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Abstract. Locally, plant species richness supports many ecosystem functions. Yet, the
mechanisms driving these often-positive biodiversity–ecosystem functioning relationships are
not well understood. Spatial resource partitioning across vertical resource gradients is one of
the main hypothesized causes for enhanced ecosystem functioning in more biodiverse grass-
lands. Spatial resource partitioning occurs if species differ in where they acquire resources and
can happen both above- and belowground. However, studies investigating spatial resource par-
titioning in grasslands provide inconsistent evidence. We present the results of a meta-analysis
of 21 data sets from experimental species-richness gradients in grasslands. We test the hypothe-
sis that increasing spatial resource partitioning along vertical resource gradients enhances ecosys-
tem functioning in diverse grassland plant communities above- and belowground. To test this
hypothesis, we asked three questions. (1) Does species richness enhance biomass production or
community resource uptake across sites? (2) Is there evidence of spatial resource partitioning
as indicated by resource tracer uptake and biomass allocation above- and belowground? (3) Is
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evidence of spatial resource partitioning correlated with increased biomass production or com-
munity resource uptake? Although plant species richness enhanced community nitrogen and
potassium uptake and biomass production above- and belowground, we found that plant com-
munities did not meet our criteria for spatial resource partitioning, though they did invest in
significantly more aboveground biomass in higher canopy layers in mixture relative to mono-
culture. Furthermore, the extent of spatial resource partitioning across studies was not posi-
tively correlated with either biomass production or community resource uptake. Our results
suggest that spatial resource partitioning across vertical resource gradients alone does not offer
a general explanation for enhanced ecosystem functioning in more diverse temperate
grasslands.

Key words: grassland; niche complementarity; niche partitioning; productivity; resource uptake; resources;
standing root biomass.

INTRODUCTION

Worldwide, humans are propelling drastic environ-
mental changes leading to biodiversity loss at regional
and global scales (Tittensor et al. 2014, Newbold et al.
2015). Many studies predict that the rate of species loss
will accelerate in the coming decades (Pereira et al.
2010, Pimm et al. 2014). Yet, biodiversity improves the
ability of ecosystems to produce biomass, sequester car-
bon, and retain nitrogen, among many other crucial
functions (Hooper et al. 2005, Cardinale et al. 2012,
Isbell et al. 2017, Weisser et al. 2017, Chen et al. 2018).
Thus, continuing biodiversity loss will likely have serious
consequences for ecosystem functioning (Cardinale
et al. 2012). However, the mechanisms driving enhanced
ecosystem functioning in diverse mixtures are still poorly
understood (Tilman et al. 2014, Barry et al. 2019). Fur-
ther, understanding these mechanisms may allow us to
better predict the response of ecosystems to biodiversity
change (Isbell et al. 2017, Barry et al. 2019).
Here, we focus on how plants take up resources across

vertical space. If plant species alter their resource uptake
or have different innate uptake strategies to divide
resources in vertical space, then the available resource
pool will be more completely used in more diverse com-
munities (Dimitrakopoulos and Schmid 2004, Fargione
and Tilman 2005, Mueller et al. 2013, Williams et al.
2017). For example, different plant species may take up
nutrients or water from different soil layers (Parrish and
Bazzaz 1976, Berendse 1982, 1983, Mommer et al.
2010). If some species have shallow roots and others
have deep roots, then plant communities including both
shallow- and deep-rooted species will better fill the avail-
able soil volume (Dornbush and Wilsey 2010). If more
diverse plant communities more completely use the
available soil volume in this way, the community may
have higher community resource uptake, standing root
biomass, and aboveground productivity compared with
less diverse communities (as examined by von Felten
et al. 2012, Mueller et al. 2013, Prechsl et al. 2015,
Husse et al. 2016, Jesch et al. 2018, Oram et al. 2018).
We refer to this phenomenon as spatial resource parti-
tioning across vertical resource gradients, one commonly
invoked potential driver of positive biodiversity–
ecosystem functioning relationships in grasslands

