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Abstract

Background

Transport injuries commonly result in significant disease burden, leading to physical

disability, mental health deterioration and reduced quality of life. Analyzing the patterns of

healthcare service utilization after transport injuries can provide an insight into the health

of the affected parties, allow improved health system resource planning, and provide a

baseline against which any future system-level interventions can be evaluated. Therefore,

this research aims to use time series of service utilization provided by a compensation

agency to identify groups of claimants with similar utilization patterns, describe such

patterns, and characterize the groups in terms of demographic, accident type and injury

type.

Methods

To achieve this aim, we have proposed an analytical framework that utilizes latent variables

to describe the utilization patterns over time and group the claimants into clusters based on

their service utilization time series. To perform the clustering without dismissing the tempo-

ral dimension of the time series, we have used a well-established statistical approach

known as the mixture of hidden Markov models (MHMM). Ensuing the clustering, we have

applied multinomial logistic regression to provide a description of the clusters against demo-

graphic, injury and accident covariates.

Results

We have tested our model with data on psychology service utilization from one of the main

compensation agencies for transport accidents in Australia, and found that three clear clus-

ters of service utilization can be evinced from the data. These three clusters correspond to

claimants who have tended to use the services 1) only briefly after the accident; 2) for an

intermediate period of time and in moderate amounts; and 3) for a sustained period of time,

and intensely. The size of these clusters is approximately 67%, 27% and 6% of the number

of claimants, respectively. The multinomial logistic regression analysis has showed that
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claimants who were 30 to 60-year-old at the time of accident, were witnesses, and who suf-

fered a soft tissue injury were more likely to be part of the intermediate cluster than the

majority cluster. Conversely, claimants who suffered more severe injuries such as a brain

head injury or anon-limb fracture injury and who started their service utilization later were

more likely to be part of the sustained cluster.

Conclusion

This research has showed that clustering of service utilization time series is an effective

approach for identifying the main user groups and utilization patterns of a healthcare ser-

vice. In addition, using logistic regression to describe the clusters in terms of demographic,

injury and accident covariates has helped identify the salient attributes of the claimants in

each cluster. This finding is very important for the compensation agency and potentially

other authorities as it provides a baseline to improve need understanding, resource planning

and service provision.

Introduction and background

Transport injuries around the world often result in significant physical and psychological

impairments and reduced quality of life [1, 2]. Every year, road traffic accidents cost most

countries in excess of 3% of their gross domestic product (GDP), and between 20 and 50 mil-

lion people suffer non-fatal injuries, with many incurring a consequent disability [3]. In the

case of Australia, transport accidents are the second leading cause of hospitalized injuries and

injury-related deaths [4], with massive health and financial impact [5]. In 2016 alone, nearly

half a million motor vehicle accidents occurred in Australia, of which 1, 295 resulted in death

(an increase of 7.5% compared to 2015), 32, 300 in serious injuries and 224, 104 in minor inju-

ries requiring medical treatment [5]. Planning and providing adequate compensation to the

sufferers of transport injuries is an ongoing challenge at national level. Insights into the burden

of injury in specific injury groups may be provided by a quantitative analysis of the utilization

of health services in the months and years following the accident [38]. A useful source of data

to investigate health service utilization after accidents are the personal compensation datasets

of insurers and compensation organizations [6, 7, 9]. These datasets make it possible to inspect

the patterns of service utilization and their evolution over time from data of health service

usage (e.g., number of visits to a specialists) at any desired level of aggregation (individual,

group etc).

In the state of Victoria, Australia, the Transport Accident Commission (TAC) provides

state-wide coverage of treatment, rehabilitation, vocational and disability benefits to individu-

als injured in land-based transport accidents [10, 38]. Despite the progress brought in by road

safety programs, motor vehicle accidents still cause about 7, 800 serious hospitalizations per

year in the state [10, 11]. The TAC possesses time series of all healthcare service compensation

payments made to its claimants under the compensation scheme. Each time series records all

the service utilizations made by a claimant and is identified by a unique claim ID. At its turn,

each utilization includes the date of the service, its cost and its type, categorized according to

three, increasing levels of detail. In addition to the service utilization data, the TAC also col-

lects additional data about the claim, such as the age and gender of the claimant, the mode of

transportation at the time of accident, what type of injuries were sustained, and so forth,
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grouped into the broader categories of demographic, injuries and accident data. In the termi-

nology of data analytics, such extra data are commonly called “covariates” (or features, or

attributes).

Grouping claimants based on their healthcare service utilization following a transport

injury could prove beneficial in many ways. In the first place, it is likely to shed some light on

the health “trajectory” of the claimamts. In the second instance, it could help improve resource

planning and provide a model against which any future system-level interventions can be eval-

uated [38]. However, with the exception of severely-injured patients [8, 12–14], there seems to

exist little published information regarding patterns of healthcare utilization following trans-

port injuries [38]. In particular, to the best of our knowledge, there are no works in the litera-

ture exploring the temporal dimension of the service utilization.

