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Abstract

The functional dynamics of microbial communities are largely responsible for the clean-up of hydrocarbons in the
environment. However, knowledge of the distinguishing functional genes, known as the metabolic footprint, present in
hydrocarbon-impacted sites is still scarcely understood. Here, we conducted several multivariate analyses to
characterise the metabolic footprints present in a variety of hydrocarbon-impacted and non-impacted sediments.
Non-metric multi-dimensional scaling (NMDS) and canonical analysis of principal coordinates (CAP) showed a clear
distinction between the two groups. A high relative abundance of genes associated with cofactors, virulence, phages
and fatty acids were present in the non-impacted sediments, accounting for 45.7 % of the overall dissimilarity. In the
hydrocarbon-impacted sites, a high relative abundance of genes associated with iron acquisition and metabolism,
dormancy and sporulation, motility, metabolism of aromatic compounds and cell signalling were observed,
accounting for 22.3 % of the overall dissimilarity. These results suggest a major shift in functionality has occurred
with pathways essential to the degradation of hydrocarbons becoming overrepresented at the expense of other, less
essential metabolisms.
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Introduction specific microbial taxa as biological indicators [15-18];

however, the key distinguishing metabolisms associated with

Ecosystem functioning is highly dependent on microbial
communities[1-3]. These communities are largely defined by a
set of metabolic pathways, and are generally thought to be
habitat specific [4], providing a link between the biology of a
given community and the surrounding environment [5].
Environmental change can lead to a major shift in the structure
and function of the inhabiting microbial consortia [6-8].
Physiological adaptations of microbes have been shown to be
highly specific, allowing for the discrimination between
chemical stressors [9]. The identification of defining metabolic
pathways of a given ecosystem, known as metabolic footprints,
allows for a greater understanding on how the microbial
consortia are adapting and responding to environmental
change [10,11].

Microorganisms are highly responsive to environmental
stress, due to a variety of evolutionary adaptations and
physiological mechanisms [12]. The innate ability of microbes
to respond and adapt to the world around them means they are
often used as biological indicators [13], and subsequently for
bioremediation [14]. Many studies have investigated the use of
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hydrocarbon contamination are less well characterized than the
taxa. Previous reports have shown that metagenomes are
highly predictive of metabolic potential within an ecosystem [3].
Furthermore, previous studies have shown that microbial
communities often respond at a metabolic level before any
disturbance is seen at the taxonomic level [17]. Therefore, to
gain comprehensive insight into an ecosystem’s functional
response to environmental change, the underlying metabolic
footprints should be elucidated.

Metabolic footprints is a term used to describe an ensemble
of biological pathways that typically occur with a combination of
environmental variables [10,19]. Due to the great diversity of
metabolic pathways present within microbial communities, the
determination of a metabolic footprint requires the use of
multivariate analysis. A recent study by Gianoulis et al. [10]
used multivariate canonical correlation analysis to describe the
metabolic footprints associated with different marine
environments. These metabolic footprints were thought to arise
from differences in evolutionary strategies required to cope with
unique environmental variables [10]. Similarly, Dinsdale et al.
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[4] used canonical correlations to discriminate between 9
discrete ecosystems.

Typically metabolic footprint studies employ constrained
ordination tools, such as canonical discriminant analysis (CDA)
and principal component analysis (PCA) [4,20,21], to explore
the metabolic footprints of an environment. However, these
methods are restricted in that PCA cannot be performed on
datasets containing more variables (e.g. taxa/metabolic
processes) than observations (samples), and CDA should be
performed on a dataset where there are at least three times as
many observations than variables [22]. This limitation results in
the need to reduce the number of variables prior to analysis
[20]. Microbial communities, however, comprise intricate
networks whereby a large number of individuals and metabolic
processes are important in the overall ecosystems functioning
[23]. Thus, the community as a whole should be considered
when categorising a given environment.