(Berendse 1983, Tilman 1999, Lehman and Tilman
2000, von Felten et al. 2009, Mueller et al. 2013).
Across a gradient of plant species richness, we expect

that species will differ in their spatial resource uptake to
decrease interspecific competition in vertical space (Scho-
ener 1970). That is, species will change the portion of the
soil or canopy (species’ resource partition, Jesch et al.
2018) from which they acquire resources to overlap less
with competing species as the number of species with
which they must compete for resources increases (von Fel-
ten et al. 2009, Williams et al. 2017). In terms of vertical
resource partitioning, we expect that grassland communi-
ties as a whole will occupy more of the available vertical
space in soil and in the canopy with increasing species rich-
ness (Naeem et al. 1994, Fargione and Tilman 2005, Lor-
entzen et al. 2008, Skinner and Comas 2010, Ravenek
et al. 2014). As a consequence, we expect that plant species
will invest more biomass in deeper soil and higher canopy
layers, respectively, as plant species richness increases
(Spehn et al. 2000, Fargione and Tilman 2005, Mueller
et al. 2013). We refer to the way in which plants invest bio-
mass across vertical space as the plant’s biomass distribu-
tion. This different biomass distribution with increasing
diversity may be due to the addition of tall or deep-rooting
species to mixtures or to individual species allocating bio-
mass differently to avoid strong interspecific competition
in the topsoil/lower canopy in more diverse communities.
Recent empirical studies were unable to provide com-

pelling evidence that spatial resource partitioning along
vertical resource gradients occurs across diversity gradi-
ents. Several studies found that plants have deeper roots
in more diverse mixtures (Mueller et al. 2013, Oram
et al. 2018, but see Ravenek et al. 2014), although these
communities do not necessarily have more even biomass
distributions (Oram et al. 2018). Similarly, resource tra-
cer uptake studies also provided contrasting results. For
example, von Felten et al. (2009) found that plants used
less overlapping nitrogen sources and had smaller
resource partitions in mixture but that this was not asso-
ciated with increased total community resource uptake.
Alternatively, Jesch et al. (2018) found that plants did
not have smaller and less overlapping resource partitions
in mixture in spite of higher community resource uptake
(Bachmann et al. 2015). Similarly, Husse et al. (2016)
found that plant communities did not use different foliar

Article e02905; page 2 KATHRYN E. BARRY ET AL. Ecology, Vol. 101, No. 1



architecture to intercept more light in mixture in spite of
overall higher biomass production.
Here, we present a meta-analysis of spatial resource

partitioning across vertical resource gradients in grass-
land biodiversity–ecosystem functioning experiments
(reviewed in Appendix S1: Table S1). We use this meta-
analysis to test the hypothesis that increasing spatial
resource partitioning across vertical resource gradients
drives enhanced ecosystem functioning in more diverse
grasslands. To test this hypothesis, we assess (1) as a pre-
requisite, if plant species richness enhances community
biomass production or resource uptake at these sites.
Then, we test (2) if there is evidence of spatial resource
partitioning along vertical resource gradients (Fig. 1),
and (3) if this evidence of spatial resource partitioning is
positively correlated with community biomass produc-
tion or resource uptake. We require that all of these three
conditions (increase in community biomass production
or resource uptake with increasing species richness, evi-
dence of spatial resource partitioning [Fig. 1], and posi-
tive correlation between evidence for spatial resource
partitioning and community biomass production or
resource uptake) be met in order to support this long-
standing ecological hypothesis.