In this research, we investigate patterns of healthcare utilization following transport injuries

using de-identified compensation data provided by the TAC for the state of Victoria in Austra-

lia. Claimants were included in the study if they had lodged a claim in 2009 and their utiliza-

tion data were collected until nine years after the accident. The measure of utilization was

provided in the dataset as the number of monthly visits to service providers such as psycholo-

gists, psychiatrists, physiotherapists, chiropractors, practitioners, surgeons etc. Given that

mental health is a priority for the compensation agency, in the rest of this paper we will illus-

trate our approach using time series of psychological services utilization. From these premises,

the main goals of this study are to 1) cluster the claimants into homogeneous, distinct patterns

of service utilization, and 2) characterize the clusters in terms of demographic, injuries and

accident covariates to identify which types of claimants are likely to exhibit specific utilization

patterns. To perform the clustering while properly taking into account the temporal order of

the observations, we have employed a well-established sequential statistical approach known

as the mixture of hidden Markov models (MHMM). Following the clustering, we have

employed multinomial logistic regression to explain the cluster membership in terms of the

covariates. Lastly, but not less importantly, this study should be regarded as a general method-

ology that can be immediately applied to any type of services and user pool.

Data

The TAC provided two de-identified transport-related injury claim datasets spanning 2009

through to 2017 for claimants who lodged a claim in 2009. In Victoria, Australia, the compen-

sation of psychology services for victims of transport accidents was established by a Govern-

ment Act in 1986 [15] and retained to date by the Transport Accident Regulations of 2017

[16]. Therefore, there has been no affecting legislation changes during the observation period.

The first dataset contains one record for every compensation claim received by the TAC in

2009. This record consists of the information required for the management of the claim,

including demographics (gender, current age, age at accident), accident-related data (accident

date, claimant security risk type, claim development month, number of claims, road user

type), and injury type. The injury type articulates over fatal, brain head, severe acquired brain

injury (ABI), concussion, degloving, burns, spinal, amputation, quadriplegia, paraplegia, nerve

damage, soft tissue, dislocation, internal injuries, sprain strains, limb fractures, non-limb frac-

tures, contusion abrasion, sight, and other injuries. The second dataset includes longitudinal

data of service utilizations and payments for 9, 328 unique claimants (1, 048, 576 total service

utilizations), spanning January 2009-October 2017 (106 months). Each service utilization is

labeled with three service categories at increasing level of detail (e.g., in order: hospital—reha-

bilitation; rehabilitation—private hospital; and rehab—physiotherapy). These categories have

30, 75 and 226 unique values each, respectively, across all the data. These two datasets were
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integrated for the analysis using the claim ID, and the information on payments was regarded

as out of scope for the analysis. The Ethics Committee of University of Technology Sydney

(UTS) and the Transport Accident Commission (TAC) approved restricted research use of

these dataset (UTS Human Research Ethics Committee ETH182331).

The analysis we present in this paper can be carried out using any of the three service cate-

gories or their combinations. Since the third category is the most detailed, we have used it to

select a specific service, and, given the importance of mental health for the TAC, we have cho-

sen “psychology” to illustrate our model with. By “psychology service utilization” we mean an

office visit to a psychologist. For this service, the longitudinal data contain 788 unique claim-

ants for a total of 22, 523 service utilizations. In the following, all results refer to this service.

We have built 788 time series with unique claim IDs by aggregating the number of utiliza-

tions by month. The first element of the time series is the month of first utilization, and the last

element is the month of last utilization. Alternative alignments are possible; for instance, by

the accident date. To take the accident date into account in our model, we have added the

number of days between the accident date and the first utilization of the service as an addi-

tional covariate. The time series have variable length, from a minimum of 2 months to a maxi-

mum of 106, and on average approximately 29 months. The few (i.e., 6) time series lasting

exactly 106 months are likely truncated by the finite length of the dataset. The number of ser-

vice utilizations per month ranges over 0, 1, � � �, 20, 22, and 24 and it has been displayed with a

unique color through the entire paper (e.g., zero is grey, one is yellow, and so forth). Fig 1

Fig 1. “Stacked plot” of the number of monthly utilizations of the psychology service. This figure shows the 788

times series as a “stacked plot. The height of each colored bar is proportional to the number of time series with that

given number of utilizations.

https://doi.org/10.1371/journal.pone.0206274.g001
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offers a visualization of all the 788 times series as a “stacked plot”. In the figure, the height of

each colored bar is proportional to the number of time series with that given number of utiliza-

tions. For instance, in the first month there is a large number of claimants with one utilization

(yellow bar), fewer but still many with two (light orange bar), and so on. Conversely, toward

the right end side of the plot almost all clients have zero (grey bar) utilizations. Table 1 shows

the main statistics for the demographic, accident and injury covariates for the claimants who

used the psychology service. In the analysis, we have only considered covariates that have at

least 10% coverage of the sample.

Methodology

The modeling of sequential data (i.e., data that come in sequences such as our service utiliza-

tion time series) requires significantly different assumptions from the more common case of

Table 1. Main statistics for the demographic, accident and injury covariates for the psychology service.

