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Abstract 

Aspergillus fumigatus is a saprophytic soil-fungus and an opportunistic human 

pathogen. This haploid mould reproduces asexually using spores that can readily 

become airborne. In immunocompromised individuals, inhalation of A. fumigatus 

spores can lead to a pulmonary infection termed ‘invasive aspergillosis’ (IA). Despite 

extensive research on human immunity and treatment, the relative contribution of 

fungal genetic and phenotypic variation to the outcomes of infection is yet to be 

elucidated. In the present study, I sought to determine the pathogenic relevance of the 

intraspecies variation of A. fumigatus.  Clinical isolates were characterised using 

phenotypic assays (UV resistance, amphotericin-B resistance, radial growth rate) and 

whole genome sequenced to determine genetic relatedness. These data were 

integrated with virulence data generated in an insect infection model, Tenebrio molitor 

larvae, to determine the relevance of fungal variation to clinical outcomes, identify 

potential virulence factors, and further our understanding of A. fumigatus pathogenesis 

in invasive aspergillosis. I observed a high level of intraspecies heterogeneity in all 

pathogenesis-associated phenotypic properties. The spectrum of core-genome single 

nucleotide polymorphisms (SNPs) present and virulence in T. molitor larvae also 

varied between isolates. Patterns of intraspecies variation aligned with clinical origin 

for two properties: growth rate on nutrient rich media and virulence in T. molitor. The 

correlation between clinical origin and both growth rate and virulence suggests a 

contribution of fungal biology towards clinical outcomes. The low level of virulence 

displayed by IA isolates relative to colonisers suggests the biology of IA isolates may 

be optimised for overcoming clinical challenges not modelled in T. molitor larvae.  

Finally, the absence of strong clustering of isolates based on their clinical origin 
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suggests more focused or non-SNP based assays of variation may be necessary to 

reveal any genomic markers of a strains ability to cause invasive disease.  
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Chapter 1 Introduction 

1.1 Invasive Aspergillosis 

Aspergillosis refers to an array of diseases caused by fungi of the Aspergillus genus1. 

Aspergillus-associated diseases include allergic, chronic, and invasive aspergillosis2. 

Of these, invasive aspergillosis (IA) is the most severe, with a mortality rate of 30-90% 

depending on underlying conditions and treatment regimen3. In IA, hyphae invade 

parenchymal tissues causing significant damage and necrosis4. IA is predominantly a 

pulmonary disease3,5 but can spread to other organs through processes known as 

angioinvasion and hematogenous dissemination6. Only a small subset of Aspergillus 

spp. are of significance in the context of human health and disease7. Aspergillus 

fumigatus is the most clinically relevant species, causing over 70% of IA cases5. 

1.2 Aspergillus fumigatus pathogenesis 

A. fumigatus is a ubiquitous soil saprophyte that asexually produces highly 

hydrophobic spores called conidia7. Being common fungal constituents of 

environmental8 and hospital air samples9-11, hundreds of airborne A. fumigatus conidia 

may be inhaled daily12. Despite enhanced evasion of mucociliary clearance due to 

their small size (2-3μm), pulmonary A. fumigatus conidia are asymptomatically cleared 

by innate immune cells in immunocompetent individuals7. Alveolar macrophages 

phagocytose inhaled conidia and promote a proinflammatory response, recruiting 

neutrophils capable of destroying hyphae13. Host factors associated with reduced 

immunocompetence, including neutropenia, defects in NADPH oxidase and the use 

of corticosteroid immunosuppressants can leave individuals susceptible to invasive A. 

fumigatus infection (Figure 1.1)1. 
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Figure 1.1. Overview of Invasive Aspergillosis. Hundreds of Aspergillus fumigatus conidia are 

inhaled daily. In healthy hosts, conidia that reach the alveoli are phagocytosed by resident 

macrophages. These macrophages also recruit neutrophils capable of clearing both conidia and 

hyphae. In an immunocompromised host, IA occurs when conidia are not effectively cleared. The 

fungus can secrete toxins which damage epithelia and immune cells, and hyphae grow invasively in 

lung tissues. Conidia can be internalised by epithelial cells and germinate across the basement 

membrane into the bloodstream, leading to dissemination to other organs. Adapted from Dagenais et 

al., 200913.   

1.3 Increasing relevance of A. fumigatus infection 

IA affects ~10% of patients with acute leukemia, bone marrow or solid-organ 

transplants14.  The increasing size of these at-risk populations highlight the growing 

relevance of the disease14. Further, resistance of A. fumigatus to azoles, the 

recommended first-line antifungal therapy15,16, is becoming increasingly prevalent. 

This phenomenon is believed to be accelerated by the widespread agricultural use of 

related antifungals to combat plant pathogens2,17. Exposure of environmental A. 

fumigatus to these agricultural fungicides induces cross-resistance to clinically 

important azole antifungals18. These azole-resistant fungi can then more easily 

overcome prophylaxis to cause breakthrough infection or withstand azole therapy.  

Greater understanding of A. fumigatus in the context of IA can provide the foundation 

for development of novel preventative and therapeutic strategies. Characterising 

heterogeneity in the A. fumigatus population is a natural first step to building this 
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understanding. Fungal properties showing intraspecies heterogeneity can then be 

examined in relation to virulence: the ability of a microbe to overcome immune 

defences, cause infection and damage a host. 

1.4 Intraspecies variability of A. fumigatus  

Large scale studies of A. fumigatus isolates have shown that within the species, there 

is variation in both phenotypic and genotypic traits with putative links to 

pathogenesis19,20. 

1.4.1 Phenotypic variation and its clinical relevance 

Recently, identification of phenotypic variation in Cryptococcus, another genus of fungi 

that causes human disease, revealed strong correlations between several 

morphological properties and clinical outcomes18. Such associations suggest 

heterogeneity of infective fungal species can contribute to disease onset and outcome. 

Like Cryptococcus, large scale studies of Aspergillus fumigatus isolates have shown 

there is intraspecies variation in phenotypic traits that may be important in 

pathogenesis19. For example, phenotypic properties such as growth rates19,21, 

pigmentation22 and resistance to antifungal drugs such as Amphotericin B (AMB)23, 

have all been shown to vary within the species. These properties are also putatively 

linked to virulence. 

1.4.2 Genotypic variation and its clinical relevance 

Due to decreasing costs, whole genome sequencing (WGS) is becoming an 

increasingly viable tool for assaying genomic variability at an intraspecies level. The 

first fungi to be sequenced were the yeasts. First Saccharomyces cerevisiae, then 

Schizosaccharomyces pombe24. Neurospora crassa was the first mould sequenced25.  

These fungi were all well-established model organisms used in genomic research for 
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over 70 years, with robust research communities and molecular toolkits. These early 

referencing studies yielded important discoveries, including that the N. crassa genome 

had almost double the number of genes of either yeast previously sequenced, with 

41% of its genome lacking homologs to known proteins, suggesting yeasts are a poor 

model for the diverse range of fungal species25. In these early days of sequencing, 

however, the time consuming and expensive nature of WGS rendered intra-specific 

surveys of genomic variation far less viable than they are today. 

The progress of fungal WGS follows a similar pattern irrespective of genus. Early WGS 

projects attempt to “assemble”, i.e. construct, high-quality and high-level 

(chromosomal) reference genomes for widely available strains26. In a process called 

resequencing, a reference genome of the same or closely related species can then be 

used to “guide” the genome assembly of target organisms. This provides a cost-

effective approach to WGS studies, facilitating the pursuit of more specific biological 

questions. Initially these sequencing projects were time consuming and expensive but 

have become much more accessible since the introduction of the current generation 

of sequencing technologies, frequently referred to as next generation sequencing 

(NGS). Genomes of human pathogenic species from the genera Cryptococcus, 

Aspergillus, Candida, Pneumocystis, Histoplasma, Coccidioides, Mucor, 

Blastomyces, and Scedosporium, have been sequenced, assembled, and published 

in GenBank, the international repository for this kind of data27.  

Using WGS resequencing to resolve intra-specific variation has proven to be valuable 

in the study of fungal microevolution, antifungal resistance, and outbreak and virulence 

analysis.  
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Microevolution 

Whole-genome sequencing of clinical Candida albicans isolates sub-cultured both in 

vitro and in a murine model has been used to characterize the mutations that arise. 

One study found microevolution to be driven primarily by de novo base substitutions 

and short-tract loss-of-heterozygosity (LOH) events that lead to recombination 

induced mutagenesis28. WGS of C. albicans isolated from oral-samples taken from 

healthy human hosts also found short-tract LOH events to be important in generating 

within-host variation29. Further, the high-resolution nature of WGS revealed intra-

sample heterogeneity, highlighting the importance of considering intra-host variability 

when comparing serial isolates29.  

Recent Cryptococcus neoformans WGS projects have characterized the adaptation of 

this environmental fungus to the host environment. In these studies, isolates are 

serially sampled from patients over the course of infection then sequenced and 

compared to identify microevolution. WGS microevolution studies have demonstrated 

that: 1) isolates recovered after relapse in cryptococcal meningitis patients are usually 

clonally related to the original infection 30,31, 2) aneuploidy in chromosome 12 30,31 and 

mutation of an AT-rich interaction domain protein may be important mechanisms of in-

host adaptation 31, and 3) nonsense mutations in DNA mismatch repair proteins can 

lead to a hypermutator state, accelerating microevolution30.  WGS data has also 

enabled identification of a genome amplification event that facilitates massive tandem 

gene amplification in response to environmental stimulus and drives microevolution32. 

Similar to C. neoformans, several recent A. fumigatus WGS projects have investigated 

in-host microevolution albeit with a greater focus on azole-resistance33-35.  
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Antifungal resistance 

A. fumigatus microevolution studies suggest azole-resistance conferring cyp51A 

SNPs33, a HapE SNP34 and tandem repeats (TR120) in the cyp51A promoter are 

selected during infection35. WGS of fluconazole-nonsusceptable isolates has 

implicated gain-of-function Erg11 heterozygous and Erg3 homozygous mutations and 

MDR1 promoter allele alterations in azole-resistance of C. albicans36. WGS has also 

been used to identify mechanisms of resistance by genotyping strains in which 

antifungal resistance conferring genes have been deleted but resistance has been 

restored by experimental evolution. In the absence of Rgd1, an azole-resistance 

conferring gene, exposure to azoles induced amplification of several chromosomal 

regions as identified by WGS. Overexpression of a transporter gene, NPR2 was found 

to confer resistance37. A similar study exploring the effects of medium-chain fatty acids 

found susceptibility to be associated with trisomy of chromosome 738.  

WGS of C. albicans and S. cerevisiae strains experimentally evolved for resistance to 

co-treatment with azoles and inhibitors of either Hsp90 or calcineurin have revealed 

diverse resistance mechanisms including extensive aneuploidies and mutations in 

drug target genes and regulators of multidrug transporters, ergosterol biosynthesis, 

and sphingolipid biosynthesis39. WGS has also been used to genotype experimentally 

evolved azole-resistant A. fumigatus isolates relative to their isogenic parental strains. 

Both medical and non-medical triazole fungicides have been used in experimental 

evolution studies. For example, Losada et al. found that variants contributing to 

medical triazole induced resistance include mutations in erg11A (cyp51A), erg25, 

multidrug transporters, and HMG-CoA reductase40 while Zhang et al. showed that 

agricultural fungicides induced cross-resistance to medical triazoles and also 

observed mutations in cyp51A and HMG-CoA reductase41. 



7 
 

Outbreak analysis 

Cryptococcus gattii is less common than C. neoformans but can infect 

immunocompetent individuals. While once considered endemic to tropical and 

subtropical environments, C. gattii outbreaks in the Pacific Northwest necessitated 

phylogenetic studies to identify outbreak origin, however the clonal nature of C. gattii 

sublineages impeded the ability of multilocus sequence typing (MLST) to resolve 

variation42. Thus, WGS of 118 genomes was employed to identify South America as 

the probable origin of pacific northwest lineages43. 

Virulence analysis 

The high-resolution nature of WGS has already revealed clinically relevant 

heterogeneity in opportunistic fungal pathogens of humans. Since the first C. albicans 

genome (strain SC5314) was published in 2004, intraspecies variation has been 

assayed in several WGS studies. For example, in a 2017 study, WGS and construction 

of SNP based phylogenies showed that mucosal and bloodstream isolates are 

organized into separate clades44. Similarly, WGS and phenotyping of two clinical C. 

albicans isolates of variable pathogenic potential found that major differentiating 

genetic variants are located in genes associated with biofilm production and first-line 

host barriers and vary in a manner that correlates to isolate-specific phenotypic 

differences45.  

