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Abstract: A field study evaluated the performance of direct well recharge structures (DWRS) in 

order to harvest and filter farm runoff and its discharge into open dug wells to augment 

groundwater recharge. This was undertaken between 2016 and 2018 using a total of 11 wells in the 

Dharta watershed, situated in a semi-arid hardrock region of Udaipur district, Rajasthan, India. The 

depth to water level in each DWRS well was monitored weekly for 1 to 3 years before and after the 

DWRS was established, and water samples were taken for water quality analysis (pH, electrical 

conductivity (EC), total dissolved solids (TDS), turbidity, fluoride, and Escherichia coli) before and 

during the monsoon period. For each DWRS well, two control wells in close proximity were also 

monitored and sampled. Five of the DWRS established in 2018 also had flow meters installed in 

order to measure discharge from the filter to the well. The volume of water recharged through 

DWRS into individual wells during the 2018 monsoon ranged from 2 to 176 m3 per well. Although 

the mean rise in water levels over the monsoon was higher in DWRS wells than in nearby control 

wells, the difference was not significant. Values of pH, EC, TDS, and F decreased in DWRS and 

control wells as each monsoon progressed, whereas the turbidity of wells with DWRS increased 

slightly. There was no significant difference between DWRS and control wells for pH, EC/TDS, 

turbidity, or fluoride. The presence of E. coli in DWRS wells was higher than in control wells, 

however, E. coli exceeded drinking water guidelines in all sampled wells. On the basis of this study, 

it is recommended that rural runoff should not be admitted to wells that are used for, or close to, 

wells used for drinking water supplies, even though salinity and fluoride concentrations may be 

reduced. For this study, none of the 11 DWRS wells produced sufficient additional recharge to 

potentially increase dry season irrigation supplies to justify expenditure on DWRS. This even 

applies to the DWRS well adjacent to a small ephemeral stream that had a significantly larger 

catchment area than those drawing on farmers’ fields alone. An important and unexpected finding 

of this study was that no sampled open dug well met drinking water standards. This has led to a 

shift in local priorities to implement well-head water quality protection measures for wells used for 

drinking water supplies. It is recommended that parapet walls be built around the perimeter of such 

dug wells, as well as having covers be installed.  

Keywords: groundwater recharge; water quality; water level monitoring; recharge performance; 

rainwater harvesting; India 
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1. Introduction 

Water scarcity has become a major problem, especially in most of the arid regions of the world. 

It ultimately affects food security, natural ecosystems, and plant and human health (Seckler et al., 

1999) [1]. Water scarcity arises due to the various anthropogenic factors and one of them is the 

depletion of groundwater resource. Farmers in semi-arid parts of India use groundwater to save 

rainfed crops from failure and to increase yields. As it is a relatively cheap and easily accessible water 

resource for individual farmers, irrespective of their farm size, annual groundwater use often reaches 

or exceeds the average annual natural recharge. Depth to watertable in hard rock terrain fluctuates 

considerably during the year, and shallow aquifers become depleted where the use of groundwater 

has increased; thus, tubewells are drilled to allow pumping from deeper down (in the same or 

different aquifers), in some areas rendering marginal quality water (Shah, 2009) [2]. The extensive 

use of groundwater resources by farmers all over the country pumping out water in an unregulated 

manner creates its own sets of complex management and sustainability issues. 

According to a report of CGWB (2017) [3], almost the whole of India shows declining 

groundwater levels, with the largest declines observed in parts of Rajasthan, Haryana, Punjab, 

Gujarat, Telangana, and Maharashtra. Water harvesting and recharge enhancement at micro-

watershed level have been identified as means to benefit farmers at the village level to address water 

scarcity (Cavelaars et al., 1994) [4]. However, groundwater levels are declining despite water 

harvesting measures to conserve water and enhance aquifer recharge, supported on a large scale by 

watershed development programmes. It is therefore crucial to increase our understanding of the 

capability and constraints of managed aquifer recharge (MAR) to overcome the threat of 

groundwater scarcity in the future (Massuel et al., 2014) [5]. Equally important is the understanding 

of the potential for managing or influencing the new patterns of use (Burke and Moench, 2000) [6], 

patterns that are often highly dispersed and individualized. To cope with lowering groundwater 

level, MAR has become an important complementary measure along with demand management to 

cope with groundwater scarcity (Dillon et al. (2012) [7].  

The MARVI project, Managing Aquifer Recharge and Sustaining Groundwater Use through 

Village-level Intervention (www.marvi.org.in), has demonstrated that it is important to monitor and 

manage groundwater at the village level, particularly in hard rock areas of India (Maheshwari et al., 

2014 [8]; Jadeja et al., 2018 [9]). This approach involves the training of village volunteers and 

developing a participatory process to assist cooperative management of groundwater. The methods 

include groundwater data collection at the village level; a methodology to estimate groundwater 

recharge from simple measurements on check dams (Dashora et al., 2018) [10]); and a smart phone 

app (MyWell) for collecting and visualising groundwater, rainfall, and check dam data. This 

approach supports village level decision-making for groundwater use and management. This has 

been field tested and is considered ready for extended out-scaling across India. 

In this study area, village groundwater cooperatives are being formed to help achieve 

sustainable groundwater supplies. These have informed rabi (winter) crop decision making based on 

measured groundwater levels. They can also support maintenance of watershed measures for soil 

and water conservation, including maintenance of streambed recharge structures, as well as 

encouraging uptake of other options when proven. There is a watershed development program at 

the state level to increase groundwater recharge through the construction of check dams.  