Varaibles Percentage Yearly service utilization mean (SD)

Gender

Female 52% 4.5 (8.4)

Male 48% 3.8 (6.6)

Age group (at accident)

< 30-year-old 35% 4.7 (9.7)

30-40-year-old 22% 4.1 (6.9)

40-50-year-old 21% 4.2 (6.5)

50-60-year-old 13% 3.2 (3.7)

> 60-year-old 9% 3.6 (6.3)

Role in transport accident

Driver 48% 3.8 (6.2)

Passenger 23% 4.1 (8.5)

(Motor/) Cyclist 16% 3.8 (4.8)

Pedestrian 12% 6.1 (12.9)

Witness 3% 4.2 (4.2)

Injuries

Brain head (N) 76% 3.1 (4.6)

Brain head (Y) 24% 7.4 (12.6)

Concussion (N) 81% 3.7 (5.9)

Concussion (Y) 19% 6.1 (12.3)

Internal (N) 71% 3.4 (5.0)

Internal (Y) 29% 6.0 (11.6)

Soft tissue (N) 47% 4.4 (9.1)

Soft tissue (Y) 53% 3.9 (5.8)

Dislocation (N) 81% 3.8 (6.5)

Dislocation (Y) 19% 5.6 (10.9)

Sprain strains (N) 76% 3.8 (7.2)

Sprain strains (Y) 24% 5.1 (8.8)

Limb fractures (N) 63% 3.9 (6.4)

Limb fractures (Y) 37% 4.5 (9.3)

Non-limb fractures (N) 62% 3.2 (4.0)

Non-limb fractures (Y) 38% 5.6 (11.1)

Contusion abrasion (N) 33% 4.6 (7.5)

Contusion abrasion (Y) 67% 3.9 (7.7)

https://doi.org/10.1371/journal.pone.0206274.t001
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independent samples. Given a generic time series, noted as (x1, x2, . . ., xt, . . ., xT−1, xT) or as x1:

T more compactly, there generally exists no analytical expression for its probability, p(x1:T).

The common approach is to resort to factorized models and Markov assumptions to express

the probability as the product of simpler terms, e.g. pðx1:TÞ ¼ pðx1Þ
QT

t¼2
pðxtjxt� 1Þ as in an AR

(1) autoregressive model [17]. These assumptions are often realistic and have permitted the

implementation of accurate predictive models in many fields [17].

The hidden Markov model introduces a further assumption to improve the descriptive capa-

bility of a factorized model [18]. The assumption posits that each sample, rather than depend-

ing directly on the immediately previous samples, only depends on a categorical latent variable

called the “state”. Such a variable completely encapsulates the state of the model at any given

point in time. In turn, the model’s state evolves based on a set of transition probabilities.

Therefore, the variables involved in a hidden Markov model (HMM) consist of the sequence

of observations, x1:T, and the corresponding sequence of states, noted as y1:T. The factorized

joint probability of the observations and the states is expressed as:

pðx1:T; y1:TÞ ¼ pðy1Þ
YT

t¼2

pðytjyt� 1Þ
YT

t¼1

pðxtjytÞ ð1Þ

The terms on the right hand side of Eq (1) fully define an HMM and include: 1) the proba-

bility of the initial state, p(y1); 2) the probability of transitioning from the state at time t − 1 to

the state at time t, p(yt|yt−1); and 3) the probability of observing value xt when in state yt, p(xt|
yt). Such factors are commonly referred to as initial, transition and observation probabilities

and form the generative model of the HMM. Each state variable is a latent categorical variable

with an arbitrary number of values, let us say, N: therefore both p(y1) and p(yt|yt−1) can be

modelled by conventional categorical distributions. Conversely, a single “observation” can

consist of any combination of categorical and numerical values: therefore, term p(xt|yt) can be

modelled using corresponding joint categorical/numerical distributions.

To give an intuition of an HMM at work, consider a toy example of a sequence of six obser-

vations, x1:6 = {5, 3, 7, 0, 3, 0}. We assume this HMM to have N = 2 distinct states that we quali-

tatively describe as “high utilization” (H) and “low utilization” (L). A plausible state sequence

for these observations is y1:6 = {H, H, H, L, L, L}. This means that the first three samples have

been generated by a state where higher values are more likely, while the remaining three from

a state with lower likely values. Also notice that a same value (3 in this case) can be generated

with non-null probability from multiple states. This implies that the states cannot be trivially

inferred one by one from the range of the observations; rather, they have to be inferred at once

from the entire observation sequence. Given Eq (1), this inference is formally expressed as:

y�
1:T ¼ argmax

y1:T

pðx1:T; y1:TÞ ð2Þ

An efficient, well-known solution for the state inference is provided by a dynamic program-

ming algorithm known as the Viterbi algorithm [18]. Given a sequence of observations, the

inferred sequence of states can be seen as a “macroscopic view” of a subject’s evolution over

time. For this reason, such views have been added to Section Experiments and Results.