Clinically informative resolution of intra-specific variation using WGS has not been 

restricted to Candida. Analysis of WGS data from 56 C. neoformans strains was 

recently used to identify intraspecies variation46. Integration of this intra-specific 

heterogeneity with clinical data facilitated the identification of 40 genes putatively 

associated with human survival, immunologic response or clinical parameters. Using 
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gene deletion strains for these candidate genes, 6 were found to directly influence 

murine survival, four of which were novel46. These studies highlight how intra-specific 

variation can be resolved using WGS, and how identifying this heterogeneity can act 

as the first step towards identifying clinically relevant fungal properties. 

1.4.3 Virulence in animal models and its clinical relevance 

Modelling the virulence of A. fumigatus isolates is an important tool for investigating 

pathobiology. When isolated from human hosts, clinical data can provide some 

indication of isolate virulence. For example, A. fumigatus strains isolated from patients 

without symptoms or histological evidence of invasive infection are likely less virulent 

than those isolated from IA patients. Infection by A. fumigatus, however, is infrequent, 

and the primary conditions of susceptible-hosts are highly variable. For example, the 

immunogenic profile and post-infection histology of corticosteroid-immunosuppressed 

transplant recipients is different to that of a chemotherapy patient1. This means that 

high-sample size studies with standardisation of potentially confounding host-factors 

such as primary condition, age, gender and geographic region are difficult to 

accomplish. The reliability of virulence inferred from clinical origin is thus uncertain. By 

modelling A. fumigatus virulence in model organisms, we can reach higher sample 

sizes and standardise host-factors. The use of infection models also allows 

researchers to evaluate cause and effect, and not just correlation, by facilitating the 

use of knockout studies.  

Rodent models have a long history of use in the evaluation of A. fumigatus virulence. 

Amongst the rodents, mice are the most commonly used IA model (85.8%) followed 

by rats (10.8%) and guinea pigs (3.8%)47. Like human hosts, mice are endothermic 

with internal body temperatures of 37°C48. They have both innate and adaptive 

immune defences. However, there are some differences between rodent and human 
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immunity that may be relevant to their use as models of invasive aspergillosis. For 

example, human blood is far richer in neutrophils compared to mice49. Human 

neutrophils also produce antimicrobial peptides not produced by the neutrophils of 

mice49.  Furthermore, unlike humans, mice possess a significant amount of bronchus-

associated lymphoid tissue49. In saying this, mice show the greatest similarity to 

human biology of the commonly used IA models. As is the case in all models, deviation 

from a real-world scenario (such as human biology here) may limit the straightforward 

application of any results, however models are crucial in furthering our fundamental 

understanding of disease. This is especially true when any uniqueness present in the 

model is well known. Rodent models are advantageous in that well-established 

immunosuppression regimens are available as a means of more appropriately 

modelling host-conditions. These immunocompromised rodent models are frequently 

used. A recent review found 78% of murine IA models were immunocompromised, 

most commonly using steroids (44.3%), alkylating drugs (41.9%) or mutation/deletion 

in the rodents genetic background (18.4%)47. Well-established histopathological 

techniques also exist, and are employed in over half of all IA studies that use mice 

models (53.2%)47. The use of murine models is expensive, high maintenance and 

presents ethical challenges. It is often difficult to conduct studies with sufficient power 

to screen for biological properties potentially important in virulence, particularly due to 

the apparently multi-factorial and nuanced nature of A. fumigatus virulence50. For 

these reasons, invertebrate models are often used as a proxy for mammals. 

Invertebrate models have economic and bioethical advantages over mammalian 

models. Invertebrate models used to study fungal infections include nematodes 

(Caenorhabditis elegans), fruit flies (Drosophila melanogaster) and the larvae of moths 

(Galleria mellonella) and beetles (T. molitor; mealworms)51,52. Unlike Drosophila and 
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nematode models, G. mellonella and T. molitor larvae can be reared at 37°C, the 

internal body temperature of humans51. They can also be inoculated via injection, 

allowing for precise control over infective load. The major limitation of invertebrate 

models of IA are the immunological differences between insect and human hosts. For 

example, while mealworms produce anti-microbial peptides and possess haemocytes 

capable of internalising and destroying foreign particles, they lack an adaptive immune 

system, possessing only innate defences53. While major immunological differences 

between mammals and invertebrates exist, the major risk factor for IA is a 

compromised innate immune arm, particularly reduced levels of neutrophils capable 

of destroying both fungal spores and hyphae. Invertebrate models, such as 

mealworms, provide an environment in which their immune defences represent the 

major challenges a spore must overcome in the early stages of infection. This may 

explain why patterns of A. fumigatus virulence are often consistent between 

invertebrate and vertebrate models54-57, although this is not always the case58. Due to 

their low cost and ease of use, invertebrate models often serve as a tool for large scale 

screening of fungal properties. The results of invertebrate studies can then inform 

more focused research in mammalian models. 

Intra-specific heterogeneity of A. fumigatus virulence has been observed in both 

murine59,60 and invertebrate models61,62. 

1.5 Aims of this work: 

Not all at-risk patients develop IA and the severity of host-damage can vary. For 

example, the disease occurs in only 7% of acute myeloid leukemia patients20. While 

this is partly a result of treatment, prophylaxis and host factors, the contribution of 

intra-specific variation in A. fumigatus needs to be evaluated. In this study, I examine 

intraspecific genotypic and phenotypic variation in relation to the clinical origin of A. 
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fumigatus isolates. Clinical A. fumigatus isolates were taken from IA patients (“IA 

isolates”) and also from patients which had been colonised by the fungus but that did 

not develop IA (“colonising isolates”). These were characterised with respect to (1) 

phenotypic properties putatively linked to virulence (radial growth rate, UV resistance, 

and amphotericin B resistance), (2) genomic content, and (3) virulence in a T. molitor 

larvae model of IA.  
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Chapter 2 Methods 

2.1 Clinical A. fumigatus isolates 

Clinical A. fumigatus isolates were provided by Assoc. Prof. Sharon Chen from the 

Westmead Clinical School Centre for Infectious Diseases & Microbiology. Isolates 

were sampled from either IA patients or at-risk but asymptomatic patients colonised 

by A. fumigatus. To prepare single spore suspensions, sabouraud dextrose plates 

were spot inoculated with 106 conidia and incubated for 3-5 days at 37 °C. Each solid 

culture was flooded with 5 mL of 0.05 % v/v Tween 20-PBS (PBST) solution and 

conidia were dislodged from the mycelial mass using a sterile cotton swab. The 

resulting spore solutions were filtered (40 μm) and concentrations evaluated through 

Neubauer Chamber counts and dilution plating. 

2.2 Non-standard statistical terminology 

In several experiments below, technical replication occurs on the isolate-level. This 

leads to a hierarchical data structure when examining the effect of isolate origin on 

assayed properties. Where this hierarchical structure appears, the effect of clinical 

origin on the dependent variable of interest has been statistically queried using a 

‘nested t-test’ in GraphPad Prism 8. This non-standard term refers to the fitting of a 

mixed-effect model where clinical origin is included as a fixed factor and the isolates 

as random factors. Note that several other statistically valid approaches exist for 

dealing with hierarchical data, such as reducing clusters to mean values prior to 

analysis. A mixed effect model approach was chosen as it is robust and powerful, 

explicitly accounting for clustering without losing information about individual 

observations63. 
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2.3 Phenotypic variation amongst clinical A. fumigatus isolates 

2.3.1 Radial growth rates at 37°C on nutrient rich media 

For each A. fumigatus isolate, a potato dextrose agar plate was spot inoculated with 

104 conidia. Cultures were incubated at 37°C over 3 days. Colony diameter was 

measured at regular intervals and radial growth rate calculated from 5 linearly 

distributed data points. Experiments were done in triplicate. Statistical significance of 

the effect of clinical origin on growth rate was identified by a nested t-test. Inter-isolate 

variation in radial growth rate was evaluated using single factor ANOVA with 

subsequent all-vs-all Tukey testing. Note that linearity of growth data was evaluated 

for each replicate and each isolate separately before being used to infer growth rate 

(Figure A1). 

2.3.2 Conidial UV resistance 

For each isolate, approximately 200 conidia were spread plated onto malt extract agar 

(MEA). Five plates inoculated with the same isolate were placed at different positions 

within a TopSafe PC2 Biosafety cabinet and UV irradiated (1.6 W/m2) for 1 min (Figure 

A2). This was repeated for all 15 isolates. Following irradiation of each isolate, the 

biosafety cabinet was vented for 5 min to prevent ROS accumulation. The sequence 

in which isolates were irradiated was changed between replicates to achieve 

uniformity in average position in UV-order after 5 technical replicates. Colony forming 

units (CFU) on control plates were counted following 24 h of incubation at 37°C. 

Additional incubation for 24 h at 25°C preceded CFU counting of UV-irradiated plates. 

Percent survival for each isolate was calculated relative to a non-irradiated control and 

based on the average CFU counts across the five irradiated plates.  
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The effect of clinical origin on UV resistance was evaluated using a nested t-test. 

Isolate-level variation was further resolved statistically using a single-factor ANOVA 

and subsequent all vs all post-hoc Tukey tests. 

2.3.3 Amphotericin B resistance 

For each A. fumigatus isolate, acute AMB resistance was assayed by exposing 105 

cfu/mL conidia in malt extract broth with 0.5, 1, or 1.5 μg/mL AMB for 3 h at 37°C. 

Cultures were serially diluted, plated on sabouraud dextrose agar and incubated at 

37°C for 24 h. Percentage spore survival was calculated based on CFU counts relative 

to drug-free controls. This experiment was repeated to obtain 5 technical replicates for 

each isolate. 

For each AMB concentration, a single factor ANOVA was used to evaluate intra-

specific variation in AMB resistance.  

Paired t-tests were also used to identify significant differences between 0.5 and 1.5 

μg/mL AMB treatments. Isolates showing no significant difference between these low 

and high drug dosages were classed as resistant while significant variation was taken 

as an indicator of AMB susceptibility. Note that any large non-biological variation will 

bias this method towards an assumption of resistance. 

2.4 Genomic variation amongst clinical A. fumigatus  

2.4.1 DNA Isolation 

For each of 10 clinical isolates, malt extract broth (20 mL) was inoculated with 104 

conidia and incubated for 4-5 days at 37 °C with shaking. Fungal biomass was isolated 

through vacuum filtration and stored at -20°C until use. Genomic DNA was extracted 

from biomass using the Bioline ISOLATE II Genomic DNA Kit with pre-lysis steps 

supplemented by mechanical disruption. Lysis buffer (180 µL) and 100mg of biomass 
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was added to FastPrep Lysing Matrix G before bead milling in a FastPrep-24 (max 

speed; 30 seconds). RNase A (1 µL of a 20 mg/mL) solution was then added and 

samples incubated at 37°C for 30 min. RNase was degraded by adding 25 µL of 

Proteinase K solution and incubating at 56°C for 1 hr. Secondary lysis steps and 

column clean-up were conducted as per the Bioline ISOLATE II Genomic DNA Kit 

standard protocol.  

2.4.2 Library preparation and sequencing 

Whole-genome sequencing libraries were prepared from fungal gDNA using the 

TruSeq DNA PCR-Free Library Prep Kit. Libraries were sequenced using an Illumina 

NovaSeq 6000 at the Ramaciotti Sequencing Center at UNSW.  

2.4.3 Read QC and trimming 

FastQC64 (v0.11.2) was used to evaluate read quality. The leading 7 bp, final base, 

Illumina adapters, and low-quality leading and trailing bases (phred < 3) were removed 

using trimmomatic65 (v0.38). Reads were error corrected with LIGHTER66 (v1.1.2). 

2.4.4 De novo assembly 

The SPAdes assembler67 (v3.13) was used to produce de novo assemblies of the 10 

A. fumigatus isolates. Quality of assemblies was assessed based on contiguity 

(scaffold/contig length statistics) and completeness (assessed by BUSCO68, v2.0.1).  

Contiguity statistics were calculated assuming a true genome size of 28.831 Mb 

(median genome size of A. fumigatus genomes deposited in the NCBI genome 

database). 

