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Summary

Objectives: To investigate the importance of time in pregnancy and neonatal sex on

the association between maternal metabolic parameters and neonatal sum of

skinfolds.

Methods: This was a longitudinal, secondary analysis of the vitamin D and lifestyle

intervention for gestational diabetes mellitus study, conducted in nine European

countries during 2012 to 2015. Pregnant women with a pre-pregnancy body mass

index (BMI) of ≥29 kg/m2 were invited to participate. We measured 14 maternal

metabolic parameters at three times during pregnancy: <20 weeks, 24 to 28 weeks,

and 35 to 37 weeks of gestation. The sum of four skinfolds assessed within 2 days

after birth was the measure of neonatal adiposity.

Results: In total, 458 mother-infant pairs (50.2% female infants) were included.

Insulin resistance (fasting insulin and HOMA-index of insulin resistance) in early

pregnancy was an important predictor for boys' sum of skinfolds, in addition to

fasting glucose and maternal adiposity (leptin, BMI and neck circumference)

throughout pregnancy. In girls, maternal lipids (triglycerides and fatty acids) in the

first half of pregnancy were important predictors of sum of skinfolds, as well as

fasting glucose in the second half of pregnancy.

Conclusions: Associations between maternal metabolic parameters and neonatal

adiposity vary between different periods during pregnancy. This time-dependency

is different between sexes, suggesting different growth strategies.

K E YWORD S

foetal growth, foetal programming, maternal health, metabolic syndrome, neonatal body

composition, pregnancy

1 | INTRODUCTION

Globally, in 2017 an estimated 38 million children under 5 years of

age presented either overweight or obesity. This is a major public

health concern.1 Hence, strategies have to be developed to reduce

this burden and prevent childhood obesity. This requires a thorough

identification and understanding of the underlying determinants.

Maternal obesity in pregnancy is linked with the development of

neonatal and childhood adiposity.2-5 Although there is much interest

in the relationship between maternal obesity and childhood adiposity,

maternal metabolic factors driving the increase in offspring adiposity

have not been fully understood.

The Hyperglycemia and Adverse Pregnancy Outcome study

showed a continuous positive relationship of maternal glucose in

the second trimester with measures of neonatal body fat.6 Findings

from the Healthy Start Study support this and, in addition, showed

temporal changes in the association of glucose and neonatal fat,

with stronger associations in the second half of pregnancy com-

pared to early pregnancy.7,8 However, other studies clearly indicate

that the influence of maternal phenotype on foetal growth can

already be demonstrated in the early pregnancy period: foetal

abdominal circumference, as proxy for foetal overgrowth, is

increased in women with obesity and/or gestational diabetes (GDM)

already at 20 weeks of gestation or even before9,10; maternal insulin

resistance in the first half of pregnancy is related to neonatal fat

percentage,7 and fasting glucose in the first trimester with the risk

of a large-for-gestational age baby.11 Although these studies suggest

an influence of the early pregnancy period, surprisingly little is

known about temporal relations between maternal metabolic mea-

sures and neonatal fat accrual.12

Female neonates are known to be more insulin resistant,13,14

which might explain why males are more affected by in utero expo-

sure to gestational diabetes.9 Therefore, it is mandatory to assess

temporal relations of maternal metabolism with neonatal adiposity in

a sex-dependent manner.

In this study, we investigated the association between maternal

health measures at different times during pregnancy and neonatal

sum of skinfolds in a sex-specific manner. We hypothesized that:

(a) associations between maternal metabolic parameters and neonatal

adiposity differ at different time points, and (b) these temporal differ-

ences are sex-specific. We tested these hypotheses in 458 mother-

infant pairs in the vitamin D and lifestyle intervention for gestational

diabetes mellitus (DALI) study, a pan-European study originally

designed for the prevention of gestational diabetes.15
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2 | METHODS

2.1 | Design and participants

This is a longitudinal, secondary analysis of the DALI study, which was a

multicentre parallel randomized trial conducted in nine European countries

(Austria, Belgium, Denmark, Ireland, Italy, Netherlands, Poland, Spain and

United Kingdom) during 2012 to 2015. The study was prospectively regis-

tered as a randomized clinical trial (RCT) with the primary aim to prevent

gestational diabetes mellitus on November 21, 2011 (ISRCTN70595832).

