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Prostate cancer (PCa) is initially driven by excessive androgen receptor (AR) signaling with androgen deprivation therapy (ADT)
being a major therapeutic approach to its treatment. However, the development of drug resistance is a significant limitation on the
effectiveness of both first-line and more recently developed second-line ADTs. ,ere is a need then to study AR signaling within
the context of other oncogenic signaling pathways that likely mediate this resistance. ,is review focuses on interactions between
AR signaling, the well-known phosphatidylinositol-3-kinase/AKT pathway, and an emerging mediator of these pathways, the
Hippo/YAP1 axis in metastatic castrate-resistant PCa, and their involvement in the regulation of epithelial-mesenchymal
transition (EMT), a feature of disease progression and ADT resistance. Analysis of these pathways in circulating tumor cells
(CTCs) may provide an opportunity to evaluate their utility as biomarkers and address their importance in the development of
resistance to current ADT with potential to guide future therapies.

1. Introduction

Prostate cancer (PCa) is highly prevalent in the Western
world; it ranks sixth among cancers in regard to mortality
among men [1]. ,ere were 1,276,106 new cases of PCa and
358, 989 deaths due to PCa worldwide in 2018 [2]. Despite
dramatic improvements in five-year survival, mortality from
PCa is poised to remain a major health problem due to in-
creasing longevity, particularly in western countries.,emost
significant factors associated withmorbidity andmortality are
the development of metastatic spread to other organs, par-
ticularly bone, and emerging resistance to therapy.

On the molecular level, PCa is almost always initially
driven by excessive signaling through the androgen receptor
(AR) pathway (reviewed in [3]). Consequently, men with
metastatic PCa will be offered androgen deprivation therapy
(ADT) as the primary treatment. After a median of around
18–24 months, the disease tends to become resistant to
hormonal manipulation and progresses towards so-called
metastatic castration-resistant prostate cancer (mCRPC). In
mCRPC, the concentration of the current blood-based
clinical PCa biomarker, prostate-specific antigen (PSA),
continues to increase over time. As PSA is regulated via AR
signaling, this suggests, in general, the common ongoing
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involvement of AR signaling in disease progression to
mCRPC [4–7]. Abiraterone [8, 9] and enzalutamide [10, 11]
have been developed to be used for mCRPC, as “second-
generation” ADT treatments, and responses are generally
good, but a median progression-free survival of 5.6 months
[8] suggests resistance to treatment once again supervenes.
Indeed, despite the difference in mechanisms of action,
cross-resistance between enzalutamide and abiraterone is
very common [8, 12–14], suggesting the development of true
hormone resistance following second-line ADT therapy, as
opposed to castrate resistance. ,us, androgen signaling
through AR within the context of the oncogenic effect of
other signaling pathways remains an important area of
research as there are, yet, no effective treatments or markers
for true hormone resistance. Here, we review the involve-
ment of two critical signaling pathways, the phosphatidy-
linositol-3-kinase/AKT (PI3K/AKT) and Hippo/YAP
pathway, which interact with the AR pathway in mCRPC
and which have links to epithelial-to-mesenchymal transi-
tion (EMT). EMT is thought to play an important role in the
development of both metastasis and therapy resistance
[15, 16]. Our literature research indicates that the analysis of
circulating tumor cells (CTCs) isolated from PCa patients
may allow CTCs to be used as a tool to define how these
signaling pathways interact with the AR pathway to cause
ADT resistance and thereby investigate the mechanism by
which these pathways may contribute to castrate resistance.
In addition, CTCs may thus emerge as a useful PCa bio-
marker for personalized therapy.

2. Circulating Tumor Cells and
EMT in Metastasis

Metastasis in PCa is integrally linked to mCRPC. At the
cellular level, metastasis involves a sequence of steps, and
current evidence suggests that EMT and the reverse process
mesenchymal-to-epithelial transition (MET) (reviewed in
[17]) are important mechanisms by which tumor cells mi-
grate and reestablish themselves at distant sites. Cancer cells
are believed to lose their tight adhesion to neighboring cells
and become more mobile when undergoing EMT, which, in
turn, favors their ability to shed from the tumor mass,
intravasate into the bloodstream, and thus become CTCs.
MET, on the other hand, is thought to aid CTCs after leaving
the vascular system to be able to settle in other tissues and
form new tumors [18, 19] (Figure 1). ,us, CTC numbers
have been recognized as a marker of metastatic disease, and
importantly, EMTmarkers have been screened for in patient
CTCs including those of 54 patients with PCa, 53% of these
patients had advanced metastatic disease and intermittent
epithelial-to-mesenchymal phenotype of CTCs correlated
with metastasis in these patients, while another study found
that the mesenchymal CTC phenotype correlated with in-
creased rates of progression to CRPC in a cohort of 108 PCa
patients recruited with high volume metastatic disease at
hormone-sensitive disease stage and longitudinally followed
during the study [20–22].

Metastatic spread of cancer is thought to involve dif-
ferent stages (Figure 1(a)) in which cancer cells (i) lose cell-

cell tight junctions and detach from the primary site/organ,
(ii) penetrate the basal lamina and enter nearby tissue, (iii)
evade programmed cell death normally induced by loss of
substrate adhesion (anoikis), (iv) breach blood or lymphatic
vessels and migrate to other sites via blood/lymphatic cir-
culation, (v) leave the bloodstream or lymphatic vessels at
distant organs, (vi) form a micrometastatic core, and finally
(vii) adjust and reprogram the surrounding stroma to form
detectable macrometastases [23]. At a molecular level, EMT
has been implicated in various cancers, including PCa. In the
development of mCRPC, it has been proposed that acti-
vation of transcription factors (TFs) results in the loss of
epithelial properties and acquisition of mesenchymal
characteristics as well as the change of cell shape, leading to
enhanced invasion and increased mortality [24, 25].