2.4.5 Chromosomal level scaffolding 

Ragout69 (v2.2) was used to arrange SPAdes contigs into a chromosomal level 

assembly based on synteny and phylogenomic relationships with the AF293 reference 
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genome (NCBI), the draft genome of A1163 (NCBI), and all the other contig-level 

isolate assemblies. Ragout was run with the solid scaffold flag to minimise false-

synteny misassemblies. Ragout scaffolds were aligned to the AF293 genome with 

NUCmer70 (v3.9.4α) and visualised using MUMmerplot70 (v3.5). Scaffolds spanning 

multiple reference chromosomes or intra-scaffold changes in direction of alignment 

were identified as sites of potential misassembly. Coordinates of potential 

misassemblies were then identified using GMAJ71 (30.06.08) and sequence content 

probed in Geneious72 (v10.2.6). Sites of multi-chromosomal alignment or intra-scaffold 

changes in direction of alignment that occurred in a homopolymer region (>20 bp), or 

either side of a repeat region (as identified using RepeatMasker73 (v4.0.6) softmasking 

& coverage levels) were taken as true misassemblies. Contigs were split to allow 

Ragout to re-arrange them to more appropriate positions. Ragout was re-run on 

misassemblies-corrected contigs. 

2.4.6 Contamination removal 

SPAdes contigs unplaced by Ragout were screened for potential contamination and 

those passing contamination QC were added to the final assembly. Augustus74 

(v3.2.2) was used to predict protein-coding sequences (species - E. coli; mode - 

intronless). BLASTp75 (v2.6.0) of predicted proteins against the nr database was used 

to identify contigs with non-fungal genes. Hits were filtered and sorted by e-value (>10-

40) and contigs containing proteins with non-fungal top hits, or any non-fungal hits in 

the top 10 matches were identified. 

In order to calculate depth of coverage, raw reads were then aligned to unplaced 

contigs. Contigs with over 5-fold higher median coverage than that of the placed 

contigs were suspected of being contaminants and run through a nucleotide BLAST75 
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(v2.6.0) similarity search. Hits were filtered and sorted by e-value (>10-40) so that 

contigs with non-fungal hits in the top 10 matches could be identified. 

2.4.7 Genome annotation 

Genomes were structurally annotated using the self-training gene-finder GeneMark-

ET76 (v4.48). Command-line options used are shown below: 

 

GeneMark predictions were informed by intron-exon coordinates. These were 

identified using messenger RNA sequences extracted from the official geneset of the 

AF293 reference genome. AF293 transcriptomic data was aligned to the genomes of 

each clinical isolate using GMAP77 (v2019-05-12). This alignment data was also run 

through augustus_RNAseq_hints.pl, a script from the Just Annotate My genome78 

(JAMg) pipeline, to identify intron-exon junctions in the form of a general feature file. 

Additionally, a high-quality subset of gene data was identified from reference genome 

peptides using prepare_golden_genes_for_predictors.pl, another JAMg script. This 

‘golden’ geneset and alignment information were combined to form the “introns.gff3” 

file fed to GeneMark. 

Note that structural annotation of the sequenced isolate genomes was conducted as 

an important first step in facilitating more focused assays of genetic heterogeneity in 

the future. The structural annotations presented have not yet been used in any 

downstream analysis. Functional annotation and assaying of the heterogeneity of 

specific genes and pathways are beyond the scope of this thesis. 

gmes_petap.pl --soft_mask 1 --cores $CPUS --max_mask 10000 --ET introns.gff3 

--fungus --et_score 5 --sequence genome.fasta --max_intron 4000 \ 

--min_gene_prediction 120 
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2.4.8 Variant analysis 

The 10 assembled A. fumigatus genomes were aligned to the AF293 reference using 

parSNP79 (v1.2). Single nucleotide polymorphisms were also derived from the core 

genome alignment using parSNP. Harvest tools79 (v1.2) was used to convert data to 

VCF format. Note that parSNP identifies SNPs based on core-genome alignments, 

which means SNPs are only identified if present in a genomic region that aligns across 

all 10 genomes and the AF293 reference. Variants were filtered using VCFtools80 

(v0.1.15) to include only bi-allelic sites where the minor allele occurs in at least 2 

genomes and the site itself is at least 10 bp away from the nearest SNP. SnpEff81 (v 

4.3t) was used to annotate variants based on the RefSeq annotation of the AF293 

reference genome. For each isolate, both intronic and non-synonymous SNPs were 

extracted, concatenated separately, and used to build phylogenies. Sites of intronic 

variation classed as splice_site_variants or splice_region_variants by SnpEff were 

excluded from downstream analysis as they may be affected by selection. 

Phylogenetic trees were constructed using IQ-Tree82 (v1.6.1) with a GTR model and 

ultrafast bootstrap approximation (10,000 replicates). 

2.5 Virulence Assays 

Virulence of clinical A. fumigatus isolates was established in a T. molitor larvae 

(mealworm) model of invasive aspergillosis. Mealworms were purchased from 

BioSupplies and reared in all experiments on a diet composed of wheat bran and LSA 

(linseeds, sunflower seeds and almonds) in a 5:1 ratio. Mealworms were size selected 

(100-150 mg) and checked for uniformity in colour and active response to physical 

stimulation before use in any of the experiments below. In all mealworm experiments, 

mortality was determined by response to physical stimulation. Where not explicitly 

specified, mealworms were incubated in Petri dishes (10 mealworms/Petri dish; 
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rearing density: 10 mealworms/58cm2) with 3 mL rearing diet and a slice of frozen 

carrot for moisture (0.4 cm3; 500 mg; changed daily). 

2.5.1 Infection model optimisation 

To identify optimal rearing conditions at 37°C, mealworms were incubated for 7 days 

with either different volumes of rearing diet volume (3 mL or 15 mL) or different 

amounts of carrot (0, 1, or 2pcs where 1pc = 500 mg). To assess validity of 

anesthetising mealworms by chilling on ice, mealworms were placed on ice for 5 min 

or unchilled and incubated at 37°C for 1 week. Each treatment group included 20 

mealworms. 

Based on the results of these optimisations, all experiments described below used 3 

mL bran, a single piece of frozen carrot (~500 mg) and chilling of mealworms for 5 min 

prior to injection, to render the mealworms docile.  

The site of mealworm injection was optimised to reduce mealworm mortality due to 

physical trauma. Mealworms were injected ventrally with 5 μL of PBST at the base of 

one of five sternites. Sternites 2-6 were tested (Figure 2). Survival was checked daily 

over 7 days of incubation at 37°C. Each treatment group included 20 mealworms. 

Based on the findings of this experiment, mealworms were injected at the base of 

sternite 5 in all virulence assays. 

 

 

Figure 2.1. Position of 5 different injection sites tested for their effect on mealworm survival. 

Mealworms were injected at the base of sternites 2-6, where numbering of sternites starts at the 

prothorax and increases with posteriority83. 



20 
 

To identify the fungal load with the greatest potential for resolving inter-isolate 

variation, I performed a dose response test of inoculations containing 0, 5, 5 x 10, 5 x 

102, 5 x 103, 5 x 104, 5 x 105, and 5 x 106 spores of isolate AF01. After inoculation, 

mealworms were kept at 37°C for 1 week with mortality checked daily.  This treatment 

group also included 20 mealworms. The entire experiment was performed twice to 

assess level of variability.  

In all experiments above Kaplan-Meier survival was calculated and log-rank testing 

used to evaluate differences amongst treatment groups. In experiments with more 

than two treatment groups, post-hoc testing was composed of Bonferroni corrected 

pairwise log-rank tests.  

2.5.2 Inter-isolate variation in virulence of A. fumigatus isolates  

The virulence of all 15 clinical A. fumigatus isolates was evaluated. For each isolate, 

20 mealworms were inoculated with 5x104 conidia (in 5 µL PBST) at sternite 5, and 

incubated for 1 week at 37°C. Each experimental replicate included three control 

groups: (1) Mealworms injected with sterile PBST, (2) Mealworms pierced at sternite 

5 but with no solution injected, (3) Mealworms chilled on ice but otherwise untreated. 

PBST vehicle controls were the only controls included in downstream analysis. The 

others served only as QC metrics for each experimental run. A total of three replicate 

experiments were conducted. 

Kaplan-Meir analysis was used to visualise survival curves and calculate median 

survival time. Associations between clinical origin and median survival time were 

evaluated using a nested t-test. Note that the virulence assays were conducted over 

only 7 days, limiting the statistical power of this approach. Nonetheless, Kaplan-Meier 

curves and median survival times of clinical A. fumigatus isolates in T. molitor larvae 
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have been reported in this study as they have not yet been published and may be 

beneficial as points of reference for future research in this developing model. Thus, 

when drawing conclusions about associations between clinical origin and virulence of 

isolates, greater emphasis was placed on more powerful statistical methods of 

resolving virulence, specifically Cox-regression modelling. 

The Cox proportional hazards model is a semiparametric regression model that 

identifies associations between predictors (such as clinical origin) and time-to-event 

using hazard functions which represent the risk of dying at time t84. A Cox regression 

model was fitted to the survival data (excluding controls). Due to the hierarchical 

nature of the virulence data, a standard Cox regression model could not be used as 

isolate-level replication would artificially inflate power. The use of a mixed effects Cox 

regression model accounts for this nested data structure 85. Thus, clinical origin was 

added to the model as an independent variable, and replicate group added as a frailty 

term (i.e. a random effect). This model was used to evaluate differences in risk-of-

mortality of colonising and IA isolates. 

To evaluate variation in virulence at the isolate level, another Cox regression model 

was fit to the survival data.  PBST vehicle controls were included as the reference 

group. Isolate ID was included as an independent variable, with replicate group added 

as a frailty term. This model was used to quantify the fold-increase in hazard 

(probability of mortality at any given timepoint) relative to the reference group, for each 

isolate. This metric of virulence represents the exponent form of the β coefficient of 

the Cox-regression equation and is the metric being referred to when describing 

“virulence in T. molitor larvae”. 
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All survival data analysis was conducted in R (version 3.6.0) using the survival and 

survminer packages. 

2.5.3 Correlation between inter-isolate variation and virulence in invertebrate model 

Pearson correlation between virulence in T. molitor larvae and both radial growth rate 

and UV resistance was evaluated in R using the Hmisc and stats packages. 

Associations between amphotericin resistance and virulence was evaluated using 

Welch’s t-test. 



23 
 

Chapter 3 Phenotypic variation amongst clinical A. fumigatus 

isolates 

3.1 Introduction 

To evaluate the contribution of phenotypic and genotypic variation in clinical A. 

fumigatus isolates to disease severity, I first examined whether human colonising A. 

fumigatus isolates differed from IA isolates in phenotypic properties putatively 

associated with virulence. These properties include growth rate in a nutrient rich 

environment, conidial UV resistance and resistance to the antifungal drug, 

Amphotericin B. 

The growth rates of A. fumigatus isolates have been found to be highly variable on 

both nutrient rich and minimal media19. Further, several studies have found in vitro 

growth rate of A. fumigatus strains to positively correlate with in vivo virulence, again 

using both nutrient rich and minimal media21,86. Such a correlation is not always 

present55.  

Resistance of A. fumigatus conidia to solar UV radiation and UV-induced reactive 

oxygen species (ROS) is important for the survival of airborne conidia87. Conidial 

defences against UV-induced oxidative damage, such as cell wall melanin, have been 

implicated in pathogenesis by promoting pre-germination concealment of 

immunogenic pathogen-associated molecular patterns (PAMPs)88,89, evasion of 

internalization by phagocytes90 and  persistence within immune and alveolar epithelial 

cells91-94. Several previous studies have also identified heterogeneity in pigmentation 

of clinical A. fumigatus isolates19,95, likely representative of underlying variability in 

melanin biosynthesis pathways.  
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Amphotericin B (AMB) is a polyene class broad spectrum antifungal used in the 

treatment of IA96. Thus, AMB resistance is directly related to virulence through its effect 

on treatment efficacy. AMB targets ergosterol in the fungal plasma membrane and can 

induce oxidative stress.97 Proposed mechanisms of resistance include reduced 

membrane ergosterol levels and upregulation of anti-ROS enzymes.17 Ergosterol 

biosynthesis is linked to siderophore production via a shared precursor mevalonate98. 

Thus, AMB resistance may contribute to virulence via effects on oxidative stress 

biology or iron sequestration. 

This chapter describes variation observed amongst clinical IA and colonising A. 

fumigatus isolates in (1) radial growth rate in a nutrient rich environment and (2) 

conidial UV resistance. Evaluation of variation in AMB resistance amongst colonising 

A. fumigatus isolates is also presented.  

3.2 IA isolates grow more slowly than colonisers on nutrient rich media 

Radial growth rates on PDA at 37°C were calculated by measuring colony diameter 

over time and fitting a simple linear model. For all isolates, the 5 timepoints at which 

colony diameter was measured successfully captured linear regions of growth, with all 

R2 values over 0.99 (Figure 3.1; Figure A1).  
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Figure 3.1. Linearity of Aspergillus fumigatus growth on PDA at 37°C. Data represents a single 

technical replicate for colonising isolate AF01. Radial growth rate was taken as the slope of the simple 

linear model (1.0429 mm/h). Timepoints chosen span a region of linear growth, as evidenced by high 

goodness-of-fit (R2 =0.99995). Growth rate data for all isolates and technical replicates are shown in 

Figure A1. 