A number of other canonical problems exist for an HMM, including deriving various mar-

ginal probabilities from (1) and finding the optimal parameters for all its factor distributions

under a maximum-likelihood framework. All these problems enjoy proven, computationally-

efficient algorithms which have made the HMM a popular model for the modeling of data

sequences. Among others, HMMs have been used in computer vision [19], signal processing
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[20], natural language processing [21], financial prediction [22], gene finding [23] and RNA

editing [24].

An HMM can be estimated by maximizing its likehood over a given set of “training” obser-

vation sequences. The estimated model will reflect the main trend of its training data: for

instance, if a large number of the sequences contain low values and infrequent changes, the

model will shape the probability distributions around these cases (i.e., low observation values,

rare state transitions). For this reason, the model itself can be seen as the dominant pattern in

the training data. Therefore, in the case of a more diverse set of training sequences, an immedi-

ate extension could be to employ multiple HMMs to fit the multiple dominant patterns in the

set.

In principle, one could first cluster the time series using an off-the-shelf clustering algo-

rithm, and then fit an HMM to each cluster. However, this approach would suffer from the

limitations of the original clustering algorithm, and the estimated HMMs might not well

describe the “uncertain”, boundary cases. Another limitation of this approach is that it assigns

each time series to one and only one cluster (hard membership). In alternative to this

approach, it is possible to fit all the HMMs optimally at once over all the times series using a

mixture of hidden Markov models (MHMM), a specialized instance of the mixture model in

statistics [25]. An MHMM is fully defined by the following joint probability:

pðx1:T ; y1:T; zÞ ¼ pðzÞpðx1:T ; y1:T jzÞ ¼ pðzÞpðy1jzÞ
YT

t¼2

pðytjyt� 1; zÞ
YT

t¼1

pðxtjyt; zÞ ð3Þ

where z is a categorical variable that indexes the clusters. Eq (3) simply states that the model

consists of a prior probability for the clusters, p(z), and multiple HMMs whose initial, transi-

tion and observation probabilities are specific to the cluster. By choosing the number of

HMMs, let us say, M, one chooses the number of dominant patterns that the MHMM is able

to describe. Even more interestingly, such a mixture model can be fit on the training data

using the same maximum-likelihood framework of the single model. The resulting model

automatically “groups” the training sequences according to their closest dominant pattern

and, as such, an MHMM provides an ideal, principled tool for the clustering of time series

[25].

An MHMM has two parameters requiring external tuning: the number of HMMs in the

mixture, M, and the number of states in each HMM, N (this value is usually shared by all the

HMMs in the mixture even if, in principle, it is possible to set it individually). A typical proce-

dure for the setting of these parameters starts from their minimum value (i.e., 2) and increases

them in unit steps until a satisfactory trade-off between the model’s likelihood and its complex-

ity is reached. Common trade-offs include the Bayesian information criterion (BIC) [26], the

Akaike information criterion (AIC) [27] and the use of eye judgment. In this paper, we have

used both eye judgement and BIC to select the external parameters.

Multinomial logistic regression of cluster membership

After clustering, we apply multidimensional logistic regression to explain the cluster member-

ship based on the the demographic, injury and accident covariates described in Section Data.

Using external covariates to explain the clustering results allows us to describe what typical

profiles of claimants are associated with specific service utilization behaviors.

Multinomial logistic regression is the logistic regression framework for multinomial

responses, that are categorical variables that can take more than two values (in our case, the

number of the clusters, M = 3). In multinomial logistic regression, one of the responses is cho-

sen to serve as reference and a separate logit model is built for each of the remaining M − 1
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responses to compare them with the reference. Typically, the response accounting for the larg-

est share of the sample is chosen as the reference. Multinomial logistic regression is a prime

investigation analysis in healthcare applications (see [28–30] for a few examples).

General use of the applied methodology

The methodology employed in this paper for the analysis of psychology services utilization can

be applied, substantially unaltered, to any other service or service combination. An MHMM is

in fact a highly flexible model that can be used to cluster time series of univariate or multivari-

ate observations, as well as categorical or numerical, or mixed. It also offers many other advan-

tages: 1) it uses a proper temporal model to describe the patterns and form the clusters; 2) it

maximizes a proven optimality criterion (the likelihood function); 3) it is not restricted to

assigning each time series to one cluster only; rather, it can assign it to multiple clusters in pro-

portion to their probabilistic memberships (soft membership), and 4) it produces a latent state

representation that can shed further light on the clusters. A potential weakness of this method

is that the number of states in the HMMs needs to be either chosen manually or estimated

with an external validation approach such as BIC or AIC [26, 27]. Even if the number of states

is estimated optimally, there is a chance that the states may overfit the given observations, lead-

ing to poor fitting of new samples. However, in this application the data are all available at the

beginning of the study, and the models could be easily refitted should new data be acquired.

At its turn, multinomial logistic regression can always be applied on the resulting clusters to

gain an understanding of their membership. The set of attributes is unrestricted and the

approach can be applied with any number of clusters. Using MHMM first and multinomial

logistic regression after ensures that the clusters are formed purely based on the patterns of ser-

vice utilization, and the attributes are only used to describe their memberships. It would be, of

course, possible to use the service utilizations and the attributes jointly to produce an alterna-

tive clustering, but their respective effects would be mixed up and challenging to interpret.