EMT is inducible by environmental factors such as ra-
diation or hypoxia (Figure 1(b)), and there is accumulating
evidence that radiation or chemotherapy, used to treat
earlier stage PCa, may induce EMT changes [26, 27].
Hypoxia induces the production of hypoxia-inducible factor
(HIF), and HIF-1α stimulates transcription factors (TFs),
such as Snail and Twist, to trigger EMT [28, 29]. EMT then
results from activation of a mesenchymal transcriptional
program induced by specific transcription factors (EMT-
TFs) [26]. Mechanistically, central EMT-TFs ZEB1, Snail,
Slug, and Twist along with other TFs such as TCF4 and
FOXC2 suppress the expression of key epithelial markers
such as cytokeratin, E-cadherin, occludin, and claudin while
causing upregulation of mesenchymal markers such as
N-cadherin, fibronectin, and vimentin, which enable cancer
cells to be more motile and consequently more aggressive
(Figure 1(c)).

Regulation by signaling cascades and signaling mole-
cules including EGF, Hedgehog, Wnt, FGF, Notch, TGF-β,
and HGF in turn induces signaling viaNF-κB,MAPK, PI3K/
AKT, or Wnt/β-catenin pathways to regulate EMT-TFs and
ultimately induce EMT phenotypic changes. More recently,
the Hippo pathway has been implicated in regulating EMT
via its downstream transcriptional modulator Yes-associ-
ated protein (YAP) and the transcriptional coactivator TAZ
[28, 30–38]. Importantly, there is evidence in the literature
that these pathways can be successfully analysed in CTCs
even though in some cases these analyses may not have yet
been reported for PCa CTCs. Table 1 summarises some of
the evidence implicating signaling pathways in EMTof PCa
as well as the analysis of these pathways in CTCs mainly
from other cancers. CTC studies from other cancers are
included because they indicate the feasibility of investigating
these pathways in PCa CTC.

3. Clinical Relevance of EMT Markers in PCa

Several studies have assessed EMTmarkers for their clinical
importance at various stages of human PCa. Table 2 shows
typical EMT markers detected in PCa tissue. A possible
clinical utility of these EMT markers at different phases of
the disease is suggested by their prognostic correlation with
both recurrence-free and overall survival. For example,
EMT markers Twist and vimentin as measured by
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immunohistochemistry in radical prostatectomy samples are
independent markers for biochemical recurrence as defined
by a resurgence in serum prostate-specific antigen (PSA)
levels postsurgery [84, 90]. A recent study found that Ca-
thepsin L (Cat L), which is an EMT-associated target of the
EMT-TF Snail, may be a biomarker of PCa progression [83].
In addition, loss of membrane-bound E-cadherin staining
appears to be linked with higher Gleason score, advanced
clinical stage, and poor prognosis in PCa [91]. EMTmarkers
such as Zeb1, E-cadherin, and vimentin play important roles
at different stages of disease progression from primary tumor
stage 2 to CRPC. In CRPC, increased expression of Zeb1
correlated with decreased survival [84]. Further, in a study of

108 patients with newly diagnosed castrate-sensitive PCa,
expression of mesenchymal markers in CTCs at baseline was
found to be an independent prognostic factor that was
predictive of time to progression to CRPC following standard
ADT. Patients who had mesenchymal CTCs at baseline
showed a significantly shorter time to progression to CRPC
than patients without CTCs or patients whose CTCs were
negative for mesenchymal markers [21]. Several studies show
that E-cadherin suppresses invasion and metastasis in vitro,
and consistent with these findings, E-cadherin staining in
tumor tissue correlates with longer overall survival [84].
However, the relationship of E-cadherin to metastasis is not
clear in all cases since, in a recent study, it has been shown that
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Figure 1: EMT in cancer metastasis. (a) Schematic representation of the role of EMT in cancer metastasis. (b) A cascade of transcriptional
regulation underlies the transition from an epithelial to a mesenchymal phenotype, and (c) during EMT, epithelial markers are down-
regulated while mesenchymal markers are upregulated.
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loss of E-cadherin reduced metastatic potential in invasive
ductal carcinomas [92], suggesting that E-cadherin plays
opposing roles in tumor progression by suppressing cancer
cell invasion while promoting metastasis. Nonetheless, on
balance, the data suggest that EMT markers may have
predictive value with respect to recurrence and overall
survival both in tissues and in CTCs [84]. Different studies

show that E-cadherin suppresses invasion and metastasis.
However, in a recent study, it has been shown that loss of
E-cadherin reduced metastatic potential in invasive ductal
carcinomas [92].

4. AR, ADT, EMT, and Drug Resistance

,e AR, located on the X chromosome (Figure 2(a)), is a
hormone-dependent transcription factor [93]. In the
unstimulated state, the receptor is cytoplasmic and bound
by heat-shock proteins [94]. When its ligand, dihy-
drotestosterone (DHT) or testosterone, binds via the AR
ligand-binding domain (LBD) (Figure 2(a)), a structural
change results in the detachment of AR from the heat-shock
protein 90 (HSP90) complex, homodimerization of the
receptor, and nuclear translocation.

Table 1: Signaling pathways implicated in EMT and relevance to PCa.