2. Why This Study? 

Roof-top rainwater harvesting to recharge dug wells has been widely practiced in India with a 

varying degree of success (CGWB (2007) [11]; Rainwater Harvesting Association (2020) [12]). 

However, the use of harvested runoff from farmers’ fields to recharge dug wells has been practiced 

mostly on a trial and error basis (e.g., examples reported in Bali Water Protection Program (2020) 

[13]), but with relatively rare monitoring. One exception is the work of Pendke et al. (2017) [14], in a 
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study in Maharashtra from 2011 to 2015, who reported 64% removal efficiency of silt in the entry pit 

containing a preliminary filter rising to 93% removal at the end of the main filter before water is 

discharged to an open well. This was at a research site with a catchment area of 1.8 ha where runoff 

was estimated using an uncalibrated model. In 2015, the study was expanded to involve 10 recharge 

wells and two wells as controls. The size of the catchment areas for these was not reported. In 2015, 

water table rise was reported to be significantly larger in recharged wells than control wells. Aside 

from measurement of suspended silt at the pilot site, there was no evaluation of water quality that 

might impact on the safe use of well water. 

The overall aim of this study was to understand the effectiveness of direct well recharge 

structures (DWRS) to improve groundwater supplies and quality at the local level. The activity 

reported in this paper arose because some farmers, who were at a considerable distance from streams, 

perceived that check dams in their catchment were not directly benefiting them as much as farmers 

whose wells were closer to those check dams. They sought an alternative way of increasing recharge 

at their wells. They were intending to harvest runoff from fields close to their wells, and divert this 

into their wells. Researchers from the MARVI team became involved due to well-founded concerns 

over potential for groundwater contamination. They evaluated wells proposed for direct recharge by 

farmers to avoid wells used for drinking water supplies, insisted on a filtration step and on 

monitoring the impacts on levels and quality, and developed a water quality laboratory in the village 

to enable analyses to be performed. The results of this investigation were to be reported back to 

farmers before considering any possible ongoing operation. Without these precautionary 

interventions, this approach could not be considered MAR.  

3. Study Area 

The study was carried out in the Dharta watershed, which is situated in Bhindar block of 

Udaipur district of southern Rajasthan, India. This area lies between 24°30′ and 24°37′ N latitude and 

73°05′ to 73°15′ E longitude. Four adjoining villages were selected within a radius of 4 km, these being 

Badgaon, Dharta, Hinta, and Varni, for evaluating the performance of direct well recharge structures 

(Figure 1). Topography is often undulating with slope up to 2.7%. The ground elevation of the area 

is 470 m above the mean sea level. The average annual rainfall of the area is about 665 mm (Dashora 

et al. 2018) [10] and the temperature ranges from 19 to 48 °C in summer and 3 to 29 °C during winter. 

The occurrence of groundwater in the watershed is mainly controlled by the topographic and 

structural features present in the Proterozoic gneisses and schists underlying the area. Groundwater 

in these rocks occurs in the zone of weathering and in fractures, joints, and foliation plains. When 

schists are inter-mixed with gneisses, they form a better aquifer (CGWB, 2013) [15]. The depth of dug 

wells ranges from 14 to 38 m. The major crops grown in the area are maize, wheat, mustard, cluster 

bean (guar), chickpea, and barley. About 25% of the total land area in the watershed is irrigated by 

dug wells and tube wells. 

4. Methodology 

The study was carried out during 2016–2018. The steps followed in this study were (i) selecting 

the dug wells for implementing DWRS and nearby control wells, (ii) identifying suitable locations 

for pits, (iii) building pits and filters to reduce sediment discharge into wells, (iv) installing flow 

meters, (v) calculating the cost of construction, (vi) monitoring rainfall, (vii) monitoring groundwater 

levels, and (viii) water quality sampling and analysis. 

4.1. Selection of the Dug Wells 

With a view to evaluating the performance of direct well recharge at a farm level, a number of 

dug wells were selected and marked with the code numbers for identification. In the year of 2016, a 

total of 18 wells were selected, out of which 6 wells were selected for direct well recharge and 12 

control wells were selected, with 2 separate wells in close proximity to each DWRS well. In 2018, an 

additional 15 wells were selected, and out of these, 5 wells were used as DWRS wells and 10 as control 
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wells, again with 2 controls close to each DWRS well. Only the DWRS wells constructed in 2018 were 

fitted with flow meters to estimate the annual recharge volume. Hence, in 2018, there were a total of 

11 DWRS wells and 22 wells as controls (Table 1). All the control wells were in close proximity to 

their recharge wells. Further, the wells in Table 1 are identified by whether they have parapet walls, 

overhanging trees and rotten plant debris, or whether they are fitted with flow meters for measuring 

runoff discharge into the wells. All wells are used for irrigation supplies. 

 

Figure 1. Location map of direct well recharge structures sites in the Dharta watershed and adjacent 

control wells. 
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Table 1. Total well depths of direct well recharge structures (DWRS) and control wells. 

