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Abstract

Vitamin D deficiency is widespread, affecting over 30% of adult Australians, and increasing up to 80% for at-risk groups
including the elderly (age.65). The role for Vitamin D in development of the central nervous system is supported by the
association between Vitamin D deficiency and incidence of neurological and psychiatric disorders including Alzheimer’s
disease (AD). A reported positive relationship between Vitamin D status and cognitive performance suggests that restoring
Vitamin D status might provide a cognitive benefit to those with Vitamin D deficiency. Mushrooms are a rich source of
ergosterol, which can be converted to Vitamin D2 by treatment with UV light, presenting a new and convenient dietary
source of Vitamin D2. We hypothesised that Vitamin D2-enriched mushrooms (VDM) could prevent the cognitive and
pathological abnormalities associated with dementia. Two month old wild type (B6C3) and AD transgenic (APPSwe/PS1dE9)
mice were fed a diet either deficient in Vitamin D2 or a diet which was supplemented with VDM, containing 160.2 mg/kg
(,54 IU/kg) vitamin D2, for 7 months. Effects of the dietary intervention on memory were assessed pre- and post-feeding.
Brain sections were evaluated for amyloid b (Ab) plaque loads and inflammation biomarkers using immuno-histochemical
methods. Plasma vitamin D metabolites, Ab40, Ab42, calcium, protein and cholesterol were measured using biochemical
assays. Compared with mice on the control diet, VDM-fed wild type and AD transgenic mice displayed improved learning
and memory, had significantly reduced amyloid plaque load and glial fibrillary acidic protein, and elevated interleukin-10 in
the brain. The results suggest that VDM might provide a dietary source of Vitamin D2 and other bioactives for preventing
memory-impairment in dementia. This study supports the need for a randomised clinical trial to determine whether or not
VDM consumption can benefit cognitive performance in the wider population.
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Introduction

In 2010, dementia affected approximately 36 million people

worldwide and is predicted to increase to 115 million by 2050 [1].

Alzheimer’s disease (AD) is the major contributor to dementia and

the incidence is expected to rise 8-fold faster than the increase in

population, with major implications for social and health care

costs. The need to develop preventative and therapeutic interven-

tions is urgent.

Whilst it is appreciated that dietary interventions such as

reducing excessive fat, salt and sugar are beneficial for reducing

the incidence of chronic diseases including cancer, diabetes and

cardiovascular disease, few intervention studies have succeeded in

linking diet to reducing the onset and symptoms of dementia,

including AD. A recent report from the Australian Imaging,

Biomarkers and Lifestyle Study of Ageing, showed that there was a

significantly higher extent of adherence to the Mediterranean diet

for healthy controls compared with either mild cognitively

impaired or AD groups [2]. In addition there is growing evidence

for beneficial effects of the micro-nutrient cocktail supplement on

memory in AD patients Souvenaid [3,4] and significant lowering

of amyloid load has been demonstrated in animal dietary

intervention studies with grape seed extract [5], curcumin [6,7],

resveratrol [8] and fish oil [9].

Vitamin D has also been proposed to affect central nervous

system development, as supported by the association between its

deficiency and incidence of some neurological and psychiatric

disorders [10]. Furthermore, Vitamin D intake and metabolite

status have each been positively correlated with cognitive

performance [11,12]. An observational study involving 225 aged
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individuals with probable AD exhibited Mini Mental State

Examination scores that were positively correlated with serum

25-hydroxyvitamin D3 but not vitamins B1, B6 or B12 [13]. While

this study did not demonstrate causality or mechanism, a

functional role for Vitamin D in brain function has been

implicated by comparative Single Nucleotide Polymorphism

mapping of Vitamin D receptor (VDR) between AD and control

patients and identified 2 sites: one with significantly increased risk

and one conferring protection [14]. In addition, mRNA levels of

the VDR and Ca-binding protein (calbindin) were significantly

and selectively down-regulated in cells of the hippocampal region

and not in the temporal cortex or cerebellum, in AD versus control

patients [15]. Other combinations of polymorphisms of the VDR

have also been associated with risk of late onset AD [16]. In

addition, primary cortical neurons in the presence of Vitamin D

were protected from amyloid beta peptide (Ab1-42) toxicity by up-
regulating VDR and suppressing apoptosis [17] and Vitamin D

also protected SH-SY5Y cells against Ab1-42 toxicity [18]. Finally,
elevated expression levels of Vitamin D receptor and 24-

hydroylase mRNA in rat hippocampal versus cortical neurons

[19] also supports that Vitamin D is particularly important for

calcium metabolism and function of hippocampal neurons and

supports evidence that localised impairment of Vitamin D uptake

in the hippocampus, which is affected in early stages of AD, can

account for loss of cellular function including memory in AD

patients.

Vitamin D directly or indirectly regulates more than 200 genes.

All tissues and cells, including brain [20], contain a receptor for

Vitamin D (Vitamin D receptor, VDR) that recognises the active

form: 1, 25-hydroxyvitamin D [21]. Vitamin D exerts multiple

bioactive roles, as a hormone, an anti-inflammatory agent and the

regulation of cell growth. As the main route for obtaining vitamin

D is through sun exposure, deficiency is prevalent in those with

inadequate environmental exposure, which can occur for multiple

reasons. For example, the elderly are at increased risk of vitamin D

deficiency due to changed lifestyles associated with infirmity and

loss of mobility. Vitamin D deficiency is also widespread in those

at-risk of particular diseases, and is a risk factor for multiple

chronic diseases [22].

Vitamin D supplementation benefits multiple aspects of health

such as those at risk of falls and fractures (vitamin D is critical for

Ca and bone homeostasis and Ca absorption), and lowers risk of

cardiovascular, auto-immune diseases (eg, multiple sclerosis,

arthritis), cancer [23] and Type 2 diabetes [22]. Vitamin D is

reported to provide some protection against cardiovascular

disease, specifically hypertension and cardiovascular mortality,

and colorectal cancer with weaker evidence regarding immune-

modulatory or anti-inflammatory effects [24]. However, apart

from bone health, for which a ‘healthy’ Vitamin D metabolite

blood plasma status is cited as .80 nM [25], the optimal

metabolite levels of Vitamin D required for protection against

specific disease states are not yet defined [26].

Consumption of edible mushrooms is considered good for

health in general, with particular types having long histories of

medicinal use in Eastern cultures. For example, treatment of mild

cognitively impaired senior Japanese men and women with

Yamabushitake mushroom (Hericium Erinaceus) was reported to

improve cognitive function, that reverted after cessation of

treatment [27]. This suggested that bioactives in these mushrooms

other than Vitamin D were responsible for the effect and raise the

possibility that Vitamin D-enriched mushrooms might act

synergistically with other components.

The prevalence of Vitamin D-deficiency in both adults

consuming the Mediterranean diet [28], and elderly populations

dwelling in Mediterranean nursing-homes [29], highlights that

dietary sources of Vitamin D are limited even in a ‘healthy’ diet.

Vitamin D2 synthesis can be stimulated in mushrooms by UV

irradiation [30] to produce a bioavailable dietary source of

Vitamin D2 [31,32], with capacity to promote Ca absorption and

increase bone mineral density in mice [33]. The elevation of

Vitamin D2 in mushrooms, in combination with other putative

benefits for cognition, renders Vitamin D-enriched mushroom an

interesting target for testing efficacy on brain function. A recent

study of Vitamin D3 supplementation in Alzheimer’s disease

model mice [34] demonstrated benefits of Vitamin D3 per se but

the effects of the combination of Vitamin D2 and additional

putative bioactives in mushroom, are not yet known.

This study aimed to determine the effects of dietary supple-

mentation with Vitamin D2-enriched Button mushroom (VDM) in

both wild type (B6C3) and a transgenic mouse model of familial

AD (APPSwe/PS1dE9), compared with a Vitamin D-deficient base

diet. Supplementation of VDM dried solids at 5% of feed (w/w)

was given from 2 to 9 month old mice and study endpoints

included learning and memory, toxicity by liver function

biomarker, brain amyloid beta (Ab) and inflammation biomarkers.

The results are interpreted in terms of effects on learning and

memory in the absence and presence of amyloid pathology in wild

type and transgenic mice, respectively.