Pathway Implication in cancer-related EMT Roles in PCa CTC analysis

AR

Opposing data: elevation of AR expression
and AR signaling in prostate tumors

promotes PCa metastasis by induction of
EMT [39]; other data suggest AR reverses
EMT and ADT can induce EMT [40, 41]

Cell proliferation and tumor
progression [42, 43]

Different AR expression patterns,
amplification, mutation, and variant
expression in PCa CTC [44–47]

AKT

PI3K-AKT directly or in crosstalk with
other signaling pathways can induce EMT
[48, 49]. Drugs inhibiting EMT via the
Akt/GSK-3β/Snail pathway decrease the

invasiveness of PCa cells [50]

Implicated in PCa cell proliferation
and resistance to apoptosis [51, 52]

Phosphorylated EGFR and PI3K/Akt
signaling kinases detected in breast cancer
patient CTCs [53], pERK/Akt pathway in
CTCs in hepatocellular carcinoma patients
[54], PTEN loss in circulating tumor cells
in CRPC patients [55]. No report in PCa

CTCs

Hippo

Deregulation of the Hippo pathway
contributes to EMT in colorectal cancer
[56], and FZD2 could promote clinically
relevant EMT in hepatocellular carcinoma

involving Hippo pathway [57]

Emerging roles in PCa development,
progression, EMT, and mCRPC

[58, 59]

TAZ expression detected in NSCLC CTCs
[60], YAP association with metastasis in
human gastric cancer [61]. No report in

PCa CTCs

MAPK

MAPK mediates epithelial-mesenchymal
transition in cooperation with TGF-

β/Smad2 signaling and increased Snail and
Twist expression [62–64]

Linked to proliferation, early
relapse, and development of

mCRPC [65, 66]

MAPK gene expression signature shown in
pancreatic CTCs [67], detection of mutant
RAS and RAF in CRC and in melanoma
CTCs [68, 69]. No report in PCa CTCs

NF-κB

Hypoxia or overexpression of HIF-1α
induces the EMT via NF-κB in pancreatic
cancer cells [70] and inhibition of NF-κB

deregulates EMT [71]

Promotes PCa cell survival, tumor
invasion, metastasis, and
chemoresistance [72, 73]

NSCLC-CTC gene expression profile was
associated with cellular movement, cell
adhesion and differentiation, and cell-to-
cell signaling linked to PI3K/AKT, ERK1/2,
and NF-κβ pathways [74]. No report in

PCa CTCs

JAK/
STAT

IFN-c can induce epithelial-to-
mesenchymal transition (EMT) in PCa
cells via the JAK-STAT signaling pathway
[75], and STAT3 may directly mediate
EMT progression and regulate ZEB1

expression in CRC [76]

PCa progression, cell proliferation,
and inhibition of apoptosis [51, 52]

No direct analysis of these pathways in
CTCs

Wnt/
β-catenin

Dysregulation of Wnt/β-catenin signaling
has been implicated in the development of
cancer in different tissues such as lung,
skin, liver, and prostate [52], via regulating

Zeb1 in CRC [77]

Wnt/β-catenin pathway promotes
the metastatic spread of prostate
cancer cells by inducing EMT [78]

Epithelial type CTCs and activation of
Wnt/β-catenin signaling in lung cancer

cells [79]. No report in PCa CTCs

Notch

Crosstalk between the Jagged1/Notch and
JAK/STAT3 signaling pathways by
promoting EMT through Jagged-1 in

ovarian cancer [80]

Notch signaling results in prostate
tumor recurrence via EMT [81]

Increased production of ROS results in the
upregulation of Notch1 in CTCs in

metastatic breast and melanoma cancer
[82]. No report in PCa CTCs

Table 2: EMT markers detected in PCa tissue.

Epithelial markers Mesenchymal markers

E-cadherin [84] Snail, Cat L [83]
Vimentin, N-cadherin [84]

Cytokeratin [85] Vimentin [85]
E-cadherin [88] Twist [86, 87]
E-cadherin, cytokeratin [89] N-cadherin [88]
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In the nucleus, AR acts as a transcription factor by binding
to androgen-response elements (AREs) in the promoter re-
gion of androgen-regulated genes [95, 96]. AR transactivates
genes which are responsible for cell growth, differentiation,
and cell survival [97]. Consequently, increased AR signaling
can potentially transform normal prostate cells intomalignant
PCa cells. Moreover, it has been shown that ADT therapy can
select for cancer cells with further increased AR activity, for
example, due to AR gene amplification [98].

,e expression of alternative AR splice variants has been
proposed as a mechanism underlying resistance to ADT
[99, 100]. Most splice variants result in the translation of a
truncated AR protein lacking a functional C-terminal LBD
but containing a functional transactivating N-terminal do-
main. Without being capable of binding ligand, the resulting
proteins are constitutively active as transcription factors and
able to promote expression of certain target genes [97, 101].
At least 20 splice variants of AR have been identified in
human prostate tissue and have been implicated in the de-
velopment of mCRPC [101–104]. Amongst AR variants, AR-
V7 is highly expressed in mCRPC and is the most frequently
disease-associated variant identified in the clinic [105, 106].
,e AR-V7 transcript results from alternative splicing of the
AR gene such that the transcript contains exons 1, 2, and 3
together with a cryptic exon 3E (CE3) resulting in a truncated
transcript (U), resulting in premature transcriptional termi-
nation (Figure 2(b)). AR-V7 is constitutively active

irrespective of androgen binding, which is a proposed
mechanism of escape from ADT [107, 108].