The radial growth rate of 10 colonising and 5 IA isolates was evaluated on PDA at 

37°C (Figure 3.2A). Growth of IA isolates was significantly slower than colonising 

isolates (Figure 3.2B). On average, colonisers grew 124.1 ± 46.69 µm/h faster than IA 

isolates. The trend was consistent, with 4 of the 5 slowest growers being IA isolates. 

The only major exception was AF12, an IA isolate with the second highest growth rate. 

Significant isolate level variation was also observed (Figure 3.2C). 
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Figure 3.2.  Radial growth rates of clinical A. fumigatus isolates on potato dextrose agar (37°C). 

(A) Growth rate of 10 colonising (grey) and 5 IA-associated (red) isolates (mean ± SE; n=3). Significant 

isolate-level variation was observed (ANOVA: p = 3.32x10-16). (B) Mean growth rate of colonising and 

IA isolates (± SE; colonising: n=10, IA: n=5). Colonising isolates grew significantly faster than IA isolates 

(nested t-test: p= 0.0197). (C) Isolate-level pairwise comparison of growth rates by Tukey test (p < 

0.001: dark blue, p < 0.01: medium blue, p < 0.05: light blue, p > 0.05: grey).    

3.3 IA isolates and colonisers show similar conidial UV resistance 

The conidial UV resistance of 10 colonising and 5 IA isolates was evaluated with 

irradiation for 1 min at 1.6 W/m2 (Figure 3.3A). A. fumigatus isolates of differing clinical 

origin did not differ significantly in conidial resistance to UV irradiation (Figure 3.3B).  

Significant variation was observed on the isolate level with colonising isolate AF01 

possessing UV resistance significantly higher than the lowest 5 isolates (Figure 3.3C).  
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Figure 3.3. Resistance of clinical A. fumigatus isolates to UV irradiation (1 min at 1.6 W/m2). (A) 

UV resistance of 10 colonising (grey) and 5 IA-associated (red) A. fumigatus isolates (mean ± SE; n=5).  

(B) Mean growth rate of colonising and IA isolates (± SE; colonising: n=10, IA: n=5). UV resistance of 

colonising and IA isolates did not differ significantly (nested t-test: p= 0. 728). (C) Significant variation 

in UV resistance was observed amongst the 15 isolates assayed (ANOVA: p = 5.95x10-6). Matrix 

represents results of pairwise Tukey tests (p < 0.001: dark blue, p < 0.01: medium blue, p < 0.05: light 

blue, p > 0.05: grey).    

3.4 AMB resistance varies amongst colonising isolates. 

The AMB resistance of 10 colonising A. fumigatus isolates was evaluated. Isolates did 

not differ significantly in their survival following exposure to 0.5, 1, or 1.5 µg/mL AMB 

(Figure 3.4). Differences in isolate UV resistance were resolved by comparing survival 

following treatment at high and low levels of exposure. Isolates were classified as AMB 
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sensitive if survival at 0.5 µg/mL AMB and 1.5 µg/mL AMB significantly differed. Of 10 

colonising isolates, 6 were classed as sensitive (Figure 3.5). No data is available for 

IA isolates, due to availability at the time of testing. Colonising isolate data is presented 

nonetheless, as it may be informative when integrated with virulence data described 

in chapter 5. 
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Figure 3.4. Resistance of colonising A. fumigatus isolates to Amphotericin B exposure (3 h; 

37°C; AMB concentrations: 0.5, 1.0 and 1.5 µg/mL). Data is expressed as a percentage of CFUs 

surviving relative to non-exposed controls. Data represents mean and standard errors from three 

replicate experiments for each isolate.  Data was analysed by one-way ANOVA (0.5: p = 0.079, 1.0: p 

= 0.166, 1.5: 0.254). 
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Figure 3.5. Heterogeneity in Amphotericin B resistance of colonising A. fumigatus isolates. Data 

represents difference in survival between spores exposed to 0.5 and 1.5 µg/mL AMB for 3 h at 37°C 

(mean ± standard error, n=3). Isolates showing significant decreases in survival when treated with the 

higher AMB concentrations were considered sensitive (p < 0.05: *). Data was analysed using a paired 

t-test (HA: diff > 0). 
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Chapter 4 Genotypic variation amongst clinical A. fumigatus 

isolates 

4.1 Introduction 

In 2005, the first Aspergillus fumigatus genome sequence was published99. The 

sequenced strain was AF293, a common laboratory strain derived from an invasive 

aspergillus isolate. Comparative genomics approaches rapidly revealed important 

characteristics of the genome. For example, the A. fumigatus genome was compared 

with the genomes of Aspergillus nidulans and Aspergillus oryzae revealing low intra-

genus amino acid identity, as well as a genomic capacity for heterothallic sexual 

reproduction in A. fumigatus100. As cost and throughput of WGS technologies 

improved, intraspecies studies of A. fumigatus have become more common, with WGS 

capable of resolving subtle genomic variation even amongst clonally related strains.  

Assaying intra-specific genomic variation in A. fumigatus using WGS has proved 

useful as a tool for illuminating clinically relevant phenomena.  For example, the study 

of A. fumigatus sequentially isolated from infected patients has revealed selection for 

several azole-resistance associated genomic variants including cyp51A SNPs33, 

tandem repeats in the cyp51 promoter35 and a hapE SNP101. Azole-unrelated variants 

also selected for include Snf1 kinase and RNA polymerase II transcription factor 

SNPs33. Despite the increasing frequency of A. fumigatus WGS studies, clear genetic 

distinctions between clinical subtypes of differing severity remain elusive. 

In other fungal pathogens, WGS of genomic variation amongst isolates of differing 

pathogenic potential have identified clinically associated differences. For example, 

SNP based phylogenies have shown mucosal and bloodstream C. albicans isolates 

are organized into separate clades44 and WGS and phenotyping of two clinical isolates 
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of variable pathogenic potential indicate major differentiating genetic variants are 

located in genes associated with biofilm production and first line host barriers and vary 

in a manner that correlates to isolate-specific phenotypic differences45. Similarly, WGS 

of 56 C. neoformans strains has been used with GWAS and PCA analysis, deletion 

studies and animal models to identify virulence factors46. In the present study, 

genomes of A. fumigatus clinical isolates that either caused IA or were colonising a 

human host were sequenced to further understanding of the clinical relevance of intra-

specific genomic variation. 

Methods used to examine intra-specific variation often require the identification of 

single nucleotide polymorphisms. The identification of SNPs typically starts with the 

alignment of reads or genome assemblies to a reference genome. The nucleotide 

composition of each genome at these sites of variation can then be retrieved, 

concatenated and used to evaluate phylogenetic relationships between different 

samples.  

Phylogenetic frameworks are important tools to interpret SNP based genetic 

relatedness. Genetic distance between two genomes can result from differences in 

selection pressures, but also occurs over time as genomes pseudo-randomly mutate, 

independent of selection. If a certain set of SNPs are present in clinical subgroups of 

interest, it can be important to know whether this is a result of selective pressure or 

simply selection-independent evolutionary relatedness. Exonic SNPs are highly 

susceptible to selection pressures as they can directly inform protein structure but are 

also affected by random mutation events that occur over time. Intronic SNPs, however, 

particularly those outside of splice sites, can be used to construct phylogenetic trees 

that estimate selection-independent genetic relatedness. Note that this is only an 

estimate. Introns are functionally significant in the regulation of transcription102, and 
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thus not invisible to selection. However, the higher sequence variability and 

evolutionary neutrality of introns relative to exons make them useful in examining intra-

specific relatedness103. Once an evolutionary timeline is built, it can be used to 

interpret genetic relatedness quantified from variant sites more visible to selection.  

This chapter describes the construction of clinical A. fumigatus genomes from WGS 

data, identification of inter-isolate genomic variation, and evaluation of clinical origin 

dependent clustering of this inter-isolate variation.  

4.2 Quality control and trimming of raw reads 

Paired-end genome sequencing of 10 clinical A. fumigatus isolates yielded a total of 

46,486,871 151 bp sequences (Table 1). Reverse reads showed slightly lower quality 

than forward reads, however average per-base phred scores were above 32 at all sites 

(Figure 4.1). 

 

Table 1. Raw read summary statistics from Illumina paired-end sequencing of 

10 clinical A. fumigatus isolate genomes. 

Property Reads pairs 

Total Sequences 46486871 

Sequences flagged as poor quality 0 

Average Sequence length (bp) 151 

GC (%) 48 
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Figure 4.1. Per base sequence quality (phred scores) of forward (R1) and reverse (R2) reads 

generated from paired-end Illumina sequencing of 10 clinical A. fumigatus genomes.  

Per base sequence content of raw reads showed biases in both the leading and trailing 

bases (Figure 4.2). Trimming the first 7 bases, the 151st bp, Illumina adaptor content, 

and any leading/trailing bases with phred-scores below 3 was sufficient to remove 

sequence content bias. Reads were then subsampled to 30x depth of coverage as 

assemblers operate best within that target range. Note that trimming of the ends does 

lead to a reduction of total read length, but an average of 143 bp is still substantial for 

short-read assembly. 
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Figure 4.2. Per base sequence content of forward (R1) and reverse (R2) reads generated from 

paired-end Illumina sequencing of 10 clinical A. fumigatus genomes. Raw reads showed sequence 

content biases (top panel). Trimming the leading 7 bp, the 151st bp, adapter content and low quality 

leading/trailing bases (phred score < 3) removed regions showing positional biases (bottom panel). 

4.3 SPAdes assembly 

Trimmed, subsampled and error corrected reads were assembled using SPAdes. Both 

contig-level and scaffold-level assemblies were constructed (Table 2). At the contig-

level, genomes constructed ranged from 28-29 Mb with NG50 averaging 40.9 

(assuming true genome size of 28.831 Mb). Scaffolds showed increased contiguity, 

with average NG50 decreasing to 34.8. 
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Table 2. Contiguity statistics of SPAdes contigs and scaffolds generated assuming genome size of 28.8 Mb 

 Property AF01 AF02 AF03 AF04 AF06 AF10 AF11 AF12 AF13 AF14 

C
o

n
ti

g
s
 

Total Size (bp) 28401846 28407426 28760795 28439013 28524037 28789999 29031520 28637354 28672234 28964372 

Contig Number 5676 5656 4854 4930 5389 5885 10679 5007 6067 5840 

Shortest (bp) 56 56 50 56 56 56 53 56 56 56 

Longest (bp) 612747 638238 612770 624750 624828 709162 699391 961310 722484 793871 

NG50 length (bp) 223909 259497 252318 215142 185738 236969 185433 266532 182557 266630 

NG50 count 37 37 41 42 48 38 49 32 50 35 

NG100 number 5676.0 5656.0 4854.0 4930.0 5389.0 5885.0 7260.0 5007.0 6067.0 3675.0 

S
c

a
ff

o
ld

s
 

Total size (bp) 28402990 28408277 28762536 28440462 28525202 28791359 29033859 28638234 28673262 28965797 

Scaffold Number 5649 5625 4819 4886 5349 5850 10626 4979 6025 5808 

Shortest (bp) 56 56 50 56 56 56 53 56 56 56 

Longest (bp) 828731 791597 662413 705843 624828 777272 719509 961310 837136 842094 

NG50 length (bp) 299511 323231 285207 249783 198603 274112 224074 299016 227641 322614 

NG50 count 31 32 35 37 40 35 40 29 39 30 

NG100 number 5649.0 5625.0 4819.0 4886.0 5349.0 5850.0 7171.0 4979.0 6025.0 3624.0 
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4.4 Chromosomal level scaffolding 

Chromosomal level scaffolding was achieved using Ragout and the AF293 reference 

genome. Alignment of spades scaffolds to the reference genome showed several 

scaffolds spanned multiple reference chromosomes in gapped regions (where contigs 

were joined together), representing putative misassembles. Thus, spades contigs 

were used in the reference-based Ragout assembly. 