Results

Characterisation of Vitamin D2-enriched Button
Mushrooms and Mouse Feeds
Analysis of the VDM solids was conducted to assess components

other than Vitamin D2 that were introduced into the VDM diet

and consequent compositional differences between the VDM and

control diets (Table 1). Proximate analysis of VDM solids yielded

protein, lipid, ash and carbohydrate concentrations of 25.9, 2.9,

12.4 and 58.8%, respectively. The protein content was in good

agreement with a reported value for fresh Button mushroom

(2.09% on fresh weight basis, equivalent to 26.1% on a dry weight

basis at 92% moisture [35]. Approximately 23 to 40% of nitrogen

in mushrooms is known to be present as free amino acids [35].

Inclusion of dried mushroom solids at 5% (w/w) in the Vitamin D-

mushroom (VDM) feed, compared with control feed, produced an

increase in concentration of ash by 12.9%. This accounted for

variations in several trace elements between VDM and control

feeds, specifically, elevation of levels of Cu, K and Mo by 11.2%,

12.6% and 10.7%, respectively, and lowering of levels of Ca and

Mn by 5.2% and 5.0%, respectively (Table 1).

VDM feed contained 1.35 mg/kg (54 IU/kg) of Vitamin D2. No

Vitamin D2 was detected in the control feed and there was no

Vitamin D3 detected in either VDM or control feeds. Ergosterol,

cholesterol and lanosterol were detected in the base feed but only

ergosterol and lanosterol were present in the VDM. This led to

elevation of ergosterol and Vitamin D2 by 94.5% and 100%

between VDM and control feeds, respectively, and lowering of

cholesterol by 5.3% in control feed (Table 1). It is possible that

ergosterol in the VDM feed was additionally converted to vitamin

D2 by exposure to fluorescent lighting during the course of the

study. However, even if the concentration presented Table 1 is an

underestimate, the impact on the conclusions from this study are

not affected, firstly, because the level of Vitamin D2 in the VDM

feed was intended to be elevated compared with the control feed,

and secondly, effects of the dietary intervention are interpreted in

terms of differences in resultant plasma Vitamin D metabolite

levels.

Effects of Vitamin D2-Mushrooms on Memory in Mice
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Mouse Biometric Monitoring
The study design adopted for testing effects of VDM and

Control feeds on Wild type and APPswe/PS1dE9 mice is

presented in Figure 1. Mice of either genotype receiving either

feed exhibited normal and equivalent rates of body weight gain

over the trial period of ,230 days. There was no significant effect

of either genotype (WT versus Tg) or feeding treatment (VDM

versus control) on overall weight gain over the 7 months of dietary

intervention. Weight gains for each treatment group were as

follows (in g): WT-VDM: 12.262.9; Tg-VDM: 13.665.1; WT-

Control: 14.863.8 and Tg-Control: 14.466.3 (Table 2).

Liver Toxicity Biomarkers and Cholesterol in Plasma
Blood samples taken at the 6 month time point were analysed

for selected liver toxicity biomarkers. Limited blood volumes

prevented analysis of the complete set of liver enzymes. There was

no difference either between genotype or feed for any plasma

biomarker including: total protein, albumin and globulin (Table 2).

These results suggest the absence of effects on liver function

indicative of toxicity, with any genotype or treatment. Likewise,

there was no change in plasma cholesterol either between

genotypes or feeds, or within and between time points (Table 2).

Calcium in Plasma
Plasma Ca levels were determined at the end of the study (9

months) and found to be significantly different between feeds with

relatively higher levels measured in control (2.51 to 2.60 mM)

versus VDM groups (2.42 to 2.49 mM, Table 2). The simplest

explanation for the moderately but statistically significantly higher

levels of serum calcium can be accounted for by the higher levels

of dietary calcium in Control versus VDM feeds (by 5.2%,

Table 1). The concentration of serum calcium of around 2.5 mM

was comparable to the levels reported in mice fed a standard diet

containing 1.1% Ca (1100 mg/100 g) [33] and the positive

correlation between dietary and serum calcium reported in the

same study can account for the slightly higher serum calcium in

Control mice observed here. It is also possible that differences in

plasma calcium levels also reflect differences in calcitonin and

parathyroid hormone release in VDM versus Control fed mice,

but influences of hormonal regulation cannot be confirmed from

the available data.

Vitamin D Metabolites in Plasma
After initial feeding with standard feed containing 0.05 mg/g

(2 IU/g) Vitamin D3 and no Vitamin D2, mice received either

VDM or Control feed containing 1.35 (54 IU/kg) or 0 mg/kg
Vitamin D2, respectively, and neither VDM nor Control feed

contained any Vitamin D3. The absence of Vitamin D3 in control

and base feed was verified by multiple independent measurements.

This feeding strategy tested effects of Vitamin D2 supplementation

over a Vitamin D-depleted base diet in both WT and Tg mice.

Additional putative bioactive species may be associated with the

VDM solids however the study design did not permit the effects of

Vitamin D2 from other mushroom bioactives to be resolved.

Table 1. Composition* of Vitamin D mushroom (VDM) solids, base feed, Control and VDM feeds, formulated from either 5%
Vitamin D mushroom solids and 95% base feed (w/w, as is), or 100% base feed, respectively.

Component Unit Vitamin D mushroom Base Feed# VDM Feed Control Feed Difference-%

Total solids % 92.14 89.23

Protein % 25.94 20.00 18.59 17.85 4.0

Total lipid % 2.90 8.50 7.34 7.58 23.3

Ash % 12.40 3.24 3.32 2.89 12.9

Carbohydrate % 58.77 68.26 60.12 60.91 21.3

Ca mg/100 g 13.75 1200.00 1017.86 1070.76 25.2

Cu mg/100 g 3.41 1.00 1.00 0.89 11.2

Fe mg/100 g 3.51 5.10 4.48 4.55 21.5

K mg/100 g 3349.00 890.00 908.73 794.15 12.6

Mg mg/100 g 110.00 250.00 216.99 223.08 22.8

Mn mg/100 g 0.58 12.00 10.20 10.71 25.0

Mo mg/100 g 0.13 0.04 0.04 0.04 10.7

Na mg/100 g 70.35 350.00 299.93 312.31 24.1

P mg/100 g 1080.00 960.00 863.53 856.61 0.8

Zn mg/100 g 5.98 6.00 5.36 5.35 0.1

Ergosterol mg/kg 8282.00 24.80 402.57 22.13 94.5

Cholesterol mg/kg ND# 797.60 676.11 711.70 25.3

Lanosterol mg/kg 19.30 11.00 10.21 9.82 3.9

Vitamin D2 mg/kg 29.20 ND 1.35 ND 100.0

Vitamin D3 mg/kg ND ND ND ND 0.0

Standardised differences between VDM and Control feeds are shown as a percent of total solids. The moisture content of VDM solids and base feeds are taken into
account but the moisture content of VDM and Control feeds were assumed to be equivalent.
*Methods used for analysis of VDM solids are described in Methods. Unless otherwise stated, analytical specifications of base feed were cited from information provided
by supplier.
#Standard base feed containing 0.05 mg/g (2 IU) Vit D3 was fed for the first 8 weeks.
ND= not detected.
doi:10.1371/journal.pone.0076362.t001

Effects of Vitamin D2-Mushrooms on Memory in Mice
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Levels of Vitamin D2 and D3 metabolites, 25-OH-D2 and 25-

OH-D3, respectively, at the 9 month time point indicated highly

significant differences in metabolite levels (Figure 2). While levels

of total 25-OH-D of approximately 60 nM were equivalent across

all treatment groups (P.0.05), levels of 25-OH-D2 and 25-OH-D3

displayed inverse ratios by a factor of approximately 5 in VDM

and Control groups, respectively (Figure 2). Vitamin D adequacy

was therefore achieved in all treatment groups and the effects of

VDM versus Control feeding provided for a direct comparison

between efficacy of Vitamin D2 (and mushroom solids) and

Vitamin D3.

Total levels of the metabolite 25-OH-D ranged from 55 to

67 nM across the 4 groups of mice which was in good agreement

with the range reported by Yu et al (2011) [34] for their transgenic

and wild type mice fed from 2400 to 12,000 IU/kg of Vitamin D3,

over 5 months, producing 50 and 110 nM of circulating 25-OH-

D3 metabolite, respectively. The results indicated that intake of

Vitamin D2 from mushrooms produced 25-OH-D2 as the

predominant metabolite in both WT and Tg VDM groups, as

expected. However, the Vitamin D2 intake in VDM groups

appeared to suppress accumulation of Vitamin D3, known to have

a slower turnover [36], as was observed in the control groups.