Experiments and results

Analysis of the utilization of the psychology service

Our time series consist of observed service utilizations which are assumed to be probabilistic

functions of “hidden” utilization levels which evolve over time. This assumption brings two

main advantages to our study: 1) it properly takes into account the temporal order of the data,

and 2) it models the individual claimants as transitioning through varying utilization levels

(“hidden states”). Both features are very important to ensure an accurate description of the ser-

vice utilization behaviors. In order to determine the number of the clusters and the number of

the states in each cluster as required by the model, we have carried out initial experiments with

2, 3, 4 and 5 clusters in combination with 2, 3, and 4 states per cluster. Using a combination of

eye judgment and BIC for the selection, we have determined that 3 clusters with 3 states each

provided the best trade-off for these data. The three clusters contain, respectively, 528, 211 and

49 members (approximately 67%, 27% and 6% of the population). Based on the dominant uti-

lization trend in each cluster, we have named them as “brief” (utilization), “intermediate”, and

“sustained”, respectively. A similar descriptive naming can be attempted for the states in each

cluster by examining some of their numerical attributes such as their average duration or their

range of utilizations. By examining the typical numbers of utilizations associated with each of

the nine states, we have decided to name them according to the following five labels: “zero”,

“low”, “medium”, “high”, and “very high”. While states with the same label in different clusters

are not formally equivalent, they are comparable.
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Several results for each cluster are plotted in the following Figs 2, 3 and 4. Fig 2 shows the

stacked plots of service utilizations separately for each cluster, while Fig 3 shows the stacked

“state paths” (the sequence of states traversed by a claimant) of the claimants in each cluster.

These figures show unequivocally that the three clusters correspond to different typical

amounts of service utilizations. Fig 2, top, shows that cluster 1 generally contains time series

with low utilization. In the beginning, the utilization level is typically between 1 and 3 per

month, then it quickly drops to reach 0. At months 4 and 20, respectively, more than 50% and

90% of the time series have already reached zero. The trend in cluster 2 is somehow similar,

but the drop in service is less rapid: for instance, at months 4 and 20, respectively, only 20%

and 50% of the time series have reached zero. The final cluster (cluster 3) contains claimants

with higher utilization levels: at the beginning of the time series, a significant fraction of the

claimants utilize the service even more than 10 times per month, and such amounts of utiliza-

tions are maintained for almost the entire observation period. Analogous considerations are

suggested by the state plots displayed in Fig 3: the claimants in cluster 1 tend to start with a

brief “medium” level of utilization, but quickly drop to “low” and “zero”. Conversely, more

than half of the claimants in cluster 2 start with a “high” utilization level to then decrease to

“low” and eventually “zero”, but more slowly compared to cluster 1. Lastly, 40% and 60% of

the claimants of cluster 3 start with “high” and “very high” utilization levels, respectively. They

then gradually transition toward “high” and “zero” utilizations; yet, at month 50, nearly 50% of

the claimants are still at a “high” or “very high” utilization level.

Another informative visualization of an HMM is offered by its “state diagram”. In this visu-

alization (Fig 4), each state of an HMM is represented by a pie. The numbers of utilizations

associated with the state are displayed as slices of the pie, with the size of each slice propor-

tional to how frequent each number appears. The pies are connected by edges which represent

how long the state typically lasts, and how frequently it instead changes to another state (i.e.,

the transition probabilities). The higher the transition probability, the thicker the stroke of the

edge and the more frequent is the transitioning from the state to the other. Fig 4 shows the

state diagrams for the three clusters of the psychology service. To make the plot clearer, the

numbers of utilizations with low frequencies (less than 0.01) have been combined into a single

slice (white). Consistently with Figs 2 and 3, also Fig 4 shows that:

• cluster 1 (i.e., “brief”) transitions between “medium”, “low” and “zero” levels of utilization.

The transitions toward decreasing levels are more frequent since the corresponding transi-
tion probabilities (i.e., the edges in the plot) are high (0.28 from “medium” to “low” and 0.13

from “low” to “zero”, respectively); however, transitions back from “low” to “medium” are

also significant (probability of 0.15);

• cluster 2 (“intermediate”) typically transitions from the “high” level to “low” and “zero”, but

less frequently (the corresponding transition probabilities are only 0.068 and 0.062,

respectively);

• cluster 3 (“sustained”) typically stays at level “very high” for a while to then transition to

“high” (probability of only 0.057). It then stays at “high” for a long time to eventually transi-

tion to “zero” (probability of only 0.045).