Several Ragout scaffolds constructed from SPAdes contigs still aligned to multiple 

reference chromosomes when Ragout was not permitted to fragment the contigs 

(Figure 4.3A). Coordinates of alignment breakpoints were identified using Gmaj 

(Figure 4.3B) and sequence content was investigated in Geneious. Several 

breakpoints occurred in homopolymer regions within contigs (Figure 4.3C). Similar 

misassembly-inducing homopolymers were identified in regions where chromosomal-

level scaffolds aligned to the reverse complement of the AF293 reference (Figure 

4.4A). These were taken as misassembles and contigs were split in the centre of the 

homopolymer regions. In one case where a scaffold aligned to multiple reference 

chromosomes, no homopolymer region was identified. There was, however, a high-

coverage segment adjacent to the breakpoint (Figure 4.4B). As this high-coverage 

segment likely represents a repeat region that would be difficult for assemblers to 

correctly place, this was also taken as a misassembly. For all 10 genomes assembled, 

a total of 7 contig-level misassemblies were identified, with contigs split either in the 

centre of homopolymer regions or at the edge of a repeat (Table 3). Ragout was then 

re-run with the manually corrected contigs to produce more accurate chromosome 

level assemblies (Table 4). 
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Figure 4.3. Evidence of misassemblies in SPAdes contigs. (A) Example of a Ragout scaffold aligning 

to multiple AF293 reference chromosomes, representing either chromosomal translocation or contig-level 

SPAdes misassembly. (B) Coordinates of alignment breakpoints could be identified using Gmaj. (C) In most 

cases, these alignment breakpoints occurred in homopolymeric regions. 
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Figure 4.4.  Detection of potential misassembly sites in the absence of multi-chromosome 

spanning SPAdes contigs. (A) Ragout scaffold aligning to reverse complement of AF293 reference, 

representing either an inversion or contig-level SPAdes misassembly. (B) Increased coverage in the 

region flanking the alignment breakpoint suggests a repeat-induced SPAdes misassembly is the most 

probable explanation.  
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Table 3. Complete list of contigs split based on evidence of SPAdes misassembly 

Isolat

e 

Contig of 

Interest 

Reason for investigation Chromosomes 

spanned 

Gmaj 

Split 

Evidence of misassembly Split Point 

AF01 AF01_NODE_13 Spanned multiple 

chromosomes 

194;195;198 Y Homopolymer: 45T 42806 

AF01_NODE_43 Spanned multiple 

chromosomes 

194;195;198 Y High coverage (5 fold increase) – 

Repeat 

8146 & 

10031 

AF02 AF02_NODE_22 Spanned multiple 

chromosomes 

196;197 Y Homopolymer: 48T 43771 

AF04 AF04_NODE_75 Spanned multiple 

chromosomes 

200;201 Y Homopolymer: 50A 63794 

AF10 AF10_NODE_31 intra-scaffold inversion 195 Y Homopolymer: 42T 7614 

AF11 AF11_NODE_61 Spanned multiple 

chromosomes 

197;200 Y Homopolymer: 48T 67964 

AF12 AF12_NODE_9 Spanned multiple 

chromosomes 

195;197 Y Homopolymer: 46A 223972 
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Ragout scaffolding of contigs split at sites of putative misassembly successfully 

produced chromosomal level scaffolds for all but one isolate (Table 4). In AF06, one 

of the A. fumigatus chromosomes is represented by two different scaffolds. Failure to 

collapse these two fragments may represent significant biological deviations from the 

reference at the site of fragmentation, an algorithmic quirk of Ragout, or an undetected 

misassembly. 

Table 4. Chromosomal level scaffolds produced by Ragout from misassembly-

corrected SPAdes contigs 

Property Total Size 
(Mbp) 

Scaffold 
Number 

Shortest (bp) Longest (bp) 

AF01 28.21 8 1,708,330 4,741,037 

AF02 28.31 8 1,678,478 4,789,096 

AF03 28.37 8 1,712,250 4,749,378 

AF04 28.35 8 1,724,280 4,761,457 

AF06 28.32 9 393,769 4,505,555 

AF10 28.36 8 1,696,756 4,753,369 

AF11 28.23 8 1,681,522 4,893,088 

AF12 28.43 8 1,691,150 4,766,785 

AF13 28.43 8 1,728,383 4,752,011 

AF14 28.25 8 1,696,692 4,757,815 

AF293* 29.38 8 1,833,124 4,918,979 

* Reference genome 

4.5 Contamination removal 

Not all contigs from the SPAdes assemblies were used in the reference guided 

chromosome-level Ragout assembly. Such “unplaced” contigs may represent novel 

genomic content, which doesn’t align to the reference, or contamination. Augustus 

was used to predict genes in these unplaced contigs. BLASTp of predicted proteins 

against the NCBI non-redundant (nr; 08/01/19) database yielded no evidence of 

bacterial contamination. For all isolates, the top 10 hits (after an e-value cut-off of < 

10-40) were fungal. A nucleotide BLASTn against the NCBI nucleotide database also 

identified no bacterial DNA in top-10 hits.  
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After being screened for contamination, unplaced contigs were included in the final 

assemblies. 

4.6 Final frozen assemblies 

The contiguity of the final assemblies is much lower than the original Ragout scaffolds 

(Table 5). This is due to ‘dilution’ of the 8 chromosomal-length scaffolds produced by 

Ragout with thousands of “unplaced” contigs that may include novel genetic 

information. Note that many of these “unplaced” contigs are uninformative. For 

example, many are composed of near-homopolymeric sequences. Ideally, annotation 

data and sequence-content information can be used to filter out uninformative contigs, 

however as their inclusion does not negatively impair downstream analysis apart from 

increasing computation time, such work was considered beyond the scope of this 

thesis. All assemblies included at least 98% of BUSCOs (Benchmarking Universal 

Single-Copy Orthologs) typically present within the genome of ascomycetes (Table 6). 

This suggests sequencing depth was sufficient to capture an appropriate level of 

genetic information.  



43 
 

Table 5. Quality of frozen A. fumigatus assemblies. 

Property AF01 AF02 AF03 AF04 AF06 AF10 AF11 AF12 AF13 AF14 AF293* 

Total Size (bp) 29.51 29.52 29.86 29.48 29.62 29.96 30.12 29.74 29.87 29.95 29.38 

Scaffold Number 5,477 5,450 4,662 4,704 5,159 5,654 10,401 4,810 5,812 5,653 8 

Shortest (bp) 56 56 50 56 56 56 53 56 56 56 1,833,124 

Longest (Mbp) 4.74 4.79 4.75 4.76 4.51 4.75 4.89 4.77 4.75 4.76 4.92 

NG50 length (bp) 3.98 4.03 4.05 4.00 3.98 4.03 3.93 4.09 4.02 3.89 3.95 

NG50 count 4 4 4 4 4 4 4 4 4 4 4 

NG100 number 130 136 20 64 52 15 175 19 28 36 8 

  * Reference genome 

 

  



44 
 

Table 6. BUSCO completeness of clinical A. fumigatus genome assemblies 

Property AF01 AF02 AF03 AF04 AF06 AF10 AF11 AF12 AF13 AF14 AF293* 

Complete BUSCOs (C) 1296 1296 1296 1296 1297 1296 1296 1296 1297 1296 1295 

Complete and single-copy BUSCOs (S) 1293 1293 1293 1293 1294 1293 1293 1293 1294 1293 1292 

Complete and duplicated BUSCOs (D) 3 3 3 3 3 3 3 3 3 3 3 

Fragmented BUSCOs (F) 7 7 7 7 6 7 7 7 6 7 7 

Missing BUSCOs (M) 12 12 12 12 12 12 12 12 12 12 13 

Total BUSCO groups searched 1315 1315 1315 1315 1315 1315 1315 1315 1315 1315 1315 

 * Reference genome 



45 
 

4.7 Genome annotation 

Each of the 10 clinical A. fumigatus genomes contained between 8035-9365 genes 

(Table 7). The average number of introns and exons per gene were consistent across 

all isolates, but higher than the reference genome. The AF293 reference genome also 

has 260 more genes than the most gene-dense isolate.  Determination of whether 

these trends are biological, or a result of annotation biases is beyond the scope of this 

thesis.   

Table 7. Structural annotation of clinical A. fumigatus genomes. 

Assembly Genes Introns Exons Introns per gene Exons per gene 

AF01 9175 20802 29977 2.27 3.27 

AF02 9267 20944 30211 2.26 3.26 

AF03 9184 20805 29989 2.27 3.27 

AF04 9247 20919 30166 2.26 3.26 

AF06 9282 20980 30262 2.26 3.26 

F10 9365 21112 30477 2.25 3.25 

AF11 9252 20906 30158 2.26 3.26 

AF12 9318 21050 30368 2.26 3.26 

AF13 8375 18915 27290 2.26 3.26 

AF14 8035 18140 26175 2.26 3.26 

AF2931 9625 18625 28251 1.94 2.94 

1Statistics for AF293 were extracted from the RefSeq annotation. The public genome 
was not re-annotated. 
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4.8 Variant analysis 

A total of 102,951 SNP sites were identified in the core-genome of A. fumigatus when 

SNPs were called against the AF293 reference genome. At 160 sites, variation was 

not bi-allelic, and so filtered out. Of the remaining 102,791 variants, less than half 

(45,196) had a minor allele that occurred in more than one genome. Thinning of sites 

of variation such that no two occur within 10 bp of one another yielded a final core set 

of 41,432 SNPs. SNPeff annotation revealed that most of these SNP sites were 

intergenic (56%). A total of 8000 sites with putative non-synonymous mutations and 

2,077 intronic variant sites were identified.   

Consensus phylogenetic trees constructed from intronic variation showed no strong 

clustering based on clinical origin (Figure 4.5A). Three of the four IA isolates 

sequenced were most closely related to a colonising isolate. Low bootstrap support 

values surrounding AF14 suggest that different sections of the genome show similarity 

to different isolates. Removal of AF14 prior to tree construction produced a consensus 

tree with identical topology but higher branch support (Figure 4.5B). This consolidates 

AF14 as the source of noise. 

Phylogenetic trees constructed from non-synonymous SNPs showed near-identical 

topology to the intronic consensus tree (Figure 4.5C).  This suggests that selection 

pressures are not causing widespread singe nucleotide variation in the core-genome 

of A. fumigatus.  
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Figure 4.5. Phylogenetic analysis of 10 clinical A. fumigatus isolates. Trees were constructed from concatenated intronic SNPs (A), excluding AF14 (B), 

and from non-synonymous SNPs (C). Node values represent branch support from 10000 bootstraps. Intronic and non-synonymous variant-based phylogenies 

show similar topology.
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Chapter 5 Virulence of clinical A. fumigatus isolates 

5.1 Introduction 

Virulence is the ability of a microbe to overcome host-defences, cause infection and 

damage a host. The clinical origin of an A. fumigatus isolate is not necessarily 

reflective of virulence. It is possible that the most clinically relevant difference between 

IA and colonising isolates is the host they happened to infect. Subtle differences in 

immune-profiles, treatment regimen and other host-factors may overwhelm the 

relevance of fungal factors. Quantifying virulence in an infection model allows for 

greater sample sizes and consistency in host-factors. If the contribution of A. fumigatus 

intraspecies variation to IA onset and severity is high, relative to host-factors, then 

virulence quantified in an infection model is likely to correlate with clinical origin. If A. 

fumigatus intra-specific variation informs clinical pathology to only a small degree, 

relative to host-factors, then patterns of virulence are expected to show independence 

from clinical origin. In the latter case, virulence data from an infection model can be 

used to detect the importance of phenotypic and genotypic variation in A. fumigatus to 

virulence, rather than relying on a heavily host-factor dependent clinical origin. 

Tenebrio molitor is a species of darkling beetle. In recent years, T. molitor larvae 

(mealworms) have been used as an infection model in the study of bacteria such as 

Staphyloccocus aureus104 and fungi such as C. albicans and C.  neoformans105. Use 

of mealworms, like other insect models, presents ethical and economic advantages 

over mammalian models. Inoculation by injection also allows precise control of 

infective load, as opposed to ingestion-dependent inoculation in nematode models 52. 

Further, T. molitor can be incubated at 37 °C, the internal body temperature of 

humans, unlike other potential model organisms such as D. melanogaster and C. 
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elegans106. While lacking acquired immunity, antimicrobial defences of T. molitor 

include phagocytic haemocytes and antimicrobial peptides 52,53. Thus, the host 

presents challenges to the fungus similar to those faced by A. fumigatus in early-stage 

infection of the human lung.  

This chapter describes (1) the optimisation and use of T. molitor larvae as an A. 

fumigatus infection model, (2) the relationship between the virulence in T. molitor 

larvae and clinical origin of A. fumigatus isolates and (3) correlation between inter-

isolate variation in phenotype/genotype and virulence.  