METHODS

We define resource partitioning as differences between
species in how they acquire resources (Schoener 1970,
1974, Roughgarden 1976). We conducted a review of the
biodiversity–ecosystem functioning literature through
March 2018 (Appendix S1). From this review, we col-
lected data sets from an experimental species richness gra-
dient greater than four species in a field or large
controlled environment facility (Ecotron) context with
typical grassland species (including both grasses and
forbs). To measure vertical resource partitioning, we
required that biomass be collected in layers by either soil
depth or canopy height (see Appendix S1: Table S2 for
experiment details and supplementary methods for data
requirements). In addition to biomass data sets, we also
collected data sets where resource tracers were injected at
different soil depths. We were able to collect 21 total data
sets: 12 aboveground biomass by canopy height, 6 below-
ground biomass by soil depth, 1 nitrogen uptake by soil
depth, 1 nitrogen and potassium uptake by soil depth,
and 1 water uptake by soil depth. Throughout, we refer
to the last three studies as a group as “resource tracer
uptake” studies. Of these 21 data sets, 19 reported either
total community resource uptake or total community bio-
mass. For the one data set where water uptake was mea-
sured, we could not calculate summed water uptake per
plot (total community resource uptake, the measure of
ecosystem functioning for resource tracer uptake studies)
because water is not immobilized, stored, or accumulated
in plants (Guderle et al. 2018). For another data set, we
could not determine total aboveground biomass

(Guimar~aes-Steinicke et al., 2019). Thus, we did not
include these two data sets in analyses that included total
community uptake or total community biomass. Most of
our data sets are from Western Europe with one site, with
multiple experiments from the United States (Tilman
et al. 1996, Reich et al. 2001, Tilman 2001). Seven of the
data sets are unpublished while the other 14 are published
(Appendix S1: Table S2).

Individual data set analysis

Prior to conducting our meta-analysis, we fitted linear
mixed-effects models using the package lme4 (Bates
et al. 2015) with the package lmerTest to calculate Sat-
terthwaite approximations of denominator degrees of
freedom (Kuznetsova et al. 2017) for each individual
data set. For each site, we fit the model with the depen-
dent and independent variables and random effects and
transformations that were relevant at the individual site.
That is, if an experiment used a blocked experimental
design, block was a random effect in the model. If a data
set was collected over multiple years or seasons, then
year or season was a random effect in the model. We
log-transformed variables when the residuals of an indi-
vidual model were significantly nonnormally distributed
according to a Shapiro-Wilk test (see Appendix S1:
Table S3 for full individual model details).

Question 1: Does species richness enhance total
community biomass or total community resource uptake?

We measured ecosystem function as either total bio-
mass (above- or belowground) in a plot for biomass stud-
ies or total community resource uptake for resource
tracer uptake studies. Each of these is the sum of either
biomass or the measured resource tracer uptake in a given
plot. We then analyzed the relationship between species
richness and either total biomass or total community
resource uptake using a linear mixed-effects model at
each site with the total function as the dependent variable
and species richness as the independent variable.

Question 2: Is there evidence of spatial resource
partitioning along vertical resource gradients?

To answer this question, we used a two-pronged
approach (Fig. 1). First, we asked, does the community
vertical biomass evenness increase with increasing spe-
cies richness (Fig. 1a)? For community data sets, we
measured this in terms of the inverse of the coefficient of
variation (community inverse CV) by either rooting
depth or canopy height:

community inverse CV

¼ Mean biomass across depth/height
Biomass standard deviation across depth/height

:

(1)
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a) Vertical evenness 

b) Change of spatial resource partition location 

FIG. 1. Theoretical depictions of predictions and analyses for question 2 of this meta-analysis. In order to test the hypothesis
“increasing spatial resource partitioning across vertical resource gradients enhances ecosystem functioning in more diverse grass-
land systems,” we used a two-part identifier for spatial resource partitioning across vertical resource gradients. The boxes represent
a species’ spatial resource partition in monoculture (left) and mixture (right). Gray coloring represents the highlighted measure.
First, (a) in order for spatial resource partitioning to enhance ecosystem functioning in diverse mixtures, we expect that the vertical
evenness of the community will increase (community inverse coefficient of variation) while the vertical evenness of the individual
species’ distribution will decrease as species specialize to avoid interspecific competition (species’ Levins B). Second, (b) in order for
spatial resource partitioning to enhance ecosystem functioning in diverse mixtures, we expect that the mean location of resource
uptake must change in diverse mixtures relative to monocultures. We predict that, if species differ in their resource uptake strategies
in mixture, the species’ proportional similarity between species resource partitions will decrease while the community center of grav-
ity of biomass will increase. Finally, if spatial resource partitioning drives enhanced ecosystem functioning in more diverse mixtures,
we expect that our measures of spatial resource partitioning will be correlated with our measures of enhanced ecosystem function-
ing, total community resource uptake, and total biomass (not depicted).
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When the community inverse CV is high, biomass is
more evenly spread across all height or depth levels rela-
tive to the mean biomass. When the community inverse
CV is low, biomass is concentrated in a single or few
height or depth levels relative to the mean biomass
across height or depth levels. We use the community
inverse CV rather than the CV because its interpretation
is more intuitive with regard to our results (Tilman
1999).
At the species level, we expect that the portion of the

total resource uptake that a single species is responsible
for will decrease if plants partition resources across ver-
tical resource gradients, thus the species’ resource
uptake evenness will decrease as species richness
increases. To measure the evenness of species resource
uptake, we calculated species’ Levins B as

B ¼ 1
n
Pn

i¼1 p
2
i

(2)

where pi is the proportion of uptake of a species from a
given resource i and n is the number of resources. Levins
B is highest when all sources are used equally and lowest
when one source is used exclusively by a species (Levins
1968, Parrish and Bazzaz 1976). Levins B, which we
selected because it performs well at low sample size, is
equivalent to the inverse Simpson index (Smith and
Wilson 1996).
Second, we asked, does the location of the resource

partition change with increasing diversity (Fig. 1b)? For
community biomass data sets, we measured this location
change in terms of the weighted mean biomass alloca-
tion of the community, which we calculated as the com-
munity center of gravity:

community center of gravity

¼
P

j Biomassj �Mean locationi
Total community biomass

(3)

where j is the soil depth or aboveground height layer
from which the sample was collected, and the mean
location is the mean height or depth of the layer. For
example, in a plot with two soil layers, the mean depth
would be the biomass in the first soil layer from 0 to
10 cm multiplied by 5 (the mean depth of the first
layer), plus the biomass in the second soil layer from 10
to 20 cm multiplied by 15 (the mean depth of the sec-
ond layer), divided by the total community biomass.
This value increases as plants invest more biomass in
higher levels aboveground and deeper levels below-
ground (adapted from Spehn et al. 2000, Mommer
et al. 2010).
At the species level for resource tracer uptake studies,

we measured the change in the location of the species
resource partition as the change in the overlap between
resource partitions (Fig. 1b). To measure the overlap
between species’ resource partitions, we calculated

proportional similarity (Schoener 1970, Colwell and
Futuyma 1971):

PS ¼ 1� ð0:5�
Xn

i¼1

jp1i � p2ijÞ (4)

where pi is the proportion of total resource uptake that
is from a single resource taken up by a given species such
that all pi’s together sum up to one for one species. Spe-
cies’ proportional similarity measures the intersecting
area of the frequency distributions of resources used by
two different species and ranges from 0 to 1, with 0
meaning no overlap and 1 meaning complete overlap.
We calculated species’ proportional similarity for all spe-
cies pairs co-occurring in the same mixture plots and
used the mean of these measures to characterize species’
proportional similarity of mixtures with more than two
species.
Once we calculated these metrics, we used linear

mixed-effects models with the metric of choice as the
dependent variable and species richness as the indepen-
dent variable and site-specific random effects as needed
(Appendix S1: Table S3).

Question 3: Is evidence of spatial resource partitioning
positively correlated with total community biomass or

total community resource uptake?

To determine the relationship between each of our mea-
sures of resource partitioning and enhanced ecosystem
functioning, we also used a linear mixed-effects model with
each measure of resource partitioning (see methods, ques-
tion 2) as the independent variable and overall community
ecosystem functioning (see Question 1 above for calcula-
tions) as the dependent variable (Appendix S1: Table S3).