 DWRS Well 
Total Well 

Depth, m 

Control Well 

(1) 

Total Well 

Depth, m 

Control Well 

(2) 

Total Well 

Depth, m 

2016 

H6 ab 19.60 H4 a 24.50 H5 17.65 

H21 28.90 H30 b 29.20 H10 a 25.40 

B21 20.50 B22 a 23.20 B44 20.60 

B40 18.45 B41 23.20 B50 27.90 

V43 30.45 V44 a 35.80 V45 a 33.10 

V47 ab 27.10 V48 a 28.45 V49 ab 30.10 

2018 

H22 a * 21.20 H30 29.20 H10 a 25.40 

H23 * 18.30 H25 24.30 H26 21.80 

D1 * 32.10 D11 a 18.95 D20 19.60 

D14 * 31.20 D13 a 22.80 D15 31.00 

V28 ab * 19.20 V29 a 19.10 V30 ab 22.70 

 Average depth (m) 24.3 - 25.3 - 25.0 

* = DWRS wells established in 2018 were fitted with flow meters. a = well with parapet wall; b = wells 

without overhanging trees and rotten plant debris. All wells were infested with birds. 

4.2. Identification of Suitable Locations for Pits 

It was considered important that the recharge pit (details described below) was located close to 

the recharge well to reduce the cost, and it was also located such that the runoff could easily flow 

towards the pit. For this, the important consideration was the general slope of the runoff contributing 

area. An earthen channel was constructed to guide runoff towards the pit. The catchment area was a 

secondary consideration, and subsequently this was identified as constraining the measured benefits. 

If the pit filled during a rainfall event, excess flow diverted along natural drainage lines and did not 

enter the well.  

4.3. Pit and Filter Constructions and Pipe Installations 

The pits were dug near the recharge wells with the help of earth moving machinery. The size of 

the pits varied slightly due to construction method. The median length, width, and depth of pits were 

1.40, 1.55, and 1.15 m, respectively (Table 2). Once the pit was dug to the required dimensions, the 

masonry work was done on the four sides of the pit walls to maintain the stability of the pits. The 

bottoms of the pits were cemented, incorporating stones from a local quarry. The pit was divided into 

two sections by a brick wall constructed in the middle with a height of about two-thirds of the pit 

depth. This division was done to allow extra deposition time of sediments in the pit, as reported 

useful by Pendke et al. (2017) [14]. Runoff from pits was discharged from the pit into the recharge 

well through one or more 50 mm diameter high-density polyethylene (HDPE) pipes, which were laid 

in a trench to allow gravitational flow and perforated the well perimeter through an aperture just 

large enough to contain the pipe(s). The pipe inlets were installed about 0.2–0.3 m above the bottom 

of the pit to minimize clogging of the inlets (Figure 2). In some wells, two or even three pipes of 50 

mm diameter were used in order to increase the proportion of runoff that entered the pit and well. 

After pipe installation, the trench was backfilled and compacted. 

4.4. Reducing Sediment Discharge into Wells  

The runoff carries suspended sediment particles throughout the rainy season, although the 

concentration was expected to be highest at the beginning of the monsoon season, when the ground 

was parched and there was no vegetation cover. It was considered important to prevent the discharge 

of sediments into the DWRS well in order to reduce the likelihood of turbid water clogging the 

fractures that allowed natural ingress of groundwater. A simple and cheap roughing filter was 

devised in which coarse sand and stone aggregates were placed in the pit on both sides of the dividing 

wall and covered with net cloth to help make suspended sediments settle in the pit and allow easy 

removal of detritus. Table 2 reports gross volume of pits, not accounting for filter material; hence, the 
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holding capacity for water was quite small (<6.4 m3) in relation to typical monsoon rainfall events, 

which could exceed 60 mm in a day.  

Table 2. Design details of DWRS pits. 

DWRS Code Length, m Width, m Depth, m 
Volume 

(m3) 

Catchment 

Area (m2) 

Vol as mm over 

Catchment Area 

H6 3.35 1.90 1.00 6.40 1131 5.6 

H21 0.90 1.35 1.15 1.40 585 2.4 

B21 1.15 1.20 0.70 1.00 2343 0.4 

B40 2.30 2.30 1.10 5.80 1155 5.0 

V43 1.90 1.90 1.20 4.30 304 14.3 

V47 1.90 1.80 0.85 2.90 263 11.1 

H22 * 1.20 1.40 1.10 1.80 3200 0.6 

H23 * 1.40 1.55 1.20 2.60 662 3.9 

D1 * 1.00 1.37 1.22 1.70 2860 0.6 

D14 * 1.34 1.13 1.22 1.80 11,954 0.2 

V28 * 1.40 2.40 1.30 4.40 2,902,300 0.0 

Median 1.40 1.55 1.15 2.60 1155 2.4 

* DWRS well established in 2018. 

4.5. Installation of Flow Meters 

In the five DWRSs constructed in 2018, a flow meter was installed between the pit and recharge 

well to monitor the cumulative volume of water discharged into those wells. Flow meters with 50 

mm diameter were used to measure the total volume of the runoff water discharged in a single pipe. 

If there were more than one pipe, it was assumed that other pipes discharged the same volume as the 

metered pipe. For additional protection of water meters from clogging due to plant debris in runoff 

water, iron wire meshes were placed at the inlet of pipes. A schematic diagram of field settings of 

components of the recharge structure are shown in Figure 2a, and a photo of a typical structure (one 

of 11) is shown in Figure 2b, whereas Figure 3 shows the discharge of runoff into a well after it has 

passed through the filter. The dial pad reading of the flow meter was recorded photographically at 

the time of installation, and subsequently after every runoff event. 

4.6. Managed Aquifer Recharge Operations 

For the DWRSs constructed in 2016, managed aquifer recharge (MAR) commenced in July 2016 

and continued through the monsoons of 2017 and 2018, generally over the months of July to October. 

