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Abstract: Intestinal dysbiosis has recently become known as an important driver of gastrointestinal
and liver disease. It remains poorly understood, however, how gastrointestinal microbes bypass
the intestinal mucosa and enter systemic circulation to enact an inflammatory immune response.
In the context of chronic liver disease (CLD), insults that drive hepatic inflammation and fibrogenesis
(alcohol, fat) can drastically increase intestinal permeability, hence flooding the liver with gut-derived
microbiota. Consequently, this may result in exacerbated liver inflammation and fibrosis through
activation of liver-resident Kupffer and stellate cells by bacterial, viral, and fungal antigens transported
to the liver via the portal vein. This review summarizes the current understanding of microbial
translocation in CLD, the cell-specific hepatic response to intestinal antigens, and how this drives
the development and progression of hepatic inflammation and fibrosis. Further, we reviewed
current and future therapies targeting intestinal permeability and the associated, potentially harmful
anti-microbial immune response with respect to their potential in terms of limiting the development
and progression of liver fibrosis and end-stage cirrhosis.

Keywords: fibrosis; cirrhosis; alcoholic liver disease; NAFLD; NASH; intestinal permeability; bacterial
translocation; innate immunity

1. Introduction

The progressive accumulation of extracellular matrix (ECM) in the liver, termed fibrosis, is the
result of chronic liver damage due to a variety of insults: viral hepatitis (hepatitis B virus (HBV) and
hepatitis C virus (HCV)), alcohol or fatty liver disease, drug-induced liver damage, or autoimmunity.
While the prevalence of HCV- and HBV-mediated fibrosis has been on the decline since the advent
of direct acting antivirals (DAAs) for HCV and improved vaccination/education strategies for HBV,
other etiologies are on the rise [1]. The prevalence of non-alcoholic fatty liver disease (NAFLD) and
its inflammatory form, non-alcoholic steatohepatitis (NASH), have increased in step with the obesity
epidemic and are significant contributors to fibrosis, particularly in Western countries [1]. Indeed,
while the prevalence of viral hepatitis dropped between 2000 and 2017, alcoholic cirrhosis increased by
16% and NASH cirrhosis by 33% [1].

The term gut–liver axis defines a bidirectional interaction between the gastrointestinal tract and
the liver [2]. While the liver contributes bile acids, IgA, and antimicrobial peptides to the gut via
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the biliary tract, the portal vein transports gastrointestinal metabolites from the gut into the liver [2].
In the absence of disease, the mucosal barriers within the intestinal tract remain intact, preventing the
transport of luminal microbes into the liver. In chronic liver disease (CLD) however, the intestinal
barrier is impaired as a result of lifestyle choices (e.g., alcohol or obesity) or portal hypertension
secondary to advanced fibrosis/cirrhosis, resulting in the translocation of microbes and their products
into the blood.

Translocation of gut-derived antigens into the portal circulation enacts a potent inflammatory
response in the liver, which has been well described in alcoholic and fatty liver disease, as well as
liver cirrhosis [2]. These antigens not only drive hepatic inflammation and progressive fibrosis, but
also contribute to mortality in end-stage liver disease due to their role in secondary infections such as
spontaneous bacterial peritonitis (SBP) and hepatic encephalopathy [3]. While intestinal permeability is
not the primary driver of liver inflammation and fibrosis, it has become evident that the inflammatory
response to microbial antigens as a result of increased intestinal permeability strongly influences the
progression of disease.

This review will focus on the multi-systemic nature of the gut–liver axis in health and disease.
We have described (1) the intestinal barriers and mechanisms by which they become impaired in
chronic liver disease, (2) the contribution of microbial antigens to liver inflammation and fibrosis, and
(3), current therapies used to prevent either intestinal permeability or the hepatic inflammatory and
fibrotic response.

2. Gut Microbiota and Bacterial Translocation in Chronic Liver Diseases

2.1. Gut Microbiota in Chronic Liver Diseases

The human gastrointestinal (GI) tract is estimated to contain more than 1014 microorganisms
which collectively form the gut microbiota [4]. High motility and acidity within the esophagus and
stomach limit colonization, however microbial numbers steadily increase throughout the small bowel,
reaching the highest density in the colon where 1012 bacteria can be found in every gram of dry feces [5].

The intestinal microbiota is composed primarily of bacteria (60% of dry fecal mass), but is
also abundant in archaea, eukarya, and viral species [6]. Sequencing of 16S ribosomal DNA from
mucosal and stool samples has shown that Firmicutes and Bacteroidetes are the two most abundant
phyla in human feces, followed by Proteobacteria, Actinobacteria, Fusobacteria, and Verrucomicrobia
species [7]. Mucosal and fecal microbiota harbor distinct microbial profiles, characterized by an
abundance of Bacteroidetes in stool, while human colonic crypts are colonized mainly with Firmicutes
and Proteobacteria [8].

The non-bacterial intestinal microbiota contributes significantly to health and disease, but has
been largely unappreciated to date. Eukaryotes account for less than 0.03% of fecal microbes and are
primarily composed of 200–300 fungal species [9]. The study of intestinal viromes has been limited
due to challenges in isolation and culture; however, recent metagenomic analyses have revealed that
bacteriophages comprise ~90% of the gut virome and contribute significantly to bacterial dynamics [10].

The gut microbiota is essential for proper digestion and, furthermore, plays an important role
in facilitating gut immune responses against potential pathogens. Indeed, commensal Bacteroides
and Lactobacillus spp. can stimulate the release and activation of antimicrobial peptides such as
C-type lectins and pro-defensins from intestinal Paneth cells [11,12], activate intestinal B cells to
express secretory IgA [13,14], and stimulate the production of protective mucus from colonic goblet
cells [15]—all mechanisms that prevent bacterial translocation across the mucosa [16]. Bacteriophage
adherence to mucus layers has also been hypothesized to protect against bacterial colonization and
infiltration [17].

Disturbances within the gut microbiota, termed “dysbiosis”, are linked to numerous diseases,
many of which are hepatic in nature [18]. This is likely due to the bidirectional nature of the gut–liver
axis: nutrient rich portal vein blood entering the liver originates from the gut, while hepatic bile
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from gallbladder travels into the intestines to facilitate digestion [19]. Consequently, the insults that
drive CLD, including caloric excess (NAFLD/NASH), alcoholism (ALD), and biliary damage (primary
sclerosing cholangitis, primary biliary cirrhosis), can have significant effects on the gut microbiota,
leading to intestinal permeability and exacerbation of inflammation and fibrosis.

Many studies have suggested an association between gut microbiome alteration and chronic
liver diseases. Both Mouzaki et al. and Silva et al. demonstrated a reduction in Bacteroidetes and
Firmicutes spp. in both NAFLD and NASH patients compared to adult healthy controls [20,21].
In pediatric studies, Zhu et al. measured a decrease in Firmicutes and increased Bacteroidetes in
children with obesity or NASH [22]. A more recent, larger cohort study challenged these findings,
finding a decrease of total Bacteroidetes in both NASH and NALFD pediatric patients, in agreement
with adult studies [23].

In ALD, a reduction of Lactobacillus spp. has been recorded in both alcohol-consuming patients
and mouse models [24,25]. Lactobacilli are beneficial bacteria commonly used in probiotics that have
been shown to inhibit pathogen colonization [26]. Patients with ALD have also been found to have
lower abundance of Bifidobacterium and Enterobacterium, and increased Proteobacteria, Fusobacteria,
and Actinobacteria [27,28].