Meta-analysis

After conducting the individual linear mixed-effects
models, we extracted Pearson’s correlation coefficient r
for each question for each data set (using the package
MuMIN; Barto�n 2018), standard error, and sample size.
We then used the package metafor (Viechtbauer 2010) to
calculate Fisher’s z-transformed correlation coefficients
(rz). The Fisher’s z-transformed correlation coefficient
normalizes the distribution of Pearson’s r. We used rz as
the model input in mixed-effects meta-models with a
nested random effect of site within experiment to control
for the uneven distribution of our data sets among our
sites and our sites within broader experimental units
(e.g., at the BIODEPTH experiment, there are eight
experimental sites but similar experimental designs,
while, in the Jena Experiment, there are several experi-
ments with different designs all located at the same site).
For each dependent variable (total community bio-

mass, total community resource uptake, community
inverse CV, Levins B, community center of gravity, or
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proportional similarity), we ran up to five analysis sets
of our total meta-data set: (1) all functions analysis set
(above- and belowground biomass and resource uptake)
used only for ecosystem functioning; (2) all biomass
analysis set (above- and belowground); (3) aboveground-
biomass only analysis set; (4) belowground biomass only
analysis set; and (5) resource uptake only analysis set.
By subsetting the data and running joint and separate
analysis sets, we were able to determine whether patterns
were stronger (i.e., had a larger rz) for different subsets
of the meta-data set. We performed all data analysis with
R statistical computing software version 3.5.1 (R Core
Team 2018) and made all graphics using the package gg-
plot2 (Wickham 2009) with multiplot support from the
package cowplot (Wilke 2016).

RESULTS

Question 1: Does species richness enhance total
community biomass or total community resource uptake?

We found that species richness enhanced ecosystem
functioning across all data sets and data types (all func-
tions set, rz = 0.462, P < 0.0001; Fig. 2; Appendix S1:
Table S4). Species richness enhanced aboveground bio-
mass production overall (aboveground biomass only set,
rz = 0.462, P < 0.0001) and in 10 out of 11 individual
data sets. Species richness also enhanced standing root
biomass overall (belowground biomass only set,
rz = 0.426, P = 0.001) and in five out of six individual
data sets. Finally, higher species richness never resulted
in significantly lower biomass for either above- or below-
ground values. In contrast to above and belowground
biomass, community resource uptake was not associated
with higher species richness (resource uptake only set,
rz = 0.082, P = 0.766).

Question 2: Is there evidence for spatial resource
partitioning along vertical resource gradients?

In contrast to our prediction (Fig. 1b), increased spe-
cies richness did not increase the community inverse CV
of the vertical biomass distribution (all biomass set,
rz = �0.052, P = 0.616, see Appendix S1: Fig. S1 for
standard deviation and mean; Fig. 3). Alternatively, and
as we predicted, we found that plants grew taller and had
marginally deeper roots with increasing diversity as pre-
dicted (center of gravity, all biomass set, rz = 0.277,
P < 0.001). This pattern was nearly three times stronger
above- than belowground (aboveground biomass only
set, rz = 0.332, P = 0.001 vs. belowground biomass only
set, rz = 0.125, P = 0.058). In terms of resource uptake,
increasing species richness did not decrease the species’
vertical evenness of resource uptake (Levins B, resource
uptake only set, rz = �0.056, P = 0.828). Similarly,
increasing species richness did not decrease overlap
between resource partitions (proportional similarity,
resource uptake only set, rz = �0.145, P = 0.565; Fig. 3).

Question 3: Is evidence of spatial resource partitioning
positively correlated with total community biomass or

total community resource uptake?