For DWRSs constructed in 2018, MAR commenced in July 2018. The systems were shut down at the 

end of the 2018 monsoon. DWRS and control well water levels were measured weekly from January 

2013 to December 2018 for the wells of Hinta, Dharta, and Badgaon village, whereas for the Varni 

village, monitoring was done from December 2013 to December 2018.  

4.7. Calculating the Cost of Construction 

The cost of construction of the recharge pits varied on the basis of the location and material used. 

Locally available construction material was used, and well owners were engaged throughout the 

construction process. All the cost components starting from digging the pit to installing water-meter 

and outlet pipes were recorded. The cost of construction and installation depended on access to the 

site, distance between pit and recharge well, and construction of runoff collection field channel 

(wherever necessary). Only existing wells were used, and thus these are regarded as a sunk cost. The 

site specific average estimate of cost for installing a DWRS is given in Table 3, in Indian rupees at 

2018 costs. 
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(a) 

 

(b) 

Figure 2. View of DWRS installed in the study: (a) a cross-sectional view of DWRS (not to scale); and 

(b) photograph of a sample structure constructed in the study area. 

Table 3. Installation cost of a DWRS structure at field site (for conversion USD 1 = INR 70 in 2018). 

Items Quantity Cost, INR Cost, USD 

Hiring cost for earth moving equipment 1 h 800 11 

Stones 1 trolley load 1300 19 

Coarse sand ¼ trolley load 600 9 

Cement bag 2 600 9 

Bricks for partition 50 250 4 

Stone aggregates ¼ trolley load 300 4 

Pipes (m) 3 600 9 

Builder and labour 1 + 1 1600 23 

Flow meter * 1 4500 64 

Total cost without flow meter  6050 86 

Total cost with flow meter      10,550 151 

* Installed for flow measurement. 
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Figure 3. Runoff discharge into well after it was collected in the pit and had passed through the filter. 

4.8. Rainfall Monitoring 

Rainfall monitoring was done on a daily basis by farmer volunteers, known as BJs (Bhujul 

Jaankaars or “groundwater informed”). Rain gauges were installed in all four villages, and annual 

rainfalls were recorded (Figure 4) by BJs. To evaluate the effect of the runoff on the water level 

fluctuation of the wells, the rainfall data obtained were used to correlate with the water table level 

and the influence of the recharge pit for specific rainfall events. 

 

Figure 4. Annual rainfall in study villages during the study period, 2013–2018. 

4.9. Groundwater Level Monitoring 

Groundwater level monitoring was done at a weekly interval and commenced a few weeks 

before the monsoon, continuing until after the end of the monsoon season when levels had peaked 

and were in decline. An ordinary measuring tape with a float at its end was used for monitoring the 

depth to water level in each DWRS and control well, below a datum that was marked on the well 
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head with the well identification number. Readings were taken by the farmer BJs who had been 

trained to undertake such measurements and had considerable experience. The water level data 

obtained during weekly monitoring were used to plot well hydrographs. 

4.10. Water Quality Monitoring 

4.10.1. Sampling 

Water samples were taken on five occasions for analysis of pH, EC/TDS, and turbidity—July 

2015, July 2017, June 2018, August 2018, and October 2018. Samples were analysed for fluoride on 

three of these occasions—July 2017, June 2018, and August 2018. Escherichia coli analysis was 

conducted on the water samples collected in August, September, and October 2018.  

4.10.2. Physical and Chemical Analyses  

The water samples were collected in order to analyse pH, EC, TDS, turbidity, and fluoride. They 

were analysed in the field for these physico-chemical parameters using an Aquaread instrument 

(https://www.aquaread.com/portofolio/ap-5000/) to test pH, EC, TDS, and turbidity. A HACH 

DR/890 portable colorimeter (https://www.hach.com/dr-890-portable-

colorimeter/product?id=7640439041) was used to measure fluoride (F) concentration. E. coli samples 

were collected and taken to a laboratory in the Hinta village for analysis within 8–24 h, and samples 

were stored in a refrigerator for the time period between sampling and laboratory analysis. On each 

day of sampling before testing of water samples, the instruments were calibrated using distilled water 

and stock solutions. On one occasion, a split set of 10 samples was provided to an independent 

university laboratory for analysis of TDS (by EC) and fluoride. The coefficient of determination (R2) 

for TDS was 0.82, and in terms of fluoride, R2 was 0.98 for samples within the prescribed range of <2–

2.5 mg/L for the colorimeter. To establish the reliability of the measurements, the testing of duplicate 

water samples was carried out. The results indicated average differences for 10 samples for pH, EC, 

TDS, and F and for 9 samples for turbidity of between 2.5% and 5% of the range in observed values. 

Hence, these field data are considered reliable for the purposes of the investigation.  

4.10.3. Bacteriological Analysis 

The MacConkey Agar (MAC) method was used to grow Escherichia coli bacteria. For the 

bacteriological analysis, standard lab procedure was used—the MAC flasks, spreader, and Petri 

dishes were sterilized in an autoclave at 120 °C at 15 psi for 15 min, after which spreading of field 

samples was done under laminar flow conditions. The MAC was poured into sterilized Petri dishes 

on which E. coli was cultured. This agar provides a solid medium on which selected bacteria are able 

to decompose agar. MAC is a selective and differential medium designed to selectively isolate Gram-

negative bacteria such as E. coli and enteric bacilli on their ability to ferment lactose. Groundwater 

samples of DWRS wells and control wells were tested for microorganisms that would ferment lactose 

to produce end products that react with the pH indicator neutral red and would produce a pink 

colour colony. Results were reported as E. coli log colony-forming units (CFU)/mL. 