Comparison with other clustering approaches

To probe our analysis further, we have compared our approach—clustering by MHMM—with

other partition-based clustering approaches (algorithms) for time series, in particular the

widely-adopted partitioning around medoids (PAM), clustering large applications (CLARA)
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Fig 2. Stacked plots of the number of monthly utilizations of the psychology service for cluster 1 (528 claimants),

cluster 2 (211 claimants) and cluster 3 (49 claimants). Based on the trends in the plots, we qualitatively describe these

clusters as “brief”, “intermediate”, and “sustained”.

https://doi.org/10.1371/journal.pone.0206274.g002
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and fuzzy C-means (FCM). Each of these algorithms divides a dataset into M groups (clusters)

of observations, where the value for M is chosen beforehand. For a fair comparison, we have

applied PAM, CLARA and FCM to exactly the same data and with the same number of clus-

ters. We briefly describe these three algorithms in the next paragraph; however, the reader is

referred to more detailed explanations in [31, 32] and [33].

Fig 3. Stacked “state paths” for the three clusters of the psychology service. This figure shows the stacked “state

paths” (i.e., the traversed sequences of states) of the claimants in each cluster. These plots confirm the different

utilization trends in the three clusters.

https://doi.org/10.1371/journal.pone.0206274.g003
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Fig 4. HMM state diagrams for the three clusters of the psychology service. Each state of each HMM is represented

by a pie chart. The number of utilizations associated with the state are displayed as slices of the pie, with the size of each

slice proportional to how frequent each number appears. The pies are connected by edges which represent how long

the state typically lasts, and how frequently it instead changes to another state (i.e., the transition probabilities).

https://doi.org/10.1371/journal.pone.0206274.g004
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PAM searches for M representative medoids among the time series in the dataset. A

medoid is defined as the time series whose average distance to all the other time series in a

cluster is minimal. PAM’s goal is to find M medoids such that the sum of the distances of the

time series in the dataset to their closest medoid is minimized. The approach iterates over two

steps: build and swap. In the build step, the medoids are determined from the current clusters,

while in the swap step the time series are assigned to their closest medoid. This process is

guaranteed to converge to a stable configuration of clusters and medoids. CLARA follows a

similar approach to PAM, but finds the medoids over only a small sample of the time series

(we have set the sample’s size to 50). It repeats the sampling and clustering processes a pre-

specified number of times in order to minimize the sampling bias, and eventually selects the

clustering results of minimal distance. At its turn, FCM is a soft clustering algorithm that,

unlike PAM and CLARA (yet, similarly to MHMM), is not restricted to assigning each time

series to one and one cluster only. Rather, it can assign it to multiple clusters by varying

degrees of “fuzzy” (or soft) membership between 0 and 1 [31]. The time series closer to the

centers of the clusters have higher degrees of membership than those near the borders, and

influence more the determination of the centers.

The very notion of “good clustering” is relative and, ultimately, subjective. However, vari-

ous quantitative indexes have found widespread use to measure the quality of clustering [33].

For this reason, in the rest of this section we use the silhouette and Dunn indexes to compare

the four clustering algorithms (MHMM, PAM, CLARA, and FCM), showing that MHMM

outperforms the other approaches over this task. Table 2 summarizes the results.

With this technique, clusters 1, 2 and 3 have resulted, respectively, in 254, 267 and 267

members (roughly, 32%, 34% and 34% of the entire population). The size results in Table 2

shows that MHMM and FCM have been able to identify three uneven clusters (a “normal”, a

“less frequent” and a “rare” cases) whereas PAM and CLARA have partitioned the time series

over clusters all of approximately the same size, which seems a priori undesirable. In terms of

mean silhouette index, MHMM and FCM have been significantly better than the other two

methods, with MHMM (0.216) slightly above FCM (0.212). Eventually, MHMM has reported

the highest Dunn index (0.019). Overall, MHMM has proved the most performing of the com-

pared clustering methods.

In addition, Fig 5 compares the clustering results of these two four methods using a popular

projection technique, multidimensional scaling (MDS). MDS is a visualization technique that

is able to approximate a whole time series as a point in 2D, and visualizing the clusters as

Table 2. Comparing the clusters obtained with MHMM, PAM, CLARA and FCM.

MHMM PAM Clara FCM

Size

Cluster 1 (“brief”) 528 267 267 142

Cluster 2 (“intermediate”) 211 254 244 346

Cluster 3 (“sustained”) 49 267 277 300

Silhouette index

Min. -0.568 -0.502 -0.497 -0.418

1st Quartile 0.014 0.01 0.01 0.065

Median 0.326 0.147 0.145 0.244

Mean 0.216 0.131 0.132 0.212

3rd Quartile 0.466 0.301 0.307 0.379

Max. 0.507 0.422 0.437 0.504

Dunn index 0.019 0.012 0.014 0.014

https://doi.org/10.1371/journal.pone.0206274.t002
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regions. As shown in Fig 5, with PAM and CLARA both cluster 2 and cluster 3 heavily overlap

with cluster 1, and cluster 2 is almost a complete subset of cluster 3. This is not desirable since

we expect to be able to divide the claimants more neatly. FCM, too, shows a significant overlap

between clusters 2 and 3 with cluster 1, as well as cluster 3 with cluster 2. Except for 14 data

Fig 5. Comparing the clusters obtained with MHMM, PAM, CLARA and FCM MHMM. The clusters are plotted in 2D using multidimensional

scaling.

https://doi.org/10.1371/journal.pone.0206274.g005
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points, all the members of clusters 2 and 3 overlap with at least another cluster. On the con-

trary, with the MHMM the three clusters are far less overlapping and more sharply defined.