Canonical analysis of principal coordinates (CAP) is thus a
constrained multivariate analysis, that uses both ordination and
discrimination function techniques, but, unlike CDA and PCA it
better allows for the characterisation of whole communities as it
is not limited by observation size due to its testing via
permutation [24]. Furthermore, canonical analysis of principal
coordinates (CAP) is highly constrained to the hypothesis,
allowing for discriminations to be made in strongly correlated
variables, such as functional processes [25]. PERMANOVA on
the other hand is affected by other variables that may be
present within a given dataset, making it less able to detect
differences in less abundant functional subsystems [46]. CAP
analysis has been used in several studies to determine how
microbial communities respond to various environmental
conditions [25-28]; however, to date, it has not been employed
to generate and explore metabolic footprints for impacted
environments. Thus, we sought to construct a metabolic profile
of microbial communities responding to various forms of
environmental impacts, in order to generate metabolic
footprints using CAP.

The long-lasting toxicity of xenobiotics makes their
metabolism by microbial communities widely studied [29].
Petroleum hydrocarbons are a common target for
bioremediation because they are widespread and persistent
[7,30-33]. While the taxa and environmental conditions for
optimal degradation of hydrocarbons are well established
[34-37], the effectiveness of a natural community to
bioremediate is less well understood [38].

Advances in metagenomic technologies have allowed for the
direct sequencing of environmental microbial communities [39],
greatly increasing our potential to understand the metabolic
processes being undertaken by the indigenous microbial
communities. A recent study by Yergeau et al. [40] used
metagenomic sequencing technologies to characterise the
structure and function of an active soil microbial community in a
hydrocarbon contaminated Arctic region. However, this study
primarily focused on the taxa present, and not the defining
metabolic activities associated with hydrocarbon
contamination. Thus, knowledge about the distinguishing
functional genes present in hydrocarbon contaminated
environments is still lacking.
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The aim of the present study was to compare hydrocarbon-
impacted sites to non-impacted sites, and provide insight into
the key metabolic functions present following hydrocarbon
impact, thus elucidating the metabolic footprints for
hydrocarbon contamination. The robustness of these metabolic
footprints were assessed with the inclusion of metagenomes
from a variety of geographical locations and substrate types,
experiencing different contamination events.

Materials and Methods

Data Collection

To determine the functionality of microbial communities
inhabiting hydrocarbon-impacted and non-impacted
environments, publicly available datasets were chosen from the
MetaGenomics Rapid Annotation using Subsystem Technology
(MG-RAST) pipeline version 3.0 [41]. Due to constraints in the
database, a total of 4 datasets were used to represent
hydrocarbon-impacted environments, while 5 datasets were
used for non-impacted environments (Table S1 in File S1).
BLASTX was performed on all datasets, with a minimum
alignments length of 50 bp and an E-value cut-off of E<1x10%
[4], to identify hits to the subsystems database.

Data Analysis

To statistically investigate the differences between
metagenomes  from  hydrocarbon-impacted  sites to
metagenomes from non-impacted sites, heatmaps were
generated containing the relative proportion of hits to the
subsystem database in MG-RAST. Heatmaps had been
standardized and scaled to account for differences in
sequencing effort and read lengths. Statistical analysis was
conducted on square-root transformed data to reduce the
impact of dominant metabolisms using the software package
PRIMER 6 for Windows (Version 6.1.13, Primer-E, Plymouth)
[42]. To generate a robust set of metabolic footprints, the
generalized cellular functions, termed level 1, and the
subsystem, termed level 2 hierarchical classifications were
used to determine the overall differences in metabolic potential
[4,10].