5. Results and Discussion 

The results of the evaluation of DWRS at a farm level are presented and discussed below. 

5.1. Recharge in DWRS Wells 

The metered volume of water recharging wells could only be determined at three DWRS wells 

in 2018 due to meter failures at two sites. Failures were thought to be caused by detritus clogging the 

impellors on mechanical flow meters in spite of the precautions taken. For the two sites representative 

of the catchment areas for 10 of the 11 DWRS wells, the average recharged proportion of monsoon 

rainfall on the catchment areas was 1.17%. This is considerably lower than the estimated 17% runoff 

generated from rainfall in 10 Maharashtra DWRS catchments (Pendke et al. 2017) [14]. It was 
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observed that pits filled in heavy storms and subsequent runoff bypassed DWRS. Applying the 

average proportion of catchment rainfall recharged from these two wells to all other DWRS wells in 

all years since they were established gives the volumetric recharge estimates shown in Table 4. 

The volumes of recharge are very low, in part due to the small catchment area of farm fields, in 

part by the low proportion of runoff diverted into wells due to the very small volumes of pits (Table 

2) with respect to typical monsoon rainfall events, and possibly in part due to under-estimation of 

recharge by under-performing flow meters. 

Table 4. Observed and estimated recharge through DWRS pits. 

Well 

ID 

Year of Pit 
Establishme

nt 

 Estimated Recharge, m3 

Recharge 
Volume 

Metered, m3   

Recharge 
as mm over 
Catchment 

As % of 
Rainfall on 
Catchment 2016 2017 2018 

H6 2016   * 13 7 10 

H21 2016   * 7 4 5 

B21 2016   * 22 6 18 

B40 2016   * 11 3 9 

V43 2016   * 3 2 2 

V47 2016   * 3 2 2 

H22 2018 27 8.44 1.13%   27 

H23 2018   *   4 

D1 2018   *   13 

D14 2018 81 6.78 1.20%   81 

V28 2018 176 0.06 0.01%     176 

Mean 
   

1.17%* 14 6 32 

Total (pits established in 2016) 59 24 46 

Total (pits established in 2018) 0 0 309 

Total 59 24 355 

* The mean value for H22 and D14 was applied to all unmetered sites and sites where meters failed 

to register. V28 represents a DWRS well besides a stream with a catchment area three orders of 

magnitude larger than the median of the DWRS sites, and hence was excluded from estimation of 

recharge at other wells. 

5.2. Head Rise Comparison between DWRS Wells and Control Wells 

Six DWRS wells were constructed in 2016 and another five in the year 2018 (Table 1), and in this 

catchment that had been intensively monitored since 2013 in the MARVI project (Maheshwari et al. 

2014) [8], we calculated the head rise in each well by subtracting the depth to water level at the end 

of the monsoon from that at the beginning of the monsoon. The ratio of head rise of each DWRS well 

to the mean of its adjacent control wells was calculated for each year (2013 to 2018). Subsequently, 

the change in these ratios was analysed to compare head rises before and after construction of DWRS 

for both construction years (2016 and 2018). Table 5 shows the mean and standard deviation of the 

head rise ratios. 

The statistical analysis of ratio of mean head rise of DWRS and control wells indicated that the 

effect of DWRS to raise water level in DWRS was not statistically significant at p < 0.05. This is not 

surprising due to the fact that the natural recharge in the area is considerably larger than the generally 

small additional volumes of water recharged through DWRS. This, combined with the local factors 

such as geology, topography, and rainfall intensity variations, can mask the DWRS contribution to 

the aquifer. The maximum increase in head rise ratio was observed at DWRS V28 (which had the 
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highest recharge volume, more than three times the next highest measured or estimated value (at 

D14)) (Table 4). 

Table 5. Statistical analysis of ratio of mean head rise of each DWRS and nearby control wells. 

DWR  2012 2013 2014 2015 2016 2017 2018 Mean before 

Construction 

Mean after 

Construction 

Mean (after 

Minus before) 