,ere is no clear consensus with respect to the role of
androgen signaling in the regulation of EMT. An early
study using cell lines showed that androgen stimulation
promoted EMT in both LNCaP and PC-3 cells but that
there was an inverse relationship between AR receptor
levels and androgen-mediated EMTmarker expression and
EMT-associated cytoskeletal changes. Low levels of AR
induced by shRNA promoted PCa cell metastatic ability by
inducing EMTwhile high levels did not [109]. In contrast, a
recent study has shown that AR mRNA and protein ex-
pression is higher in metastatic tumor tissues than in
primary tumors and increases with tumor stage and
Gleason score. Patients with higher AR expression showed
shorter recurrence-free survival, indicating a positive as-
sociation between AR expression and tumor progression.
Further, knockdown of AR using siRNA in C4-2B cells
suppressed functional markers of EMT, viz cell migration
and invasion, andmesenchymal marker proteins associated
with EMT, while increasing the epithelial marker E-cad-
herin. ,ese effects were recapitulated by treatment with
the antiandrogen bicalutamide [39]. ,us, it appears that
AR stimulation induces or suppresses EMT in cell culture
in a cell-type-dependent fashion.

Studies with both normal mouse prostate and human
prostate tumor models in mice have shown that androgen
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Figure 2: AR and AR-V7 gene and protein.,e schematic indicates (a) the structural organisation of the AR gene and protein (NTD: amino
terminal domain; DBD: DNA-binding domain; LBD: ligand-binding domain). (b) ,e transcription and translation of the AR-V7 protein
including the exon/intron composition of the AR, highlighting the cryptic exon CE3 (middle) and domains of the AR retained in the AR-V7
protein (bottom).

Prostate Cancer 5



deprivation through surgical castration, while suppressing
tumor growth, induces mesenchymal markers of EMT and
markers of a stem cell phenotype, while suppressing epi-
thelial markers. ,ese changes were also seen in tissues of
patients treated with ADT [110], supporting the view that
AR signaling suppresses EMT, while ADT promotes it.

In further support of this view, ADT with enzalutamide
in C4-2 cells, but not in PC-3 cells, induced EMTmarkers in
a Snail-dependent fashion. Induction of EMT required both
suppression of AR signaling and activation of Snail. Inter-
estingly, Snail was downregulated by androgen in AR
expressing C4-2 and VCaP cells but again, not in PC-3 cells.
Importantly, the inverse correlation between AR signaling
and Snail expression observed in C4-2 xenografts and
castration-resistant patient-derived metastases in mice and
in clinical samples supports the view that the induction of
EMTis an adaptive response to ADTwith enzalutamide [40].
ADT may favor acquisition of stem cell and EMT charac-
teristics, expression of oncogenes, or suppression of tumor
suppressor genes in AR-positive PCa cells, implying
that mCRPC at least in part is achieved through EMT
[41, 110–114].

Other data suggest that AR splice variants are involved in
the development of drug resistance in PCa [105, 115–117].
One corollary of this hypothesis is that inhibition of the AR
variants or their specific function might lead to reversal of
EMTphenotype and that might in turn inhibit tumor spread
[41, 118]. Overall, however, this area remains understudied,
and more data are needed to fully understand how the AR
pathway and its manipulation during therapy may regulate
EMT and thus potentially metastasis. Since mCRPC is ul-
timately the principal cause of death in many patients, the
fundamental biological processes for the development and
establishment of mCRPC need to be understood [119]. It is
noteworthy that there is now mounting evidence in CTCs
that the expression of EMT markers is associated with
mCRPC [120, 121], highlighting the potential benefit in the
analysis of CTCs to address the role of AR in metastasis and
drug resistance.

5. Akt Pathway in mCRPC

As indicated above, due to the hormone-independent nature
of mCRPC, it is unresponsive to all current forms of ADT.
At this stage, AR expression may even be completely lost
[122–124], raising the question as to how survival and
proliferation of PCa cells occur at this stage. ,e main
oncogenic signaling pathway implicated at this juncture is
the PI3K/AKT-pathway, predominantly activated through
frequent functional loss of the inhibitory tumor suppressor
phosphatase and tensin homolog (PTEN), which is less
common in localized PCa (20–30%) but becomes more
dominant and is found in up to 50–60% of mCRPCs. ,e
result is uncontrolled, oncogenic Akt signaling (reviewed in
[125, 126]). ,e PI3K/AKT and AR pathways are highly
networked with both positive and negative feedback loops
[125], and in mCRPC, current literature indicates that
negative feedback dominates. ,at is, inhibition of one
pathway leads to reciprocal activation of the other [127–130].

Carver and colleagues have elucidated part of this interaction,
demonstrating that the AR reduces AKT activation through
the intermediary PHLPP, while AKT can transcriptionally
downregulate AR output via HER kinase activity [127]. ,e
exact role of PTEN in mediating this interaction is contro-
versial. On the one hand, PTEN deletion has been associated
with AKTactivation and reduced AR levels [128, 131], and on
the other hand, it may independently increase AR gene
expression by removing transcriptional repression [130,
132–134]. Given the interconnected signaling network, out-
comes of AR andAKTsignaling or silencingmay affect overall
outcomes in a context-specific fashion, which is likely de-
pendent on the presence and activity of other proteins that
can affect the balance of feedback loops. For example, it has
been shown that AR can transcriptionally repress PTEN
expression in PCa cells while it increases PTEN expression in
breast cancer cells and the report suggested this may be due to
tissue-dependent availability of transcriptional cofactors
[135]. Moreover, ADT may also affect the balance in these
interconnected signaling pathways. Importantly, loss of PTEN
has been associated with EMT driven through the AKT
pathway or in cooperation with RAS signaling; thereby, lack
of PTEN function could promote metastasis [136, 137].