Overall, plants did not produce more biomass when
the biomass of community was more evenly distributed
(Fig. 4; Appendix S1: Table S6, inverse CV, all biomass
model, rz = 0.069, P = 0.342). However, aboveground,
communities that had more evenly distributed biomass
had marginally higher total aboveground biomass
(inverse CV, aboveground biomass only set, rz = 0.130,
P = 0.074). Belowground, communities that had more
evenly distributed biomass across the soil volume did
not have higher root standing biomass (belowground
biomass only set, rz = �0.024, P = 0.877).
Biomass increased as predicted when communities

had more biomass in higher/deeper layers (center of
gravity, all biomass set, rz = 0331, P = 0.011). However,
this relationship was largely driven by aboveground data
sets. Aboveground biomass production increased signifi-
cantly with increasing aboveground community center
of gravity (aboveground biomass only model, rz = 0.598,
P < 0.001). In comparison, we found no relationship
between standing root biomass and the belowground
center of gravity (belowground biomass only set,
rz = �0.193, P = 0.202). In terms of resource tracer
uptake, we found that neither decreased species’ Levins
B (resource uptake only set, rz = 0.258, P = 0.357) nor
decreased species’ proportional similarity (resource
uptake only set, rz = 0.058, P = 0.463) predicted
enhanced ecosystem functioning.

DISCUSSION

We found that plant species richness enhances ecosys-
tem functioning especially in terms of total community
biomass aboveground and belowground at the majority
of the sites included in this meta-analysis, in line with
earlier reviews and meta-analyses (Balvanera et al. 2006,
Hector et al. 2009, Allan et al. 2013, Tilman et al. 2014,
Barry et al. 2019). However, contrary to our predictions,
we found little evidence for spatial resource partitioning
along vertical resource gradients in more diverse grass-
land communities. Only 3 out of 21 data sets included in
our analysis met our predictions for spatial resource par-
titioning along vertical resource gradients (Fig. 1;
Appendix S1: Fig. S1). Further, we found that evidence
of spatial resource partitioning was not correlated with
the higher productivity or resource uptake that we found
in more diverse communities. These results suggest that
spatial resource partitioning across vertical resource gra-
dients may not drive enhanced ecosystem functioning at
these sites.

Mechanisms may change across contexts

To our knowledge, our study is the first meta-analysis
of biodiversity–ecosystem-functioning experiments in
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grasslands that attempts to directly quantify the
evidence for a given mechanism across sites. However,
several studies demonstrate that the extent to which pos-
itive biodiversity–ecosystem -functioning relationships

are derived from reduced performance in monoculture
vs. enhanced performance of mixtures is context depen-
dent in grasslands (Meyer et al. 2016, Guerrero-Ramirez
et al. 2017). For example, Guerrero-Ramirez et al.

FIG. 2. Meta-analysis results for question 1: Does species richness enhance total community biomass or total community resource
uptake? Error bars represent 95% confidence intervals. Error bars that do not overlap with the dotted line are considered statisti-
cally significantly different from zero (P < 0.05). Point size is proportional to the confidence relative to the study sample size sur-
rounding a given data set. Smaller points have lower relative confidence while larger points have larger relative confidence. Model
summaries for each analysis set are presented in the top panel. For biomass studies, the function measured is total community
biomass. For resource tracer uptake studies, the function measured is total community resource uptake. The summary for the
all-functions-analysis set is presented in gray. See Appendix S1 for complete references.
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(2017) found that, at some grassland sites, a positive bio-
diversity–productivity relationship was driven by
reduced performance in monoculture over time. In
others, a positive biodiversity–productivity relationship

was driven by enhanced performance in mixtures over
time. This variation suggests that the mechanisms driv-
ing enhanced ecosystem functioning may similarly vary
across sites. Furthermore, the variation between sites