H6 ## 0.72 0.54 0.12 0.88 0.85 1.63 0.72 0.56 1.07 0.51 

H21 ## 1.35 0.71 0.70 2.06 0.86 0.86 0.89 1.20 0.87 −0.33 

B21 ## 0.88 0.55 0.66 1.72 0.91 1.02 1.24 0.95 1.06 0.11 

B40 ## 0.52 0.73 0.63 1.30 0.75 0.78 0.64 0.80 0.72 −0.07 

V43 ##   0.79 1.20 0.76 2.39 1.17 1.00 1.44 0.44 

V47 ##   0.25 0.24 0.82 1.06 1.20 0.25 1.02 0.78 

H22 * 0.65 0.17 0.31 0.36 0.49 0.77 0.91 0.37 0.91 0.54 

H23 * 0.37 0.08 0.02 0.48 0.60 0.81 0.76 0.23 0.76 0.53 

D1 * 1.81 2.21 4.39 2.95 1.78 1.31 3.49 2.41 3.49 1.08 

D14 *  1.33 1.36 1.24 1.17 1.14 2.15 1.31 2.15 0.84 

V28 *   0.26 0.51 1.26 0.91 2.12 0.38 2.12 1.74 

Summary statistics of head rise ratio by year 

Mean 0.90 0.79 0.86 1.18 0.93 1.15 1.39 0.86 1.42 0.56 

SD 0.51 0.69 1.23 0.82 0.36 0.49 0.87 0.64 0.85 0.57 

CoV 0.57 0.87 1.42 0.70 0.38 0.42 0.62 0.74 0.60 1.01 

Values below are for DWR wells commencing in 2016 only ## 

Mean 0.87 0.63 0.53 1.23 0.83 1.29 0.98 0.79 1.03 0.24 

SD 0.35 0.10 0.27 0.64 0.06 0.62 0.26 0.34 0.24 0.41 

CoV 0.41 0.16 0.52 0.52 0.08 0.48 0.27 0.43 0.23 1.73 

Values below are for DWR wells commencing in 2018 only * 

Mean 0.94 0.95 1.27 1.11 1.06 0.99 1.89 0.94 1.89 0.94 

SD 0.77 1.02 1.82 1.09 0.53 0.23 1.11 0.92 1.11 0.50 

CoV 0.81 1.07 1.44 0.98 0.50 0.23 0.59 0.98 0.59 0.53 

## DWRS constructed in 2016; * DWRS constructed in 2018; Bold is summary for all DWRS wells. 

Pendke et al. (2017) [14] studied direct well recharge at 10 sites in the Maharashtra state of India 

and observed that the difference between the post-monsoon (September) and pre-monsoon (June) 

water level depths was greater when compared with those of two controls. However, the catchment 

areas were more than 10 times the median in the Dharta case study, but inflow volumes were not 

recorded. It is expected that head rise in individual wells is unlikely to be an effective diagnostic of 

DWRS recharge effectiveness. Variations in transmissivity and specific yield in the aquifer could even 

suggest the reverse is true where for the same recharge volume the groundwater mound would be 

higher for aquifers with low transmissivity and low specific yield. Reliable measurements of recharge 

are the most decisive information on which to assess recharge effectiveness, as found for check dams 

in the same catchment by Dashora et al. (2018, 2019) [10,16].  

5.2.1. Water Quality 

The water quality information for the various wells in four villages is summarised in Table 6. 
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5.2.2. pH  

Water samples were collected and tested for pre-monsoon (Jun 2018), during monsoon (July 

2015, July 2017, and August 2018), and post-monsoon (October 2018) periods. The mean pH values 

of most of the DWRS and less of their control wells were found to be between the permissible limits 

(6.5–8.5) of the Bureau of Indian Standards (BIS; 2004) [17]. Figure 5 shows the percentage of samples 

that met the (BIS) criteria. Both in July 2015 (before any DWRS recharge) and October 2018 (post-

monsoon), all the DWRS wells met the criteria, whereas half of the control wells had a pH greater 

than 8.5. In 2017, only about 26% of samples of both DWRS and control wells met the criteria due to 

elevated pH. That is, the introduction of DWRS made little difference to the acceptability of the pH 

of the water for drinking.  

 

Figure 5. Percentage of samples meeting Bureau of Indian Standards (BIS) guidelines for pH in 

drinking water with or without an alternative supply (BIS acceptance range pH: 6.5–8.5). 

5.2.3. TDS  

In July 2015, about 82% samples of DWRS met BIS criteria (TDS (2000 mg/L), compared with 

55% for the control wells (Figure 6). Although a higher proportion of DWRS wells than control wells 

had TDS less than 2000 mg/L, before and during occurrence of DWRS recharge, it is evident that these 

proportions can increase during the monsoon for both DWRS and control wells due to dilution with 

fresh natural recharge. However, the volume of DWRS recharge in the DWRS wells is so small that it 

does not make a marked benefit if wells were to be used for drinking, and it will be seen that other 

parameters relevant for drinking are adversely impacted by DWRS.  
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Table 6. Water quality parameter values DWRS and control wells for different villages during the study period. 

Parameter 

Badgaon Dharta Hinta Varni All Villages All Villages 

DWRS 

Wells 

Control 

Wells 

DWRS 

Wells 

Control 

Wells 

DWRS 

Wells 

Control 

Wells 

DWRS 

Wells 

Control 

Wells 

DWRS 

Wells 

Control 

Wells 

DWRS Wells – 

Control Wells 

No. of wells 2 4 2 4 4 6 3 6 11 20 

 

No. of samples 6 12 6 12 12 18 9 18 33 60 

 

pH (mean) 7.92 7.85 7.76 8.04 7.8 7.87 8.06 8.07 7.89 7.96 −0.07 

pH (standard deviation) 0.32 0.24 0.43 0.18 0.21 0.29 0.42 0.37 0.33 0.28 

 

TDS (mean), mg/L 1772 2676 1649 2031 3081 2937 2571 2041 2444 2435 9 

TDS (standard deviation), mg/L 690 1705 319 415 1604 1504 1591 970 1201 1166 

 

Turbidity (mean), NTU 36.02 61.71 57.72 82.7 80.99 76.16 37.13 30.98 57 61 −4 

Turbidity (standard deviation), NTU  20.15 48.67 51.34 113.42 63.81 57.58 28.83 29.55 44 59 

 

No. of samples fluoride 4 8 4 8 8 12 6 12 22 40 

 

Fluoride (mean), mg/L 1.12 0.77 0.74 1.06 0.98 0.94 0.95 1.03 0.95 0.96 0.00 

Fluoride (std. deviation), mg/L  0.41 0.38 0.37 0.36 0.49 0.37 1.03 0.21 0.60 0.32 

 

No. of samples Escherichia coli 8 10 7 11 16 20 12 12 43 53 

 

E. coli (mean), log number CFU/mL 3.26 2.83 3.04 2.55 3.06 3.06 2.81 2.48 3.02 2.78 0.24 

E. coli (standard deviation), log 

number CFU/mL 

0.46 0.47 0.69 0.65 0.45 0.38 0.32 0.31 0.45 0.44 
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Figure 6. Percentage of samples meeting BIS guideline for TDS in drinking water in the absence of an 

alternative supply (BIS threshold < 2000 mg/L). 