6. Hippo Signaling Pathway and Its Role in
CRPC and EMT

As indicated above, several signaling pathways may con-
tribute to the induction of EMT and ultimately metastasis,
with the AKTpathway of importance in the context of PCa.
More recently, the YAP1 transcriptional coactivator regu-
lated by the Hippo pathway has emerged as an important
player in this scenario and in regulating PCa cell motility
[138]. In the context of gastric cancer, PTEN inactivation has
been proposed to link the Hippo and PI3K/Akt pathways to
promote cancer development and tumorigenesis [139]. In
normal tissue, the Hippo signaling pathway appears central
to cell growth control and limits organ size by coordinating
cell proliferation, growth, and death [140]. Different signals
like cell polarity, cell-cell contact, extracellular matrix
characteristics, and stress can result in the activation of the
Hippo pathway (reviewed in [141]). Hippo signaling through
a kinase cascade results in phosphorylation of oncogenic
cotranscription factors known as YAP and TAZ, promoting
their cytoplasmic retention and proteasomal degradation
[142–144] (Figure 3).

Inactivation of the Hippo pathway allows for YAP and
TAZ activation via dephosphorylation, which is required for
translocation into the nucleus. Although TAZ and YAP lack
intrinsic DNA-binding domains, they are recruited by and
enhance the activity of other transcription factors at their
target promoters [145, 146].

Hippo signaling can act as a tumor suppressor. Func-
tional impairment of Hippo signaling is often due to the loss
of MST1/2 or LATS1/2 function or due to YAP1 gene
amplification. YAP1 is the most studied YAP isoform, and
aberrant YAP1 activation is associated with the etiology of
various malignancies including stomach [147], thyroid
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[148], lung [149], colon [150], head and neck [151] ovarian
[152], liver [153], and prostate cancer [154].

Most interestingly, YAP1 and AR directly interact in PCa
cells. One study demonstrates that unlike in hormone-
sensitive prostate cancer cells, YAP1-AR interactions are
androgen-insensitive and may cause resistance to enzalu-
tamide in mCRPC cells. ,e WW/SH3 domain of YAP1
most likely facilitates the interaction with the AR amino
terminal domain (NTD) [155].

One study proposes that increased nuclear YAP1, pos-
sibly due to the loss of Hippo signaling, may lead to in-
creased complex formation between AR and YAP1 leading
to androgen-independent binding of the complex to AREs in
AR-driven promoters resulting in aberrant AR target gene
expression possibly promoting mCRPC [58].

Importantly, YAP has been shown to promote metastasis
through several mechanisms including EMT, and there is
some evidence that the PTEN-AKTaxis is involved in YAP1-
induced EMT [145, 156, 157]. ,e underlying mechanisms
of EMT regulation by YAP are still emerging, but given the
role of YAP as a transcriptional coregulator, it is not sur-
prising that the pathways centrally involve EMT-TFs.
Critically, YAP1 has been shown to network with the main
EMT-TFs. For instance, high glucose-induced poly-
ubiquitination of PTEN results in alteration of its phos-
phatase targets, including an increased focus on
dephosphorylation and activation of EMTregulators such as
Twist, Snail, and YAP1 [158]. YAP1 was also reported to
drive EMT and likely NSCLC metastasis by TEAD-depen-
dent transcriptional induction of SLUG [159]. Focusing on
YAP’s role in osteoblast differentiation, one study identified

two links between YAP and Snail/Slug. In Snail/Slug-null
skeletal stem/stromal cells, the levels of both YAP and TAZ
were reduced via protein degradation due to activation of
the Hippo pathway, while direct interaction of YAP with
Snail and with Slug was shown to alter YAP/TEAD tran-
scriptional activity [160]. Another study found that Twist-
induced EMT in breast cancer cells is dependent on TAZ
activity. ,e mechanism involved increased expression of
the Hippo pathway inhibitors PAR-1 and PAR-3, which
drive TAZ nuclear localisation. One would expect that YAP
nuclear localisationmay also be induced via PAR-1/-3 in this
context, although this was not examined [161]. Another
study revealed that increased extracellular matrix stiffness
can induce EMT in breast cancer cells and that blocking β1-
integrin-mediated matrix stiffness prevented both Twist and
YAP nuclear translocation albeit, interestingly, by different
mechanisms [162].

In epithelial cells, cells are connected to each other by
membrane structures called tight junctions, adherens
junctions, and desmosomes. Any dysregulation in these
junctions is implicated in metastasis and EMT [163, 164].
Zona occludens-1 (ZO-1) is a tight junction protein that is
present in normal epithelial cells. ,ough not yet studied in
PCa, in melanoma, lung cancer cells, and breast cancer, ZO-
1 expression correlates with invasion properties of cancer
cells [165–167]. One study found that YAP overexpression
resulted in downregulation of ZO-1 and induced metastasis
through EMT in NSCLC [159].

YAP (but not TAZ) has been shown to interact directly
with ZEB1 and, remarkably, this interaction turns this
transcriptional repressor into an activator. ,is is
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highlighted by the fact that ZEB1-mediated CDH1 (E-
cadherin) repression is independent of YAP binding.
Critically, gene upregulation by the ZEB1-YAP complex
correlated with gene expression signatures of claudin-low
breast cancer, a breast cancer subtype overall exhibiting an
EMT phenotype. More importantly, ZEB1-YAP complex-
mediated gene expression was related to poor patient sur-
vival in hormone-independent breast cancers and linked to
drug resistance and metastasis [168]. ZEB1 is known to
repress several EMT-related miRNAs including miR375,
which is associated with an epithelial phenotype. Never-
theless, miR375, a known YAP target, is commonly over-
expressed in PCa and in fact has been indicated as a plasma
marker of PCa. ,e suggested mechanism by which miR375
supports an epithelial phenotype is via feedback regulation,
such that it targets and suppresses YAP transcript and thus
YAP protein levels and thereby reversing EMT in PCa cells.
Surprisingly however, high plasma miR375 level was asso-
ciated with CTC positivity [169], suggesting that further
investigations are needed to understand the complex net-
work between YAP, ZEB1, miR375, EMT, and CTC for-
mation. Additionally, hypoxia may, at least in part, induce
EMT by stabilizing YAP and its nuclear translocation in PCa
cell lines [170].