Changes in patient gut microbiota have also been measured in the context of worsening disease
state. Indeed, significant differences in gut microbiota have been observed in NALFD subjects who had
progressed to steatohepatitis or moderate fibrosis (F ≥ 2) when compared to patients with earlier stages
of the disease. Boursier et al. found that NASH patients possessed a significantly larger abundance
of Bacteroides and a reduction in Prevotella compared to NAFLD patients [29]. Recently, Bastian et al.
also confirmed a significantly higher proportion of Bacteroides in fibrotic (F2–F4) patients compared
to patients with minimal fibrosis (F0–F1). Two large studies by Loomba et al. and Caussy et al.
also found a reduction in Firmicutes spp. and an enrichment of Proteobacteria spp. in patients with
cirrhosis compared to those with minimal fibrosis [30]. In addition, Bajaj et al. recently demonstrated
that periodontal therapy improves gut dysbiosis and systemic inflammation in cirrhotic patients [31].
Cirrhotic patients treated with scaling and root planning followed by oral hygiene showed a reduction
in Enterobacteriaceae and Streptococcaceae, and a decrease of inflammatory markers interleukin (IL)-1β
and IL-6 [31]. Together, these findings suggest that certain bacteria, likely Bacteriodes and Proteobacteria
spp., and other factors such as oral health may play important roles in liver fibrosis progression.

2.2. Physical and Chemical Barriers of the Intestinal Mucosa

To maintain a healthy coexistence with commensal microbes and prevent bacterial dissemination,
the gastrointestinal tract is lined by a cellular epithelium. This physical barrier is composed primarily
of epithelial cells, with the addition of specialized cell types that differ between the small and large
intestine. While all epithelial cells arise from intestinal epithelial stem cells (IESC) at the base of crypts,
they differentiate into a variety of cells, including enterocytes (colonocytes in the large intestine),
goblet cells, Paneth cells, tuft cells, and Microfold cells (M cells) [32]. Apart from hormone-secreting
enteroendocrine cells and nutrient-absorbing enterocytes, the remaining epithelial cells are largely
responsible for defending against microbial invasion (Figure 1).

Goblet cells secret mucin proteins to form a highly glycosylated mucus layer over the vast epithelial
surface, and this layer is significantly thinner in the small intestine compared to the colon due to a
lower goblet cell density and bacterial colonization [33]. IgA secreted across the intestinal epithelium
also comprises a significant component of the chemical defense. IgA is secreted by plasma cells in
lymphoid follicles of the lamina propria, and transported via polymeric immunoglobulin receptors
(pIgR) on the basolateral surface of epithelial cells into the lumen [34].

Epithelial integrity is maintained by junctions between intestinal epithelial cells (IECs) that provide
selective nutrient permeability while preventing microbial translocation. There are three major types
of cell junction that typically form near the apical end of the cells’ side walls: tight junctions (TJs),
gap junctions, and adherens junctions [35]. Among them, TJs form the most rigid and impenetrable
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seal, hence their name. This junction is a complex of more than 50 proteins, most of which are
transmembrane proteins such as occludin, claudin, and the junctional adhesion molecule (JAM) family
proteins such as zonula occludens (ZO)-1, which connect with the cytoskeleton and form fibrils with
adjacent cells [36,37].
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Figure 1. Intestinal mucosal barriers in health and chronic liver disease. (A) Several physical and
chemical defenses make up the intestinal mucosa, which serves to protect us from luminal microbes.
Intestinal epithelial stem cells (IESCs) located at the base of crypts give rise to all epithelial cells. Goblet
cells secrete mucins to form a thin mucus layer in the small intestine and two thick layers in colon, the
innermost of which is devoid of bacteria. Enterocytes/colonocytes and Paneth cells secrete antimicrobial
peptides (AMPs) primarily in the small intestine, while mast cells secrete IgA, which travels through
the epithelium and is concentrated in the colon. Underlying the epithelium, dendritic cells and
macrophages continuously surveil luminal contents using trans-epithelial dendrites. (B) Disruption
of these physical barriers can lead to intestinal permeability and increased microbial translocation
in chronic liver disease. These include the reduction of secreted mucus, AMPs, and IgA, permitting
microbial access to the epithelial layer. Downregulation, altered localization, or rearrangement of
tight junction components can also significantly impact intestinal permeability, allowing microbial
translocation into the portal circulation where they are transported into the liver.
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2.3. Bacterial Translocation in Chronic Liver Disease

The intestinal mucosa represents the barrier protecting against luminal microbes while allowing the
selective passage of digested nutrients into the circulation. This property, termed intestinal permeability,
allows the intestinal tract to fulfill its absorptive function via two pathways [38]. The transcellular
pathway enables macromolecules such as glucose, amino acids, or bacterial antigens to move
through cells via enterocyte, M cell, and goblet cell transporter-mediated transcytosis or endocytosis.
The paracellular pathway allows water and minerals to diffuse through the interspace between adjacent
epithelial cells [39]. Passive transport in intestinal epithelium is, however, tightly controlled by
the proteins making up the cell TJs [40]. Currently, intestinal permeability can be measured using
in vivo or in vitro functional assays [39]. In vivo assays evaluate urinary or blood non-metabolized
sugar such as lactulose/mannitol, polyethylene glycols (PEGs), Cr-labeled ethylenediaminetetraacetic
acid (51Cr-EDTA), ovalbumin (OVA), or Fluorescein isothiocyanate dextran (FITC-dextran) following
ingestion. In vitro assays indirectly measure intestinal permeability by detecting biomarkers such
as bacteria, lipopolysaccharides (LPS), endotoxin antibodies, or bacterial fermentation products in
lymph/blood or by histologically examining TJ protein localization and expression.

Even in the absence of disease, bacteria can be transported across the intestinal epithelium into
the lamina propria where they can interact with mesenteric lymph nodes (MLN) and extra-intestinal
organs via the blood [41]. This process was termed bacterial translocation by Berg and Garlington in
1979, and has since been expanded to include other luminal microbes such as viruses and fungi [42].
In fact, sequencing and culture methods have detected low levels of viable and non-viable microbes,
microbial DNA, and antigens in the MLN as well as in other “sterile” organs, including the liver [43,44].
Bacteriophages have also been detected in various sites within the human body including the blood,
kidney, and liver [45], however their immunogenicity remains uncertain.

Increased bacterial translocation (BT) is associated with gastrointestinal diseases and the
extra-intestinal conditions of the liver, kidney, and brain, among others [46–48]. As early as 1995, Berg
et al. identified three factors that contribute to BT: bacterial growth or dysbiosis, intestinal permeability,
and immune deficiency [41]. These factors have been identified in various forms of chronic liver
disease, and are outlined below and in Table 1.

2.3.1. Alcoholic Liver Disease

In alcoholic fatty liver disease, viable bacteria, endotoxin, and LPS have been observed in the blood
of both animal models and ALD patients, for which there are many potential mechanisms [49,50]. Small
intestinal bacterial overgrowth (SIBO) in chronic alcoholics is more prevalent than healthy controls [51],
perhaps due to extended orocaecal transit time in alcoholics compared to social drinkers [52]. SIBO has
been suggested to mediate translocation due to differences in mucosal defense in the small intestine,
primarily a reduction in mucus secretion. Increased intestinal permeability has also been reported in
alcoholic cirrhosis, ALD, and even in non-cirrhotic alcoholics using in vivo assays [53–55].