Local ethics committee approval and written informed consent of all

women was obtained. Pregnant women with a pre-pregnancy body mass

index (BMI) of ≥29 kg/m2, <20 weeks of gestation, a singleton pregnancy

and aged ≥18 years were invited to participate.16 Exclusion criteria

included diagnosis with early gestational diabetes mellitus,17,18 pre-

existing diabetes, and chronic medical conditions.

2.2 | Design and procedures

The study was originally designed as an RCT with the following

groups, pre-stratified for site: (a) healthy eating; (b) physical activity;

(c) healthy eating + physical activity; (d) healthy eating + physical

activity + vitamin D; (e) healthy eating + physical activity + placebo;

(f) vitamin D; (g) placebo, (h) control. Staff involved with measure-

ments, but not participants, were blinded to the lifestyle intervention.

Both staff and participants were blinded to vitamin D intervention.

For the purpose of this analysis, the data were analyzed as a longitudi-

nal cohort. Maternal measurements took place at baseline

(<20 weeks), at 24 to 28 and at 35 to 37 weeks of gestation. Since

methodology has been extensively described elsewhere,16 only vari-

ables of interest will be detailed in this manuscript.

2.3 | Measurements

2.3.1 | Neonatal outcome

Triceps, subscapular, supra-iliac and quadriceps skinfolds were mea-

sured within 48 hours of birth with a Harpenden skinfold calliper

(Baty, UK), and the values summed to obtain the primary neonatal

outcome measure, the sum of skinfolds. Each skinfold measurement

was measured twice and if a difference of more than 0.2 mm was reg-

istered, a third measurement was performed and the average of the

three was taken. The neonatal age at the measurement was the time

between birth and measurements, which was registered in hours.

2.3.2 | Maternal metabolic and adiposity
parameters

Maternal height was determined at baseline with a stadiometer (SECA

206; SECA, UK). Women were weighed on calibrated electronic scales

(SECA 888 and 877, SECA, UK) at baseline (<20 weeks), 24 to

28 weeks, and at 35 to 37 weeks of gestation. BMI was calculated as

weight in kilogram divided by the square of height in metres. Gesta-

tional weight gain was defined as the change in objectively measured

weight from pre-pregnancy to <20, <20 to 24-28 weeks and from

24-28 to 35-37 weeks. Neck circumference was obtained in a stand-

ing relaxed upright position between mid-cervical spine and mid-

anterior neck, to within 1 mm.19

After fasting for 10 hours, blood was collected and mothers con-

sumed a 250 mL 75 g glucose drink (within a period of 5 minutes).

Further blood collections took place after 60 and 120 minutes. All the

samples were centrifuged and separated aliquots of plasma (1000 μL

or 250 μL) placed in microrack tubes and stored at −20�C or −80�C in

the central trial laboratory, prior to analysis, in Graz, Austria. The

maternal concentrations of plasma fasting glucose, fasting insulin, tri-

glycerides, free fatty acids and leptin were quantified. For insulin and

leptin commercially available Enzyme-Linked Immuno Sorbent Assays

were used. In the samples taken 60 and 120 minutes after glucose

load, only glucose (1-hour glucose and 2-hour glucose) and insulin

(1-hour insulin and 2-hour insulin) were assessed. Fasting insulin resis-

tance was derived from homeostasis model assessment (HOMA-index

of insulin resistance – HOMA-IR).20 Insulin secretion after glucose

load were calculated with the Stumvoll first phase and Stumvoll sec-

ond phase validated equations.21

2.3.3 | Covariates

Information on possible covariates was collected in the baseline ques-

tionnaire or from medical files: national site(s) of recruitment, maternal

age, gestational age during pregnancy (<20, 24 to 28 and 35 to

37 weeks), maternal ethnicity (European or non-European descent),

maternal education (low, medium and high), smoking status at 35 to

37 weeks of gestation (yes/no), pre-pregnancy BMI and gestational

age at birth.