Not surprisingly, another study showed that inhibiting a
key characteristic of epithelial tissue, namely, E-cadherin-
mediated cell-cell interaction, resulted in EMTand increased
dissemination of Madin–Darby canine kidney cells. Inter-
estingly, dissemination could be partially prevented by YAP
knockdown. ,e same study found that not only is YAP
required to allow nuclear entry of the MET initiating Wilms
tumor protein 1 (WT1), but both WT1 and YAP form a
complex at the CDH1 (E-cadherin) promoter and repress its
transcription. ,ese data, together with confirmation that
E-cadherin inhibition upregulates YAP levels, indicate a
double-negative feedback where E-cadherin and YAP mu-
tually inhibit each other. ,is may be part of a switch be-
tween EMT and MET, thus potentially explaining the
plasticity of the EMT process [171].

7. YAPCrosstalkwithARAKTandARPathways

Interestingly, one possible mechanism for PTEN loss of
function is mediated by YAP. ,e pathway involves nuclear
YAP-mediated activation of the TEAD family of tran-
scription factors, leading to synthesis of the PTEN tran-
scriptional repressor miRNA29c. Conversely, when YAP is
inactivated via phosphorylation, PTEN levels are restored
and the oncogenic function of YAP is inhibited [172].
Moreover, as mentioned above, PTEN ubiquitination can
dephosphorylate and thus activate YAP causing its nuclear
accumulation indicating a possible positive feedback regu-
lation [158].

On the other hand, PTEN was identified as a negative
regulator of AR activity such that the AR/PTEN interaction
may mediate a tumor suppressor role for PTEN via sup-
pression of AR and apoptosis induction in PCa cells [173].
However, as outlined above, the PTEN and AR network is

still poorly understood, and data are conflicting. ,is is
exemplified by another study with opposing findings,
wherein PTEN deletion reduces both AR expression and AR
transcriptional activity in PCa [131].

Taken together, emerging evidence indicates that YAP is
part of the complex functional network that connects the AR
and AKT pathways and thereby modulates PCa and
mCRPC—at least in part—via EMT (Figure 4). However,
more work is needed to better understand this interplay and
its implications for the development of strategies to treat
advanced PCa.

8. Analysis of PCaCTCs to Explore theAR-AKT-
YAP Connection and EMT

,e evaluation of molecular pathways underlying mCRPC is
challenging because tissue biopsies are generally not avail-
able from late disease stages and animal models; further,
although examination of tissue can provide some signaling
pathway information, this mode of studying PCa has lim-
itations. Liquid biopsies, and analysis of mCRPC CTCs, may
be an alternative. While diagnostic CTC analysis in PCa is
still in its infancy, there is ample evidence of its utility in this
disease. Certainly, CTCs have been investigated by imaging
and molecular technologies for expression of proteins, gene
amplifications, mutations, and transcript expression on both
targeted and comprehensive levels [174]. For PCa, increased
CTC counts are associated with earlier disease progression
and shorter OS, with enumeration of PCa CTCs using the
CellSearch CTC platform gaining FDA approval as a
prognostic indicator [175]. While common CTC isolation
and analysis techniques favour epithelial CTCs, there have
been numerous advances in improving capture, detection,
and analysis of EMT-CTCs by screening for epithelial and
mesenchymal marker expression [176–181]. Equally, as
Table 1 shows, several major signaling pathways implicated
in EMT have, to some extent, been analysed in CTC samples.
In this review, we focussed on the AR, AKT, and Hippo
pathways as being central to mCRPC, at least in part via
EMT regulation. It is now important to consider how these
pathways have been explored in CTCs, in order to gauge the
potential for CTC analysis to advance our understanding of
these pathways in mCRPC. Accordingly, we note that DNA-,
RNA-, and protein-centric analyses for AR and AR-V7 levels
in isolated CTCs have become a busy field of PCa research.
Moreover, efforts are being made to translate CTC-based AR
and AR-V7 detection into clinical settings aimed initially at
stratifying patients to define either eligibility criteria or
outcome markers for clinical trials (https://clinicaltrials.gov)
[182].

mCRPC-associated AR amplification and mutation
analysis have been performed in CTCs using hybridization
techniques such as fluorescent in situ hybridization (FISH)
and other molecular approaches. In general, these studies
were able to validate the association of CTC-based AR
amplification or mutation with mCRPC, while the relevance
of AR cellular localisation in CTCs was shown in mCRPC
and in response to taxanes [46, 47, 183–186].,e presence of
full-length AR and AR-V7 in CTCs has been studied
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extensively at the RNA level and CTC-based AR-V7 in
particular was found to correlate with mCRPC and primary
resistance to abiraterone and enzalutamide [45, 182, 184,
187, 188]. Interestingly, there have also been efforts at
detecting both AR and AR-V7 as biomarkers in other liquid
biopsy entities, including plasma-derived circulating tumor
RNA (ctRNA), exosomes, or even in urine. We recently
compared some of these strategies and found both full-
length AR and V7 RNA detection is more sensitive and
specific if performed on CTC samples, as compared to
ctRNA or exosomes. We also demonstrated that AR-V7 is
detectable from CTC-RNA up to 48 h post blood draw into
common EDTA vacutubes [189, 190]. With improved AR-
V7-specific antibody availability, CTC immunocytostaining
more recently revealed that specific detection of AR-V7 in
CTC nuclei is an even better predictor of OS and PFS in
CRPC patients [191, 192]. In general, it appears nuclear AR is
found in most CTCs positive for AR-V7 RNA, reflecting the
predominant tendency for AR-V7 to be nuclear localized in
mCRPC tissue [188, 193]. In CRPC patients, AR-V7-positive
CTCs have been shown to correlate with enzalutamide and
abiraterone resistance [187]. In any case, when investigating
the interplay of AR/AR-V7 with other pathways, especially
transcriptional coactivators, immunocytodetection in CTCs
appears to be the most logical strategy.