We propose that Vitamin D3 metabolite detected in the plasma

of control-fed groups may have been produced from the

conversion of tissue sources of pro-Vitamin D3 (7-dehydrocholes-

terol, 7-DHC) by mild UV exposure from fluorescent lighting in

the mouse holding room, (M. Holick, personal communication).

The observation that higher levels of dietary cholesterol in Control

mice (by ,5%, Table 1) did not produce higher levels of serum

cholesterol (Table 2), might suggest that the serum cholesterol was

partially utilised by Vitamin D-deficient Control mice. It is

possible that the Vitamin D deficiency in the diet of Control

animals stimulated gut enzyme-mediated conversion of cholesterol

to 7-DHC [37], which was subsequently converted by mild UV

exposure from fluorescent lighting to Vitamin D3 [38]. The

positive correlation between serum cholesterol levels and capacity

for UVB-mediated production of Vitamin D3 infers a biosynthetic

relationship between circulating cholesterol, 7-DHC and Vitamin

D synthesis [39], which is more efficient in circumstances of

Vitamin D deficiency, ie, lower baseline levels of 25-OH-D

metabolite produced higher levels of Vitamin D for the same

Figure 1. Schematic representation of the study design. Standard feed containing Vitamin D3 was fed for 2 months prior to baseline blood
sampling and memory testing. Wild type and transgenic mice were then randomised into 2 groups and fed either Control or Vitamin D-loaded feeds
for the intervention period of 7 months. The Control feed contained undetectable levels of Vitamin D2 and D3, as per Table 1.
doi:10.1371/journal.pone.0076362.g001

Table 2. Summary of differences in mouse body weight gain at 30 weeks of age, plasma protein levels at 6 months, plasma
cholesterol and calcium at 9 months, for Wild Type (WT), transgenic (Tg) groups given either control or Vitamin D mushroom
(VDM) feeds.

Measure WT-control WT-VDM Tg-control Tg-VDM

Body weight gain at 30
weeks (mean, sd)

14.863.8 12.262.9 14.466.3 13.665.1

Total protein* (g/L, sem) 66.0063.00 60.7560.63 62.0061.47 64.2560.63

Albumin* (g/L, sem) 43.0062.00 40.5060.87 39.5060.96 41.5060.96

Globulin* (g/L, sem) 23.0060 20.2560.75 26.2063.76 22.7560.48

Total cholesterol (mM, sem)# 3.2760.38 2.7360.20 2.9060.75 3.0360.58

Ca (mM, sem) 2.5160.03 (b) 2.4260.02 (a) 2.6060.03 (b,c) 2.4960.03 (a)

*results represent the mean of n = 4 individual mouse sera.
#results represent the mean of n = 3 individual mouse sera.
a, b, c: different letter indicate significant differences (P,0.05).
doi:10.1371/journal.pone.0076362.t002

Effects of Vitamin D2-Mushrooms on Memory in Mice
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quantum of UV exposure [39]. Thus, the utilisation of circulating

cholesterol in combination with mild UV exposure can account for

synthesis of Vitamin D3 in the Vitamin D-deficient Control mice.

Learning and Memory Testing
Baseline evaluation of mice (at 2 months) in the Morris water

maze (MWM) was compared for genotype groups (n = 24 mice per

group) prior to commencing dietary intervention. There were no

differences between genotypes in any training or probe testing

parameters before commencing the dietary intervention (data not

shown) indicating the absence of any pathology affecting memory

in Tg mice at this time point.

The MWM testing on 9 months mice indicated that the rate of

learning during training (latency to platform) was significantly

faster (P,0.05) for WT-VDM compared with WT-control groups

but there was no difference between Tg-control and Tg-VDM

groups (Figure 3). There was no difference between any groups in

the probe trial (data not shown).

Barnes maze testing, conducted on 9 month mice, revealed no

effect of diet or genotype for any training parameters, except a

diverging trend for distance and time travelled to find escape hole,

favouring the VDM diet (data not shown), that was more apparent

for Tg groups. There was significant benefit (P,0.001) of the

VDM diet in Tg but not WT mice for the primary error score

measure (Figure 4a). In contrast with MWM training where VDM

consumption was more beneficial to WT than Tg mice (Figure 3),

the training results for Barnes maze testing indicated a stronger

benefit of VDM in Tg compared with WT mice. It is likely that the

Tg mice experienced decreased physical robustness with age

associated with disease progression and it is possible that the

Barnes maze test was less physically demanding and stressful than

the MWM, resulting in comparatively elevated cognitive perfor-

mance in this setting.

The Barnes maze probe test showed that WT mice on the VDM

feed had significantly (P,0.05) lower primary and total error

scores, which was not significant for Tg groups (Figure 4b). There

was no difference between diets for either genotype in measures of

latency or distance travelled (data not shown). This may suggest

that the delayed memory of Tg mice at 9 months was relatively

more affected by the AD disease state, not present in WT mice.

Compared with mice on the control feed, both WT and Tg

mice receiving the VDM diet spent significantly (P,0.001) more

time in the novel arm of the Y maze (Figure 5a). The WT mice on

the VDM diet were significantly (P,0.005) faster to enter the

novel arm compared with WT mice on the control diet however,

this effect was not observed in Tg mice (Figure 5b). In summary,

significant benefits of VDM versus the control feed were observed

in 3/5 memory tests for WT mice and 2/5 tests for Tg mice.

Beta Amyloid in Plasma and Brain
Plasma levels of both Ab40 and Ab42 in Tg mice increased

significantly from 2 to 9 months however there was no difference

between the diets at any time point (Table 3). The rise in level of

plasma Ab42, and presumably Ab40, occurred between 2 and 6

months. Ab plaque accumulation in the brain measured at 9

months by IHC with 1E8 antibody (Figure 6) indicated that

compared with the control feed, Tg mice on the VDM feed had

significantly less fractional Ab plaque area per area of brain cortex

or hippocampus (Figure 7a). In addition, the mean Ab plaque size

in the cortex and hippocampus was significantly smaller in the

brains of mice on the VDM feed compared with the control feed

(Figure 7b). However, without a measure of change in brain levels

of amyloid plaque over time, it is not possible to speculate about

relationships between serum and brain amyloid levels. The effects

on plaque load suggested that either the VDM feed (either

Vitamin D2 or mushroom bioactives) was effective in lowering

Ab42 expression, or alternatively that Vitamin D3 or deficiency of

mushroom bioactives promoted Ab42 expression in the Control

group.

Figure 2. Effects of dietary interventions on concentrations of
plasma metabolites of Vitamin D. Results are presented as a bar
chart for 25-OH-D2, 25-OH-D3 and total 25-OH-D, overlaid with plasma
levels of calcium (symbols), corrected for albumin, in bloods taken after
7 months of feeding experimental diets. Results represent the averages
of duplicate analyses from at least 3 animals per group. Error bars
represent standard errors of the mean and significant differences
determined by 2-way ANOVA are shown (**, P,0.001). There was no
difference between total 25-OH-D within genotype.
doi:10.1371/journal.pone.0076362.g002

Figure 3. Dietary effects on Morris water maze training for wild
type (WT) and transgenic (Tg) mice at 9 months. Results shown
are latency to platform measure performed on 9 consecutive days.
Results represent the average for the group with standard error at each
time point. Learning rate for WT-VDM was significantly better than WT-
control group by 2-way repeat measure ANOVA (feed, day) F
(1,19) = 4.679, P,0.05).
doi:10.1371/journal.pone.0076362.g003

Effects of Vitamin D2-Mushrooms on Memory in Mice
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Inflammation in Brain
Compared with Tg mice on the control diet, Tg mice on the

VDM diet had a significantly (P,0.05) higher number of IL-10-

positive neurons in the cortex and a significantly (P,0.01) larger

area of the neurons were IL-10 positive (Figure 8). A similar trend

was apparent in the hippocampus, but was not statistically

significant.

Immuno-localisation of IL-1b in the cortex or hippocampus of 9

months mouse brain sections showed no difference between feed

type or genotype (Figure 9b) but a significant main effect of feed on

cortex total neuron area,. The absolute sensitivity of IL-1b staining

and magnitude of total neuron area (Figure 9) appeared to be

lower than for IL-10 (Figure 8), based on comparison of stained

areas.

Staining for GFAP measured at 9 months (Figure 10a) indicated

a strong effect of genotype in the temporal cortex (P,0.001), a

significant effect of both genotype and feed in the hippocampus

(P,0.05), no effects in the CA1 hippocampus region and

significant feed effect (P,0.05) in the CA3 hippocampus region.