To determine whether there was any loss of information
between the levels of resolution for metabolism, the program
RELATE in the PRIMER package was used to calculate the
Spearman rank correlation between hierarchical levels 1 and 2
[43]. Differences in the overall metabolic potential between
hydrocarbon-impacted and non-impacted sediments were
analysed using the PERMANOVA+ version 1.0.3 3 add-on to
PRIMER [44,45]. Non-metric Multi-Dimensional scaling
(NMDS) of Bray-Curtis similarities was performed as an
unconstrained ordination method to graphically visualise
multivariate patterns in the metabolic processes associated
with  hydrocarbon-impacted or non-impacted sediment
metagenomes. Metagenomes were further analysed using
canonical analysis of principal coordinates (CAP) on the sum of
squared canonical correlations as a constrained ordination and
discrimination method, to determine whether there was any
significant difference between metabolic processes according
to hydrocarbon impact. The a priori hypothesis that the
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Figure 1. Comparison of hydrocarbon-impacted samples (green) and non-impacted samples (blue). This NMDS ordination
is derived from a Bray-Curtis similarity matrix calculated from the square-root transformed abundance of DNA fragments matching
the subsystems database, level hierarchical system 1 (BLASTX E-value < E<1x10%). The light green polygons depict significantly
different groupings (P < 0.05) as calculated by similarity profile (SIMPROF) analysis in PRIMER v6. See Table S1 in File S1 for the

provenance of samples included in this analysis.
doi: 10.1371/journal.pone.0081910.g001

metabolisms between the two groups were different was tested
in CAP [45] by obtaining a P value using 9999 permutations.
Based on RELATE results, CAP ordinations were generated
using hierarchy level 1 for metabolism.

Where significant differences were found using CAP, the
percent contribution of each metabolism to the separation
between the hydrocarbon-impacted and non-impacted samples
were assessed using similarity percentage (SIMPER) analysis
[43]. The resulting top 90 percent of all metabolisms were used
to determine the shifts in metabolic potential between the
groups. To determine those metabolisms that were consistently
contributing most to the overall dissimilarity between the
hydrocarbon-impacted and non-impacted groups, the ratio of
the average dissimilarity to standard deviation was used. A
dissimilarity/standard deviation (Diss/SD) ratio of greater than
1.4 was used to indicate key discriminating metabolisms [46].

To assess the robustness of the metabolic footprints
generated using this method, three common forms of
environmental impact (agricultural, hydrocarbon and
wastewater) from a diverse range of geographical locations
and substrate types were compared (Table S1 in File S1).
Firstly, heatmaps were generated as above and the square-
root transformed data was analysed using Primer 6 for
windows. The CAP on the sum of squared canonical
correlations [44] was performed to graphically illustrate the
multivariate patterns of metabolism associated with these
impacted environments. Significant trends in metabolic
processes at each site were determined using the sum of
squared canonical correlations. The a priori hypothesis that the
metabolisms among the four groups were different was tested
using 9999 permutations. Where statistically significant
differences were shown using CAP analysis, similarity
percentage (SIMPER) analysis [43] was conducted as above to
determine the main metabolisms driving the dissimilarity
between contamination types.
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Results

RELATE analysis revealed a Spearman rank coefficient of
0.9 for the comparison between hierarchical levels 1 and 2,
indicating similar results were seen irrespective of hierarchical
level. Thus, to create a generalised, set of metabolic footprints,
all further analyses were conducted on hierarchical level 1.

NMDS analysis revealed a clear separation of data between
the hydrocarbon-impacted and non-impacted sediment
metagenomes (Figure 1). CAP analysis confirmed this
separation showing significant differences between the two
groups (P = 0.008). A strong association between the
multivariate data and the hypothesis of metabolic difference
was indicated by the large size of their canonical correlations
(0% = 0.83). The first canonical axis (m = 1) separated the
sample types with no overlap (Figure 2). Cross validation of the
CAP model showed all samples were correctly classified to
either hydrocarbon-impacted or non-impacted sediments,
hence with a zero mis-classification rate.

SIMPER analysis revealed that the main metabolic
processes contributing to the dissimilarity in the non-impacted
sediments, when compared to the hydrocarbon-impacted
sediments, were genes associated with cofactors, virulence,
phages and fatty acids, together accounting for 45.7 % of the
overall dissimilarity. Genes associated with protein metabolism,
carbohydrates, amino acids, clustering-based subsystems,
potassium  metabolism, respiration, RNA metabolism,
nucleosides and cell wall were also higher in the non-impacted
site compared to the impacted sites, collectively contributing to
9.9% of the overall dissimilarity (Table 1 & S2 in File S1).