Several studies have also analysed PTEN loss in CTCs,
which, as outlined above, may allow oncogenic activation of
the AKT pathway and is an important PCa biomarker. Loss
of PTEN and gain of AR copy numbers were reported in PCa
CTCs [194–197], while testing for activation of the AKT
pathway has been performed for example by phosho-Akt or
phospho-S6 kinase immunostaining in breast cancer and
multiple myeloma CTCs [198].

Reports on hippo signaling and YAP1 analysis in CTCs,
by contrast, are still scarce. One study assessed expression of
TAZ using RNA in situ hybridization (RNAish) probing of

NSCLC CTCs. TAZ expression was detected more fre-
quently in EGFR wild-type cancers while its expression in
CTCs was associated with lymph node status of the disease
[60]. It is likely that YAP1 could be analysed in a similar
fashion in CTCs or preferentially using immunocytostain-
ing, as the latter would also reveal cellular localisation and
thus activity as well as colocalisation with other proteins.
However, to our knowledge, direct detection of YAP1 in
CTCs has not yet been reported, although the relationship of
YAP1 to EMTsuggests that activated YAP1 should correlate
with increased formation of CTCs. Some indirect evidence
lends further strength to this idea, as a recent report showed
that the Rho GTPase activating protein 29 (ARHGAP29) is a
transcriptional target of YAP1 in gastric cancer. High
ARHGAP29 levels were shown to regulate cytoskeletal actin
and cell migration. Importantly, the authors also demon-
strated using a mouse model that CTCs exhibited increased
ARHGAP29 RNA levels compared with primary tumor site
cells [61, 199]. Final proof of a YAP1-ARHGAP29 con-
nection in CTCs remains pending, however. Another
transcriptional target of YAP is miR375 which was associ-
ated with CTC positivity, yet a direct connection was again
not shown in CTCs [169].

Taken together, the reviewed data suggest that AR-AKT-
YAP1 network can be analysed in CTCs. Since tumor tissue
is rarely available in the mCRPC setting, and blood samples
can be easily taken, future endeavours in CTC analysis could
open the way to better understand ADT resistance and
thereby inform the development of improved diagnostic,
prognostic, and therapeutic capabilities.

Analysis of CTCs has provided a foundation for liquid
biopsy, especially in the absence of biopsy tissue. However,
there are serious challenges with CTC isolation, detection,
and downstream analysis. One is that CTC numbers are
relatively small within large populations of blood cells and
the volume of blood that can be taken depends on the
patient’s general condition. CTCs are quite heterogeneous in
terms of physical properties (size, elasticity, and surface
charge), biological characteristics, and expression of dif-
ferent tumor markers making enrichment or isolation of all
CTCs difficult (reviewed in [200]). In general, the low CTC
numbers make downstream analysis of CTCs another
challenge. Protein detection is usually limited to immuno-
cytostaining which relies on antibody-based detection and
the number of microscope channels available with 3 usually
dedicated to detection of a CTC marker (often cytokeratin),
a nuclear marker such as DAPI, and exclusion of a blood cell
marker usually CD45. Nevertheless, some studies have de-
tected additional proteins such as EMTmarkers [21, 22, 176]
or posttranslational modifications such as phosphorylation
of pFAK, pPI3K, pSRC, pEGFR, and pAkt [53, 201–204].

9. Conclusion

Here, we reviewed connections between the AR pathway and
the AKTand Hippo pathways, exploring a potential role for
this signaling nexus in EMT and mCRPC. ,ough current
literature supports the importance of this tripartite rela-
tionship, further study is now needed to better evaluate its
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importance in PCa, as well as its clinical potential in defining
biomarkers or drug targets. Analysis of PCa CTCs may
facilitate deeper investigations into AR/AKT/Hippo path-
way interactions, and how these drive EMT as well as ADT
resistance. Such analyses may ultimately mediate the
emergence of new diagnostic/prognostic assays directed
towards PCa, though at this time insufficient data are
available to establish feasibility of this concept. Indeed, while
some aspects of these pathways have already been investi-
gated in CTCs, optimisation of more comprehensive CTC
analysis methods is now needed to permit the dissection of
these pathway interactions, as a precursor to this significant
goal.
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[66] G. Rodŕıguez-Berriguete, B. Fraile, P. Mart́ınez-Onsurbe,
G. Olmedilla, R. Paniagua, and M. Royuel, “MAP kinases
and prostate cancer,” Journal of Signal Transduction,
vol. 2012, Article ID 169170, 9 pages, 2012.

[67] G. Sergeant, R. V. Eijsden, T. Roskams, V. Van Duppen, and
B. Topal, “Pancreatic cancer circulating tumour cells express
a cell motility gene signature that predicts survival after
surgery,” BMC Cancer, vol. 12, no. 1, p. 527, 2012.

[68] J. M. Loree, S. Kopetz, and K. P. S. Raghav, “Current
companion diagnostics in advanced colorectal cancer; get-
ting a bigger and better piece of the pie,” Journal of Gas-
trointestinal Oncology, vol. 8, no. 1, pp. 199–212, 2017.

[69] A. L. Reid, J. B. Freeman, M. Millward, M. Ziman, and
E. S. Gray, “Detection of BRAF-V600E and V600K in
melanoma circulating tumour cells by droplet digital PCR,”
Clinical Biochemistry, vol. 48, no. 15, pp. 999–1002, 2015.