Significant lowering of GFAP-stained astrocytes in the hippocam-

pus by VDM feeding (P,0.05) was evident for both genotypes

(P,0.05), and supported that GFAP staining effects were

specifically correlated with astrocytes in the hippocampus.

Discussion

This study aimed to determine effects of a dietary form of

Vitamin D, as present in UV light-treated mushrooms (Vitamin

Figure 4. Dietary effects on Barnes maze training for wild type
(WT) and transgenic (Tg) groups at 9 months. Results shown are
(a) primary error score on 4 consecutive days, representing the average
for the group and standard error at each time point. Tg-VDM were
significantly more accurate than Tg-control group by 2-way repeat
measure ANOVA (feed, day) F(1,23) = 13.092, P,0.001. (b) Subsequent
probe trial testing on day 6 after removing escape hole showing
primary and total error scores. Results represent the average for the
group and standard error. For primary error score, the WT-VDM group
was significantly more correct than the WT-control group by T-test
(t = 2.186, P,0.05). For total error score, WT-VDM group was
significantly more correct than WT-control group by T-test (t = 3.130,
P,0.05).
doi:10.1371/journal.pone.0076362.g004

Figure 5. Dietary effects on Y maze probe trial at 9 months.
Results shown are (a) time spent in novel arm and (b) latency to novel
arm. Results represent the average for the group with standard error.
For time in novel arm measure, WT-VDM stayed significantly longer
than WT-control group by Kruskal-Wallis One Way ANOVA on Ranks
(H = 23.731 with 3 degrees of freedom, P,0.001) whereas WT-controls
spent similar time in all arms. Likewise, Tg-VDM group stayed
significantly longer than Tg-control group by Kruskal-Wallis One Way
ANOVA on Ranks (H = 21.324 with 3 degrees of freedom, P,0.001). WT-
control and Tg-control groups spent similar times in all arms. For
latency to novel arm measure, WT–VDM group showed improved
learning by Mann-Whitney Rank Sum Test (U Statistic = 21.000, P,0.05).
doi:10.1371/journal.pone.0076362.g005

Effects of Vitamin D2-Mushrooms on Memory in Mice

PLOS ONE | www.plosone.org 6 October 2013 | Volume 8 | Issue 10 | e76362



D2), together with other potential bioactive compounds, compared

with a vitamin D-deficient control diet, on memory and cognitive

performance in both a transgenic mouse model of AD and wild

type mice. The vitamin D-deficient diet was introduced post-

weaning, prior to which both the mothers and pups received

sufficient vitamin D in their feed. As such, the study design

modelled the scenario of adequate vitamin D status during early

development followed by Vitamin D mushroom supplementation

during juvenile and mature growth phases. This design thereby

investigated possible benefits of Vitamin D supplementation (as

VDM) to correct the decline in Vitamin D plasma metabolite

status and prevalence of deficiency, that accompanies aging [40].

A weakness of the study design was the absence of treatment with

non-irradiated (Vitamin D-free) mushroom, so as to separate

effects of Vitamin D from non-Vitamin D mushroom components.

As such, the result only permits comparison of the effects of the

total Vitamin D-mushroom treatment versus the non-mushroom

control diet.

Vitamin D status is positively associated with cognitive

performance in both AD [41,42] and non-AD subjects [43–47]

suggesting that AD-independent and AD-specific effects of

Vitamin D may apply. A non-causal relationship between vitamin

D and AD has been reported [41,48,49], with evidence for its

specific protective biological role also emerging [42,50–52].

Vitamin D receptor (VDR) mRNA levels [53] are reduced in

AD patients, and the gene encoding VDR has been highlighted as

a risk factor in late-onset AD [14,16,54,55]. By using WT and Tg

AD mice, effects of dietary interventions in the absence and

presence of AD pathology were compared and are discussed in

terms of dietary effects common to both genotypes (genotype-

independent), and those specific to the Tg AD genotype (genotype-

dependent).

Genotype Independent Effects - Nutrition
The elevation of Vitamin D2 levels in Button mushrooms by

UV treatment [56] and its bioavailability to humans [57] has been

established. At 5% (w/w) of the mouse base diet, VDM solids

contributed a range of potential nutrients to the diet including

Vitamin D2, other potentially bioactive molecular derivatives of

ergosterol formed in proportions that depend on the UV

wavelength profile [58], ergothioneine, a potent anti-oxidant

[59], polyphenolics including hispidins [60] and selected minerals

(Table 1).

Minerals with greater than 5% boost in the VDM feed included:

Cu, K and Mo. Copper (Cu) is used by a range of metallo-enzymes

including dopamine beta monoxygenase, which converts the

neurotransmitter dopamine to norepinephrine, and superoxide

dismutase, a cellular anti-oxidant. Potassium (K), with sodium, is

important for maintaining electrolyte balance and function of

nerve and muscle cells. Molybdenum (Mo) is also a co-factor for

several metallo-enzymes involved with catabolism of sulphur

amino acids and DNA bases [61].

Minerals that were diluted by more than 5% included: Ca and

Mn. Calcium (Ca) is a key requirement for normal skeletal

development, neuromuscular and cardiac function and likewise,

manganese (Mn) is also essential for bone formation. In addition,

Mn is required for several metallo-enzymes involved with

metabolism of carbohydrates, cholesterol and amino acids [61]

and is a co-factor for mitochondrial super-oxide dismutase (SOD).

Figure 6. Visualising brain plaques using image segmentation methodology with Ab42-specific 1E8 antibody. Original RGB image of
typical transgenic brain section showing significant plaque presence (a) and nuclear image obtained using colour unmixing; plaques are mostly
absent from this image (b). Plaque image obtained by colour unmixing; nuclei are mostly absent from this image while plaques are clearly visible (c).
Masks for the cortex area and the hippocampus were produced manually as shown by lighter grey shading (d). Plaques shown in white were
segmented automatically from image (c) using intensity Otsu thresholding on image (b). All images are 206magnification.
doi:10.1371/journal.pone.0076362.g006
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These differences between Control and VDM feeds did not

manifest in any detectable effects on mouse growth (Table 2),

cholesterol or any biomarkers of toxicity (Table 2). However, it is

worth noting that the Tg-VDM group only displayed statistically

significant ‘slowness’ during behavioural testing at 9 months (data

not shown) that might have reflected effects of Ca and Mn dietary

depletion on skeletal development and possibly compromised

mitochondrial SOD-mediated anti-oxidative capacity in the Tg-

VDM mice. Therefore, only behavioural results that are

independent of speed have been reported.

Genotype Independent Effects – Vitamin D Status
The experiment presented here effectively compares low dose

Vitamin D2 derived from fresh Button mushroom solids with low

dose Vitamin D3 arising from environmental UV exposure in

response to a Vitamin D-deficient diet in WT and Tg mice. The

metabolite status results provide interesting insights into the

competitive bioavailability of Vitamin D2 and D3, which has been

reported in humans using Vitamin D supplements [36] and also

for mushroom-derived Vitamin D2 [57], but not previously in

mice. Indeed, Vitamin D metabolite status is commonly reported

as total 25-OH-D, which does not take into account either the

Vitamin D2 to D3 intake ratio or the active metabolite ratio. As

observed in this study for mice, when Vitamin D2 was taken as a

supplement over either summer or winter by senior women (,70

years old), the metabolite status of 25-OH-D2 was inversely

correlated with 25-OH-D3 [62]. Thus, when oral or environmen-

tal forms of Vitamin D3 are co-administered with Vitamin D2, the

metabolism of Vitamin D2 appears to be strongly favoured over

Vitamin D3. This effect is distinct from the reported higher

efficiency of Vitamin D3 metabolism into 25-OH-D3 compared

with Vitamin D2 metabolism into 25-OH-D2, when given

separately [36].

The VDM groups tended to have slightly higher total levels of

25-OH-D (25-H-D2+25-OH-D3) compared with Control-fed

groups (Figure 2), as a possible consequence of the cumulative

contributions of both dietary Vitamin D2 and endogenous sources

of Vitamin D3. However, this trend was not significant suggesting

that the benefits of the VDM feed were related to either the

superior effect of Vitamin D2 over Vitamin D3, or synergistic

effects of Vitamin D2 with bioactive factors present in the VDM.