5.2 Infection model optimisation 

The initial experimental design for virulence testing of clinical A. fumigatus isolates 

involved injection of spores into T. molitor larvae and week-long incubation at 37°C on 

a diet of LSA-supplemented oatmeal bran and a slice of carrot for moisture (1pc; ~500 

mg). Uninfected mealworms showed high rates of survival in these experimental 

conditions at bran volumes of either 3 or 15 mL (Figure 5.1A). Absence of carrot in the 

diet significantly lowered mealworm survival, however increasing the amount available 

from 0.5 to 1.0 g did not affect survival (Figure 5.1B). Chilling mealworms on ice was 

evaluated as a means of reducing mealworm activity to increase feasibility of injection-

site standardisation and minimisation of host-damage during injection. Incubating for 

5 min on ice rendered mealworms docile without significantly affecting survival (p = 

0.32; Figure 5.1C). Injection of mealworms with PBST negatively affects mealworm 

survival by up to 25%, but in a manner independent of injection site (p = 0.96, Figure 

5.1D). Injecting mealworms at the base of sternite 5 (Figure 1D; inset) led to the lowest 

frequency of hemolymph leakage.  
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Figure 5.1. Optimisation of T. molitor larvae rearing and injection protocols. (A) Effect of bran 

volume on mealworm survival. Uninfected mealworms show high rates of survival when incubated at 

37°C for 1 week. Increasing bran volume from 3 to 15 mL did not affect survival (logrank: p = 1.00; 

n=20). (B) Effect of carrot availability on mealworm survival. The amount of carrot supplied significantly 

affects survival (logrank: p = 0.0228; n=20). (C) Effect of ice-anaesthesia on mealworm survival. Chilling 

mealworms on ice for 5 min has no significant effect on the survival of uninfected mealworms (logrank: 

p= 0.32; n=20). (D) Effect of position-of-injection on mealworm survival. There is no significant 

difference in survival of mealworms injected with PBS-tween at the base of sternites 2-6 (p= 0.963; 

n=20).  

Based on the above findings, in future experiments mealworms were chilled on ice for 

5 min, injected at the base of sternite 5, and incubated with 3 mL LSA-supplemented 

bran and a single slice of carrot (~500 mg), replaced daily. 

In the optimised experimental system, the effect of colonising isolate AF01 on 

mealworm survival was dose-dependent (Figure 5.2). All inoculum sizes tested (5x101, 

5x102, 5x103, 5x104, 5x105, or 5x106) significantly decreased survival rate relative to 
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vehicle controls. Inoculation with 5x104 spores consistently yielded mortality rates 

above 50%, which is required for the calculation of median-survival time, without killing 

at a rate so high that isolates of higher virulence would be difficult to resolve. All future 

experiments used an inoculum of 5x104 spores. 

 

Figure 5.2. Kaplan-Meier survival of T. molitor larvae infected with different doses of A. 

fumigatus spores. Mealworms were inoculated with 0 (vehicle control), 5x101, 5x102, 5x103, 5x104, 

5x105, or 5x106 spores from colonising isolate AF01 and incubated at 37°C for 7 days (n=20). Data 

represents Kaplan-Meier survival probability. Panels represent results of two discrete experimental 

runs. Increasing inoculum size decreased rate of mealworm survival. Inoculation with 5x104 spores 

consistently resulted in mortality in over 50% of mealworms, which is required for the calculation of 

median-survival time. All subsequent experiments used an inoculum of 5x104 spores. 
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5.3 Inter-isolate variation in virulence of A. fumigatus isolates 

5.3.1 Kaplan-Meier survival of mealworms infected with clinical A. fumigatus isolates 

The virulence of 10 colonising and 5 IA-associated isolates was evaluated in a 

mealworm model.  All isolates tested were virulent, decreasing Kaplan-Meier survival 

of infected mealworms relative to vehicle controls (0.05% v/v PBS-tween) (Figure 5.3). 

A high level of inter-replicate variability was observed.  In all experiments, over 50% 

of isolate-infected mealworms were killed by day 7, allowing median survival time to 

be calculated. All future references to ‘survival data’ refer to this dataset.  
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Figure 5.3. Kaplan-Meier survival of T. molitor larvae infected with clinical A. fumigatus isolates. For each isolate, 20 mealworms were injected with 

5x104 spores (in 5 µL of 0.05% PBS-tween) and incubated at 37°C for 7 days, with survival scored daily (solid lines). Control groups were injected with sterile 

PBS-tween (dashed lines). The experiment was repeated three times (orange, green & blue). Isolates AF01-AF10 were isolated from at-risk patients that never 

developed IA, while AF11-AF15 were from IA patients).
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5.3.2 Median survival times 

Median survival time of mealworms infected with 5x104 A. fumigatus spores ranged 

from 1-4 days. Infection with IA isolates tended to result in slightly longer median 

survival times. This trend, however, was not statistically significant at the 95% 

confidence threshold used (p = 0.0684, Figure 5.4). 

 

Figure 5.4. Median survival time of T. molitor larvae infected with clinical A. fumigatus isolates. 

Larvae were infected with 5x104 spores and incubated at 37°C for 7 days. Data represents mean and 

standard errors from three replicate experiments for each isolate (Colonising: grey, IA: red).  Nested t-

test indicated no significant effect of clinical origin on median survival time (p = 0.0684).  

5.3.3 Cox-regression: inter-isolate variation and dependency on clinical origin 

Cox regression models fit with frailty to account for inter-replicate variation indicate 

that the clinical origin of A. fumigatus isolates has a significant effect on their virulence 

within the invertebrate model (p = 1.8x10-5). Colonising isolates were 36.6% more 

likely to cause mortality in a host than IA isolates. All isolates tested were virulent, 

significantly increasing the risk of mortality in their host relative to PBS-tween controls 

(p values < 10-11; Figure 5.5). IA isolate AF11 was the least virulent, with AF11-infected 
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hosts 2.8 times more likely to survive any given timepoint than those infected the most 

virulent isolate, AF03. 

 

Figure 5.5. Virulence of clinical A. fumigatus isolates in a T. molitor infection model. A Cox-

regression model was fit to survival data, with frailty to account for inter-replicate variability. Data 

represents hazard ratios of each isolate to PBS-tween control groups ± 95% confidence intervals. Note 

hazard refers to the probability of the event (mealworm death) occuring at any given timepoint. These 

hazard ratios represent the exponent form of the β coefficient of the Cox model fit. All isolates 

significantly increased hazard relative to vehicle controls (p < 10-11). Significant inter-isolate variation is 

shown (bonferroni-corrected p < 0.05: *). 

5.4 Correlation between inter-isolate variation and virulence in an invertebrate 

model 

5.4.1 Phenotypic variation 

Correlation between phenotypic properties and virulence in the mealworm model of IA 

was evaluated. No significant correlation was observed between isolate-virulence 

(hazard-ratio of infected mealworms relative to PBST controls) and either radial growth 

rate or conidial UV resistance (Figure 5.6). Virulence of isolates as modelled in 

mealworms was also independent of their AMB sensitivity (Figure 5.6).  
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Figure 5.6. Correlation between virulence of clinical A. fumigatus isolates in an invertebrate 

model of IA and isolate radial growth rate on nutrient rich media (left) or conidial UV resistance 

(right). Hazard ratio of isolate-infected mealworms relative to PBST controls were used as the metric 

of virulence, where hazard is the probability of mortality occuring at any given timepoint. Radial growth 

rate was measured on PDA at 37°C. UV resistance was measured as percent survival of conidia 

following irradiation for 1 min at 1.6 W/m2. Simple linear models fit to data are shown in blue (± 95% 

confidence intervals; grey). No significant Pearson correlation between virulence in the mealworm 

model and either radial growth rate or UV resistance was observed (growth rate: p = 0.218, UV 

resistance: 0.9848).  

 

Figure 5.7. Virulence of A. fumigatus isolates by AMB resistance. Data represents hazard ratios of 

10 colonising A. fumigatus isolates relative to PBST control groups. The mean hazard ratios of six AMB 

sensitive isolates and 4 AMB resistant isolates are shown. No significant association between AMB 

sensitivity and isolate virulence was found. Data was analysed by Welch t-test (p = 0.475). 
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5.4.2 Genotypic variation 

Phylogenetic analysis revealed no strong clustering of A. fumigatus isolates based on 

clinical origin (Figure 4.5). For example, colonising isolates AF06 and AF04 were far 

more closely related to all the IA isolates than the remaining colonisers. These two 

colonising isolates represent the least virulent colonising isolates, of those sequenced 

(Figure 5.8).
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Figure 5.8. Consensus phylogenetic tree constructed based on intronic variation within the core genome of A. fumigatus in the context of virulence 

in Tenebrio molitor larvae. Hazard ratios of each isolate to vehicle controls, calculated by fitting a Cox-regression model with frailty to survival data described 

in Figure 5.3, were used as an estimate of virulence. The two colonisers most closely related to the IA isolates (AF06 and AF04) represent the least virulent 

colonising isolates, of those sequenced. Error bars represent 95% confidence intervals. Scale bar units are substitutions per site.
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Chapter 6 Discussion 

6.1 Clinical Relevance of phenotypic heterogeneity 

High levels of phenotypic heterogeneity of A. fumigatus has been observed on an 

intraspecies level and with regards to many properties putatively associated with 

virulence. In this study, I have characterized 15 clinical A. fumigatus isolates with 

respect to phenotypic properties with theoretical links to pathogenesis. By examining 

how patterns of intra-specific phenotypic variation relate to the clinical origin and 

virulence of isolates in T. molitor larvae, the contribution of these fungal properties to 

clinical pathology can be estimated. 

6.1.1 Growth rate 

Growth rate is one of many A. fumigatus properties potentially important in 

pathogenesis. It is theorised that higher rates of A. fumigatus growth lead to increased 

fungal biomass, which makes it more difficult for the immune system to eradicate the 

infection. In 1995, Rinyu et al. identified a high level of heterogeneity in the growth 

rates of 61 A. fumigatus strains at 37°C, both on minimal and nutrient rich solid growth 

media19. Intra-specific variability of A. fumigatus growth rates at 37°C has also been 

noted in several smaller scale studies which assayed growth in liquid culture using 

nutrient rich media21 and RPMI107, as well as those which assayed it in solid culture 

on minimal media86. The 15 clinical A. fumigatus isolates examined in the present 

study also showed significant variability in their growth rate, as assayed on PDA, a 

solid, nutrient rich growth medium (Figure 3.2A,C).  

The natural variability of A. fumigatus growth rate has previously been examined in 

the context of virulence. In 1996, a double knockout of two A. fumigatus chitin 

synthases yielded a strain with reduced growth rate as assayed at 37°C on solid, 
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nutrient reach media108. The slow growing mutant also showed reduced virulence in a 

murine model of IA, relative to the wild-type parent. Several subsequent studies in 

which A. fumigatus deletion mutants were generated also found decreased radial 

growth rate was often accompanied with decreased virulence in murine models109-111. 

Further, an association between growth rate and virulence has been found in studies 

examining natural variation in growth rate. In 2005, Paisley et al. evaluated the growth 

rates of 9 A. fumigatus isolates in liquid culture using spectrophotometric methods and 

nutrient rich sabouraud dextrose broth21. The authors found rank-order growth rate 

was positively correlated with rank order LD90 in a neutropenic murine model. A 

similar study in 2013 spectrophotometrically assayed the growth curves of thirty A. 

fumigatus isolates in RPMI and examined the virulence of half of these isolates in a 

murine model of disseminated aspergillosis107. Higher growth rates once again 

correlated with virulence in a murine model. Most recently, A 2014 study found the 

virulence of two A. fumigatus strains in neutropenic mice to positively correlate with 

growth rate assayed using aspergillus minimal media86.  

Growth rate does not always positively correlate with virulence. For example, in 2010, 

a knockout study of the gene RacA yielded an A. fumigatus strain with reduced growth 

rate on both nutrient rich and minimal media at 37°C, but comparable virulence to the 

wild type strain in both an insect model and two different murine models of IA55. 

Similarly, when A. fumigatus growth was spectrophotometrically assayed in liquid 

yeast nitrogen base media, no correlation with virulence in Toll-deficient Drosophila 

was observed62. In saying this, the former study involved only two strains, an 

experimental mutant and a wild type and although the latter examined 20 A. fumigatus 

isolates, both growth rate and virulence were assayed at 29°C due to limitations of the 

Drosophila model, rather than at 37°C as used in all other studies described. Thus, 



61 
 

taken together, the literature suggests a clinical relevance of A. fumigatus growth rate 

predicated on the assumption that virulence metrics generated in murine models are, 

themselves, clinically relevant. 

In our study, we examined 15 clinical A. fumigatus isolates and found those from cases 

of IA to be slower growing than colonising isolates (Figure 3.2B,C) on PDA at 37°C. 

The observed correlation between growth rate and clinical origin suggests intra-

specific variation in growth rate is relevant to clinical pathology. However, this study 

indicates that selection for slower growth rates may occur in human hosts. This seems 

to be at odds with the large body of evidence that positively correlates growth rate and 

virulence in animal models. There are several possible explanations for these 

conflicting results. These include (1) inter-study variation in the experimental system 

within which growth rate is assayed and (2) a disconnect between virulence in animal 

models and clinical pathology. 