In human studies, a reduction in the number of small intestinal villi, goblet cells, and TJ protein
ZO-1 expression in the colon were observed in chronic alcoholics [56–58]. Furthermore, cell culture and
animal studies suggest that ethanol and its metabolite, acetaldehyde, can alter intestinal barrier function
by (1) inducing epithelial cell apoptosis, (2) disrupting TJs by downregulating ZO-1, occludin, and
claudin and redistributing ZO-1 into cytoplasm, and (3) displacing the cytoplasmic skeleton [59–62].

Lastly, the production of intestinal IgA and the quantity of immune cells have been shown to be
significantly altered in cases of chronic alcohol consumption and in ALD patients. While systematic
IgA is increased in alcoholic liver diseases due to intestinal permeability, fecal IgA and IgA-producing
B cells within the lamina propria are reduced in animal models of ALD [63,64]. Recently, a significant
decrease in the number and activation state of mucosa-associated invariant T (MAIT) cells, a key
component in antibacterial immune defense, was shown in ALD patients [65].
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2.3.2. Non-Alcoholic Fatty Liver Disease

Multiple-pathogen-associated molecular patterns (PAMPs) such as peptidoglycan, LPS, and
bacterial DNA have been detected in NALFD/NASH patient blood, and are linked to metabolic
syndromes and obesity [66–68]. Two key drivers of bacterial translocation in NAFLD are SIBO and
intestinal permeability, having been documented in numerous studies [69]. Increased intestinal
permeability has been documented in both adult [70] and pediatric [71] NAFLD studies, as measured
by 51Cr-EDTA and lactulose–mannitol assays, respectively. Moreover, intestinal permeability was
associated with the severity of inflammation and fibrosis in children [71]. Clinical studies by Miele et
al. and later by Xin et al. revealed that deregulation of TJ proteins may be responsible for intestinal
permeability, demonstrating a reduction of ZO-1 and occludin expression in parallel with increased
intestinal permeability in NAFLD patients [70,72]. Both in vitro and animal model studies of obesity
further suggest that bile acids and leptin can stimulate intestinal permeability [73,74].

There is also an indication that liver damage as a result of NASH can directly contribute to loss
of barrier integrity [67]. A meta-analysis performed by Luther et al. found a higher rate of intestinal
permeability in NASH patients compared to NAFLD alone. A further study using a mouse model of
NASH indicated that intestinal permeability occurs only after initial liver injury and the induction of
pro-inflammatory cytokines [67].

Gut immune alteration is also a factor that can contribute to enhanced bacterial translocation in
NAFLD. Luminal IgA and IgA-positive cells within ileal and colonic tissue are decreased in mouse
models of NASH fed the methionine/choline-deficient diet [75]. Collective studies of innate and
adaptive immunity on animals and patients with obesity have reported an increase in inflammatory
cytokine expression and pro-inflammatory cluster differentiation (CD)4+ and CD8+ T cell, but an
opposite trend in regulatory T cells [76]. These pro-inflammatory cytokines, such as interferon (IFN)-γ,
IFN-α, and IL-6, have been shown to disturb intestinal TJs, allowing the translocation of luminal
antigens across the intestinal barrier [77].

2.3.3. Liver Cirrhosis

Due to clinical associations with bacterial infection, microbial translocation is often examined
in the context of liver cirrhosis. BT in cirrhosis has been identified using such methods as lymph
node homogenate bacterial culture and bacterial DNA sequencing in cirrhotic patient blood [78,79].
Importantly, translocated bacteria, dominated by the Proteobacteria phylum, are abundant in the
portal vein, as well as the hepatic and peripheral blood of decompensated cirrhotic patients [80].
When compared to healthy controls, SIBO is also significantly more common in patients with cirrhosis,
particularly following decompensation [81,82]. Portal hypertension and abnormal small bowel motility
are likely related to prevalent SIBO in decompensated cirrhosis [83].

Intestinal permeability as assessed by dual-sugar ingestion assays has been found to increase
in both the small and large intestine of patients with decompensated/advanced cirrhosis [84–86].
Reduction in the expression of TJ proteins occludin and claudin-1 in cirrhotic patients may provide
a mechanism for this increased permeability [87]. Nonetheless, electron microscopy experiments
performed by Such et al. ten years prior demonstrated intact TJs in the duodenal epithelium of cirrhotic
patients, but enlarged interspace between enterocytes [88]. More recently, an examination of cirrhotic
mice treated with carbon tetrachloride (CCL4) showed a reduction of mucin (MUC)2 expression, mucus
thickness, and goblet cell number, as well as an increase in intestinal permeability associated with
bacterial overgrowth and translocation. The authors also suggested a modulatory role of the bile acid
receptor Farnesoid X receptor (FXR), due to the restoration of TJ protein expression, goblet cell number,
and bacterial translocation following FXR agonist treatment [89].

Although clinical associations have yet to be found, alterations in intestinal humoral and cellular
immunity within gut-associated lymphoid tissues (GALT) have also been observed in cirrhotic models.
An increase in bacterial translocation in cirrhotic rat models can activate monocytes and dendritic
cells in GALT, releasing pro-inflammatory cytokines such as tumour necrosis factor (TNF)-α and
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IL-12 [90,91] that have been shown to increase intestinal permeability by deregulating ZO-1 and
claudin 1 within the TJs [92,93]. While dendritic cells have been shown to open TJs to allow microbial
sampling of the lumen, an increased incidence of DC sampling has been measured in cirrhotic rats,
and is associated with increased translocation of bacterial DNA [91].

Table 1. Intestinal barrier deficiencies in chronic liver disease.

Intestinal Barriers ALD NAFLD/NASH Cirrhosis

Mucus Reduced mucus production [52],
fewer goblet cells [56,57] N/A N/A

IgA Increased systemic IgA, reduced
luminal IgA [63,64] Reduced luminal IgA [75] N/A

Tight junctions
Downregulated ZO-1, occludin,
claudin [58,60], redistributed
ZO-1 into cytoplasm [94]

Downregulated ZO-1 and
occludin claudin
switching [70–72]

Reduced occludin and
claudin-1 [87]

IECs Apoptosis [61] N/A N/A

Gut immunity
Mucosal-associated invariant
T-cell depletion and impaired
activation thereof [65]

Fewer IgA-positive cells [75],
increased production of
inflammatory cytokines
(IFN-γ, IFN-α, IL-6) [76],
increase in CD4+ and CD8+

T cells [76]

Release of inflammatory
cytokines (TNF-α, IL-12)
[90], increased DC
sampling [91]

ALD: alcohol liver disease; NAFLD: non-alcoholic fatty liver disease; NASH: non-alcoholic steatohepatitis; TJ: tight
junction; ZO: zonula occludens; IFN: interferon; IL: interleukin; CD: cluster of differentiation; TNF: tumor necrosis
factor; DC: dendritic cell.

Studies in recent years have provided sufficient evidence to suggest that microbial translocation
can drive the development and exacerbation of chronic liver diseases. However, the detailed cellular
and mechanisms implied by this association will need more efforts to elucidate.

3. Hepatic Recognition of Microbial Ligands: The Role of Pattern Recognition Receptors

Pattern recognition receptors (PRRs) are a group of host sensors that recognize antigens derived
from both foreign and endogenous sources. PRRs are essential initiators of the inflammatory and
immune responses that defend against foreign microbial invaders as well as endogenous cellular
debris known as damage-associated molecular patterns (DAMPs). While these sensors are an essential
component of hepatic immunity, they can contribute to chronic inflammation and fibrosis progression
in response to prolonged activation. As outlined in the previous section, the intestinal barrier can
become impaired in CLD, allowing continuous translocation of microbial antigens into the portal
circulation. This section aimed to characterize the hepatic response to these antigens as it relates to
inflammation and fibrosis.