Comparative safety and efficacy of Vitamin D2 and Vitamin D3

supplementation are in early stages of evaluation [36], stimulated

by new dietary sources of Vitamin D2, such as mushrooms. It is

clear that if efficacies of Vitamin D2 and Vitamin D3 on different

health endpoints, ie, bone health cf. cancer cf. cognition, are found

to diverge, these findings should inform future guidelines for

Vitamin D supplementation and definitions of ‘healthy’ Vitamin D

plasma metabolite status. Recently, all-cause mortality risk was

reported to follow a ‘J’ curve that associated negative consequenc-

es for survival with levels of 25-OH-D .90 nM [63]. It is likely

that the previous data was specific for 25-OH-D3, as Vitamin D2 is

prescription-only in Denmark where the study was conducted

(personal communication), but it is not yet known if the J-curve

relationship and the optimal range of Vitamin D status would be

the same for Vitamin D2 or combinations of Vitamin D2 and D3,

as a result of increasing availability of dietary sources of Vitamin

D2.

Figure 7. Quantification of brain amyloid plaque loads in
transgenic mice groups at 9 months. Relative levels of brain plaque
measured at 9 months, by immune-histochemical staining with 1E8
antibody to Ab42 assessed by image analysis, showing (a) fractional
coverage of plaque per total areas of cortex or hippocampus and (b)
mean plaque areas in respective brain regions. Results are averaged
across brains of n = 12 or 13 mice and are shown as average for the
group with standard deviation. All P values were determined using
Student’s T-test.
doi:10.1371/journal.pone.0076362.g007

Table 3. Summary of plasma levels of Ab40, Ab42 measured
at either 2 or 3 time points, respectively for transgenic (Tg)
mice given either control or Vitamin D mushroom (VDM)
feeds.

Measure Time-mo Tg-control Tg-VDM

Ab40 (pM) 2 441.4633.7 (a) 463.2640.8 (a)

9 636.9621.4 (b) 641.2640.3 (b)

Ab42 (pM) 2 165.4610.6 (c) 153.6612.2 (c)

5 165.6617.4 (c) 158.9616.1 (c)

9 197.069.1 (d) 185.0617.2 (d)

Results are the mean and SEM of 7–12 mice per treatment group.
(a, b) Two-way repeat measure ANOVA showed significant difference from 2 to
9 months (P,0.05) for Ab40 and for Ab42, between 2 months and both 5 and 9
months (c, d, P,0.05).
doi:10.1371/journal.pone.0076362.t003
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Genotype Independent Effects – Learning and Memory
The APPswe/PSEN1 mouse is a well-characterised rodent

model of familial AD, exhibiting both histological and behavioural

hallmarks of the human condition. These AD mice exhibit

learning deficits in the Morris water maze memory test [64–68],

while spontaneous alternation behaviour and performance in the

traditional Barnes maze appears to be intact [69,70]. In the

present study, we used a novel arm approach in the Y-maze and

observed no difference between genotypes, complementing

previous studies conducted using spontaneous alternation

[69,70]. APPswe/PSEN1 mice were not expected to display any

impairments in motor co-ordination or general physical capacity

compared with wild type littermates [70], and the AD genotype

cannot explain the observed slowness of the Tg-VDM group in

Morris water and Barnes maze tests, which has been attributed to

possible dietary depletion of Ca and Mn (Table 2). Neither can loss

Figure 8. Immuno-histochemical quantification of IL-10-stained brain areas at 9 months. Typical images of IL-10-stained brains
comparing mouse study groups (a) and results of quantitation by image analysis for the total cortex (neocortex plus temporal cortex, bars) and
hippocampus (symbols) regions (b). Two way ANOVA analysis indicated significant effects of feed type (P,0.05) and interaction between genotype
and feed type (P,0.05), with post-hoc feed type effect (Tukey test) significant for transgenic (IL-10- neuron area, P,0.001; total neuron number,
P,0.05) but not wild type mice.
doi:10.1371/journal.pone.0076362.g008
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of visual acuity and other deficits that have been reported to occur

in older (20–26 months) APP\swe/PS1dE9 Tg mouse [71]

account for slowness in these mice at 9 months of age.

This is the first study to report effects of mushroom-derived

vitamin D2 on cognitive outcomes in both WT and AD Tg mice.

The study design exploited competitive effects of Vitamin D

metabolism and permitted a virtually direct comparison between

efficacy of Vitamin D2 and Vitamin D3, based on Vitamin D

metabolite levels (Figure 2). Learning and memory performance

was consistently superior for VDM versus Control groups of both

genotype, possibly implicating effects on cognition of Vitamin D2

to be superior to Vitamin D3. Reported benefits of Vitamin D3

supplementation on learning and memory in both APPswe/

PSEN1 [34] and aged, male F344 rats [72] is also consistent with

these findings.

The significance of Vitamin D adequacy for brain development

and function is of growing concern in the context of neurodegen-

eration and aging. Neuroprotective effects are related to the action

of Vitamin D3 on neurons and glial cells and roles in biosynthesis

of neurotrophic factors, including glial-derived neurotrophic factor

Figure 9. Immuno-histochemical quantification of IL-1b-stained brain areas at 9 months. Typical images of IL-1b-stained brains
comparing mouse study groups (a) and results of quantitation by image analysis for the total cortex (neocortex plus temporal cortex, bars) and
hippocampus (symbols) regions (b). Two way ANOVA analysis indicated no significant effects of either feed type or genotype on IL-1b-stained neuron
area but a significant main effect of feed on total neuron number (P,0.05).
doi:10.1371/journal.pone.0076362.g009
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(GDNF) and nerve growth factor (NGF) [73], and neurotransmit-

ters. Other important functions are the regulation of inflammation

via the inducible nitric oxide synthase (iNOS) pathway, and

astrocyte-mediated brain detoxification by elimination of reactive

oxygen and nitrogen species involving gamma-glutamyltranspep-

tidase and glutathione [74]. Vitamin D3 controls NGF signalling

with important effects on hippocampal neuron survival, neurite

outgrowth and neurotrophic signalling [73,75]. The in vitro and

in vivo studies of Vitamin D effects on brain function have mostly

been tested with Vitamin D3. Whether or not Vitamin D2 exerts

comparable functions to Vitamin D3 is not known and the current

study infers that Vitamin D2 may be more efficacious for

neuroprotection.

Alternate interpretations of this data reflect the potential

contribution of non-Vitamin D mushroom bioactive species,

conferring either additive or synergistic contributions, to Vitamin

D on improvement in learning and memory. Components of

mushrooms other than Vitamin D2 may also provide for

Figure 10. Immuno-histochemical quantification of GFAP-stained brain areas at 9 months. Typical images of GFAP-stained brains
comparing mouse study groups (a), and results of quantitation by image analysis for the temporal cortex, total hippocampus, hippocampus regions
CA1 and CA3 and hippocampal GFAP-stained astrocytes (symbols) (b). Two way ANOVA analysis indicated the following significant effects: genotype
in the temporal cortex (P,0.001); both genotype and feed in the hippocampus (P,0.05); no effects in the CA1 hippocampus; feed (P,0.05) in the
CA3 hippocampus; both genotype (P,0.05) and feed (P,0.05) for GFAP-stained astrocytes in the hippocampus. There were no significant
interactions for any parameters.
doi:10.1371/journal.pone.0076362.g010
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neuroprotection. A Malaysian mushroom extract of Pleurotus

giganteus was shown to promote outgrowth of PC12 cells that was

attributed to both secondary metabolites of the sterol and

triterpene class and also to effects of K [76]. Although Button

mushroom secondary metabolites have unknown bioavailability to

brain, the high K associated with VDM feed (Table 2) may also

account for neurotrophic effects in the mice brains leading to

improved memory and learning in these groups.

Genotype Dependent Effects – AD and Amyloid
Pathology
APPswe/PSEN1 mice initially present with amyloid deposits at

approximately 4 months of age, and amyloid deposition increases

with disease progression [77]. Changes in levels of Ab40 and Ab42
in blood reflect changes in distribution between the brain and

periphery over time. With disease progression, the ratio of Ab42 to
Ab40 was higher in the brain compared with blood, measured at 6

and 12 months of age for APPswe/PSEN1 mice [77] and similarly

for the Tg2576 model [78]. The Ab peptide levels were

accompanied by detectable increased memory deficit from 6

months of age [79]. The intervention with a VDM diet

significantly lowered the brain load of Ab42 (Figure 7) but

peripheral levels of Ab42 and Ab40 were unchanged (Table 3).