Conversely, the main metabolic processes associated with
the hydrocarbon-impacted sediments were iron acquisition and
metabolism, dormancy and sporulation, motility, metabolism of
aromatic compounds and cell signalling accounting for 22.3 %
of the overall dissimilarity between the two groups (Table 1).
Genes associated with nitrogen, phosphorus and sulfur
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Figure 2. Comparison of hydrocarbon-impacted samples (green) and non-hydrocarbon-impacted samples (blue). CAP
analysis (using m = 1 principal coordinate axes) is derived from the sum of squared correlations of DNA fragments matching the
subsystems database, level hierarchical system 1 (BLASTX E-value < E<1x10%). Significance P = 0.008 and the first axis explained
5? = 0.83 of the total variation. See Table S1 in File S1 for the provenance of samples included in this analysis.

doi: 10.1371/journal.pone.0081910.g002

metabolism were also higher in the hydrocarbon impacted site,
collectively accounting for 2.5 % of the dissimilarity to the non-
impacted sites. Regardless of percent contribution, however, all
metabolic processes, with the exception of secondary
metabolism and photosynthesis, are likely good discriminators
for hydrocarbon-impacted or non-impacted sediments, as
indicated by a dissimilarity/standard deviation ratio (Diss/SD) of
greater than 1.4 [46] (Tables 1 & S2 in File S1).

To determine if the metabolic footprints could be
distinguished  between  contaminant types, multiple
contamination types from diverse substrate types were
compared (Table S1 in File S1). CAP ordination revealed a
clear separation of data among the different impacted
environments based on metabolic potential (Figure 3); (P =
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0.0005) (Table 2). A strong association was seen between the
multivariate data and the hypothesis of metabolic differences,
indicated by the large size of their canonical correlations
(hierarchial level 1: 3% = 0.88). Cross validation of the CAP
model showed 79% of samples overall were correctly classified
to their impacted environments. More specifically, 75% and
100% of hydrocarbon and agricultural-impacted samples were
correctly allocated, while only 50% and 0% of wastewater and
pristine samples, respectively, were correctly classified (Table
2).

Based on CAP ordinations as well as mis-classification rates,
SIMPER analysis was used to determine distinguishing
metabolic processes for the hydrocarbon and agricultural-
impacted sites only. SIMPER analysis revealed the main
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Table 1. Contribution of metabolic hierarchical system level 1 to the dissimilarity of the hydrocarbon-impacted and non-

hydrocarbon-impacted metagenomes.

Avg. Abundance

Metabolic Processes Hydrocarbon-Impacted Non-Impacted Diss/SD Cum %
Cofactors, Vitamins, Prosthetic Groups, Pigments 0.1 0.19 2.24 11.43
Virulence, Disease and Defence 0.1 0.19 2.24 22.86
Phages, Prophages, Transposable elements, Plasmids 0.1 0.19 2.24 34.29
Fatty Acids, Lipids, and Isoprenoids 0.1 0.19 2.24 45.71
Iron acquisition and metabolism 0.84 0.79 1.63 52.68
Dormancy and Sporulation 0.71 0.68 1.49 57.48
Motility and Chemotaxis 0.83 0.81 1.58 61.17
Metabolism of Aromatic Compounds 0.87 0.85 1.73 64.81
Secondary Metabolism 0.76 0.75 1.16 68.32
Regulation and Cell signalling 0.86 0.83 1.86 71.55
Protein Metabolism 0.94 0.96 3.42 74.53
Carbohydrates 0.97 1 3.5 77.49
Nitrogen Metabolism 0.84 0.82 1.74 80.17
Photosynthesis 0.69 0.69 1.3 82.75
Amino Acids and Derivatives 0.96 0.98 2.89 85.24
Clustering-based subsystems 0.98 0.99 1.96 87.06
Miscellaneous 0.94 0.96 3.14 88.7