2.4 | Statistical analyses

All analyses were performed in STATA version 13 for windows

(StataCorp LP, College Station, Texas) and a 5% type I error rate

was used for the analyses. We have 80% statistical power to

detect associations with small effect sizes (f2 = 0.04) considering

the number of participants evaluated (n = 458) and the number of

exposures and confounding variables in each of our models.

Skewed variables were log-transformed before analyses (fasting

insulin, 1-hour insulin, 2-hour insulin, HOMA-IR, Stumvoll first

phase, Stumvoll second phase, triglycerides, leptin and BMI). Inde-

pendent t tests were performed to evaluate descriptive differences

in the mother's metabolic and adiposity parameters for each preg-

nancy period in relation to their child's sex (results shown in

Table 1). Independent t tests also evaluated sex-differences in neo-

natal skinfolds.
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We conducted principal component factor analyses for each mea-

surement time during pregnancy to group the exposures with shared

variances in the same factor. All components from the mother's health

profile were included in the factor analyses: fasting glucose, 1-hour

glucose, 2-hour glucose, fasting insulin, 1-hour insulin, 2-hour insulin,

HOMA-IR, Stumvoll first phase, Stumvoll second phase, triglycerides,

free fatty acids, leptin, neck circumference, BMI and gestational

weight gain. Independent of the pregnancy period, the scree plot

determined that four factors were relevant to be estimated. Thus, four

factors were estimated for each time during pregnancy by the follow-

ing criteria:

1. Independent of the time during pregnancy, each factor should be

composed of the same variables;

2. Each factor was composed of variables with high loading factors

(≥0.4) in at least two measuring points after varimax rotation of

the correlation matrix;

3. Components with high loading factors (≥0.4) in more than one fac-

tor were only included in the factor with the highest loading

factor;

4. Factors were estimated using the linear regression prediction

score.

At all three time points during pregnancy, factor 1 was composed

of fasting insulin and HOMA-IR (representing insulin resistance); fac-

tor 2 was composed of 1-hour insulin, 2-hour insulin, Stumvoll first

phase and Stumvoll second phase (representing insulin response); fac-

tor 3 was constituted of 1-hour glucose and 2-hour glucose (rep-

resenting glucose tolerance), and, factor 4 was composed of leptin,

BMI and neck circumference (representing maternal adiposity).

Table S1 presents the cumulative variance of each factor in the three

periods of gestation. Fasting glucose, triglycerides, free fatty acids and

gestational weight gain did not have a high loading factor for any of

the factors, nor did they built a separate factor, and were not included

in any of the factors. Thus, they were analyzed as single exposures in

relation to neonatal sum of skinfolds.

The association of each resulting factor from the mother's health

profile with neonatal sum of skinfolds was assessed using linear multi-

level analyses, adjusted for intervention group, site of recruitment,

gestational age during pregnancy, gestational age at birth, neonatal

age at measurement, maternal ethnicity, maternal education, BMI

(except in factor 4 since BMI was part of this factor), maternal age,

smoking status and the cluster structure. Sex-effects were estimated

by inclusion of an interaction term between the factor and sex. We

used robust correction for estimating the standard errors and esti-

mated P-values using the Bonferroni adjustment for multiple testing.

The association between the mother's health profile not included in

any of the factors (fasting glucose, triglycerides, free fatty acids and

gestational weight gain) and neonatal sum of skinfolds was evaluated

following the same procedure abovementioned. Note that we tested

the same analysis replacing BMI for gestational weight gain as a con-

founder. The conclusions were similar, so we only present the results

with BMI adjustment.