The cellular drivers of liver fibrogenesis are the myofibroblast-like hepatic stellate cells (HSCs).
They are largely responsible for wound healing in their steady state, but drive fibrogenesis through
ECM deposition upon chronic activation [95]. HSC fibrogenesis can be triggered either directly,
via induction of PRRs on HSCs, or indirectly via inflammatory signals produced by neighboring
cells such as hepatocytes and Kupffer cells (KCs) [95]. This section covers PRRs that contribute to
fibrosis development, with in vivo evidence of inflammatory and fibrogenic activity in CLDs, including
toll-like receptor (TLR) 2, TLR3, TLR4, TLR5, TLR7 TLR9, nucleotide-binding and oligomerization
domain (NOD)-like receptors (NLRs), c-type lectin receptors (CLRs), and stimulator of interferon genes
(STING). General information regarding PRRs in CLD is summarized in Table 2.
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Table 2. Pattern recognition receptors (PRRs) that contribute to hepatic inflammation and fibrogenesis.

PRRs Hepatic Cell
Expression

Ligands Human Disease
Involvement

Mouse Model Role in Hepatic Inflammation
and Fibrogenesis

TLR2
Hepatocyte,
KC, HSC
[96,97]

β-glycan,
zymosan, LPS,
HMGB1

↑ in NASH/NAFLD
[98–100], ↓ in ALD [101].

ALD: Binge ethanol
feeding

IL-1β, IL-6, and TNF-α ↑,
hepatic neutrophil ↑ [102,103].

NASH: MCD diet Protective effect against NASH
and inflammation [104].

NASH: CDAA diet KC activation and
proinflammatory cytokine ↑
Activation of HSCs to directly
promote fibrosis [96].

Fibrosis: BDL No effect [105]
Fibrosis: CCl4 CXCL2 ↑, neutrophil ↑ [106].

HSC ↑, α-SMA ↑ via MAPK and
NF-κB pathways [107].

TLR3
Hepatocyte,
KC, HSC, and
LSEC [108–112]

dsRNA N/A
ALD: HFD and binge
drinking

IL-10 ↑ from KC and HSC,
TNF-α, IL-2, CCL2 ↓
(anti-inflammatory) [113].

Fibrosis: DDC/CCl4 HSC killing via NK cell
activation (anti-fibrotic) [114].

Fibrosis: CCl4 HSC activation, upregulated
α-SMA, TGFβ, COL1A1 ↑ [115].

TLR4
Hepatocyte,
KC, HSC, and
LSEC [97,112]

LPS, HMGB1,
and more

↑ in NASH ↑ circulating
LPS [100,116]. PBMCs
from ALD are sensitized
to LPS [117].
NAFLD-associated [118].

ALD: Lieber–deCarli
diet

ROS ↑ inflammation ↑,
pro-inflammatory cytokine ↑
[119,120].

NASH:
HFHC-diet-fed ApoE
KO

ROS ↑, inflammatory cytokine ↑
from KCs and hepatic
macrophages [121,122].

Fibrosis: Bile duct
ligation

TLR4–MyD88–NF-κB pathway
triggered HSC activation,
pro-inflammatory cytokine,
pro-fibrotic gene ↑ [105,123].

Fibrosis: TAK1 KO Directly activated HSC,
pro-inflammatory cytokine,
pro-fibrotic gene ↑ [124].

TLR5
Hepatocyte,
LSEC, HSC
[97,112,125]

Flagellin,
HMGB1

N/A
Inflammation:
Flagellin injection

Inflammatory cytokine ↑,
macrophage and neutrophil
recruitment [126].

NASH: MCD diet Hepatic inflammation ↓
inflammatory cytokines ↓,
deactivating HSC [125].

Fibrosis: CCl4 Activated HSC via NF-κB and
MAPK pathways to stimulate
hepatic inflammation and
collagen deposition [127].

TLR7
Hepatocyte,
KC, and LSEC
[112,128,129]

ssRNA ↑ in ALD [130,131]
ALD: 25% (w/v)
ethanol diet

Inflammatory cytokine, TLR7
agonist let-7b ↑ [131].

NASH: MCD diet TNF-α and IFN-α ↑ in KC and
DC respectively to stimulate
hepatic inflammation [132].

Fibrosis: CCl4 Pro-inflammatory cytokine and
pro-fibrotic gene ↑ [129].

TLR9
LSEC and KC
[97]

Unmethylated
CpG

↑ in NASH [100,133]. ↑
circulating bacterial
DNA in ALD, liver
fibrosis and cirrhosis
[134–136].

NASH: CDAA diet ↑ IL-1β from KCs to ↑ hepatic
inflammation. No direct
fibrogenic effect [137,138].

ALD: Chronic-binge
ethanol feeding

IL-1β, CXCL1/2/5 ↑ from
hepatocytes and HSC to recruit
neutrophils [102,139].

Fibrosis: BDL Directly activated HSC [140].
Fibrosis: Tak1∆Hep
mice

Directly activated HSC [124].

NOD1 Hepatocyte,
HSC, and KC
[141,142].

LPS, flagellin,
bacterial RNA,
HMGB1, ATP

N/A
Mouse model of BDL/
CCl4-induced fibrosis

Recruited neutrophils to drive
acute hepatic inflammation
(CCl4 model) [143]. CXCL1,
CCL5, inflammation, fibrosis ↑
(BDL/ CCl4 models).

NOD2 N/A N/A
NLRP3 NASH: HFD ↑NLRP3 caused ↑ inflammatory

cytokine [144,145].
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Table 2. Cont.

PRRs Hepatic Cell
Expression

Ligands Human Disease
Involvement

Mouse Model Role in Hepatic Inflammation
and Fibrogenesis

Dectin-1
Hepatocyte and
LSEC [146].

β-glucans N/A ALD: Lieber-DeCarli
diet (4.5% ethanol v/v)

Plasma β-glucan ↑ drove ↑ KC
inflammatory cytokine [147].

Fibrosis: TAA/CCl4 Dectin-1 suppressed expression
of TLR4 and CD14,
inflammatory cytokine ↓ and
activation of HSCs [146].

cGAS-
cGAMP-
STING

Hepatocyte,
KC, HSC, and
LSEC [112]

Cytosolic DNA
and CDNs

STING ↑ in NAFLD
[148]

ALD: Lieber–DeCarli
diet (4.5% ethanol v/v)

STING–IRF3 pathway triggered
hepatic pro-inflammatory
cytokine production [149].

NASH: HFD and
MCD diet

mtDNA activated STING in KC
[150].

Fibrosis: CCl4 STING–IRF3 pathway activated
hepatocyte apoptosis, HSC, and
fibrogenesis [151].