Hydrocarbon-impacted samples include a hydrocarbon-impacted foreshore and a biopile from Australia [40; Smith et al., unpublished data], and 2 biopiles from the Arctic

region [40], while the non- impacted samples included 2 marine sediment samples from Australia and 3 sediment samples from the Coorong [50]. Average dissimilarity

between the two groups is 1.78 % (Table S1 in File S1). Only metabolisms that were consistent (i.e. Diss/SD > 1.4) are shown here. The larger value in each case (i.e. the

potential indicator of that condition) is shown in bold.

Cut-off percentage = 90% of the total dissimilarity, Diss=dissimilarity; SD=Standard Deviation; Cum %=cumulative percentage of contribution to overall dissimilarity, Avg.

Abundance values are reported for square-root transformed data
doi: 10.1371/journal.pone.0081910.t001

metabolic processes contributing to the dissimilarity in the
agriculturally-impacted environments when compared to the
hydrocarbon-impacted environments were genes associated
with cofactors, virulence, phages and fatty acids, collectively
accounting for 48.4% of the overall dissimilarity between these
two types. Genes associated with protein metabolism,
carbohydrates, amino acids and clustering-based subsystems
were also higher in the agricultural-impacted sites when
compared to hydrocarbon-impacted sites, collectively
contributing to another 9.06% of the overall dissimilarity
(Tables 3 & S3 in File S1).

Alternatively, the main metabolic processes associated with
hydrocarbon impact were genes related to iron acquisition and
metabolism, dormancy, aromatic compound degradation, and
motility, collectively contributing to 17.1% of the overall
dissimilarity (Table 3 & S3 in File S1). Genes associated with
nitrogen metabolism and regulation were also higher in the
hydrocarbon- impacted sites when compared to agricultural
impacted sites, collectively accounting for 4.9% (Table 3 & S3
in File S1). Furthermore, all metabolic processes, with the
exception of photosynthesis, secondary metabolism and
potassium metabolism were consistently distinguishable
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between agricultural and hydrocarbon-impacted environments,
as indicated by a Diss/SD of greater than 1.4 [46].

Discussion

Microbial communities are known to respond to hydrocarbon
contamination at the functional level, whereby a shift in
metabolic potential can be observed [14,47,48]. Thus, a major
goal in the study of bioremediation is to identify the key
metabolic processes being undertaken by the inhabiting
microbial communities [38,49]. Here, we report the first
metagenomic study to identify the overall metabolic footprints
associated with discriminating hydrocarbon-impacted versus
non-impacted sediment samples.

The metabolic footprints of hydrocarbon degradation
RELATE analysis showed a significant correlation (Rho:
0.773; P < 0.002) between hierarchial level 1 and 2, indicating
there is no significant loss of information between the different
levels of resolution. This result is consistent with previous
studies that have shown changes to environmental conditions
caused by anthropogenic disturbances have led to major shifts
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Figure 3. Metabolic comparison of a variety of impacted environments. (Table S1 in File S1).

CAP analysis (using m = 2 principal coordinate axes) is derived from the sum of squared correlations of DNA fragments matching
the subsystems database, level hierarchical system 1 (BLASTX E-value < E<1x10%). Significance P = 0.0005 and the first axis
explained &2 = 0.88 of the total variation.

doi: 10.1371/journal.pone.0081910.g003

Table 2. Results of CAP analysis (using m = 2 principal coordinate axes, explaining 88 % of total variation) testing the
hypothesis that contaminant types differ for Level 1 metabolisms associated with impacted metagenomes.