The growth rate of A. fumigatus isolates is dependent on growth conditions. Thus, 

differences in incubation temperature, composition of growth medium, or whether 

liquid or solid cultures were examined may explain the variation. We assayed growth 

rate on at 37°C on PDA, a nutrient rich solid growth medium. The temperature 

represents internal human body temperature and is used in all studies which positively 

correlated growth rate and virulence. Conversely, both the medium used in these 

studies and whether growth rate is assayed in liquid or solid culture is highly variable. 

In saying this, growth rate positively correlated with virulence has been observed in a 

range of experimental conditions that encompasses those used in the present study.  

Studies have been conducted using nutrient rich solid growth media such as SDA108, 

minimal solid growth media such as aspergillus minimal media86, and in liquid culture 

using both nutrient rich sabouraud broth21 and cell-culture medium RPMI107. Thus, it 
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is unlikely that the nutrient-composition of the media or mode of growth led to the 

apparent difference in results.  

As differences in growth conditions are unlikely to explain our observation of a 

negative correlation between growth rate and clinical severity in the context of 

numerous studies that identify positive correlation between growth rate and virulence, 

other possibilities should be explored. Most studies evaluating the contribution of 

growth rate to pathogenesis rely on virulence measured in animal models. Thus, it is 

possible that a disconnect between virulence and clinical origin may be present. 

Indeed, my findings are at odds with previously published data only under the 

assumption that if we were to assay virulence in an animal model, that the slow-

growing IA isolates would be more virulent than colonisers. In this study, IA isolates 

were not only slow growing relative to colonising isolates, but also were less virulent 

in T. molitor larvae. Thus, clinical severity of isolates does not necessarily equate to 

virulence in IA models. It is possible that faster growth rates may be associated with a 

property selected for in animal models but not in human hosts. Perhaps some fitness 

trade-off is occurring in human hosts in response to human specific immune factors or 

prophylactic therapy not appropriately modelled in the experimental systems used. 

The relationship between clinical data and infection models is discussed in more detail 

in chapter 6.3. 

It is worth noting that despite both growth rate and virulence in T. molitor larvae being 

negatively correlated with clinical occurrence of IA, no statistically significant 

correlation between growth rate and virulence was observed (Figure 5.6A). This 

suggests that while subtle differences in growth rate between IA and non-IA isolates 

exist, an isolate’s growth rate is unlikely to inform virulence in a strong, quantitative 

and consistent manner. This may be a result of the complex, multi-factorial nature of 
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growth rate which means it can be modulated by changes in many different facets of 

A. fumigatus biology55,108-110.  

6.1.2 UV Resistance 

Resistance of A. fumigatus conidia to solar UV radiation and UV-induced reactive 

oxygen species (ROS) is important for the survival of airborne conidia87. Conidial 

defences against UV-induced oxidative damage, such as cell wall melanin, have been 

implicated in pathogenesis by promoting pre-germination concealment of 

immunogenic PAMPs88,89, evasion of internalization by phagocytes90, and  persistence 

within immune and alveolar epithelial cells91-94. Several previous studies have also 

identified heterogeneity in pigmentation of clinical A. fumigatus isolates19,95, likely 

representative of underlying variability in melanin biosynthesis pathways. In this study 

we also observed significant variation amongst 15 clinical A. fumigatus isolates, 

possibly reflective of variability in UV resistance conferring properties (Figure 3.3A,C).  

Despite theoretical and experimental links between virulence and UV-resistance 

conferring properties, we found no association between conidial UV resistance of A. 

fumigatus isolates and their clinical origin (Figure 3.3B,C) or virulence in T. molitor 

larvae (Figure 5.6B). There are several reasons this might be. Firstly, much of the 

research tying conidial melanin to phenomena potentially important to IA onset is 

conducted by comparing A. fumigatus strains that represent extreme examples of 

melanin variation. For example, studies often compare pigment free mutants with a 

wild type parental strain93,112. While these studies are useful when it comes to 

suggesting putative mechanisms by which melanisation affects virulence, the 

frequency with which such variation occurs in nature is dubious, and so the clinical 

relevance of natural melanin variability, such as that present in the clinical isolates 

tested, remains ambiguous. Secondly, UV-resistance is a multifactorial property. 
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Conidial defences against UV-induced damage includes not only cell wall pigments 

such as melanin, but also ROS detoxifying enzymes such as catalases, cellular 

metabolites such as polyols and DNA repair systems such as nucleotide excision 

repair and photoreactivation87. Thus, conidial UV resistance represents a metric that 

integrates many facets of A. fumigatus biology, some of which may not affect virulence 

at all or affect it in opposing directions. 

6.1.3 AMB Resistance 

Amphotericin B is a polyene class broad spectrum antifungal used in the treatment of 

IA96. Thus, AMB resistance is directly related to virulence through its effect on 

treatment efficacy. AMB targets ergosterol in the fungal plasma membrane and can 

induce oxidative stress97. Proposed mechanisms of resistance include reduced 

membrane ergosterol levels and upregulation of anti-ROS enzymes.17 Ergosterol 

biosynthesis is linked to siderophore production via a shared precursor mevalonate.98 

Thus, AMB resistance may also contribute to virulence via effects on oxidative stress 

biology or iron sequestration. In this study, the resistance of acute exposure of 10 

colonising A. fumigatus isolates to 0.5, 1.0 or 1.5 µg/mL of AMB did not yield any 

significant inter-isolate variation (Figure 3.4). Inter-isolate variability in AMB resistance 

could be resolved, however, when AMB sensitive isolates were taken as those whose 

post-exposure survival significantly decreased when treated with 1.5 µg/mL AMB 

relative to 0.5 µg/mL (Figure 3.5). 

AMB resistance in C. albicans has been previously associated with fitness trade-offs 

and reduced virulence in murine models113. Similarly, a study comparing the virulence 

of 2 AMB resistant and 3 AMB sensitive strains of A. terreus in G. mellonella larvae 

also found AMB resistant isolates to be less virulent114. Here, we found the virulence 

of AMB resistant isolates in T. molitor larvae to be comparable to AMB sensitive 
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isolates (Figure 5.7). This does not necessarily suggest a strong species-dependent 

variation in the fitness-cost of AMB resistance. We assayed acute AMB resistance (3 

h of exposure) in malt extract broth using dilution plating, whereas the aforementioned 

studies assayed chronic AMB exposure (24-48 h) in RPMI using visual signs of growth. 

Thus, all we can conclude is that in our A. fumigatus isolates, variability in acute AMB 

resistance appears unimportant to virulence. It is possible that fitness and virulence 

trade-offs do not occur below a certain threshold of AMB resistance which our isolates 

did not surpass. Future experiments using standard EUCAST antifungal resistance 

testing to examine the effect of chronic AMB exposure would allow a more direct 

comparison of resistance profiles across studies. 

6.2 Clinical relevance of genomic heterogeneity 

There have been several studies of intra-specific variation of A. fumigatus 

isolates33,115-117, however associations between genomic variation and clinical severity 

have proved elusive, particularly when using broad-scale phylogenetic comparison. 

For example, a WGS study of 17 isolates from Japanese patients compared the 

genomic profiles of two clinical forms of aspergillosis: pulmonary aspergilloma (PA),  a 

fungal tumour, and chronic necrotizing pulmonary aspergillosis (CNPA), a locally 

invasive form of aspergillosis115. The authors identified SNPs by aligning reads to the 

AF293 reference genome and identified ‘consensus’ sites where SNPs occurred in all 

17 strains. Phylogenomic analysis was then based on concatenated sequences at all 

these consensus sites. The resulting phylogenetic tree did not cluster based on 

pathological condition or medication history profile (whether the isolate came from a 

patient treated with itraconazole, voriconazole, micafungin or no antifungals). Further, 

no SNPs unique to either PA or CNP were observed. A very recent WGS study 

examined genomes of 9 A. fumigatus isolates, including 7 clinical and 2 environmental 



66 
 

isolates. Screening for presence of 244 virulence associated genes showed all genes 

were present in every isolate, with the exception of one clinical and one environmental 

isolate which both lacked an putative ABC transporter117. This suggests 

presence/absence of virulence genes isn’t a defining factor of A. fumigatus virulence. 

In the same study, SNP calling and comparative genomics analysis was completed 

for one colonising isolate, two IA isolates and one clinical experiment strain, no 

obvious relationship between clinical origin and genomic properties could be found, 

even when examining only SNPs within putative virulence genes, although this is 

unsurprising given the small sample size. 

In agreement with previous work in this area, the SNP-based phylogenies produced 

in this study showed no strong clustering based on clinical origin (Figure 4.5), with IA 

isolates most closely related to colonisers in all but one case. It is possible that the 

WGS SNP-based approaches may be too broad in their assessment of A. fumigatus 

intra-specific variation. Indeed, the similar topology of our intronic and non-

synonymous variant based trees suggest any differential selection pressures acting 

on the fungus are not generating large scale changes in the core A. fumigatus genome. 

Thus, while the larger scale genomic variation identified in our isolates does not seem 

to possess a strong clinical relevance, it remains possible that more focused analysis 

may be able to resolve isolates of differing clinical origins. For example, one could 

focus on variation between genes of known function, or in a subset of repetitive regions 

of the genome. In any case, the regions of the genome compared in attempts to 

resolve clinical origin will likely need to differ from those targeted in common 

genotyping methods, with both Microsatellite (STRAf) and rep-PCR based genotyping 

also failing to resolve colonising and IA isolates62,118. 
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Integration of virulence data generated in T. molitor larvae revealed that genetic 

relatedness of the clinical A. fumigatus isolates may be related to their virulence in 

animal models. Of the 10 sequenced isolates, the two least virulent colonisers were 

more closely related to the 4 IA isolates than any of the other colonisers (Figure 5.8). 

These findings are similar to those of a study in Drosophila which found an association 

between A. fumigatus clades identified using rep-PCR genotyping and virulence in the 

Toll-deficient fruit flies62. The differences in genotyping methods between the two 

studies, combined with the small sample size in this study means these findings 

remain preliminary. Higher power assays of virulence and sequencing of more isolates 

is required to determine whether these results represent a real, biological trend. It must 

also be considered that A. fumigatus is now a species complex, comprised of several 

sub-species. Thus, it is very possible the clustering observed in our intron-based 

phylogenies is based on the sub-species present and that these sub-species may 

have differing virulence. Future work can include mining of ribosomal sequences from 

WGS data and subspecies identification. 

The phylogenetic framework produced in this study can serve as a tool for guiding 

future analysis. For example, selection-independent phylogenies reveal IA isolate 

AF12 is most closely related to colonising isolate AF04 (Figure 5.8). To identify what 

genetic variants are important for IA isolates, comparison between these closely 

related pairs will produce the least noise, as they are less likely to differ in clinically 

irrelevant sites due to random mutation. This approach can also mitigate confounding 

that can occur due to differences between A. fumigatus subspecies. It must be noted, 

however, that A. fumigatus colonising immunocompromised hosts can progress to 

invasive infection. Thus, it is possible that these colonising A. fumigatus isolates which 

resemble IA isolates in both virulence within invertebrate models and patterns of 
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genetic variation, simply represent potential IA isolates that never caused invasive 

disease due to differences in host-factors. The probability of such a phenomenon is 

difficult to estimate, requiring either accurate animal models of IA or larger sample 

sizes. 

One problem that we are faced with in comparative genomics research is that A. 

fumigatus SNPs are called against one of two reference genomes, AF293 or A1163. 

Both AF293 and A1163 are clinical A. fumigatus strains, with 99.5% genomic identity, 

but with 828 genes not common in both genomes119. A 2018 study examining 28 A. 

fumigatus genomes sequenced in-house and 73 public genomes found that genomes 

fell into 4 well defined clusters, with the two references falling into two different 

clusters.116 The number of SNPs identified in each genome is dependent on the 

reference used. In the future, it may be worth characterising genomic variation of our 

isolates with respect to both potential reference genomes. 

The intra-specific genomic variation characterised in this study is only a small fraction 

of that which can be inferred from WGS data. For example, genomes can vary not 

only in the SNPs present but also in which genes are present and how many copies 

of each gene are present. Gene copy number is highly variable in A. fumigatus 

isolates, particularly in genes related to transposable element and secondary 

metabolism functions20, and limited data on their clinical relevance is available. Future 

work can include evaluation of these different types of genomic variation. More 

focused analysis of variation within genes potentially relevant to pathogenesis may 

reduce noise from selection independent genetic relatedness. Analysis of the 

differences between closely related IA and colonising isolates may also facilitate 

identification of clinically important variants, although must be interpreted with care as 

clinical relevance relies on the assumption that these low virulence colonising isolates 
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do not simply represent isolates with IA potential that was never reached due to 

differences in the host. Investigating the SNPs associated with different clades and 

further assessment of the evolutionary timeline of the isolates by including a non-A. 

fumigatus outgroup in phylogenetic analyses may also improve our understanding of 

the clinical relevance of genomic variation within A. fumigatus. 