These data suggest that a VDM diet may significantly affect either

the expression or processing of APP, favouring a non-amyloido-

genic pathway, but not the efflux of the amyloidogenic products,

Ab42 or Ab40.
These effects of VDM are in contrast to frequent reporting of

inverse correlations between changes in brain and blood Ab2 levels.

For example, in the APPswe/PS1dE9 mouse model, an inverse

relationship between brain deposits of Ab42 and serum levels was

induced by either vaccination-mediated production of anti-Ab42
antibodies in the periphery [80] or a combination of anti-Ab42
antibodies and active vaccination [81]. In addition, a new drug for

treating vascular complications of diabetes also lowered brain

Ab42 while increasing plasma Ab42 in APPswe transgenic mice

[82]. These examples most likely reflect enhanced efflux of brain

Ab42 without affecting production rates of Ab42 in the brain.

Mice on the VDM diet showed lower Ab42 brain plaque load

without change in plasma Ab42 suggesting that Vitamin D2 (or

mushroom bioactives) altered APP processing, as the expression

rate of APP was expected to be strongly controlled by the

transgenic genotype. Stimulation of non-amyloidogenic processing

of APP by the VDM diet is supported by another study which

showed that AD Tg mice treated with Vitamin D (12,000 IU/kg

feed) had reduced Ab42 peptide and plaque load in the brain and

increased non-amyloidogenic peptide products of APP [34]. The

effect was attributed to possible inhibition of beta secretase or

enhanced clearance by NGF-stimulated astrocytes [34]. It is not

known if Vitamin D3 therapy also lowered blood Ab42 levels,

which was not reported. In further support, we have shown that a

beta secretase inhibitor factor was present in Wood Ear and may

also be present in Button mushrooms [83]. Furthermore, neither

Vitamin D2 nor D3 appear to interact directly with Ab42,
according to ThT-binding assay (data not shown), and is therefore

unlikely to directly modulate brain clearance, but may do so by

Vitamin D/VDR-mediated processes [17,72].

Genotype Dependent Effects – Inflammation
This study has demonstrated that, compated with control feed,

VDM-fed Tg mice displayed higher numbers of IL-10-immuno-

positive cells (Figure 8), lower GFAP-stained astrocytes (Figure 10)

in the temporal cortex and hippocampus and higher total neuron

count (Figure 8). The elevation of total neuron area in the cortex

by the VDM feed supported that mushroom bioactives were

bioavailable to brain and were responsible for a neuroprotective

effect. Effects on GFAP were also observed in VDM-fed WT mice

(Figure 10). The results of this first study to quantify IL-10 and IL-

1b in this mouse model using IHC, are in good agreement with

ELISA-based methods [34,72].

IL-10 is an anti-inflammatory, neurotrophic cytokine produced

by microglial and neuronal cells within the CNS [84,85]. IL-10

inhibits cytokine production within monocytes and macrophages

[86,87] having a suppressive effect on the inflammatory cascade.

The elevation of total neuron count due to IL-10-expressing

neurons observed in VDM-fed Tg mice (Figure 8b) suggested that

the VDM feed promoted an anti-inflammatory response. No effect

of VDM was observed in WT mice suggesting that the

inflammation was associated with amyloid plaque deposition.

Amyloid pathology did not appear to influence the primary pro-

inflammatory cytokine, IL-1b.
The Tg and WT mice on the VDM diet had lower numbers of

GFAP-positive astrocytes compared with mice on the Control diet.

GFAP-positive astrocytes were shown to accumulate near amyloid

plaque [88] and VDM-mediated effects can therefore be explained

by the overall lowering of plaque area and size by VDM feeding

(Figure 7). In a similar AD Tg mouse model and in the absence of

any intervention, hippocampal GFAP was unchanged between 5

and 14 months for WT mice but increased significantly by 14

months for Tg mice [88]. This suggested that the inflammatory

response in AD Tg mice occurs at later stages and as a

consequence of plaque deposition [88]. Our data agrees with the

previous study as we did not observe a change in GFAP-positive

cells in the hippocampus of 9 month Tg compared with WT mice

on the Control diet. In contrast, the Tg mice on the VDM diet

showed significant lowering of GFAP-stained area in the cortex

and hippocampus, compared with Tg mice on the Control diet.

The GFAP-stained area tended to increase in the hippocampus

CA1 and CA3 regions, with VDM-feeding in the Tg compared

with the Control-fed mice. These data show that there is an overall

benefit of VDM feeding, but important brain region-dependent

effects.

VDM feeding in Tg mice resulted in a significant increase in

total neuron numbers compared with Tg-Control groups

(Figure 8b). Trophic effects of vitamin D have been linked with

stimulation of Nerve Growth Factor (NGF) in Tg AD mouse brain

[34] and the inhibition of nitric oxide [89]. The current data does

not permit confirmation of neurotrophic effects of VDM by NGF

but is supported by these reported in vivo effects of vitamin D and

also by stimulation of neuronal growth by mushroom-derived

compounds in vitro [76], suggesting that the bioactive combination

in VDM may exert synergistic effects on neuronal growth.

The attribution of the collective effects of the VDM feed to

Vitamin D per se (i.e., not other mushroom bioactives) is supported

by the comparable effects of Vitamin D3 supplementation in AD

Tg mice, where up-regulation of NGF and down-regulation of

TNFa were observed. Likewise, beneficial regulation of inflam-

mation by subcutaneous injection of Vitamin D3, specifically, up-

regulation of IL-10 and down-regulation of IL-1b, was reported in

aged F344 rats, devoid of amyloid pathology [72]. If these effects

in either Tg or non-Tg mice are specific to Vitamin D, results from

the current study might suggest that Vitamin D2 (VDM feed) is

more efficacious than Vitamin D3.

Through the suppression of amyloid deposition and consequent

inflammatory immune responses, Vitamin D ameliorates cognitive

decline in the AD mouse model. Considering the presence of

Vitamin D receptors on neurons and glia [90], together with

accumulating epidemiological evidence [91,92], these data support
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the role of Vitamin D in the modulation of inflammation in either

the absence [72] or presence of AD pathology [34] and benefits for

cognition.

Collectively, these results justify further investigation of the

usefulness of Vitamin D-enriched Button mushroom as a

protective dietary factor against AD in randomised clinical trials.

Further studies are necessary to resolve possible differential

efficacies of Vitamin D2 versus D3 on cognition, and specific

effects of non-Vitamin D components of mushroom.

Materials and Methods

White button mushrooms (Sylvan 737 strain) were obtained

from Adelaide Mushrooms (Montaro, South Australia, Australia).

Ergosterol (vitamin D2), cholecalciferol (vitamin D3), L-ergothio-

neneine, lanosterol and 7-dehydrocholesterol were purchased from

Sigma Aldrich (St Louis, MO, USA) and vitamin D2-[
2H3]

standard in ethanol (Isosciences, King of Prussia, PA, USA).

Preparation of Vitamin D-enriched Mushrooms
Mushrooms were washed, air dried and chopped into halves

prior to UV treatment. UV treatment to drive the conversion of

ergosterol to Vitamin D2 was conducted using a light-proof box

(1300 mm width61300 mm depth6500 mm height) assembled

with an array of 6 parallel UV-C tubes (Philips TUV 36W.G36 T8

Longlife UV-C lamps, North Ryde, NSW, Australia), as described

in Liu et al, 2009 [93]. After 2 hr stabilisation time, the UV-C

light intensity was 1700 mW/cm2 measured using a radiometer

with a solar blind photodiode SED 240 sensor and cosine-

correction diffuser (Model IL1700, International Light, MA,

USA), set at 253.7 nm. The intensity was up to 30% lower at

the edges compared with the centre and also lower because the

treatment plane of the mushrooms was 30 cm further away from

the UV source compared with the radiometer. Mushrooms were

treated in 2 batches: 25 and 5 kg treated for 12 and 30 s,

respectively, before freeze-drying. The batches of dried mush-

rooms were vacuum-sealed in sub-samples and stored at 4uC, and
blended as required at a ratio of 2:1 to yield an average Vitamin

D2 concentration of 30 mg/kg.

Proximate Analysis
The dried mushroom product was analysed for total moisture

using a HR73 Halogen moisture analyser (Mettler Toledo, Port

Melbourne, Victoria, Australia). Total nitrogen analysis was

conducted by the flash combustion method using a Carlo Erba

Elemental Analyser (Model 1108, Carla-Erba, Milan, Italy), with a

coefficient of variation for replicates of ,2%. Total lipid analysis

was determined gravimetrically after Mojonnier extraction [94].