Contaminant Hydrocarbon Agricultural Pristine Wastewater Total
Result

Allocation Success % 75 100 0 50 79
Ratio of correct:total 3:4 77 0:1 1:2 11:14
Mis-classified to: Wastewater NA Hydrocarbon Wastewater

Hydrocarbon-impacted samples include a hydrocarbon-impacted foreshore and a biopile from Australia [40; Smith et al., unpublished data], and 2 biopiles from the Arctic
region [40], while the non- impacted samples included 2 marine sediment samples from Australia and 3 sediment samples from the Coorong [50]. Average dissimilarity
between the two groups is 1.78 % (Table S1 in File S1). Only metabolisms that were consistent (i.e. Diss/SD > 1.4) are shown here. The larger value in each case (i.e. the
potential indicator of that condition) is shown in bold.

Cut-off percentage = 90% of the total dissimilarity, Diss=dissimilarity; SD=Standard Deviation; Cum %=cumulative percentage of contribution to overall dissimilarity, Avg.
Abundance values are reported for square-root transformed data

Significance of trace and delta statistics was P = 0.0005 and first canonical axis alone explained 80 % of total variation. NA = not applicable because of no mis-
classifications.

doi: 10.1371/journal.pone.0081910.t002

in microbial community functionality that become evident 0.008) between the hydrocarbon-impacted and non-impacted
across multiple levels of resolution [6,8,50]. sediments (Figures 1 & 2). The similarities between

Unconstrained (NMDS) and constrained (CAP) multivariate constrained and unconstrained ordinations likely reflect the
analyses, both showed clear separation of data (P-value = hydrocarbon impact. This is supported by the CAP analysis,
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Table 3. Contribution of metabolic hierarchical system 1 to the dissimilarity of the hydrocarbon and agricultural impacted

environments.

Avg. Abundance

Metabolic Processes Hydrocarbon- impacted Agricultural- impacted Diss/SD Cum %
Cofactors, Vitamins, Prosthetic Groups, Pigments 0.08 0.19 1.67 12.09
Virulence, Disease and Defence 0.08 0.19 1.67 24.19
Phages, Prophages, Transposable elements, Plasmids 0.08 0.19 1.67 36.28
Fatty Acids, Lipids, and Isoprenoids 0.08 0.19 1.67 48.38
Iron acquisition and metabolism 0.84 0.79 1.76 54.29
Dormancy and Sporulation 0.71 0.67 1.4 58.92
Metabolism of Aromatic Compounds 0.87 0.84 1.82 62.37
Motility and Chemotaxis 0.83 0.8 1.67 71.84
Protein Metabolism 0.93 0.96 3.27 74.59
Carbohydrates 0.97 0.99 3.44 77.27
Nitrogen Metabolism 0.84 0.81 1.84 82.37
Regulation and Cell signalling 0.85 0.83 1.81 84.78
Amino Acids and Derivatives 0.96 0.98 2.35 86.73
Clustering-based subsystems 0.97 0.99 1.75 88.4

Average dissimilarity between the two groups is 2.08 %. Only metabolisms that were consistent (i.e. Diss/SD > 1.4) are shown here. The larger value in each case (i.e. the

potential indicator of that condition) is shown in bold.

Cut-off percentage = 90% of total dissimilarity, Diss=dissimilarity; SD=Standard Deviation; Cum %=cumulative percentage of contribution to overall dissimilarity, Avg.

Abundance values are reported for square-root transformed data
doi: 10.1371/journal.pone.0081910.t003

which shows that the majority of the variance is expressed on
just the first canonical axis, with a squared canonical
correlation (3%) of 0.83. A recent hydrocarbon-based study
used high throughput functional gene array technology to show
that all microbial samples with hydrocarbon contamination
grouped together indicative of similar functional patterns [31].
Furthermore, it has been shown that differences in metabolic
processes could be used to predict the biogeochemical status
of the environment [4]. Thus, the clear separation between data
points in the NMDS and CAP plots indicates the hydrocarbon-
impacted sediment samples can be readily distinguished even
at this coarse level of metabolic resolution, despite differences
in geographical location. Furthermore, the same separation
seen in unconstrained and constrained ordination methods
demonstrates that the data points are not simply conforming to
the more hypothesis-driven CAP analysis.