PRR: pattern recognition receptor; TLR: Toll-like receptor; KC: Kupffer cell; HSC: hepatic stellate cell; LPS:
lipopolysaccharide; HMGB1: high mobility group box 1 protein; NASH: non-alcoholic steatohepatitis; NAFLD:
non-alcoholic fatty liver disease; ALD: alcoholic liver disease; TNF-α: tumor necrosis factor; MCD diet:
methionine/choline-deficient diet; LSEC: liver sinusoidal endothelial cell; CDAA: choline-deficient L-amino-defined;
CCl4: carbon tetrachloride; α-SMA: α-smooth muscle actin; MAPK: mitogen-activated protein kinase; NF-Kb:
nuclear factor kappa-light-chain-enhancer of activated B cells; dsRNA: double-stranded RNA; HFD: highffat
diet; DDC: 3,5-diethoxycarbonyl-1,4-dihydrocollidine; NK cell: natural killer cell; COL1A1: collagen type 1 A1;
PBMC: peripheral blood mononuclear cell; ROS: reactive oxygen species; HFHC: high-fat, high-cholesterol; KO:
knockout; TAK1: transforming growth factor beta-activated kinase 1; ssRNA: single-stranded RNA; IFN: interferon;
DC: dendritic cell; NLR: NOD-like receptor; NOD: nucleotide-binding and oligomerization domain; NLRP:
nucleotide-binding oligomerization domain, leucine-rich repeat- and pyrin-domain-containing; ATP: adenosine
triphosphate; CLR: C-type lectin receptors; STING: Stimulator of Interferon Genes; cGAS: cyclic GMP-AMP Synthase;
cGAMP: cyclic GMP-AMP; CDNs: cyclic dinucleotides; IRF3: interferon regulatory transcription factor 3; mtDNA:
mitochondrial DNA. ↑: upregulation of expression; ↓: downregulation of expression.

3.1. Toll-Like Receptors

3.1.1. TLR2

Hepatic upregulation of TLR2 has been observed in patients with NAFLD/NASH [98,100] and
fibrosis due to chronic viral infection [152]. In contrast, ALD patients show significantly lower
expression of hepatic TLR2 compared to healthy controls [101].

In murine models of CLD, TLR2 significantly contributes to hepatic inflammation and fibrosis.
In chronic ethanol-binge-fed mice, TLR2 is crucial for hepatic IL-1β, IL-6, and TNF-α-related liver
injury and inflammation, as well as neutrophil-mediated hepatic injury [102,103]. In addition,
using the choline-deficient L-amino-defined (CDAA)-diet-induced NASH model, TLR2 deficiency
improved hepatic inflammation and injury by reducing Kupffer cell inflammasome activation and
pro-inflammatory cytokine production, suggesting a KC-dependent inflammatory pathway mediated
by TLR2 [96]. In contrast, TLR2 was protective in the NASH methionine/choline-deficient (MCD) diet
model, as demonstrated by an increase in ALT and TNF-α in TLR2 KO mice [104].

In mouse models of fibrosis, TLR2 was reported to have limited contribution to fibrogenesis in bile
duct ligation (BDL) mice [105]. In contrast, TLR2−/− mice treated with CCL4, possessed significantly
impaired HSC activation with reduced collagen deposition, pro-inflammatory cytokine and α-smooth
muscle actin (SMA) expression [107]. In addition, they demonstrated attenuated mitogen-activated
protein kinase (MAPK) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)
activation compared to wild type (WT) fibrotic mice. A neutrophil-driven mechanism of fibrogenesis
in CCL4-induced fibrosis has also been attributed to TLR2-mediated hepatic chemokine C–C motif
ligand (CXCL)2 production [106]. Lastly, TLR2 knockout (KO) in CDAA-diet-induced NASH mice
significantly dampened HSC activation, collagen deposition, α-SMA expression, and transforming
growth factor (TGF)-β expression, thus, ameliorating NASH-associated fibrogenesis [96].
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3.1.2. TLR3

The protective and anti-inflammatory role of TLR3 has been reported in mice fed with high-fat
diet (HFD) followed by binge drinking to induce liver injury. Stimulating TLR3 using poly I:C resulted
in elevated HSC and KC IL-10 expression, as well as reduced hepatic expression of TNF-α, IL-6, CXCL2
and impaired liver injury [113].

TLR3 signaling is well characterized in murine natural killer (NK) cells, where activation of TLR3
results in a potent anti-fibrotic effect in both 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-diet-
and CCl4-induced murine fibrosis models [153,154]. TLR3 has been shown to work synergistically with
IL-18 to activate the p38/PI3K/Akt pathway, thus stimulating NK cells to kill HSCs via TNF-related
apoptosis-inducing ligand (TRAIL)-mediated degranulation [114]. In contrast, TLR3 is pro-fibrotic in
the CCL4 fibrosis model, where TLR3 KO results in downregulation of IL-6, TNF-α, and pro-fibrotic
markers [115]. Interestingly, the authors concluded that CCL4-treated hepatocyte exosomes stimulated
HSC TLR3 signaling to drive γδ T cell IL-17 production and fibrosis progression [115].

3.1.3. TLR4

TLR4 is the most thoroughly studied PRR in the setting of CLD. Hepatic and serum TLR4 is
significantly upregulated in NASH patients, with elevated levels of circulating LPS in peripheral [100,
116] and portal vein blood [155]. High serum levels of TLR4 have also been proposed as a predictive
non-invasive marker for liver fibrosis development in NASH patients [156]. Although hepatic
expression of TLR4 has not been studied in patients with ALD, peripheral blood mononuclear cells
(PBMCs) from patients with ALD showed sensitized responses towards LPS treatment [117].

The role of TLR4 in murine models of liver inflammation has been well studied. TLR4-dependent
ROS production and TLR4-dependent interferon regulatory factor (IRF)3 activation in the liver
are required to drive hepatic inflammation in mice with alcoholic hepatitis [120]. A similar study
showed that hepatic inflammatory cytokines were significantly downregulated in hepatocyte-selective-
TLR4-deficient mice fed with a liquid diet containing 5% ethanol [119]. The importance of TLR4
in NASH development was further emphasized in a murine NASH model using high-fat, high-
cholesterol (HFHC)-diet fed ApoE KO mice, showing a TLR4-mediated ROS production and triggering
pro-inflammatory cytokine expression in KC [122]. Linking TLR4 to NAFLD pathogenesis, fatty acids
such as palmitate can also trigger ROS production in a TLR4-dependent manner, inducing IL-1β and
TNF-α production from liver macrophages [121].

TLR4-mediated fibrosis has been interrogated in a variety of mouse models. In BDL mice, the
TLR4–MyD88–NF-κB pathway in HSCs has been shown to upregulate pro-inflammatory cytokine
production, α-SMA, TIMP1, and TGF-β expression, and ECM deposition [105,123]. In addition,
TLR4-mediated downregulation of Bambi (a TGFβ pseudoreceptor) was shown to sensitize quiescent
HSCs for subsequent activation [105,123]. Using the transforming growth factor beta-activated kinase
1 (TAK1) KO murine model of fibrosis [124], TLR4 and MyD88 double KO mice also demonstrated
reduced α-SMA, TIMP1, and TGFβ expression and collagen deposition, supporting the involvement
of TLR4–MyD88–NF-κB signaling in hepatic fibrogenesis [124].