5.2.4. Fluoride 

The average values of fluoride of DWRS and control wells ranged from 0.75 to 1.13 mg/L and 

0.83 to 0.94 mg/L, respectively. The proportion meeting the BIS criteria (<1.5 mg/L in the absence of 

an alternative supply) of DWRS was 73% in July 2017, compared with 55% for control wells (Figure 

7). Between June 2018 (before monsoon) and August 2018 (mid monsoon), the proportion of DWRS 

wells with F < 1.5 mg/L increased with respect to control wells. This is not surprising because of the 

generally lower ambient TDS and F of DWRS wells than in control wells, and thus rainfall recharge 

is expected to have a greater diluting influence in DWRS wells. 

 

Figure 7. Percentage of groundwater samples that meet BIS guidelines for fluoride in drinking water 

in the absence of an alternative supply (BIS threshold < 1.5 mg/L). 

5.2.5. Turbidity  

As indicated in Table 6, the mean values of the turbidity of DWRS and control wells ranged from 

30 to 65 and 29 to 66 NTU (Nephelometric Turbidity Units), respectively. As illustrated in Figure 8, 

from the years 2015 to 2018, none of the samples met the BIS criteria (10 NTU in the absence of an 

alternative supply) except in June 2018 (DWRS 27% and control 20%) before the monsoon broke, as 
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well as in October 2018 (only control 10%). It was found that wells with parapet wall (45 NTU) had 

less turbidity when compared to wells without parapet wall (54 NTU). This suggests that a parapet 

wall alone may be insufficient in providing adequate protection for drinking water wells in this area.  

 

Figure 8. Percentage of samples of samples meeting BIS criteria for turbidity in drinking water in the 

absence of an alternative supply (<10 NTU). 

5.3. E. coli 

The presence of E. coli bacteria in any 100 mL sample of water indicates that the water is 

contaminated and unfit for drinking (BIS standards). The water samples for both DWRS and control 

wells were tested and found that not only the wells that were recharged but also control wells showed 

the presence of E. coli. Table 7 shows the mean of DWRS wells was between 0.12 and 0.68 log CFU/mL 

higher than the mean of control wells; however, in relation to standard deviations, this departure was 

not significantly different.  

The data revealed that both DWRS and control wells were found to be infected by E. coli. It was 

also noticed that the control wells that did not have a well-constructed parapet were affected by the 

bird droppings and rotten plant debris in creating the possibility of the E. coli. No wells had covers, 

and only 15 wells out of a total of 31 wells monitored had a parapet wall. It was found that wells with 

parapet walls had a lower average number of E. coli (2.47 log CFU/mL) than wells without parapet 

walls (2.85 log CFU/mL) (Table 6). The wells with over hanging trees and bird activities inside wells 

had E. coli 2.92 log CFU/mL, whereas without hanging trees showed E. coli 2.09 log CFU/mL. There 

were no wells with covers to keep out birds and bats from well heads, and thus it was possible these 

were the source of E. coli found in all wells.  

The Water Quality Guide for Managed Aquifer Recharge in India (Dillon et al. 2014) [18] allows 

for a very simple approach to accepting natural water to recharge an aquifer if the recharge 

mechanism does not bypass the unsaturated zone. If the unsaturated zone is bypassed, as is the case 

in DWRS, the guide then refers proponents to the Australian Guidelines for MAR (NRMMC, EPHC, 

NHMRC (2009) [19]. These require a monitoring regime to ensure that the aquifer is not polluted, 

which could have an adverse impact on human health or the environment. Although the monitoring 

effort undertaken in this study did not cover all potentially present contaminants, such as agricultural 

organic chemicals, nutrients, and other types of microorganisms such as viruses and protozoa, the 

selection of parameters is sufficiently convincing in order to demonstrate the fact that improved 
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treatment is required if any well influenced by the water introduced via DWRS is used for drinking 

water supplies.  

Table 7. E. coli log number colony-forming units (CFU)/mL of DWRS and control wells. 

Date 

Number of 

Wells 

Mean Value of E. coli,  

log CFU/mL 

Standard Deviation,  

log CFU/mL 

DWRS Control DWRS Control DWRS - Control DWRS Control 

16-08-2018 10 0 2.77 -  0.39 - 

25-08-2018 10 12 3.03 2.35 0.68 0.54 0.70 

25-09-2018 11 19 3.15 2.70 0.45 0.57 0.65 

06-10-2018 9 16 3.22 3.10 0.12 0.46 0.48 

All samples 40 47 3.04 2.75 0.29 0.49 0.61 

5.3.1. Performance of Filters and Potential for Fracture Clogging 

The runoff water was filtered before redirecting it into the recharge well to retain suspended 

sediments and thereby reduce the blockages of fractures (see Figure 9) and improve the groundwater 

quality. During the first two to three rainfall events in the study, we observed that the surface water 

carried with it considerable amounts of suspended fine silt particles and organic plant materials, 

including rotten leaves and plant debris. The filter bed made up of coarse sand and gravels retained 

much of the suspended silt. It was also observed that timely manual cleaning of the pit, namely, the 

removal of the silt and plant debris, was an important activity to reduce any blockage of the discharge 

pipe inlets. During the monitoring, on some occasions, the water meters were observed as being 

clogged by plant debris, and thus to overcome this problem, we installed a wire mesh at each flow 

meter inlet. 