The majority of the separation between the hydrocarbon-
impacted and non-impacted groups was explained by a higher
relative abundance of genes associated with cofactors,
virulence, phages and fatty acids, collectively accounting for
nearly half of the dissimilarity in the non-impacted sediment
samples when compared to the impacted sites (Table 1).
Those microbes capable of surviving following hydrocarbon
impact become dominant, eventually leading to a major shift in
the structure of the community [32,51]. This shift in structure is
generally coupled with a shift in functionality, whereby previous
studies have shown a significant decrease in the overall
microbial functional diversity [6,31,52]. Thus, the high degree of
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dissimilarity driven by the non-impacted sediments, suggests
the major factor causing the differences between the two
groups can be explained by a shift in functionality, which has
led to the reduction in non-essential metabolisms following
hydrocarbon impact.

The reduction in non-essential metabolic pathways was
coupled with a subsequent increase in pathways associated
iron acquisition and metabolism, dormancy and sporulation,
motility, metabolism of aromatic compounds and cell signalling
(Table 1). These pathways have all previously been linked to
stressed environments [6,53-55], suggesting the microbial
communities inhabiting the hydrocarbon-impacted
environments are expending more energy on pathways
essential to the utilization of carbon and survival.

The degradation of hydrocarbons is often hindered by the
requirement to come into direct contact with hydrocarbon
substrates [56]. Therefore, many microorganisms capable of
catabolising hydrocarbons have shown chemotaxis abilities
allowing them to move towards, and subsequently degrade the
contaminant at a higher rate [57-59]. This degradation ability is
then often further enhanced by the secretion of biosurfactants,
which increase the availability of hydrocarbons in the soil [60].
Thus, the increase in motility and chemotaxis genes suggest
that the microbial communities are increasing metabolic
pathways that will allow for direct contact with hydrocarbon
compounds (Table 1).

Following direct contact, the microbial communities must
have genes that allow for the catabolism of hydrocarbons.
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Petroleum hydrocarbons are comprised of a complex mixture
of compounds including cycloalkanes, alkanes, polycyclic
aromatic hydrocarbons, aromatics and phenolics [61]. Previous
studies have shown an increase in genes associated with the
breakdown of these compounds in hydrocarbon-contaminated
environments [31,62]. Thus, a higher relative abundance of
metabolism of aromatic compound genes in the hydrocarbon-
impacted sediments when compared to the non-impacted
sediments is consistent with a community optimising its ability
to utilise hydrocarbon as an energy source (Table 1).

Following hydrocarbon contamination, microbial communities
must adapt to survive the sudden increase in carbon availability
and subsequent loss of limiting nutrients such as nitrogen and
phosphorus and in some cases iron [14,55,63]. As a result, an
increase in genes associated with nitrogen, phosphorus and
iron metabolism have been shown, allowing for effective
scavenging mechanisms (Smith et al., unpublished data). Our
results indicate there may have been an increased need for
nitrogen, phosphorus and iron metabolites in the hydrocarbon-
impacted sediments when compared to non-impacted
sediments. Furthermore, genes associated with cofactors,
amino acid pathways, carbohydrates and protein metabolisms
were all reduced in the hydrocarbon-impacted sites (Tables 1 &
S2 in File S1). Taken together, these results suggest that the
microbial communities are expending most of their energy
scavenging key nutrients needed for bioremediation of
hydrocarbons, leading to the subsequent decrease in pathways
associated with more complex carbohydrate and protein
metabolisms and growth.

Contaminant types

When the hydrocarbon-impacted environments were
compared to metagenomes experiencing different contaminant
types from a wide range of habitats, CAP analysis showed a
significant difference (P-value = 0.0005; Table 2) between the
relative abundances of metabolisms across these impacted
environments (Figure 3). In particular, hydrocarbon and
agricultural-impacted environments were found to have the
highest allocation success, 75% and 100% respectively, when
compared to wastewater and pristine sites, 50% and 0%,
respectively (Table 2). The higher allocation success for
hydrocarbon and agricultural impacted sites was likely driven
by the larger sample size for these environments. Furthermore,
as the metagenomic samples included were from a variety of
substrate types and geographical locations (Table S1 in File
S1), our results indicate that the metabolic footprints created
due to a contamination event, were more significant when
compared to differences created based on geographical
location and physico-chemical conditions (Table S4 in File S1).