3.1.4. TLR5

Peritoneal injection with the TLR5 ligand flagellin has been shown to induce significant
TLR5-mediated liver injury in mice, resulting in IL-6, IL-8, and IL-1β production, coupled with
neutrophil and macrophage infiltration into the liver [126]. In the context of NASH, however,
hepatocyte TLR5 may possess a protective effect. In mice fed with MCD diet to induce NASH, selective
hepatocyte deficiency of TLR5 was shown to exacerbate liver inflammation and fibrosis via elevated
expression of TNF-α, monocyte chemoattractant protein (MCP)1, and IL-1β, as well as Timp1, Mmp9,
Col1, and collagen deposition [125]. These conflicting results may, however, be the result of hepatocyte
versus whole-body knockout of TLR5 and require further study.
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Unlike hepatocyte-specific TLR5 KO, whole-body KO ameliorates inflammation and fibrogenesis
in the CCL4 fibrosis model. TLR5 KO mice demonstrated a significant reduction of inflammatory
mediators TNF-α, IL-6, and IL-1β and fibrogenesis, as indicated by downregulation in α-SMA, TGF-β,
TIMP1, and collagen deposition compared to WT mice [127]. A significant reduction in NF-κB
and MAPK signaling activity was measured in activated HSCs, suggesting a mechanism of hepatic
fibrogenesis mediated by the TLR5-activated NF-κB/MAPK signaling pathway in HSCs [127].

3.1.5. TLR7

The role of TLR7 in NASH/NAFLD, liver fibrosis, or liver cirrhosis has been widely overlooked
in the clinical setting; however, recent studies suggest that ALD-mediated inflammation and fibrosis
is linked to hepatic TLR7 overexpression [130,131]. Moreover, TLR7-mediated IFN production is
stimulated by alcohol in primary human hepatocytes and is correlated with patients with more
advanced fibrosis as well as higher expression of fibrotic markers α-SMA, collagen I, and Timp1 [130].

The role of TLR7 in ALD, NASH/NAFLD, and fibrosis development has been established primarily
in mouse models. A recent study using ethanol (25% w/v) feeding to stimulate alcoholic hepatitis
showed that activation of TLR7 significantly upregulated expression of pro-inflammatory cytokines and
the endogenous TLR-7 agonist let-7b from hepatocytes, hence exacerbating hepatic inflammation [131].
Roh et al. recently showed that TLR7 deficiency significantly reduced the degree of hepatic steatosis
and inflammation in a MCD-diet-induced NASH mouse model, examined by H&E staining, as well
as TNF-α and IFN-α production from KC and hepatic dendritic cells, respectively [132]. In contrast,
TLR7 has been identified as a protective factor in hepatic fibrosis development in both CCL4 and BDL
murine fibrosis models. TLR7 KO mice expressed higher levels of hepatic pro-inflammatory cytokine
and fibrosis marker expression as well as exacerbated collagen deposition [129]. Moreover, dendritic
cell expressed type I IFNs upon TLR7 stimulation, triggered KC IL-1 receptor antagonist expression
and ultimately suppressing IL-1-dependent liver injury and inflammation [129].

3.1.6. TLR9

In humans, hepatic TLR9 expression is upregulated in NASH patients [100,133], while high
serum levels of bacterial DNA (TLR9 ligand) have also been linked with liver cirrhosis and liver
fibrosis [134,135]. Indeed, an increase in circulating bacterial DNA has been measured in patients with
alcoholic and fatty liver disease prior to fibrotic development [136]. In addition, acute binge drinking
has been shown to significantly increase serum bacterial DNA and pro-inflammatory cytokines such as
IL-6, TNF-α, and IL-1β to indirectly contribute to liver fibrosis [135,139,157].

The role of TLR9 in chronic liver inflammation has been well established in animal models.
In mouse models of CDAA-induced NASH, activation of TLR9 can stimulate IL-1β expression in KCs,
mediating steatohepatitis and hepatocyte apoptosis driven by lipid accumulation [137,138]. In addition,
the pro-inflammatory role of TLR9 in NASH has been further confirmed in atherogenic diet-fed NASH
and foz mouse models, demonstrating reduced pro-inflammatory cytokine production and attenuated
hepatic neutrophil infiltration in TLR9−/−mice [133]. Similarly, evidence for TLR9-mediated liver injury
and inflammation in chronic-binge-ethanol-fed mice was shown to be driven by IL-1β expression as
well as TLR9/TLR2-dependent hepatic neutrophil infiltration mediated by CXCL1/2/5 expressed from
hepatocytes and HSC [102,139].

Despite the inflammatory role of TLR9 in human NASH, TLR9 KO failed to improve hepatic
fibrosis in murine NASH models [133]. TLR9 does, however, seem to influence fibrosis development
in other models of fibrosis including murine BDL, where TLR9−/− mice demonstrated significantly
alleviated fibrogenesis and HSC activation compared to WT mice [140]. Similar results were found
using the spontaneous fibrosis Tak1∆Hep mouse model, also demonstrating a reduction in liver
inflammation and fibrosis in TLR9 KO mice [124]. Moreover, stimulation of TLR9 using CpG DNA
directly activated the fibrogenic phenotype in primary mouse HSCs and the immortalized human HSC
LX-2 cell line [158].
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3.2. NOD-Like Receptors

The influence of NLRs on liver inflammation and fibrosis was thoroughly reviewed recently by Xu
et al. [145]. NOD1, NOD2, and nucleotide-binding oligomerization domain, leucine-rich repeat- and
pyrin-domain-containing (NLRP)3 are the main NLRs driving hepatic inflammation, liver injury, and
liver fibrogenesis. NOD1-mediated neutrophil recruitment has been described following acute liver
injury and inflammation in a CCL4-treated murine model [159]. In addition, activation of NOD-2 by
muramyl dipeptide, a bacterial peptidoglycan motif, can induce NF-kB-dependent hepatic expression
of pro-inflammatory cytokines to indirectly orchestrate liver inflammation and fibrosis [145,160].
Furthermore, it has been demonstrated that NLRP3–inflammasome pathway is activated in murine
NASH to induce hepatic TNF-a, IL-6, and IL-8 production [144,145].

Hepatocyte stimulation of NOD1 via its ligands can activate the NF-kB and MAPK pathway
to induce CXCL1 and CCL5 production, promoting wound healing and fibrogenesis [161].
NLRP3–inflammasome has been demonstrated to be a direct contributor in hepatic fibrogenesis.
Activation of NLRP3 undoubtedly triggers direct activation of HSC to enhance matrix deposition,
TGF-β expression, and fibrosis progression [142].

3.3. Anti-Fungal PRRs and Liver Fibrosis

The role of the CLR dectin-1 in liver inflammation and fibrosis development has been thoroughly
studied. Ethanol-containing-diet-fed mice were found to have elevated serum β-glucan level and
hepatic injury, which was significantly reduced upon treatment with anti-fungal agent [147]. More
importantly, plasma β-glucans enhanced IL-1β expression in KC to drive hepatic inflammation that
was absent in dectin-1 deficient mice [147]. A further study showed that hepatic expression of dectin-1
was upregulated in a thioacetamide (TAA)/CCL4 fibrosis mouse model, and that dectin-1 negatively
regulated the expression of TLR4 and its co-receptor CD14 to mitigate fibrosis development and
hepatic inflammation [146]. Knocking out dectin-1 exacerbated liver fibrosis and inflammation, as
demonstrated by increased expression of TNF-α, IL-6, and MCP-1, neutrophil and macrophage influx,
and fibrosis progression [146].