For the long-term success of DWRS structures, removal of any suspended material through 

filtering is important before runoff water is discharged into wells to avoid potential clogging of 

aquifer fractures. Clogging has been observed a significant issue in Australia when stormwater runoff 

and treated municipal waste-water effluent are injected into aquifers to produce water for irrigation 

(NRMMC, EPHC, NHMRC 2009) [19]. Baveye et al. (1998) [20] reported that the main problem in 

infiltration systems for enhancing recharge of groundwater is clogging of the infiltrating surface 

(basin bottoms, walls of trenches and vadose-zone wells, and well-aquifer interface in recharge 

wells), resulting in reduced infiltration rates. Silt removal is done mechanically with scrapers, front-

end loaders, and graders, or manually with shovels and rakes. 

5.3.2. Costs and Benefits of DWRS 

The costs of establishing a DWRS without and with a flow meter were shown in Table 3 to be 

INR 6050 and 10,550 (USD 86 and 151), respectively. Benefits of additional water were determined to 

be 2.36 INR/m3 (0.034 USD/m3) (Dashora et al. 2019) [16] in this same catchment using the net value 

of increased production per cubic metre of additional water available from check dam recharge. 

Assuming the life of the DWRS infrastructure was either 10 or 30 years, and following the procedure 

laid out by Dashora et al. (2019) [16] using the same discount rate of 8%, we found that an annual 

volume of 382 or 250 m3, respectively, would need to be recharged and used productively for 

agricultural irrigation in order to warrant the capital expense (and including flow meter (666 or 416 

m3)). These calculated economic recharge volumes are under-estimates because they neglect annual 

maintenance costs, such as scraping out the pit. The lowest of these numbers exceeds the maximum 

annual recharge recorded in 2018 and suggests that none of the DWRSs evaluated would be 

economically feasible (i.e., present value of benefits exceed the present value of costs). The mean 

recharge in 2018 was 32 m3, suggesting that, if this was representative of mean annual recharge, the 

B/C ratio would be between 0.05 and 0.13 depending on the assumed life of the infrastructure and 

absence or presence of meters. Even the DWRS harvesting from a large catchment (V28) failed to 

reach this feasibility criterion. This was quite a different result than found for check dams that had a 
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benefit/cost ratio of 4.1 [16], and therefore remain a preferred approach to recharge enhancement in 

this area. 

 

Figure 9. Recharge pit with filters. and clogging of the flow meter inlet. 

6. Concluding Remarks 

In this study, we evaluated the effect of direct well recharge structures (DWRS) on the 

groundwater level rise over the monsoon season and the quality of water in recharged wells as 

compared to nearby control wells. This was the first micro scale (farm level) evaluation in a semi-arid 

region of Rajasthan state, which is facing the problem of groundwater over-exploitation. Water 

quality observations were made to determine whether groundwater quality was protected. 

The volume of water recharged through DWRS into individual wells during the monsoon season 

varied with catchment area, rainfall amount, and intensity, and in 2018, in three wells where water 

flow meters did not clog, these were 27, 81, and 176 m3 per well. Using the same ratio of recharge to 

rainfall over the catchment area, in the same year, the other eight wells were estimated to recharge 

between 2 and 19 m3. The value of average recharge for all the wells monitored in 2018 was 32m3. The 

mean rise in well water levels over the monsoon season was higher in wells with DWRS than in 

nearby control wells, but not significantly different. The study revealed that some wells with DWRS 

have shown a larger increase in water level than in control wells, and this was particularly true for 

one well (V28) that accounted for 50% of the total recharge to 11 wells in 2018.  

Similarly, monitoring of water quality revealed no significant difference between DWRS and 

control wells for pH, EC/TDS, turbidity, or fluoride. The presence of E. coli in DWRS wells was higher 

than in control wells, however, E. coli exceeded drinking water guidelines in all sampled wells. Values 

of pH, EC/TDS, and F decreased in DWRS and control wells as each monsoon progressed, whereas 

the turbidity of wells with DWRS increased slightly. The turbidity and E. coli values suggest that 

DWRS should not be attempted in or near wells that could be used for drinking water supplies.  

The high proportion of both DWRS and control wells that failed to meet BIS criteria for drinking 

water suggests that well-head protection measures are needed, such as parapet walls and covers, in 

order to reduce these contaminant loads for wells that are used as a source of drinking water. As a 

result of this study, trials are commencing to monitor the changes in water quality due to well-head 

protection measures in the treated wells and control wells, in order to provide the evidence base 

necessary to inform appropriate actions by the village communities.  

The volume of water recharged by DWRS was too small to warrant the expenditure on DWRS, 

even for the system with a very large catchment, on the basis of a present value analysis and assuming 

the asset life of the DWRS system is between 10 and 30 years and neglecting maintenance costs.  

It is anticipated that pit filters would need to be removed, cleaned, and replaced periodically to 

enable DWRS to remain operational. Diverting the first flush runoff in a monsoon before water enters 

the filter pit, until after vegetation cover is established and turbidity reduces, would be expected to 

reduce maintenance needs at the cost of a reduced harvest. It is also expected that improved 
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watershed management such as contour banking will improve quality of runoff and reduce the 

needed frequency of desilting of filters. It may also be a more effective form of increasing recharge 

than DWRS, but it would be difficult to measure recharge increase as a result of such dispersed 

recharge methods. 
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