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Deterministic processes vary during community
assembly for ecologically dissimilar taxa
Jeff R. Powell1, Senani Karunaratne1, Colin D. Campbell2,3, Huaiying Yao4, Lucinda Robinson2 & Brajesh K. Singh1,5

The continuum hypothesis states that both deterministic and stochastic processes contribute

to the assembly of ecological communities. However, the contextual dependency of these

processes remains an open question that imposes strong limitations on predictions of

community responses to environmental change. Here we measure community and habitat

turnover across multiple vertical soil horizons at 183 sites across Scotland for bacteria and

fungi, both dominant and functionally vital components of all soils but which differ sub-

stantially in their growth habit and dispersal capability. We find that habitat turnover is the

primary driver of bacterial community turnover in general, although its importance decreases

with increasing isolation and disturbance. Fungal communities, however, exhibit a highly

stochastic assembly process, both neutral and non-neutral in nature, largely independent of

disturbance. These findings suggest that increased focus on dispersal limitation and biotic

interactions are necessary to manage and conserve the key ecosystem services provided by

these assemblages.
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E
cological communities are governed by an interplay of
deterministic processes associated with species interactions
with their environment (environmental filtering) and each

other (limiting similarity)1,2. In addition, neutral processes
associated with dispersal limitation and stochastic demographics
within isolated communities also contribute to the outcomes of
community assembly3. In practice, these deterministic and
neutral processes are difficult to separate and both are
ultimately governed by the underlying spatial structure of the
environment. To tease apart the confounding effects of the
overlap among these drivers in the environment, stronger
evidence is necessary from studies that directly test the
underlying processes of community assembly1.

This understanding is relevant for all flora and fauna but not
necessarily easily tested in macrobiotic systems due to spatial
scaling and long-generation times4. The study of microbial
communities can overcome these difficulties and greatly enhance
the feasibility of research aiming to understand this interplay
between determinism and neutrality4. Indeed, the study of
microbial biogeography was effectively launched by the
statement of Becking5, in 1934, that ‘‘everything is everywhere,
but, the environment selects’’. The culture-based approaches used
at Becking’s time may have biased the observations that lead to
his statement, but recently developed techniques now allow
microbial ecologists to observe the distributions of the vast
majority of unculturable microorganisms and have subsequently
revitalized research into this question, particularly in the last
decade. However, despite decades of debate surrounding
observations that microbial communities vary along gradients
of soil physical and chemical properties5–8, the explicit
importance of this environmental variation relative to dispersal
limitation, stochastic demographics, and limiting similarity
during microbial community assembly is still unclear9,10,
particularly among divergent groups of microorganisms,
limiting our ability to predict microbial community shifts and
their functional consequences11,12, which are substantial13–16.

The vast majority of our knowledge regarding the biogeo-
graphy of soil microbial communities is based on the sampling of
topsoil (typically the top 10 or 30 cm) where the impacts of
management (for example, tillage, fertilisation, compaction) are
more likely to be experienced. The vertical structure of soil is
influenced both by parent material weathering (bottom-up) and
the organic inputs (top-down), potentially resulting in incon-
sistent and variable habitat turnover in space, providing an
opportune gradient over which to test these processes. Topsoil
communities are more likely to be influenced by large-scale
dispersal of propagules (generally driven by the mass movement
of air and water and aboveground fauna17), the relatively high
density of roots18 and greater variation in soil temperature and
moisture19. Immigration into deeper soil layers requires the
activity of burrowing soil organisms and the vertical movement of
water20,21. In addition, most microbial biogeography studies
focus on bacterial communities9, but bacteria and fungi differ
substantially in their growth habit (generally, unicellular versus
filamentous growth) and dispersal capability (typically thought to
be greater for bacteria and more variable across taxa for fungi due
to differences in propagule size and number). Bacteria are also
generally more resilient than fungi in the face of disturbance22

due to their relatively high intrinsic growth rates and unicellular
nature, which will be particularly important in the upper soil
layers where the impacts of management (for example, tillage,
fertilisation, compaction) are more likely to be experienced.
Climatic variation is also greater in the surface soil layers, and
fungi and bacteria can vary in their response to minimal
temperature for growth with fungi being more active at lower
temperatures than bacteria23. Therefore, the outcomes of

community assembly and their relation to vertical structure in
soils may not be consistent between these two groups, which is
important as bacteria and fungi in soils generally differ in their
contributions to nutrient turnover and energy flow through soil
food webs, with subsequent consequences for the rates and
stability of element cycles24–27.