3.4. STING

In view of its recent discovery, there have been a limited number of human studies exploring
the role of STING in CLD. Luo et al. reported an overexpression of STING in the non-parenchymal
cells within the liver tissue of NAFLD patients, albeit with no examination of their relationship to
disease activity [148]. By utilizing the alcohol-fed mouse ALD model, Petrasek et al. demonstrated
that activation of the STING–IRF3 pathway stimulates pro-inflammatory cytokine production in the
liver [149]. In the same study, alcohol-induced liver injury was also shown to trigger the STING–IRF3
pathway by endoplasmic reticulum (ER) stress, promoting the mitochondrial apoptotic pathway in
hepatocytes [149]. Knocking out STING in HFD-induced NAFLD and MCD-induced NASH murine
models attenuated hepatic activation of IRF3 and NF-κB pathways, and significantly downregulated
expression of pro-inflammatory cytokines to alleviate NAFLD/NASH severity [148]. Similar findings
were reported by Yu et al. using HFD- and MCD-diet-induced NASH mice; hepatocytes releasing
mitochondrial DNA during NASH development led to the activation of STING–IRF3 pathway on KC
to trigger pro-inflammatory cytokine production and hepatic inflammation in NASH [150].

Taken together, the above studies suggest that STING plays an important role in both
hepatic inflammation and hepatic fibrosis in NASH [148,150]. Similar findings were elucidated
in a CCL4-induced liver fibrosis murine model by Iracheta-Vellve et al. Hepatocytes were
shown to undergo significant ER stress resulting in STING–IRF3 activation and induction of the
mitochondria-dependent apoptosis pathway. Hepatocyte cell death was shown to activate HSC
expression of α-SMA and COL1A2, collagen deposition, and fibrosis progression [151].
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4. Therapies to Prevent Microbe-Driven Liver Inflammation and Fibrosis

The primary interventions for alcoholic and fatty liver disease have focused on lifestyle
modifications: abstaining from alcohol and improving patient diet and exercise regimens. In more
severe cases of obesity, surgical interventions (e.g., bariatric surgery) are required in combination with
significant lifestyle adjustments. Unfortunately, even in the case of surgical interventions, patient
compliance towards dietary and alcohol restrictions is often lacking, rendering the development of
novel therapeutics a top priority.

In cirrhotic patients, dietary interventions and abstinence from alcohol drastically improve
survival [162]. These patients also generally require treatment of portal hypertension, which is the
contributing factor to intestinal permeability. Unfortunately, however, in decompensated cirrhosis,
treatment of portal hypertension using beta-blockers and anti-hypertensives can dangerously reduce
mean arterial pressure [163]. In addition, there is an increased risk of susceptibility to infections
due to poor phagocytic capacity in the liver and increased likelihood of ascites: the accumulation of
fluid in the peritoneal cavity [3]. These aspects further underline the vital need for novel therapies
to prevent the progression of fibrosis, particularly in end-stage liver disease where there is currently
a lack of effective treatment. Limiting the exacerbation of inflammation and fibrosis by microbial
translocation into the liver is therefore an avenue that must be explored. We aimed to summarize
current and potential therapies directed at (1) reducing microbial translocation, and (2) limiting the
harmful response to microbial antigens in the liver.

4.1. Therapies to Reduce Intestinal Permeability

Studies examining intestinal permeability in ALD [24,53,54], NAFLD/NASH [67,70,164], and
fibrotic liver disease/cirrhosis [86,87,165] have focused primarily on the reduction in TJ proteins such
as ZO-1 and Claudin-1 [70,87,94], though the mechanisms by which this loss occurs remains largely
unknown. Loss of intestinal mucus or mucosal IgA production [166] can also significantly increase
intestinal permeability; however, these mechanisms have been largely overlooked in CLD.

Expansion of pathogenic bacterial species both within the colon and into the SIBO have been
documented in CLD [70,167], motivating the examination of antibiotics and prebiotics as potential
therapies. Antibiotic studies commonly use a broad spectrum and poorly absorbed antibiotics such
as neomycin or rifaximin to achieve a gut-targeted intestinal decontamination. In rodent models of
obesity [168], long-term ethanol exposure [169], NASH [170], and fibrosis [105], antibiotic treatment
has been shown to reduce intestinal permeability and subsequent liver injury. In humans, a number of
clinical trials are underway to assess the efficacy of antibiotics for the treatment of AH, NASH, and
cirrhosis (reviewed in [171]). Early data suggests that short-term rifaximin treatment can reduce serum
endotoxin and liver inflammation in NAFLD/NASH patients [172], whereas rifamixin prophylaxis over
24 weeks can significantly reduce hospitalization and mortality among cirrhotic patients [173]. These
data support previous findings that rifaximin can reduce the risk of complications associated with
cirrhosis, including hepatic encephalopathy, variceal bleeding, and SBP [174]. Importantly, antibiotics
such as levofloxacin and metronidazole, but not rifaximin, can significantly increase gut proteases, thus
contributing to intestinal permeability in both humans [175] and rats [176]. An antibiotic-mediated
reduction in anti-proteolytic bacterial richness and abundance in the colon is thought to contribute to
gut permeability.

Significant microbial perturbations caused by broad spectrum antibiotics have stimulated
interest in probiotics (beneficial microbes) and prebiotics (beneficial microbial substrates) for the
improvement of intestinal health. In mouse models of ethanol-induced liver injury, probiotic
Lactobacillus rhamnosus strains have been shown to reduce serum endotoxin, hepatic oxidative
stress, and inflammatory TNFα production [177,178]. While intestinal permeability was not
assessed in these studies, Wang et al. demonstrated that Lactobacillus probiotics could prevent the
alcohol-induced loss of intestinal ZO-1, Caludin-1, and Occludin-1, keeping the intestinal epithelium
intact [179]. In rats, a similar reduction in ZO-1, intestinal permeability, steatosis, and fibrosis was
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observed in the choline-deficient/L-amino-acid-defined NASH diet, and was significantly attenuated
by probiotic treatment with Clostridium butyricum MIYAIRI 588 strain. Interestingly, in mouse
models of CCL4-induced fibrosis, different probiotics achieve improved intestinal permeability
via unique mechanisms: Bifidobacterium probiotics have been shown to increase intestinal TJ
expression [180] whereas Lactobacillus-paracasei-fermented milk reduces intestinal permeability by
increasing antimicrobial β-defensin expression [181].

The study of prebiotics allows researchers to understand the relationship between a substrate,
microbial metabolism, gut health, and permeability. The majority of prebiotics used today are
indigestible carbohydrate polymers (fibers) that become fermented by gut bacteria to produce, among
other things, short chain fatty acids (SCFAs) consisting of acetate, propionate, and butyrate [182].
SCFAs are significant homeostatic and anti-inflammatory signaling molecules in the gut (reviewed
in Reference [183]), but can also significantly alter intestinal permeability. In vitro, butyrate has been
shown to increase ZO-1 expression in Caco-2 cells [184], and stimulate mucous secretion in E12 human
colon cells [185]. In vivo, rats supplemented with oats rich in fermentable β-glucans were significantly
more resistant to alcohol-induced oxidative stress and intestinal permeability [186]. In humans,
increased fiber intake has also been associated with improved permeability (reduced circulating ZO-1)
and reduced ALT/AST in NALFD patients [187]. These data are supported by two recent meta-analyses
finding that both prebiotics and probiotics reduce liver enzymes ALT, AST, and GGT in NAFLD
patients [188], with probiotics also reducing serum ammonia and hepatic encephalopathy in cirrhotic
patients [189].

4.2. Therapies to Dampen the Hepatic Immune Response

Direct inhibition of PRRs for the treatment of chronic liver disease has not been a research
priority due to their peripheral contribution to disease pathogenesis. It is, however, now becoming
evident that PRR activation from both microbial and self-ligands can significantly contribute to liver
inflammation and fibrogenesis. TLR-agonistic therapies are currently being actively pursued for cancer
therapies/adjuvants (reviewed in Reference [190]). TLR inhibitors, on the other hand, have been studied
to a lesser degree in a handful of studies assessing their efficacy in inflammatory and autoimmune
disease. Even fewer therapies are being assessed in the context of chronic liver disease, with TLR2/4/9,
NLRP3, and STING pathway inhibition garnering some interest from pharmaceutical companies [190].