2.5 | Supplementary analysis

Multiple linear multilevel analyses tested the association between

each of the maternal measurements during pregnancy and neonatal

sum of skinfolds (see Table S2). Sex-effects were estimated by inclu-

sion of an interaction term between the exposures and sex. All ana-

lyses were adjusted for intervention group, site of recruitment,

maternal ethnicity, education, BMI (except when BMI was the expo-

sure), age, smoking status, gestational age during pregnancy (<20,

24 to 28 and 35 to 37 weeks), gestational age at birth (weeks) and

neonatal age at measurement (hours post birth). The cluster structure

of data was also taken into account with individuals nested into the

site of recruitment. We used robust correction for estimating the

standard errors and used the Bonferroni adjustment for multiple test-

ing. Analyses with triglycerides and fatty acids as exposures were fur-

ther adjusted for HOMA-IR.

3 | RESULTS

In total, 458 mother-infant pairs (50.2% female infants) were included

in the study. On average, the mothers were 32.1 (±5.3) years of age

and their infants were measured 19.9 (±30.5) hours after birth. Mothers

gave birth after 39.7 (±1.4) weeks of gestation, and most mothers per-

ceived themselves as of European descent (84.6%) and did not smoke

during pregnancy (85.6%). More than half of the mothers (57.6%)

reported high educational level, whereas 32.0% reported medium edu-

cational level. Neonatal boys exhibited lower sum of skinfolds com-

pared to girls (Mean sum of skinfoldsboys = 20.3 mm [±5.2]; Mean sum

of skinfoldsgirls = 21.5 mm [±5.4]; P = .02).

3.1 | Maternal metabolic parameters at three time
points

Table 1 describes the unadjusted sex-differences in the mothers'

metabolic profile for each gestational time. In the first measurement

prior to 20 weeks of gestation, no differences were observed in

maternal metabolic measurements between mothers of boys and

girls. At 24 to 28 weeks of gestation, mothers of girls had higher

fasting insulin, HOMA-IR and Stumvoll first and second phases com-

pared to mothers of boys. At 35 to 37 weeks of gestation, mothers

of girls had higher fasting glucose compared to those of boys

(Table 1).

3.2 | Associations of maternal metabolic
parameters with neonatal adiposity

Associations of the four factors, and fasting glucose, triglycerides,

fatty acids and gestational weight gain at the three time points with

neonatal adiposity are described in Table 2. Factor 1 (fasting insulin

and HOMA-IR) at <20 weeks of gestation was associated with boys'

LIMA ET AL. 5 of 11



sum of skinfolds, and with girls' sum of skinfolds at 35 to 37 weeks of

gestation. Factor 2 (1-hour insulin, 2-hour insulin, Stumvoll first phase,

Stumvoll second phase) was associated with boys' sum of skinfolds at

35 to 37 weeks of gestation, and no association was found of this fac-

tor with girls' sum of skinfolds. Factor 3 (1-hour glucose and 2-hour

glucose) at 35 to 37 weeks of gestation was associated with boys'

sum of skinfolds and at 24 to 28 and 35 to 37 weeks of gestation with

girls' sum of skinfolds. Finally, factor 4 (leptin, BMI and neck circum-

ference) was associated with boys' sum of skinfolds in all pregnancy

periods, but not with girls' sum of skinfolds (Figure 1).

Fasting glucose at <20, 24 to 28 and 35 to 37 weeks of gestation

was associated with boys' sum of skinfolds, and at 24 to 28 and 35 to

37 weeks of gestation with girls' sum of skinfolds. Triglycerides at

<20 weeks were positively associated with the sum of skinfolds in

girls, and 35 to 37 weeks with sum of skinfolds of boys. Fatty acids

were associated with sum of skinfolds in girls at <20 and 24 to

28 weeks. Gestational weight gain at <20 weeks was positively asso-

ciated with boys' sum of skinfolds (Table 2). Table S2 describes the

associations of maternal parameters that were included in the factors

with neonatal adiposity.