This shows that the MHMM approach is a more suitable clustering technique for temporal

data.

Many other methods are available for clustering time series. Among them, optimal match-

ing, marked point processes, and autoregressive (AR)-based clustering [34–37]). However, the

MHMM has a principled advantage over all of them as it allows modeling each cluster in terms

of latent states and their transitions. This feature of the model has allowed us to identify the

main levels of service utilization and infer them for each time series as they change over time.

While this feature may contribute to the accuracy of the clustering, it can also prove a useful

descriptor of the utilization behaviors, both at the cluster and individual levels.

Multinomial logistic regression results

Table 3 shows the results from the multinomial logistic regression analysis using the three clus-

ters as responses and seven variables as independent inputs (i.e., covariates). Cluster 1 is the

largest (approximately 67% of the claimants) and therefore been used as reference cluster. The

input variables are categorized into four types as demographic (gender, age group at accident),

injury (brain head, soft tissue and non-limb fractures), time (“elapsed time”) and accident (role

in transport accident). Non-limb fractures refer to fractures that are not in the arms or legs

such as skull, spine and ribs fractures. The elapsed time has been defined as the time in years

between the date of the accident and the date of first utilization of the service. As for the encod-

ing of the inputs, the elapsed time is a numerical variable, all injuries and the gender are binary

variables, and the role in transport accident and age group are categorical variables. For each

binary and categorical input, one of their values is used as reference in the analysis and as such

does not appear in Table 3. In the case of the binary variables, the reference value is the alterna-

tive; for the role in transport accident, the reference value is “pedestrian” and for the age group

is “< 30-year-old”. Four models using different subsets of the covariates are reported in

Table 3, with all the covariates being statistically significant for at least one of the clusters (the

confidence level is indicated by the asterisks next to the regression coefficients). Instead, the

remaining covariates (concussion, internal dislocation, sprain strains, limb fracture and contu-

sion abrasion) have not proved statistically significant for any of the clusters and therefore

they have not been reported in the table.

Table 3 shows the following significant relations:

• gender: the differences in terms of gender were mild. In general, male claimants were less

likely to be members of the “sustained” cluster than the reference “brief” cluster;

• age: in terms of age group, claimants who were 30 to 60-year-old at the time of the accident

were more likely to be members of the “intermediate” cluster than the “brief” cluster. In

addition, claimants who were 50 to 60-year old at the time of the accident were less likely to

be members of the “sustained” cluster than the “brief” cluster. This trend was computed with

respect to less-than-30-year-old as reference value;

• injuries: claimants who experienced a brain head injury or experienced non-limb fractures

were significantly more likely to be members of the “sustained” cluster than the “brief” clus-

ter; on the other hand, claimants who experienced a soft tissue injury were significantly

more likely to be members of the “intermediate” cluster than the “brief” cluster;

• accident: in terms of role in the accident, witnesses were significantly more likely to belong

to the “intermediate” cluster than the “brief” cluster. These trends were computed with
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Table 3. Multinomial logistic regression for clusters 1, 2 and 3, using cluster 1 as the reference.

Model (1) Model (2) Model (3) Model (4)

2:(intercept) −1.66���

(0.20)

−2.15���

(0.26)

−2.14���

(0.27)

−2.57���

(0.40)

3:(intercept) −2.03���

(0.25)

−4.08���

(0.52)

−4.44���

(0.55)

−4.37���

(0.66)

2:Gender (male) −0.31�

(0.19)

−0.28

(0.19)

−0.28

(0.19)

−0.29

(0.20)

3:Gender (male) 0.13

(0.29)

−0.58�

(0.34)

−0.64�

(0.35)

−0.54

(0.36)

2:30-40 years 0.71���

(0.26)

0.69���

(0.26)

0.69���

(0.26)

0.65��

(0.27)

3:30-40 years −0.46

(0.37)

−0.27

(0.41)

−0.18

(0.42)

−0.10

(0.43)

2:40-50 years 0.84���

(0.26)

0.82���

(0.26)

0.81���

(0.26)

0.81���

(0.26)

3:40-50 years −0.98��

(0.46)

−0.50

(0.51)

−0.42

(0.52)

−0.39

(0.52)

2:50-60 years 0.63��

(0.30)

0.65��

(0.30)

0.65��

(0.30)

0.60��

(0.31)

3:50-60 years −2.38��

(1.03)

−2.06�

(1.06)

−2.08�

(1.07)

−2.04�

(1.07)

2:>60 years 0.27

(0.37)

0.21

(0.37)

0.20

(0.37)

0.21

(0.38)

3:>60 years −0.66

(0.55)

−0.72

(0.61)

−0.68

(0.62)

−0.75

(0.66)