Total ash analysis was conducted by gravimetric analysis of residue

after thermal oxidation of sample in a platinum crucible before

drying to constant weight in a dessicator. Carbohydrate content

was calculated by difference. The protein level was computed from

the N content using the recommended factor of 4.55 for Button

mushroom [35].

Mineral Analysis
The dried mushroom product was digested by microwave

digestion in a mixture of concentrated nitric and hydrochloric

acids (80:20, v/v) according to the US EPA Method 3051 (1994).

Analysis of digestates was conducted by Inductively-Coupled

Plasma Atomic Emission Spectroscopy (ICP-AES) on a Varian

Vista Pro instrument (Varian Australia, Melbourne, Australia)

under optimised settings, in at least duplicate, with appropriate

reagent blanks and reference samples. The average coefficient of

variation between replicates was 10%.

Analysis of Vitamin D and Related Species
Vitamin D2 (ergosterol), vitamin D3 (cholecalciferol), lanosterol

and 7-dehydrocholesterol stock solutions were prepared by

dissolving in ethanol. The concentration of vitamin D2 was

confirmed using e at 265 nm of 18,843 cm-1 [95]. A solution of

[2H3]-vitamin D2 (20 mg/ml) in ethanol was used as an internal

standard.

Extraction of Vitamin D and related compounds was adapted

from Japelt et al. [95]. Replicates of freeze dried samples (100 mg)

were weighed into 25 ml glass tubes with Teflon lids and mixed

with 60% (w/v) potassium hydroxide (1 ml); 96% ethanol (v/v,

5 ml), 15% (w/w) ascorbic acid (3 ml) and [2H3]-vitamin D2

internal standard (20 ml). Samples were agitated at 22uC for 18 h

before adding 20% ethyl acetate in pentane (7.5 ml) and mixing

for a further 30 min. Sample tubes were centrifuged at 20006g for

5 min at 22uC and the organic layer recovered. Extraction into

ethyl acetate was repeated and the combined extracts were then

washed with 50 mM HCl (10 ml) and the complete removal of

alkali confirmed by pH testing. The organic layer was transferred

to a round bottom flask and dried by rotary evaporation at 30uC.
The residue was redissolved in 1% iso-propanol in n-heptane

(2.5 ml) before loading onto a silica cartridge column (500 g resin,

4 mL reservoir), previously activated with n-heptane (5 ml). After

washing with 0.5% (v/v) iso-propanol in n-heptane (265 ml),

bound compounds were eluted under vacuum with 6% (v/v)

isopropanol in n-heptane (264 ml) and the eluant evaporated to

dryness under nitrogen. The residue was finally redissolved in

100% methanol (3 ml) and filtered (0.2 mm) before LC-MS/MS

analysis.

For LC-MS/MS analysis, the sample (3 ml) was injected and

separated on a C18 column (XTerra MS, (2.16150 mm, 3.5 mm
particle size, Waters Corp., Milford, MA, USA) at 30uC with

isocratic elution (0.5% (v/v) formic acid in methanol at a flow rate

of 200 ml/min over 15 min). The detector was a Quantum triple

stage quadrapole (TSQ) mass spectrometer (Thermo Fisher

Scientific, Scoresby, Vic, Australia) equipped with an atmospheric

pressure chemical ionisation (APCI) source. Samples were scanned

in positive mode with selected reaction monitoring (SRM) of

products identified by the following m/z ions and retention times:

Vitamin D3, 259.2, 5.64 min; Vitamin D2 and [2H3]-vitamin D2,

159.1, 5.1 min; 7-dehydrocholesterol, 159.1, 5.9 min; ergosterol,

159.1, 6.04 min; lanosterol, 191.1, 7.11 min and cholesterol,

161.1, 7.12 min.

Preparation of Experimental Mouse Feeds
Mouse feed pellets were prepared by crushing the vitamin D3-

depleted base feed (custom-made product, Barastoc mice cubes,

Ridley Agriproducts Pty Ltd, Victoria, Australia; proximate and

micronutrient analysis given in Table 1) milled to particles of

,2 mm. Vitamin D-rich mushroom powder was dry-blended with

crushed mouse feed at 5% (w/w) to a final Vitamin D

concentration of ,160.2 mg/kg, before dispersing in de-ionised

water to form a moist dough. Control feed was prepared in the

same manner but without addition of mushroom solids. After

thorough mixing, the dough was manually-fed through a mincer

with a sausage attachment (Weston No. 8 Manual Meat Grinder,

Pragotrade USA) to make pellets of approximately 4 cm length

and 1.5 cm diameter. The pellets were oven-dried overnight at

60uC before vacuum sealing and storing at 4uC until use. Feeds

were prepared in batches of 1–3 kg, as required. Assuming an
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average daily consumption of 3 to 5 g per mouse, the daily dose of

Vitamin D2 was 3 to 5 ng (0.12 to 0.2 IU).

Mouse Feeding Study
Transgenic (Tg) mice expressing human genes for the Swedish

variant of amyloid precursor protein and exon-9 deleted

presenilin-1 (APPswe/PS1dE9) were obtained from the Jackson

Laboratory (Stock 004462; Bar Harbour, ME, USA). Experimen-

tal subjects (all males) were selected from a breeding colony of

hemi-zygous male crossed with wild type (WT) female mice.

Genotype identification was performed prior to experiments by

the PCR protocol recommended by the Jackson Laboratory. All

experiments were performed in accordance with the Prevention of

Cruelty to Animals Act, 1986 under the guidelines of the National

Health and Medical Research Council (NHMRC) Code of

Practice for the Care and Use of Animals for Experimental

Purposes in Australia, and approved by the Animal Ethics

Committee (AEC) of the Howard Florey Institute, University of

Melbourne (AEC No. 11-010).

A total of 21 WT and 25 Tg mice completed the study, which

were randomised between four groups based on genotype and feed

type: n=10 wild type, control diet (WT-control); n=11 wild type,

Vitamin D mushroom diet (WT-VDM); n=13 transgenic, control

diet (Tg-control) and n=12 transgenic, Vitamin D mushroom diet

(Tg-VDM). Standard mouse feed (Vitamin D3-replete, Barastoc,

Ridley Agriproducts Pty Ltd, Victoria, Australia) was fed to all

mice up to completion of the baseline Morris water maze testing at

2 months of age, after which VDM and control feeds were

substituted and fed for a further 7 months (Figure 1, Table 1).

Mice were housed in treatment groups (3–5 per cage) in an

artificially lit environment with 12 h light/dark cycles and no

exposure to natural light. Experimental feeds and water were

available ad libitum for the duration of the study. Monitoring for

weight and health was performed twice per week and behavioural

testing was done at the same time point in the light cycle.

Blood Sampling
Blood samples were taken from mice at baseline (2 months),

middle (6 months) and end time points (9 months). At 2 and 6

months, samples were collected via sub-mandibular bleeds using

Goldenrod animal lancets (MEDIpoint Inc., Mineola, NY) in K3

EDTA tubes (Greiner Bio-One, Kremsmunster, Austria, item no.

450475). At the conclusion of behavioural testing (9 months),

blood samples were taken prior to perfusion with 4% paraformal-

dehyde. Mice were anaesthetised (80 mg/kg sodium pentobarbi-

tone, i.p.) and blood collected via cardiac puncture. Blood was

divided between EDTA tubes (for Ab42 analysis) and lithium-

heparin tubes (Greiner Bio-One, item no. 450477) for Vitamin D

analysis. The tubes were mixed by inversion 5–10 times before

centrifuging at 20006g for 10 min. The upper plasma layer was

removed by pipette, dispensed into 1.5 ml centrifuge tubes and

snap-frozen in liquid nitrogen prior to storage at 280uC until use.

Plasma Protein Analyses
Protein levels were determined as an index of liver function

using EDTA tubes, using Cobas colorimetric auto-analyser

methods for Total Protein and Albumin (Gen.2, Roche Diagnos-

tics, IN, USA), and calculating globulin by difference. Plasma from

4 animals per treatment group was tested.

Cholesterol was determined using the Cobas colorimetric auto-

analyser method for cholesterol (Gen.2, Roche Diagnostics).

Plasma from 4 animals per treatment group 2, 6 and 9 month

time points were tested.

Calcium was determined using the Cobas colorimetric auto-

analyser methods for Calcium and Albumin (Roche Diagnostic-

s).and corrected for albumin-bound Ca. Plasma from 4 animals

per treatment group at the 9 month time point, were tested.