4 | DISCUSSION

The main aim of the present study was to identify the effect of some

maternal metabolism on neonatal skinfolds at different times in preg-

nancy in a sex-dependent manner. Results confirmed our hypotheses

that associations of metabolic parameters with neonatal adiposity

change between different time-periods and differ between sexes. We

demonstrate a complex pattern of metabolic metabolism and its asso-

ciation with neonatal fat measured as sum of skinfolds, as illustrated

in Figure 2. In summary, insulin resistance in early pregnancy is an

important predictor for boys' sum of skinfolds, in addition to fasting

glucose throughout pregnancy. In girls, maternal lipids in the first half

of pregnancy period play a role for sum of skinfolds, as well as fasting

glucose in the second half of pregnancy.

In both sexes, the early pregnancy period is relevant for neonatal

adiposity, although for different metabolic parameters (ie, insulin

resistance in boys and lipid levels in girls). Although a later interven-

tion was effective in reducing neonatal adiposity,22 our data suggest

that ideally maternal metabolism shall be normalized already early in

pregnancy to reduce the risk of neonatal adiposity. Hence, interven-

tions beginning prior to or in very early pregnancy might be even

more effective than those initiated later, and achieved a 9% reduction

in neonatal fat.22 Our results also indicate that both types of nutrients,

glucose and lipids, are related to neonatal adiposity, although associa-

tions are time- and sex-dependent. This argues for future time- and

sex-specific studies to delineate metabolic pathways between mater-

nal adiposity, insulin resistance, the different nutrients and neonatal

adiposity.

The physiological pathways influencing neonatal adiposity origi-

nate from maternal insulin resistance, which is higher with increasing

maternal BMI. Indeed, in the Healthy Start Study7 maternal insulin

resistance in the first half of pregnancy was an independent predictor

TABLE 2 Multilevel regression coefficients of the association between maternal health profile components and child's sum of skinfolds (mm)
by sex in three periods of gestation

Maternal parameters

Boys Girls

<20 weeks 24-28 weeks 35-37 weeks <20 weeks 24-28 weeks 35-37 weeks

β P β P β P β P β P β P

Factor 1

Fasting insulin and HOMA-IR

1.091 .006 .130 .713 .445 .103 .536 .094 .339 .372 .347 .044

Factor 2

1-h and 2-h insulin, and Stumvoll first

and second phases

.458 .163 .305 .256 .673 .009 .389 .228 .449 .215 .208 .521

Factor 3

1-h and 2-h glucose

.384 .362 −.241 .617 1.083 .022 .529 .280 1.387 .012 1.520 .020

Factor 4

Leptin, BMI and neck circumference

1.136 .004 1.114 .008 1.342 .008 .349 .196 .505 .100 .596 .152

Fasting glucose (mmol/L) 1.792 <.001 1.406 .011 2.085 .019 −.045 .968 2.475 .008 1.361 .035

Triglycerides (log) 1.428 .423 .235 .854 2.740 .005 2.005 .031 1.907 .119 1.395 .235

Fatty acids (mmol/L) 1.555 .152 .462 .787 1.179 .544 3.886 <.001 4.942 .011 −1.678 .203

Gestational weight gain (kg) .197 .033 −.003 .975 .059 .645 .021 .646 .125 .345 .010 .526

Note: Adjusted for intervention group, site of recruitment, maternal ethnicity, education, BMI (except when BMI was the exposure), age and smoking

status, gestational age during pregnancy (weeks), gestational age at birth (weeks) and neonatal age at measurement (hours), and cluster structure

(individuals nested in site of measurement). Besides the aforementioned adjustments, HOMA-index was also an adjustment when triglycerides and fatty

acids were the exposures. P values are Bonferroni adjusted.