[70] Z.-X. Cheng, B. Sun, S. Wang et al., “Nuclear factor-
κb–dependent epithelial to mesenchymal transition induced
by HIF-1α activation in pancreatic cancer cells under
hypoxic conditions,” PLoS One, vol. 6, no. 8, Article ID
e23752, 2011.

[71] A. Nomura, K. Majumder, B. Giri et al., “Inhibition of NF-κB
pathway leads to deregulation of epithelial-mesenchymal
transition and neural invasion in pancreatic cancer,” Lab-
oratory Investigation, vol. 96, no. 12, pp. 1268–1278, 2016.

[72] D. Verzella, M. Fischietti, D. Capece et al., “Targeting the
NF-κB pathway in prostate cancer: a promising therapeutic
approach?,” Current Drug Targets, vol. 17, no. 3, pp. 311–320,
2016.

[73] J. Staal and R. Beyaert, “Inflammation and NF-κB signaling
in prostate cancer: mechanisms and clinical implications,”
Cells, vol. 7, no. 9, p. 122, 2018.

[74] J. Mariscal, M. Alonso-Nocelo, L. Muinelo-Romay et al.,
“Molecular profiling of circulating tumour cells identifies
Notch1 as a principal regulator in advanced non-small cell
lung cancer,” Scientific Reports, vol. 6, p. 37820, 2016.

[75] U.-G. Lo, R. Pong, D. Yang et al., “Ifnc-induced IFIT5
promotes epithelial-to-mesenchymal transition in prostate
cancer via miRNA processing,” Cancer Research, vol. 79,
no. 6, pp. 1098–1112, 2018.

[76] H. Xiong, J. Hong, W. Du et al., “Roles of STAT3 and ZEB1
proteins in E-cadherin down-regulation and human colo-
rectal cancer epithelial-mesenchymal transition,” Journal of
Biological Chemistry, vol. 287, no. 8, pp. 5819–5832, 2012.

[77] M. Zhang, F. Miao, R. Huang et al., “RHBDD1 promotes
colorectal cancer metastasis through the Wnt signaling
pathway and its downstream target ZEB1,” Journal of Ex-
perimental & Clinical Cancer Research, vol. 37, no. 1, p. 22,
2018.

[78] M.-S. Lee, J. Lee, Y. M. Kim, and H. Lee, “,e metastasis
suppressor CD82/KAI1 represses the TGF-β 1 and Wnt
signalings inducing epithelial-to-mesenchymal transition
linked to invasiveness of prostate cancer cells,”;e Prostate,
vol. 79, no. 12, pp. 1394–1405, 2019.

[79] C.-J. Chen, C.-J. Yang, M.-S. Huang, and Y.-P. Liu, “Epi-
thelial-type CD133+ stem-like lung cancer cells emerge
higher drug resistance through MDFIC-mediated Wnt/
β-catenin signaling pathway,” in Proceedings of the AACR
Annual Meeting 2017, Washington, DC, USA, April 2017.

[80] J. Yang, H. Xing, D. Lu et al., “Role of Jagged1/STAT 3
signalling in platinum-resistant ovarian cancer,” Journal of
Cellular and Molecular Medicine, vol. 23, no. 6, pp. 4005–
4018, 2019.

[81] M. Orzechowska, D. Jedroszka, R. Hamouz, and
A. K. Bednarek, PO-151 Notch Signalling Differentiates
Disease-free Survival in Prostate Cancer Patients by Affecting
the Epithelial-To-Mesenchymal Transition-Associated Pro-
cesses, BMJ Publishing Group Limited, London, UK, 2018.

[82] M. L. Sprouse, T. Welte, D. Boral et al., “PMN-MDSCs
enhance CTC metastatic properties through reciprocal in-
teractions via ROS/Notch/Nodal signaling,” International
Journal of Molecular Sciences, vol. 20, no. 8, p. 1916, 2019.

[83] L. J. Burton, O. Hawsawi, Q. Loyd et al., “Association of
Epithelial Mesenchymal Transition with prostate and breast
health disparities,” PLoS One, vol. 13, no. 9, Article ID
e0203855, 2018.

[84] S. Figiel, C. Vasseur, F. Bruyere, F. Rozet, K. Maheo, and
G. Fromont, “Clinical significance of epithelial-mesenchy-
mal transition markers in prostate cancer,” Human Pa-
thology, vol. 61, pp. 26–32, 2017.

[85] K. A. Cheaito, H. F. Bahmad, O. Hadadeh et al., “EMT
markers in locally-advanced prostate cancer: predicting
recurrence?,” Frontiers in Oncology, vol. 9, p. 131, 2019.

[86] P. Lyu, S.-D. Zhang, H.-F. Yuen et al., “Identification of
TWIST-interacting genes in prostate cancer,” Science China
Life Sciences, vol. 60, no. 4, pp. 386–396, 2017.

[87] A. E. Abdelrahman, S. A. Arafa, and R. A. Ahmed, “Prog-
nostic value of twist-1, E-cadherin and EZH2 in prostate
cancer: an immunohistochemical study,” Turkish Journal of
Pathology, vol. 1, no. 1, pp. 198–210, 2017.

[88] K. Gravdal, O. J. Halvorsen, S. A. Haukaas, and L. A. Akslen,
“A switch from E-cadherin to N-cadherin expression indi-
cates epithelial to mesenchymal transition and is of strong
and independent importance for the progress of prostate
cancer,” Clinical Cancer Research, vol. 13, no. 23,
pp. 7003–7011, 2007.

12 Prostate Cancer



[89] P. Alonso-Magdalena, C. Brössner, A. Reiner et al., “A role
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