6.3 Clinical relevance of fungal virulence 

Investigation of A. fumigatus virulence in model organisms is invaluable in the study 

of IA. Hosts susceptible to invasive A. fumigatus infections are almost always immune-

deficient, however their immunological profiles can vary wildly4. IA is also both 

uncommon and often misdiagnosed, making it difficult to obtain a large set of clinical 

isolates standardised with respect to potentially noise-creating host-factors such as 

primary condition, therapeutic history or geographical region. The use of animal 

models allows the virulence of A. fumigatus isolates from different hosts to be 

compared in an experimental system where host-factors are standardised. The clinical 

relevance of data coming out of these studies depends on how accurately virulence in 

animal models relates to clinical data. 

Intra-specific heterogeneity of A. fumigatus virulence has been observed in both 

murine59,60 and invertebrate models61,62. In this study, we also observed intra-specific 

variation in A. fumigatus virulence as modelled in T. molitor larvae (Figure 5.5). Thus, 

we have strong evidence that intra-specific variation in A. fumigatus virulence occurs, 

and this variation can be resolved in animal models. The clinical relevance of this 

variation is less clear. 

Several studies comparing clinical and environmental A. fumigatus isolates have been 

conducted. In immunosuppressed mice, environmental isolates were found to be less 
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virulent than clinical isolates using mortality-based metrics59. A similar trend was 

observed in mixed infection murine models, where mice were co-infected with a clinical 

and corresponding environmental isolate and relative virulence inferred from the ratio 

of recovery after the mice shows signs of pulmonary distress120. This trend in virulence 

is not mammal specific. Clinical isolates are also more virulent than environmental 

isolates in G. mellonella larvae61. Taken together, these studies suggest a clinical 

relevance of virulence data produced in animal models. They suggest that either (1) 

some environmental A. fumigatus isolates possess phenotypic profiles more 

conducive to causing infection than others, (2) within a human-host, virulence-

enhancing micro-evolution occurs, or (3) some combination of both. In any case, the 

increased virulence of clinical isolates in animal models suggests that the fungal 

factors selected for in human hosts are also selected for in the animal models, at least 

to some degree.  

In the present study, rather than comparing environmental and clinical isolates we 

compared two clinical subgroups: colonising and IA isolates. In T. molitor larvae, IA 

isolates were less virulent than colonisers (Figure 5.5).  This suggests that clinically 

important fungal properties selected for in human hosts are not being selected for in 

our invertebrate model. One possibility is that virulence factors important in 

overcoming a clinical barrier to infection have fitness-costs that become visible when 

the selective pressure is lifted due to differences between the clinical environment and 

the experimental system used to assess virulence. This phenomenon may also explain 

the decreased growth rate of IA isolates relative to colonisers (Figure 3.2). The ability 

of an isolate to survive prophylactic and response therapy is important clinically, 

however was not modelled in T. molitor larvae. In Candida, AMB resistance is 

associated with extreme fitness costs113. Azole resistance has also been associated 
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with fitness trade-offs in C. albicans121, although some of the common azole-

resistance conferring mutations do not appear detrimental to A. fumigatus fitness in 

either immunosuppressed122 or immunocompetent mice123.  

In addition to virulence factors with fitness-costs, the reduced virulence of IA isolates 

in T. molitor larvae may be a result of differences in the composition or strength of the 

immunological response. Mealworms lack the adaptive immune defences present in 

mammals52. While a compromised innate immune arm is the primary risk factor for IA, 

it is very possible the dual action of adaptive and innate immune mechanisms in 

human hosts selects for phenotypic profiles that differ from those selected for in 

mealworms. Further, while innate immune-mechanisms in mealworms and humans 

overlap, there are important differences between the two. The immune system of T. 

molitor larvae is composed primarily of phagocytic cells and antimicrobial peptides52, 

two core components of innate immunity in humans. Thus, while phagocytic responses 

are conserved between mammals and invertebrates, mechanisms of dealing with 

hyphae too large to phagocytose differ. In humans, neutrophils can autolyse, releasing 

hyphae-impeding nucleic acids coated in antimicrobial peptides in a process termed 

NETosis124. Neutrophils can also bind to hyphae and degranulate, releasing 

antimicrobial compounds125. In invertebrates, haemocytes aggregate around large 

foreign particles to form a complex that often becomes melanised, segregating the 

pathogen which is presumably killed by oxidative damage or starvation53. These 

differing forms of hyphal-killing may impose different selective profiles on the infective 

species.  

It is also important to note that the mealworm model used was not immunosuppressed. 

In mammalian models, some fungal factors, such as gliotoxin production, affect 

virulence in immunocompetent hosts but not in those that are immunocompromised13. 
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Thus, it is very possible that the immune-profile of immunocompetent T. molitor larvae 

select for a different phenotypic profile to immunocompromised human-hosts. 

The data presented in this thesis is not the first to suggest inverse fitness of clinical A. 

fumigatus isolates in human and invertebrate hosts. A 2018 study examined the 

virulence of clinical A. fumigatus strains serially isolated from an IA patient over two 

years using G. mellonella larvae33. Despite WGS suggesting they were isogenic, of 

the four isolates tested, only two showed increased virulence relative to the precursor, 

one exhibited comparable virulence and one had both a growth-defect and attenuated 

virulence. The study suggests isolates under selection in a human host can attain 

growth-defects and attenuated virulence in invertebrate models. However, this 

evidence does not suggest a trend ubiquitous enough to, in isolation, explain what we 

observed in our study. Further, a study comparing the virulence of colonising and IA 

isolates in Toll-deficient Drosophila found no significant differences between the two 

clinical sub-groups in either A. fumigatus or A. terreus62. It is possible that differences 

in these findings is due to differences in the Drosophila and mealworm models. For 

example, Drosophila were incubated at 29°C whereas mealworms can be incubated 

at 37°C. Differences in in-host selection factors due to inter-continental variation in 

prophylactic or therapeutic approaches may also be important. It’s possible some 

antifungal resistance adaption associated with fitness costs is being selected for in 

one country but not the other due to use of different antifungals.  Alternatively, it 

remains possible that most of our IA causing isolates just happened to be sampled 

from a genomic cluster with low-virulence in invertebrate models and that with 

increased sample size we would also observe no significant trends. It is worth noting 

that in both studies genotyping identified a potential relationship between virulence 
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and genetic relatedness and found no strong evidence of clustering based on clinical 

origin62.  

Future research should be conducted on a much larger scale to determine the breadth 

of any clinical subtype dependent variation. Expanding the mealworm model to include 

immunosuppression, prophylaxis, and breakthrough therapy may also help narrow 

down which facets of A. fumigatus biology are being selected for in human hosts. 
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Conclusions 

This thesis examined the phenotypic and genotypic differences between colonising 

and IA-associated A. fumigatus isolates. Relative to colonisers, invasive aspergillosis 

isolates were slower growing in vitro and less virulent in T. molitor larvae. The 

identification of phenotypic variation consistent with clinical origin suggests that 

intraspecific variation contributes to the clinical occurrence of IA. The inverse 

correlation between clinical severity and virulence suggests invertebrate models and 

human hosts select for different, but related phenotypic profiles and thus care must be 

taken when investigating putative virulence factors in invertebrate models.  Broad-

scale SNP based phylogenetic comparison of isolates is unable to resolve colonising 

and IA isolates, and so more focused or non-SNP based assays of variation may be 

necessary to reveal any genomic markers of a strains ability to cause invasive disease. 

Future work may include: (1) continued mining of genomic variation from WGS data 

to guide hypothesis generation; (2) assaying of greater numbers of isolates with 

respect to phenotypic profiles putatively associated with clinical origin; and (3) 

investigation of the validity of the mealworm infection model by comparing virulence 

data to that generated by mammalian models, use of more clinical isolates, and 

expansion of the model to include immunosuppression, prophylaxis and antifungal 

therapy. 
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Appendix 

 

Figure A1. Radial growth curves of clinical A. fumigatus isolates on potato dextrose agar at 

37°C. For all isolates and all replicates (orange, green, blue), the 5 timepoints at which colony diameter 

was measured successfully captured linear regions of growth. 
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Figure A2. Optimisation and validation of a conidial ultraviolet radiation (UV) resistance assay. Mapping of 

biosafety cabinet UV exposure. (Top panel) Malt extract agar plates inoculated with a single clinical Aspergillus 

fumigatus isolate were positioned throughout a biosafety cabinet (grey circles). Mean spore survival (%) at each 

position following 1 min of UV irradiation is shown as a percentage of grey circle width (blue; n=3; biological 

replicates). Note that for visual clarity, spore survival was re-scaled to 0.15–1, and thus represents relative 

differences in survival rather than absolute survival at each position.  The least variable region was identified 

(dashed box). (Bottom panel) Unscaled Spore Survival (%) shown for each of 13 plate positions with each 

experimental replicate (mean +/- SEM shown (right) (n=3)). 

 

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140 160 180

M
ea

n
 S

u
rv

iv
al

 (
%

)

Plate Position (cm)

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

1 2 3 4 5 6 7 8 9 10 11 12 13

M
ea

n
 S

u
rv

iv
al

 (
%

)

Plate Position


	Statement of Authentication
	Abstract
	Acknowledgements
	Table of Contents
	Table of Contents
	Table of Figures
	List of Tables
	Chapter 1 Introduction
	1.1 Invasive Aspergillosis
	1.2 Aspergillus fumigatus pathogenesis
	1.3 Increasing relevance of A. fumigatus infection
	1.4 Intraspecies variability of A. fumigatus
	1.4.1 Phenotypic variation and its clinical relevance
	1.4.2 Genotypic variation and its clinical relevance
	1.4.3 Virulence in animal models and its clinical relevance

	1.5 Aims of this work:

	Chapter 2 Methods
	2.1 Clinical A. fumigatus isolates
	2.2 Non-standard statistical terminology
	2.3 Phenotypic variation amongst clinical A. fumigatus isolates
	2.3.1 Radial growth rates at 37 C on nutrient rich media
	2.3.2 Conidial UV resistance
	2.3.3 Amphotericin B resistance

	2.4 Genomic variation amongst clinical A. fumigatus
	2.4.1 DNA Isolation
	2.4.2 Library preparation and sequencing
	2.4.3 Read QC and trimming
	2.4.4 De novo assembly
	2.4.5 Chromosomal level scaffolding
	2.4.6 Contamination removal
	2.4.7 Genome annotation
	2.4.8 Variant analysis

	2.5 Virulence Assays
	2.5.1 Infection model optimisation
	2.5.2 Inter-isolate variation in virulence of A. fumigatus isolates
	2.5.3 Correlation between inter-isolate variation and virulence in invertebrate model


	Chapter 3 Phenotypic variation amongst clinical A. fumigatus isolates
	3.1 Introduction
	3.2 IA isolates grow more slowly than colonisers on nutrient rich media
	3.3 IA isolates and colonisers show similar conidial UV resistance
	3.4 AMB resistance varies amongst colonising isolates.

	Chapter 4 Genotypic variation amongst clinical A. fumigatus isolates
	4.1 Introduction
	4.2 Quality control and trimming of raw reads
	4.3 SPAdes assembly
	4.4 Chromosomal level scaffolding
	4.5 Contamination removal
	4.6 Final frozen assemblies
	4.7 Genome annotation
	4.8 Variant analysis

	Chapter 5 Virulence of clinical A. fumigatus isolates
	5.1 Introduction
	5.2 Infection model optimisation
	5.3 Inter-isolate variation in virulence of A. fumigatus isolates
	5.3.1 Kaplan-Meier survival of mealworms infected with clinical A. fumigatus isolates
	5.3.2 Median survival times
	5.3.3 Cox-regression: inter-isolate variation and dependency on clinical origin

	5.4 Correlation between inter-isolate variation and virulence in an invertebrate model
	5.4.1 Phenotypic variation
	5.4.2 Genotypic variation


	Chapter 6 Discussion
	6.1 Clinical Relevance of phenotypic heterogeneity
	6.1.1 Growth rate
	6.1.2 UV Resistance
	6.1.3 AMB Resistance

	6.2 Clinical relevance of genomic heterogeneity
	6.3 Clinical relevance of fungal virulence

	Conclusions
	References
	Appendix
	Appendix