Abbreviation: BMI, body mass index.
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of neonatal adiposity. This is in principle in line with our findings of

insulin resistance (represented by factor 1) in early pregnancy playing

a role, but in our study, this was limited to boys only. Later in preg-

nancy, the positive association of insulin resistance with neonatal adi-

posity was found in both boys and girls. The strong determining role

of early insulin resistance for neonatal adiposity is not without prece-

dent and extends to the pre-pregnancy period, in which insulin resis-

tance had the strongest association with neonatal fat mass, more so

than insulin resistance in late pregnancy.23 However, neither of those

previous studies tested for sex differences in this association or, spe-

cifically, in pregnant women with obesity. Two studies that analyzed

boys and girls separately24,25 found associations of insulin resistance

late in pregnancy with measures of adiposity in girls, but not in boys,

which is not fully in line with our findings. The different finding might

be explained by differences in maternal BMI or the participants' level

of glucose tolerance, since those other studies were not limited to

women with obesity without GDM at baseline, as in our study

sample.24,25

The pathway from insulin resistance to neonatal adiposity might

be through one of the nutrients glucose or lipids.8 Although found in

various populations,7,24-26 the role of fasting glucose for neonatal adi-

posity in women with obesity is a novel finding to the best of our

knowledge. Maternal fasting glucose was a driver of fat accretion

throughout pregnancy in boys and mainly in later pregnancy in girls.

The sex difference in early pregnancy might explain why the Healthy

Start Study7 only found an association of fasting glucose after

20 weeks of gestation, but not before, with neonatal adiposity. The

reasons for the sex-difference in the timing of the association of

fasting glucose with neonatal fat remain speculative. The glucose steal

phenomenon posits foetal hyperinsulinemia, the main driver of fat

accretion, as the result of maternal hyperglycemia from early on.27 A

sex-difference in the timing of the glucose steal may be one explana-

tion for our findings, but this remains to be studied.

Interestingly, independent of maternal insulin sensitivity, lipids in

the first half of the pregnancy period were associated with sum of

skinfolds in girls. In boys, only triglycerides at 35 to 37 weeks were

related with neonatal skinfolds. This sex interaction in the association

of lipids with neonatal skinfolds might explain the lack of association

in previous studies not distinguishing between sexes.7,19,20 To compli-

cate matters further, the association of maternal lipids with neonatal
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F IGURE 1 Multilevel regression coefficients of the association between (A) factor 1 (fasting insulin and HOMA-index); (B) factor 2 (1-hour
insulin, 2-hour insulin, Stumvoll phase 1 and Stumvoll phase 2); (C) factor 3 (1-hour glucose and 2-hour glucose) and (D) factor 4 (leptin, BMI and

neck circumference) and neonatal sum of skinfolds (mm) by sex in three periods of gestation. Adjusted intervention group, site of recruitment,
gestational age during pregnancy, gestational age at birth, neonatal age at measurement, maternal ethnicity, maternal education, body mass index
(BMI), except in the factor 4 since BMI was part of this factor, maternal age, smoking status and cluster structure (individuals nested in site of
measurement)
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adiposity might also depend on maternal metabolic status and/or

weight. Crume et al7 observed that maternal triglycerides, in middle to

late pregnancy, were associated with neonatal fat mass only in women

with obesity before pregnancy. In a study including women with a

normal glucose metabolism and those with gestational diabetes,

maternal lipids, triglycerides and free fatty acids in late pregnancy

were positively associated with neonatal fat mass only in women with

gestational diabetes, but not in women with normal glycaemia.28 This

complex interaction between maternal phenotype, neonatal sex and

maternal lipid profile could be a reason why in a Mendelian randomi-

zation approach no causal effect of maternal triglyceride concentra-

tions on offspring birth weight was found.29 Mendelian randomization

is a powerful method for establishing causal exposure-outcome rela-

tions. The present results call for using this method in a sex-specific

manner, and at the same time distinguishing between women with

different weight status. Moreover, neonatal fat percentage is the rele-

vant offspring outcome more sensitive to in utero influences, and

hence, more variable than birth weight.

While analysis of the insulin secretory response (factor 2) did not

result in a clear picture, glucose tolerance (factor 3) at the end of preg-

nancy was related to neonatal adiposity for boys and girls. Conflicting

results have been found on the association of glucose tolerance with

neonatal adiposity. Most,7,25,30 but not all,23 studies reported positive

associations. None of those assessed sex differences, and importantly,
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Importance

Weak or No 
Importance

Insulin resistance

Glycaemia

Lipids

<20 weeks 24-28 weeks 35-37 weeks

Pregnancy period

Boys skinfolds

<20 weeks 24-28 weeks 35-37 weeks

Pregnancy period
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F IGURE 2 Summarized visualization of the degree of importance of some maternal parameters in relation to neonatal sum of skinfolds by sex
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only one study evaluated exclusively pregnant women with obesity.