FIG. 3. Meta-analysis results for question 2: Is there evidence for spatial resource partitioning along vertical resource gradients?
Error bars that do not overlap with the dotted line are considered statistically significantly (P < 0.05) different from zero. Point size
is proportional to the relative confidence surrounding a given model. Smaller points have lower relative confidence while larger
points have larger relative confidence. All model summaries are presented in the top panel. The model summary for the biomass
analysis set is presented in gray. The biomass measure for evenness of the biomass distribution is the community inverse coefficient
of variation while the resource uptake measure is species’ Levins B. The biomass measure for resource partition location is the com-
munity center of gravity while the resource uptake measure for resource partition location is species’ proportional similarity
(Fig. 1). See Appendix S1 for complete references.
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found by Guerrero-Ramirez et al. (2017) was strongly
predicted by soil characteristics. The studies included in
our meta-analysis also vary across soil characteristics.
For example, we found evidence of spatial resource

partitioning belowground at Cedar Creek Ecosystem
Science Reserve (Mueller et al. [Cedar Creek – Big Bio]
from Mueller et al. 2013), a site where nutrients and per-
haps water appear to be strongly limited due to the high

FIG. 4. Meta-analysis results for question 3: Is evidence of spatial resource partitioning positively correlated with total community
biomass or total community resource uptake? Error bars that do not overlap with the dotted line are considered statistically signifi-
cantly different from zero (P < 0.05). Point size is proportional to the relative confidence surrounding a given data set. Smaller
points have lower relative confidence while larger points have larger relative confidence. The model summary for the biomass analy-
sis set is presented in gray. The biomass measure for evenness of the biomass distribution is the community inverse coefficient of
variation while the resource uptake measure is species’ Levins B. The biomass measure for resource partition location is the commu-
nity center of gravity while the resource uptake measure for resource partition location is species’ proportional similarity (Fig. 1).
For biomass studies, the function measured is total community biomass. For resource tracer uptake studies, the function measured
is total community resource uptake. See Appendix S1 for complete references.
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sand content of soils in this region. This strong limita-
tion may increase the likelihood that spatial resource
partitioning controls ecosystem functioning. Indeed,
belowground spatial resource partitioning may be most
likely in more arid, nutrient-limited regions such as
savannas, where resource partitioning between trees and
grasses has been documented (Kulmatiski et al. 2010).
In more productive soils in temperate regions, vertical
resource partitioning has not been observed (Ravenek
et al. 2014, Bachmann et al. 2015, Jesch et al. 2018).
Furthermore, the importance of these different mecha-
nisms may differ in time (Meyer et al. 2016) or among
species compositions. Yet, how mechanisms change
across environmental contexts in space and time and
across species compositions has very rarely been studied
(Barry et al. 2019).

Resource partitioning in time, across horizontal space, or
for different chemical forms may enhance ecosystem

functioning

From other studies, there is limited evidence that
resource partitioning in time (temporal resource parti-
tioning), three-dimensional or horizontal space, or
among different chemical forms of the same nutrients
rather than resource partitioning in vertical space may
enhance ecosystem functioning in temperate grasslands.
Aboveground, Husse et al. (2016) found that communi-
ties where species produced biomass asynchronously had
overall higher biomass production. However, Jesch et al.
(2018) found no relationship between temporal resource
partition breadth and overlap with diversity, indicating a
lack of temporal belowground resource partitioning (see
also Wagg et al. 2017). Alternatively, plants may parti-
tion resources in horizontal and three-dimensional space
(see von Felten and Schmid 2008 for evidence for hori-
zontal resource partitioning belowground). In addition,
plants may partition different chemical forms of the
same resources (McKane et al. 2002, Ashton et al.
2010).
Almost all data sets currently available for grassland

biodiversity–ecosystem-functioning experiments provide
data at spatial increments of 10 cm or greater (but see
Bachmann et al. 2015 and Prechsl et al. 2015 for water
uptake at smaller increments). Plants may partition
resources at much finer spatial scales especially within
the top 10 cm of the soil (Kulmatiski et al. 2010). How-
ever, Bachmann et al. (2015) measured the potential for
resource partitioning at finer spatial scales in the first
10 cm of soil depth and found no evidence of spatial
resource partitioning.
Finally, although this paper represents the most com-

prehensive effort to date to measure spatial resource par-
titioning across vertical resource gradients in grassland
biodiversity experiments, community biomass distribu-
tions may not provide an accurate proxy for below-
ground resource uptake both in vertical and horizontal
space. Resource uptake rates vary within plant root

systems and may therefore deviate from biomass distri-
butions (Hodge 2004, Chen et al. 2004, G€oransson et al.
2007, da Silva et al. 2011, Kiba and Krapp 2016, Kul-
matiski et al. 2017, Guderle et al. 2018).

