stresses and when tension posed on such 

materials they will fail because of occurring cracks. 

Nature chooses catenary based arch shapes for anticlines 

and natural bridges and arches (Figure 30). Several 

architectural ordonnances and nations had found out this 

axiom by trying and error constructing and using same 

approach to design their ancient structures.  

 

Figure 30.  atural arches shaped by natural planation: a) Rainbow 

Bridge, Utah, USA (Photo by: Kate Nay); b) New Mexico Anasazi Arch 

(Photo by: Arch Larry); c) A natural arch bridge, Constantine, Algeria 

(Source: www.old-picture.com); d) Natural double arches, Utah, USA 

(Photo by: Flicka). 

On the next step of evolution, constructing flat roofs 

architects tried to make post-lintels and this theory to 

design and construct portal frames, in order to have 

straight elements in frame instead of curved one, 

behaviour of frame elements inclined toward composite 

behaviour (bending) instead of pure behaviour 

(compression).  

Therefore the best algorithm to design tapered portal 

frames based on catenaries (the optimum forms) is: 

1) Finding catenary form of span which be designed; 

2) Inverting the form of catenary to find load path of 

arch (best form for arch axis); 

3) Defining form and height of portal frame which we 

want to design; 

4) Designing depth of portal members according to 

catenary form. The more distance of catenary the 

more depth of member. 

For first example, consider Figure 31-a as a given portal 

frame with specified span and height. The aim is 

estimating depth changing of its members by a rule of 

thumb. First, according to loading condition posed on the 

portal frame, we should find catenary form of 

contemplated span under such condition. In intersection 

points between portal frame and catenary form, we define 

pin joint because in such points there is no bending 
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moment. Also around the pin joint, the member becomes 

narrow
9
. By going away from the catenary form, designer 

should increase the depth of the member to increase cross 

section moment of inertia because bending moment 

increases in such points.  

As we know pin connections does not transfer bending 

moment and just is able to transfer axial and shear forces. 

So, where portal meets the catenary form, we locate a pin 

joint there (Figure 31-c) and wherever our portal frame 

goes away from catenary (Figure 31-b) we should increase 

depth of members (increasing moment of inertia) for 

bearing more posed bending moments. 

 

Figure 31.  Catenary-based design of a single-story single-span tapered 

portal frame: a) Schematic contemplated form of portal frame; b) 

Inverted catenary form of this span; c) Locating pin joint for 

intersections of portal frame form and catenary form. d) Defining depth 

of members as for distance of each point from catenary form. e) 

Expressed tapered portal frame behind of glazed-end elevation of a 

building for Modern Art Glass, Foster and Partners. (Source: [16]) 

Let us consider another example in which we want to 

design a single-bay portal frame with pitched roof. By 

taking the similar approach used in previous example, we 

take catenary form first. Hereafter, determining the depth 

according to distance from catenary form is the second 

step. Final optimized shape of portal frame is Fig. 32-d 

This approach is not just limited to symmetrical and 

beeline portal frames. We can use this pattern for all 

portal frames like Fig. 33 and Figure 34. It should be 

mentioned that increasing the depth of left side member is 

more than the right one because distance between frame 

axes to catenary form is more in left side. 

                                                           

9 The less bending moment, the less cross section moment of inertia. 

As it is stated before, designers can design curved 

frames by smoothening the edges. Such frames are more 

eye-catching than pike frames. Hence we can design the 

frame in Figure 33 as Figure 34 or Figure 31 as Figure 35. 

 

Figure 32.  Catenary-based depth design of a single-storey pitched roof 

portal frame: a) Contemplated form of frame; b) Inverted catenary form 

of this span; c) Locating pin joint for intersections of portal frame form 

and catenary form. d) Defining depth of members 

 

Figure 33.  Catenary-based depth design of a single-storey 

unsymmetrical portal frame 

 

Figure 34.  Catenary depth design of a single-storey asymmetrical 

portal frame with curved edges 

Three-hinged frames is not only choice of designing 

tapered portal forms. Generally, there are two options for 

designing such frames (with rigid connection between 

beam and columns), one option as described before is a 

three-hinged frame and another one is two-hinged frame. 

We cannot insert more than three hinges in a 

two-dimensional frame because it will be unstable. It is 

worth noting that if the apex of parabola is higher than 

frame, the area under frame should be equal to the area 

which is under centerline of the frame. 
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By changing the height or span of the catenary form, 

we have more alternatives. Architects put upon of several 

joints (hinge like narrowing region) layouts in façade of 

frame and can impart visual effects of tapering and 

thickening of structural elements (Figure 36). 

 

Figure 35.  atenary-based depth design of a single-storey curved portal 

frame: a) Schematic contemplated form of portal frame; b) Final form of 

tapered portal frame. c) Tapered curved portal frame in Gira Production 

Facility, Radevormwald, Germany, Ingenhoven 

Architekten.(Source:[17]) 

 

Figure 36.  Another alternative of tapered portal frame with higher 

catenary form (A two-hinged frame). But it is not possible to locate real 

pin joint in intersections of frame axis to catenary form (A and B) 

because four hinges make the frame unstable. So in these points frame 

become thinner (less depth) but not like a hinge 

A real example of this type of frames is designed by AP 

Brunnert and Partner in ICE Railway Station (Figure 37). 

Frangibility of supports shows hinged support and upper 

part of frame is also thin. In contrary, the connection 

between beam and columns is thick because there is 

farther distance from catenary form and frame should bear 

huge bending moments. 

2.2.1. Finding the Tapered Form of Portal Frames Using 

Catenary-Based Rule of Thumb 

It can be mathematically proved by methods like 

separation of elements and draw bending moment 

diagrams separately then design elements according to 

diagrams. 