Thus, more information is needed to draw any conclusions on the role

of insulin secretory response or glucose tolerance for neonatal

adiposity.

Maternal adiposity, mostly assessed by the pre-pregnancy BMI,

has been related with neonatal adiposity in numerous

studies,4,5,25,31-33 although one reported no association.34 We found

maternal adiposity to be associated with neonatal adiposity in boys

throughout pregnancy, but no association was found in girls.

Although, when analyzed individually, maternal BMI in the second half

of pregnancy period was associated with the girls' adiposity. Different

from many of the previously mentioned studies, we only had women

with obesity in our sample, which might have precluded finding strong

associations with maternal adiposity. Reports on sex differences in

the association of maternal adiposity and neonatal adiposity are con-

flicting: Some find associations only in boys,35 but other studies only

in girls.36,37 Prior studies in pregnant women with diabetes have

reported an interaction of foetal sex with a number of maternal vari-

ables in the prediction of large or small-for-gestational age new-borns

but results are not comparable since the outcome variable was not

new-born adiposity and maternal variables did not include lipids or

insulin sensitivity.38

4.1 | Sex and time differences

Conceptually, male and female foetuses follow different growth strat-

egies in utero.39,40 Mechanisms are not well understood, but male

embryos have more rapid cell divisions compared to females,41 which

could lead to a more rapid growth.39,40 Their higher growth rate might

explain why male foetuses are also more responsive to changes in

nutrient supply.39,40 In addition, the peak growth velocity of males

seems to be later in pregnancy compared to female foetuses.39 These

different growth strategies might result in differences in nutritional

needs, at different times in pregnancy. The results of our study pro-

vide strong evidence to support this concept. However, more system-

atic assessments of time- and sex-dependent associations of maternal

metabolism with neonatal adiposity are needed in future studies.

Although foetal fat is mostly accumulated late in pregnancy,42,43

our data highlight that also the early pregnancy period is important for

neonatal adiposity. This finding is in line with other studies, showing

that maternal metabolism that led to gestational diabetes diagnosis

later in pregnancy, had an influence on foetal abdominal circumfer-

ence already at 17 weeks of pregnancy, with a more pronounced

effect in males.9 Also maternal obesity was related to accelerated

growth at 20 weeks of gestation,10 without sex differences studied.

4.2 | Strengths and limitations

The European representativeness of our study sample with trials sites

spread over Europe is a strength, but the restriction to women with

obesity can be seen as a limitation of our study. However, since the

prevalence of pregnant women with obesity is alarming,44 studying

the consequences of maternal obesity is of public health relevance. A

strength of our study is the measurements of maternal metabolic

parameters at three time points in pregnancy. Without this elaborate

approach, identification of time-dependent effects had not been

possible.

DALI study was designed to evaluate the effects of different

interventions on preventing gestational diabetes in pregnant women

with obesity. Although we adjusted the analyses for the various inter-

ventions, we cannot fully exclude a minor influence on the results.

While more direct measures of neonatal adiposity by for example, air

displacement plethysmography, would have been preferred, we

recently reported an association of sum of skinfolds with cord blood

leptin in this cohort,22 supporting the validity of the skinfold measures

as proxy for neonatal adiposity.

5 | CONCLUSION

Our results show time-dependent associations of maternal metabolic

parameters with neonatal adiposity. Importantly, and a novel key

result, we demonstrate that this time-dependence varies between

sexes. Thus, the study highlights the urgent need for inclusion of neo-

natal sex in all analyses, not as confounder, but as major determinant

and modifying factor. This has been recommended previously.45,46

The present study can inform future studies to include larger sample

sizes, because of the sex differences, but also measurements of

maternal metabolism at more than one time point during pregnancy.
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