SIMPER analysis revealed the main distinguishing metabolic
processes associated with agricultural impacted environments
were genes associated with cofactors, virulence, phages, fatty
acids, protein metabolism, carbohydrates, amino acids and
clustering based subsystems (Tables 3 & S3 in File S1),
collectively accounting for 57.4% of the overall dissimilarity
from the hydrocarbon-impacted environments. Agricultural
practices are known to increase the deposition of nutrients into
the surrounding environment [64,65]. Previous studies have

PLOS ONE | www.plosone.org
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shown that an increase of nutrients via agricultural impact can
lead to an increase in microbial productivity [8]. As previously
discussed, hydrocarbon impact has been shown to lead to a
reduction in genotypic diversity, whereby only the essential
metabolisms remain [6,31]. This is thought to be due to the
toxic effect of hydrocarbon pollution which in turn can lead to a
community exerting more energy for survival than on growth
and productivity [66]. Thus, an increase in genes associated
with  protein metabolism in the agricultural impacted
environments (Table 3) is consistent with a more active
community when compared to the hydrocarbon-impacted
environments [67].

SIMPER analysis also revealed the main distinguishing
metabolic processes associated with hydrocarbon-impacted
environments was a higher relative abundance of genes
associated with iron acquisition and metabolism, dormancy,
aromatic compound degradation, motility, nitrogen metabolism
and regulation, collectively contributing to 22.1% of the overall
dissimilarity (Table 3). These results are consistent with
SIMPER results when comparing hydrocarbon-impacted and
non-impacted environments, indicating the metabolic footprints
for contaminant types are consistent even at this coarse level
of metabolic resolution. Furthermore, hydrocarbon-impacted
and  agricultural-impacted  metabolic  footprints  were
distinguishable irrespective of differences in substrate type,
physico-chemical conditions and geographical location. Thus,
CAP analysis suggests these impacted environments have
acquired microbial communities with differing metabolic
functions, which have allowed for our ability to distinguish
between contaminant types.

Although some pathways contributed to the dissimilarity
between the two groups more than others, all metabolisms with
the exception of photosynthesis and potassium metabolism (at
the 90% cut off percentage) were identified as being consistent
distinguishing metabolisms (Tables 1, 3, S2 & S3 in File S1).
This suggests all are metabolic footprints of their given
environment, indicating the overall metabolic signature is
different between groups. In nature, microbial communities are
typically composed of mixed communities characterised by an
intricate network of metabolic processes [23]. Consequently,
our results indicate a complete overview of the metabolites
present within the inhabiting microbial consortia is needed to
effectively characterise an environment.

Conclusion

Our approach indicates the hydrocarbon-impacted sediment
samples can be distinguished from non-impacted sediments
based on their metabolic signatures despite differences in
geographical location. These signatures include metabolisms
associated with iron acquisition and metabolism, dormancy and
sporulation, motility, metabolism of aromatic compounds, cell
signalling and nitrogen, phosphorus and sulfur metabolism. Our
analysis also indicated that the majority of the dissimilarity was,
however, due to a reduction of functional genes associated
with cofactors, virulence, phages and fatty acids. Further to
this, our approach illustrates the ability to distinguish between
contaminant types from a wide range of habitats, with a clear
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separation in data points associated with either hydrocarbon or

agricultural

contamination. Here we provide the first
metagenomic study to elucidate the metabolic footprints
associated with hydrocarbon impact. Furthermore, the

differentiation between hydrocarbon contaminants, for example
long chain hydrocarbons compared to aromatics, is needed to
fully determine the effects of hydrocarbon impacts on the
environment.

Supporting Information

File S1. Supporting Information.
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