Let us design a portal frame like which is illustrated in 

Figure 31-a again by not using a single bay catenary (as 

described before). It can be assumed as a portal frame 

(rigid connection between beam and columns) subjected 

to gravitational loads. Deformation of frame under this 

load condition is like Figure 38-b and when diagram 

drawn (separately for each elements) it will be similar to 

Figure 38-c and optimum form will be like Figure 39-d, 

increasing the height of section in regions that have more 

bending moment and decreasing height in 

low-bending-moment regions.  

 

Figure 37.  Catenary-based depth design of a single story symmetrical 

portal frame in ICE railway station, Leipzig-Halle Airport, Germany, AP 

Brunnert and Partner: a) Full view of frame; (source of image:[18]) b) 

Side view of frame; (source of image:[18]) c) Detail of section. (source 

of image:[19]) 

 

Figure 38.  Finding optimum form of portal frame not using single-bay 

catenary: a) A given portal frame; b) Deformation of frame under the 

load; c) Bending moment diagram of frame 

The main scope of this paper is a catenary-based rule of 

thumb design not mathematical approaches, so in another 

way we try to draw diagrams via separating elements and 

simulation with the catenary-based method described 

before. In this way, we first suppose there are three beams 

connected to each other (a horizontal beam under 

distributed load perpendicular to its axis and two under 

axial compression and a concentrated couple due to rigid 

connection reaction).  

The rigid connection between beam and columns makes 

the beam like a beam fixed at both ends so it can be 

assumed as a catenary supported by two pylon and is 

subjected to distributed load (Figure 39-b). Hence two 

columns are like cables which are supported by pylon in 
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upper point and by a headland support in lower point.  

 

Figure 39.  Finding the optimum form of a given portal frame not using 

single-bay catenary and modelling by separated elements using 

catenary-based rule of thumb method: a) Portal frame condition; b) 

Modelling via catenary-based method; c) Bending moment diagram of 

the frame; d) Optimum form of the frame 

 

Figure 40.  Finding the optimum form of a portal frame illustrated in 

Figure 31 not using the single-bay catenary and modelling by separated 

elements using SE method: a) Portal frame condition; b) Modelling by 

the rule of thumb method; c) Bending moment diagram of frame; d) 

Optimum form of the frame 

The difference between Figure 39-d and Figure 31-d is 

the pin in the centre of the beam that arises from 

differences in modelling approach and both two answers 

are correct. For a better understanding of difference, see 

Figure 40 that draws bending moment diagrams via 

catenary-based rule of thumb method. The fundamental 

difference between the portal frames in Figure 31 and 40 

is in loading condition. In Figure 31 when we modelled 

frame with catenary, we assumed the whole of frame is 

under distributed load because the curvature of arch, 

effect of load (its components) is higher. So, effect of 

lateral loads on columns create bending in columns more 

than Figure 40 and this makes the bending in beam less 

than which occurred in Figure 39. For comparison 

between these two examples in a similar view, form 

finding of portal frame in Figure 31-a is designed again in 

Figure 40 by the rule of thumb bolding the differences 

well. 

However, the basic principles can be used in designing 

truss frames as well, the prospect of designing of a tapered 

truss is that design and construct of pin joint is easier in 

truss frames. It is enough to lengthen some members 

around higher depth of section to increase depth of section 

(Figure 41). Hence, if we model truss frame as a 

single-bay catenary (like the portal frame in Figure 31-a) 

the result of optimization will be as illustrated in Figure 

41. 

 

Figure 41.  Catenary-based depth design of a single-storey truss portal 

frame. The theory is the same as I section portal frames but increasing or 

decreasing in height of section is done by changing in length of truss 

members 

2.2.2. Finding the Tapered Form of a Beam Using 

Catenary-Based Rule of Thumb 

The main stress defining behavior of beams is bending. 

The central idea in optimizing tapered beams is adopting 

cross section of a given beam according to the bending 

moment diagram but it is the solution when beam is 

mainly subjected to bending moment (Figure 42). 

Therefore if another stresses (like pure compression, 

tension, torsion, etc.) are posed on the beam, the answer 

cannot be found so easily. 

 

Figure 42.  Gradually tapered form in a beam fixed at both ends under 

distributed load 

Figure 42 shows a gradual tapering form for a floor 
beam that inclined bottom wing is substitute for several 

strengthening plates. Considering inclined wing, there is 

another option. Curved wing (Figure 43) is the most 

efficient from structural optimization point of view 

because it coincides closely with bending moment 
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diagram. But its producing is hard and needs rolling 

process in factory. 

 

Figure 43.  Another option (curved wing) that is best for fixed at both 

ends beam (under distributed load) 

3. Conclusions 

Despite its exploratory nature, this study offers some 

insight into analogies between natural forms and 

human-designed structures. 
Nature-inspired forms are widely employed in 

engineering applications. Hence, mimicking perfect 

natural morphology of structures will assist designers to 

identify some conformities in the process of classic 

methods of design due to several correspondences in load 

path patterns. In addition to that, the preliminary design of 

structural forms which is undertaken by architects, entails 

a comprehensive view of structural behaviour. The 

concept needs familiarity to some fundamental numerical 

models which are totally slow and misconstrued. Finding 

such heuristic approaches not only facilitates structural 

behaviour perception to structural engineers, but also 

eases architects’ cognition of structural principles and 

design morphology. Such nature-inspired models that 

develop BMDs from tension-only forms are highly 

applicable in structural analysis as well as optimization 

modelling. They also provide a good platform for 

educational purposes. 
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