Asymmetric competition may drive investment in
aboveground biomass higher

We found that evenness of the vertical biomass distri-
bution aboveground was not positively correlated with
total aboveground biomass, contrary to what we
expected. Instead, plants appeared to invest biomass in
only a few height layers rather than across the entire
available space (see also Bachmann et al. 2018). One rea-
son for the increase in biomass production with
increased aboveground center of gravity found here may
be asymmetric competition for light (Weiner 1990,
DeMalach et al. 2016, Bachmann et al. 2018). This
potentially strong asymmetric competition was associ-
ated with overall higher biomass production with
increasing diversity in our study. However, this effect
may not be driven by diversity per se but rather by den-
sity. At the Jena Experiment, Marquard et al. (2009)
found that the positive biodiversity–productivity rela-
tionship was largely driven by an increase in density
across the diversity gradient. Similarly, asymmetric com-
petition is driven by changes in density with high-density
communities experiencing much higher amounts of
asymmetric competition (Weiner 1990, Schwinning and
Weiner 1998, DeMalach et al. 2016).

Feedbacks between plants and between plants and their
abiotic conditions

In several data sets included in this analysis, plants
produce more root biomass when they invest roots in the
same soil layers simultaneously, especially in the topsoil
(see also Ravenek et al. 2014). This type of root aggrega-
tion may be beneficial because the upper soils of grass-
lands have higher limiting nutrient supply, more oxygen,
and more water (Jobb�agy and Jackson 2001, Griffiths
et al. 2003). Further, microbial biomass and activity are
higher in upper soils relative to lower soil layers (Bard-
gett et al. 1997, Fierer et al. 2003, 2009, Griffiths et al.
2003). Additionally, plant diversity likely provides a
feedback on these factors with plants actively altering
topsoil resource dynamics for themselves and other spe-
cies (Oelmann et al. 2011, Reich et al. 2012 for nitrogen,
Eisenhauer et al. 2010, for microbes, Milcu et al. 2016
and Fischer et al. 2019, for water). For example, Lange
et al. (2015) found that the positive relationship between
plant diversity and the soil microbial community was
mainly related to the increased leaf area index at high
plant diversity. This increased leaf area index caused
higher shading and thus higher soil moisture in the top
soil layer in more diverse communities (Chen et al. 2017,
Fischer et al. 2019), which improved conditions for the
microbial community.
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CONCLUSIONS

The majority of predictions for species loss are predi-
cated on the assumption of spatial resource partitioning,
an assumption that is not supported empirical evidence
for these grasslands. However, our results suggest that
spatial resource partitioning along vertical resource
gradients does not drive the positive biodiversity–
ecosystem-functioning relationships in temperate grass-
lands. Instead, different mechanisms, including resource
partitioning in time, biotic feedbacks between plants
and their environment may be at work in different
places, at different times and in different plant communi-
ties. If different mechanisms drive enhanced ecosystem
functioning in more diverse mixtures in different con-
texts, as we suggest here, then we need to look at these
specific contexts to look beyond the pervasive effect of
species richness per se. Furthermore, these different
mechanisms have different consequences for ecosystem
functioning when species are lost due to long term per-
sistent biodiversity decline. Therefore, understanding
which mechanisms drive enhanced ecosystem function-
ing and when they do so is crucial to predicting the con-
sequences of species loss (Barry et al. 2019).
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