The humanized TLR2 mAb OPN-305 can achieve significant blockade of TLR2 inflammatory
signaling in response to bacterial stimuli in healthy subjects [191], and improved overall response
rate in patients with myelodysplastic syndromes that had previously failed hypomethylating agent
therapy [192]. While TLR2 blockade has not been assessed in human CLD, the pleiotropic nature of
TLR2 suggests that it may benefit inflammatory and fibrotic progression.

Small molecule inhibitors of TLR4, i.e., NI-0101 [193] and Ibudilast [194], are being assessed in
extrahepatic disease, and JKB-121, a weak TLR4 antagonist, is currently being assessed in NASH [195]:
preliminary results do not support a significant therapeutic benefit of JKB-121, though the study was
confounded by a notable improvement in liver inflammation within the placebo group.

TLR9 blockade represents perhaps the most exciting TLR-targeting therapy. The TLR9 inhibitor
hydroxychloroquine is currently used as treatment for autoimmune diseases such as rheumatoid
arthritis and lupus, allowing potential repurposing for CLD. Furthermore, the novel TLR9 antagonist
COV08-0064 has shown promise in animal models of sterile liver inflammation, particularly in the
context of fatty liver where it limits inflammasome activation [196,197]. While TLR9 inhibition has yet
to be assessed in human CLD, its diversity of microbial ligands, including bacterial, fungal, and phage
DNA, will surely make it a candidate for future trials.

Research targeting the NLRP3–inflammasome pathway is undergoing rapid expansion alongside
the number of inflammasome-associated diseases. While the NLRP3 inhibitor CP-456,773 was removed
from phase II trials for rheumatoid arthritis due to supposed liver toxicity, other inhibitors are in
different stages of development for the treatment of gout and Parkinson’s disease, among others [198].
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In 2018, Genentec acquired San Diego-based Jecure Therapeutics and their portfolio of preclinical
NLRP3 inhibitors as a treatment for NASH and hepatic fibrosis [199].

Lastly, the intracellular DNA sensor STING has become a popular target due to its association
with autoimmune disease. STING inhibitors have been recently developed [200], and are being actively
generated by a number of pharmaceutical companies with the aim of targeting STING-related genetic
disease. This compound would have the potential to move towards therapies for CLDs such as NASH
and fibrosis in the future [201].

5. Conclusions and Future Perspectives

In summary, this review has highlighted the strong connection between the liver and gut in the
context of liver disease. Indeed, CLD does not occur in isolation, but is accompanied by disturbances
of the complex balance of gastrointestinal microbiota, architecture, and immunity. Similarly, gut
microbiota can play a significant role in liver health by altering host metabolism and immunity. While
such associations are strong, it is much less certain whether the distinct disease states in CLD and fibrosis
stimulate changes in microbiota, or if gut microbiota exacerbate inflammatory and fibrotic progression.

Host, microbiomic, and lifestyle factors that influence intestinal permeability are beginning to
be understood, but there is still much to be learned. Specifically, there is poor understanding of
the exact mechanisms by which intestinal permeability is altered and the physiological reasons for
it. TJ expression and localization are often examined in isolation, while overlooking the numerous
additional barriers that prevent microbial translocation in the gut. Antimicrobial peptides, IgA, and
mucus abundance and localization are rarely examined in this context, and a better understanding of
their regulation in health and disease is warranted.

Lastly, along with public health initiatives aimed at reducing the causative lifestyle factors of
fibrosis, i.e., alcohol and obesity, we must focus research on the development of novel PRR-antagonizing
therapies. Murine studies have highlighted the contribution of individual PRRs to the development
and progression of liver inflammation and fibrosis (as summarized in Figure 2); however, it remains
unclear how multiple sensors collectively drive disease and may potentiate each signal. Human
trials are pending to examine microbial sensors such as TLR9 and STING as well as inflammasome
components to determine their contribution, whether alone or in concert, to fibrosis progression.

Cells 2019, 8, x 16 of 28 

 

Lastly, the intracellular DNA sensor STING has become a popular target due to its association 
with autoimmune disease. STING inhibitors have been recently developed [200], and are being 
actively generated by a number of pharmaceutical companies with the aim of targeting STING-
related genetic disease. This compound would have the potential to move towards therapies for 
CLDs such as NASH and fibrosis in the future [201]. 

5. Conclusions and Future Perspectives 

In summary, this review has highlighted the strong connection between the liver and gut in the 
context of liver disease. Indeed, CLD does not occur in isolation, but is accompanied by disturbances 
of the complex balance of gastrointestinal microbiota, architecture, and immunity. Similarly, gut 
microbiota can play a significant role in liver health by altering host metabolism and immunity. While 
such associations are strong, it is much less certain whether the distinct disease states in CLD and 
fibrosis stimulate changes in microbiota, or if gut microbiota exacerbate inflammatory and fibrotic 
progression. 

Host, microbiomic, and lifestyle factors that influence intestinal permeability are beginning to 
be understood, but there is still much to be learned. Specifically, there is poor understanding of the 
exact mechanisms by which intestinal permeability is altered and the physiological reasons for it. TJ 
expression and localization are often examined in isolation, while overlooking the numerous 
additional barriers that prevent microbial translocation in the gut. Antimicrobial peptides, IgA, and 
mucus abundance and localization are rarely examined in this context, and a better understanding of 
their regulation in health and disease is warranted. 

Lastly, along with public health initiatives aimed at reducing the causative lifestyle factors of 
fibrosis, i.e., alcohol and obesity, we must focus research on the development of novel PRR-
antagonizing therapies. Murine studies have highlighted the contribution of individual PRRs to the 
development and progression of liver inflammation and fibrosis (as summarized in Figure 2); 
however, it remains unclear how multiple sensors collectively drive disease and may potentiate each 
signal. Human trials are pending to examine microbial sensors such as TLR9 and STING as well as 
inflammasome components to determine their contribution, whether alone or in concert, to fibrosis 
progression. 
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intestinal permeability, resulting in their transport into the liver through the hepatic portal vein. (B1)
Gut-derived antigens are recognized by, and activate HSCs, KCs, and hepatocytes, resulting in the
secretion of pro-inflammatory cytokines and chemokines. (B2) Pro-inflammatory cytokines produced
from KCs and hepatocytes further activate HSCs to further exacerbate fibrogenesis. (B3) In addition,
activation of STING– and NLRP3–inflammasome pathways in hepatocytes can trigger apoptosis and
release of DAMPs to further activate HSCs. (B4) Chemokines produced by activated KCs, HSCs, and
hepatocytes recruit immune cells such as neutrophils, NK cells, and monocytes to further exacerbate
liver inflammation and injury. PAMP: pathogen associated molecular pattern; KC: Kupffer cell; HSC:
hepatic stellate cell; NK cell: natural killer cell; PRR: pattern recognition receptor; TLR: Toll-like receptor;
NOD: nucleotide-binding oligomerization domain-containing protein 1; NLRP3: nucleotide-binding
oligomerization domain, leucine-rich repeat- and pyrin-domain-containing 3; STING: stimulator of
interferon genes; DAMP: damage associate molecular pattern.
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