2:Brain head 0.51��

(0.24)

0.50��

(0.24)

0.58��

(0.24)

3:Brain head 2.88���

(0.45)

2.89���

(0.45)

2.90���

(0.46)

2:Soft tissue 0.59���

(0.20)

0.59���

(0.20)

0.63���

(0.21)

3:Soft tissue −0.04

(0.36)

−0.08

(0.36)

0.02

(0.37)

2:Non-limb fractures 0.10

(0.21)

0.10

(0.21)

0.13

(0.21)

3:Non-limb fractures 1.23���

(0.41)

1.20���

(0.41)

1.28���

(0.42)

2:Elapsed time (years) −0.01

(0.06)

−0.01

(0.06)

3:Elapsed time (years) 0.23��

(0.09)

0.23��

(0.09)

2:Driver 0.40

(0.35)

3:Driver −0.55

(0.49)

2: Passenger 0.42

(0.38)

3: Passenger 0.01

(0.52)

2:(Motor/) Cyclist 0.43

(0.41)

3:(Motor/) Cyclist −0.36

(0.58)

2: Witness 1.34��

(0.54)

(Continued)

Analysis of healthcare service utilization after transport injuries by a mixture of hidden Markov models

PLOS ONE | https://doi.org/10.1371/journal.pone.0206274 November 8, 2018 16 / 20

https://doi.org/10.1371/journal.pone.0206274


respect to pedestrian as reference value. NB: in the TAC dataset, a witness is defined as any-

one who was present at the accident scene other than the drivers, pedestrians and other par-

ties involved in the accident.

• time: in terms of elapsed time, the later the claimants had their first utilization, the more

likely they belonged to the “sustained” cluster compared to the “brief” cluster.

Overall, the results of the multinomial logistic analysis show that claimants who were 30 to

60-year-old at the time of accident, who were witnesses, and who suffered a soft tissue injury

were more likely to belong to the “intermediate” cluster than the reference, majority cluster.

Conversely, claimants who suffered more severe injuries such as a brain head injury or a non-

limb fracture and who started their service utilization later were more likely to belong to the

“sustained” cluster.

Conclusions and future work

This research has aimed to identify distinct behaviors of service utilization, describe the char-

acteristic differences between behavior groups and identify the dominant behavior of individ-

ual claimants with respect to the utilization of a healthcare service. To analyze the clients’

behaviors in terms of service utilization over time, we have used an authoritative statistical

approach known as the mixture of hidden Markov models (MHMM). To conduct a case

study, we have selected psychology as the service of interest and then optimally fitted an

MHMM over the time series of 788 claimants. After fitting the model, each claimant has been

assigned to its closest cluster. This step has led to the identification of three main, typical

behaviors of utilization which we have referred to as “brief” (and low), “intermediate” (and

lasting longer) and “sustained” (and high over a significant period of time). We have also pro-

vided extensive visualization of the results.

As the next step, we have investigated which profiles of claimants have tended to be associ-

ated with each cluster. To this aim, we have used multidimensional logistic regression to

explain the cluster membership based on demographic, injury, time and accident covariates.

From all the available covariates, we have identified some that appeared promising, including

gender, the age at the time of accident, brain head, soft tissue, and non-limb fractures injuries,

role in transport accident and the elapsed time from the date of the accident to the first utiliza-

tion. The results have shown that several of these covariates are statistically significant for the

cluster membership. The results indicate that compared to the “brief” cluster, the claimants

who were 30 to 60-year-old at the time of the accident, had soft tissue injury as a result of the

accident or had the role of witnesses in the accident were more likely to be members of the

“intermediate” cluster than the “brief” cluster compared to claimants who were younger than

30, did not have soft tissue injury and had pedestrian as role in the accident, respectively.

Table 3. (Continued)

Model (1) Model (2) Model (3) Model (4)

3: Witness 1.17

(1.23)

Note:

�p<0.1;

��p<0.05;

���p<0.01

https://doi.org/10.1371/journal.pone.0206274.t003
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Again, compared to the “brief” cluster, claimants who had brain head and non-limb fractures

injuries were more likely to be members of the “sustained” cluster. Conversely, those who were

male and 50 to 60-year-old at the time of the accident were less likely to belong to this cluster.

Moreover, the elapsed time was significant to assign claimants to the “sustained” cluster com-

pared to the reference “brief” cluster.

The proposed approach is general and could be used by compensation agencies to predict

ahead of time which claimants are likely to exhibit specific service utilization patterns. This

ultimately provides the opportunity to design early, dedicated interventions aimed at improv-

ing the claimants’ treatment or improve offering of the services through packaging and pro-

vider agreements.

As future work, we are planning to investigate the correlation between different, yet related

services. To do so, we envisage two lines of investigation: the first is to explore the relationship

between multiple, related services; for example, the relationship between physical and psycho-

logical treatments. The second is to identify the services that are prevalent among specific

pools of claimants; for example, the prevalence of psychiatric services among claimants with

persistent pain. Overall, the main goal of this investigation is to better understand service utili-

zation for improving recovery.
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