Analysis of Vitamin D metabolites was determined using plasma

from 3 animals per treatment group at the 9 month time point.

Analysis of metabolites 25-hydroxyvitamin D2 and D3 was

conducted using liquid chromatography with tandem mass

spectrometry as described previously [96].

Analysis of Ab1-40 and Ab1-42 was conducted using commer-

cial ELISA kits for detecting human b-Amyloid peptides (Wako,

Richmond, VA, USA), according to the manufacturer’s instruc-

tions. Transgenic mouse plasma samples were diluted by a factor

of 16 and analysed as independent duplicates by comparison with

a standard curve. Plasma from at least 7 animals per treatment

group at either 2 and 9 month time points (Ab40) or 2, 6 and 9

month time points (Ab42) were tested and the results reported as

the average and standard error of the mean.

Behaviour Testing by Morris Water Maze
Prior to introducing test feeds (,2 months of age) and at the

conclusion of the feeding study (,9 months of age), hippocampal-

dependent, long term spatial learning and memory retention were

assessed in wild type and APPswe/PS1dE9 mice using a Morris

water maze [97,98]. Ethovision XT tracking software (Noldus,

Leesburg, VA, USA) was used for data collection, and water

temperature was maintained at 2563uC. Subjects were required

to utilise external spatial cues in order to locate the platform.

During memory training, mice underwent four trials per day with

approximately 15 min between each trial. Entry point into the

maze was randomised. Mice that were unable to complete the task

within 2 min were placed on the platform for 20 s before removal

from the maze. After each trial, mice were dried and placed under

a heat lamp to prevent hypothermia. Acquisition of spatial

memory was assessed by examining latency and distance travelled

by the mouse to locate the platform, for 9 consecutive days of

training. On Day 10, a ‘‘probe’’ trial was performed to test

memory retention and retrieval. The probe trial involved the

removal of the platform and the subject was monitored for the

length of time spent in the ‘‘home’’ quadrant.

Behaviour Testing by Barnes Maze
Long-term, hippocampal-dependent, spatial reference memory

was also assessed using a 36 hole Barnes maze (diameter = 120 cm)

at the 9 month time point [99]. In order to increase motivation,

mice were exposed to a loud buzzer and aversive bright lights

during each trial, both of which were switched off upon entering

the target hole. Mice were introduced into the maze from

underneath a small box which was remotely raised by the

experimenter in the adjoining room via a pulley system. After a

pre-trial in which mice were led by the experimenter to the target

hole, mice were exposed to the maze twice per day, with a 30 min

break, for four consecutive days. Parameters measured were

primary latency (time until first visit of target hole), latency to enter

target hole, primary error score, number of errors and total error

score (for the purposes of error scoring, each hole was designated a

number between 0 [target hole] and 18 [opposite to target]

according to distance from the target). Trials were a maximum of

2 min long, and were terminated prior if the mouse was successful

in entering the escape hole. A probe trial was conducted on Day 5,

where the escape box was removed and the latency and number of

visits to the target hole determined.
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Behaviour Testing by Y-maze
A standard Y-maze was utilised in order to assess short-term

spatial memory [100,101]. The maze comprised three enclosed

arms (length= 30 cm, width = 10 cm, height = 16.5 cm), each

with a distinct visual cue located at the end, as well as a centre

zone located at the point at which the arms met. Protocol was

performed as previously described [102,103]. Briefly, mice were

initially exposed to two of the three arms for 10 min, and were

then removed to home cages for 2 h. Mice were subsequently re-

exposed to all three arms of the Y-maze (including the novel arm)

for 5 min. Spatial memory was assessed using Ethovision XT

tracking software to record number of entries into the novel arm as

well as total duration in the novel arm. Total distance moved was

also recorded to control for any influence of altered activity.

Immuno-histochemical Analysis for Amyloid Beta Plaque
and Immune Biomarkers
Following the final bleed, mice were transcardially perfused with

10 ml phosphate-buffered saline at 37uC (PBS; containing 50 mM

Na2HPO4, 50 mM NaH2PO4, 154 mM NaCl; pH 7.4) followed

by 50 ml of ice-cold PBS containing 4% paraformaldehyde (PFA;

Merck, Hohenbrunn, Germany). Brains were then removed,

hemisected and stored in 10% neutral buffered formalin prior to

paraffin embedding.

Immuno-histochemical (IHC) processing was performed by

Histology Core Service Laboratory (Florey Institute of Neurosci-

ence and Mental Health, University of Melbourne, Victoria,

Australia). Brains sections at 5 mm thickness were assessed for

amyloid beta plaque load using 1E8 antibody (mouse monoclonal

specific to Ab17-22, University of Melbourne, Victoria, Australia

[104]) with secondary antibody and streptavidin-biotin-diamino-

benzidine image development. Image capture was conducted

using a Leica DM LB2 microscope (Leica Microsystems Inc.

Bannockburn, IL, USA) under 20-fold magnification, in transmit-

tance mode. Amyloid beta peptide plaque loadings were

determined by Otsu image thresholding after subtraction of

background and interferences from nuclei. Image quantitation and

statistical analysis were conducted using Matlab (Natick, MA,

USA).

Immuno-histochemical analysis for interleukin (IL)-10, IL-1b
and glial fibrillary acid protein (GFAP) were conducted using

sections (5 mm) cut of paraffin-embedded formalin-fixed whole

brain tissue blocks. Peroxidase IHC was conducted using

antibodies against IL-10 (rabbit polyclonal, 2 mg/ml, Abbiotec,

San Diego, CA, USA), IL-1b (rabbit polyclonal, 5 mg/ml,

Abbiotec, San Diego, CA, USA) and GFAP (goat polyclonal,

5.8 mg/ml, Dako, Golstrup, Denmark), all prepared in 100 mM

Tris buffer, pH 7.4. For IL-10 and GFAP, antigen retrieval was

conducted by microwave heating for 15 min in citrate buffer

(0.2 M sodium citrate, pH 6.0), prior to applying antibodies to IL-

10 and GFAP. Sections were treated with proteinase K (undiluted,

Dako) for 4 min at 22uC prior to treating with the antibody to IL-

1b. Brain sections were then treated with 1% peroxide in 50%

ethanol for 30 min to inhibit endogenous peroxidase activity

before blocking in 10% (v/v) serum (Invitrogen, Carlsbad, CA,

USA) in 100 mM Tris buffer, pH 7.4. Brain sections were

incubated with primary antibodies (1 h at 37uC) and rinsed

(365 min) before adding biotinylated anti-mouse/rabbit second-

ary antibody (Vector Laboratories, Burlingame, CA, USA, 30 min

at 37uC) followed by streptavidin-conjugated horseradish perox-

idise (Vector Elite ABC, Vector Laboratories, 30 min at 25uC) and
then with 3,39-diaminobenzidine (DAB) in 3 mM H2O2 (20 min

at 22uC). Sections were lightly counterstained with cresyl violet

(0.5% w/v, aqueous solution) before rapid (30 s) dehydration with

ethanol washing (1670%, 1695% and 26100%), followed by

xylene washing (26100%) and coverslipped with Distrene

Polystrene Xylene (DPX, Sigma). Negative controls were prepared

by omitting the primary antibody however no staining was

observed in negative control sections.

Stained sections were blind-evaluated by brightfield microscopy

(Olympus BX31 camera, Olympus, North Ryde, Australia) with

quantitation performed using a 10610 eyepiece graticule. The IL-

10 and IL-1b-positive neurons were quantified in 4 graticule fields

measuring 5006500 mm at 400-fold magnification. Graticule

fields were chosen randomly, avoiding any tissue areas damaged

during processing. Standard inclusion (upper and right) and

exclusion (lower and left) borders were used. Neurons were

evaluated on the basis of morphological features including size,

amount of cytoplasm and presence of a nucleolus. Automated

image analysis was conducted using Java-based open source image

processing software (ImageJ v1.44, Bethseda, Maryland, USA).

Briefly, images were converted to binary after applying a colour

threshold, the number of particles was then analysed either as a

ratio or according to clustering and sphericity for standardised

areas.

Statistical Analysis
Four-way repeated measures ANOVA testing was performed

using SPSS (Version 16, Quarry Bay, HK). All other statistical

analyses were performed using SigmaStat (Version 3.5, Aspire

Software International, Ashburn, VA, USA). For all tests,

significance was at p,0.05, unless otherwise stated.
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