Here, our aim is to characterise the contributions of
deterministic and stochastic processes to community assembly
at large spatial scales and to contrast how ecologically dissimilar
groups vary in the relative importance of these processes. We
sampled soils from multiple horizons at 183 sites across Scotland,
using a 20� 20 km2 sampling grid. Each site included a central
profile pit, to bedrock or 75 cm, and vertical subsamples were
taken in each paedological horizon28, from which we sampled
environmental DNA and characterised bacterial and fungal
communities using DNA fingerprinting (terminal restriction
fragment length polymorphism, T-RFLP). Community turnover
is estimated from the strength of the distance decay relationship,
as well as the relationship between community similarity and
increasing community isolation in deeper soil horizons. To
estimate the correspondence between microbial communities and
environmental variables that may select for a subset of microbial
taxa29, we also estimate habitat turnover within each soil horizon
by measuring 51 edaphic properties relating to the chemical and
physical characteristics of the soils collected from each horizon.
We find that the power of habitat turnover to explain variation in
bacterial and fungal community turnover is reduced in deeper soil
layers. To test the hypothesis that increased community isolation
due to dispersal limitation is behind the reduced explanatory
power in deeper layers, we employ a powerful null model
approach assuming that environmental variation is unimportant
during community assembly, according to the neutral process as
described by Hubbell3. To do this, we estimate immigration and
dispersal parameters of the neutral model and use these estimates
to simulate outcomes of neutral community assembly30,31. These
simulated outcomes are used to estimate the central tendency and
dispersion of distributions of pairwise similarities expected
when neutral processes dominate community assembly and to
calculate the effect sizes associated with deviations from this
null hypothesis32,33. Finally, to evaluate whether these DNA
fingerprinting data are appropriate for detecting the ecological
patterns observed here, we also estimate effect sizes from a subset
of samples for which bacterial communities are described using a
high-throughput, DNA sequencing-based approach (454
pyrosequencing).

Results
Community and habitat turnover in space. In general, for both
bacteria and fungi, we observed that community turnover
increased with increasing geographic distance at the scale of
Scotland (Fig. 1 and Supplementary Fig. 1). However, bacterial
and fungal communities exhibited different patterns in this
relationship among soil layers. Pairwise community similarities
for bacteria, on average, decreased in deeper soil layers indicating
higher community turnover (Fig. 1a). The opposite pattern was
observed for fungi and no significant relationship was observed
between community similarity and geographic distance in the
deepest soil layer (Fig. 1b). We did not find a significant
association between bacterial and fungal community turnover
(Sørensen community similarities; Mantel r¼ � 0.015, P40.1).

Habitat similarity also decreased with increasing geographic
distance and the strength of this relationship of habitat turnover
with distance was greater in deeper soil layers. In addition,
sample-to-sample variation in edaphic conditions in deeper soil
layers was, on average, greater than in shallower soil layers
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(Fig. 1c). These observations suggest that the potential for
environmental filtering in microbial communities should be
greater for deeper soil layers. To test this, we estimated
relationships between community turnover and habitat turnover
(for distances up to a maximum of 140 km, at which
autocorrelation was observed; see Supplementary Tables 2–4)29.
The power of habitat turnover to explain variation in bacterial

and fungal community turnover was reduced in deeper soil layers,
both when looking at mean levels of turnover and the slope of
community/habitat turnover through space (Fig. 2), even though
we expected these relationships to increase in strength as habitat
turnover increased.

Neutrality as a model for community assembly. Substantial
variation was observed in the median but also in the dispersion of
distributions in the calculated community similarities for bacteria
and fungi across the soil horizons (Fig. 3a,d). The null model
analysis indicated that there was strong evidence for bacterial
communities demonstrating significant divergence (Fig. 3b,c),
which is expected for niche-based assembly when the environ-
ment is heterogeneous32,34. Comparing patterns among soil
layers, dispersion tended to resemble more closely the predictions
under neutrality in deeper layers (Fig. 3c) suggesting a greater role
for neutral assembly processes (that is, dispersal limitation and
neutral drift) at depth and supported by the immigration
parameter estimates from the neutral model being reduced in
deeper layers (Table 1). However, taken as a whole, the evidence
presented here suggests that bacterial assembly processes are still
strongly dominated by the effects of niche differentiation, even in
deeper soil layers.

In contrast, assembly processes in fungal communities were
strongly and differentially affected across the different soil layers.
In the topmost layer, the shift in the central tendency relative to
the null model indicated divergence from a common community
composition (Fig. 3e), again as expected in a heterogeneous
environment. However, within this layer (and marginally in the
next layer), we observed evidence of underdispersion in the
distribution of effect sizes, suggesting that communities existing
in similar habitats (where communities should converge upon a
common structure) were more different than expected in the
absence of niche differentiation (neutrality). Therefore, fungal
communities were constrained to be highly dissimilar in a way
that could not be explained by niche-based environmental
filtering. In the two deeper soil layers, the confidence interval of
the central tendency also overlapped with zero, suggesting an
important role of neutral processes during community assembly
(Fig. 2e). Examination of the estimates of dispersion in these
layers revealed complex patterns due to subsets of communities
converging upon a common composition (the peaks on the right
of the distribution of Fig. 2d, representing pairs of communities
with highly similar community composition) that is highly
divergent from most other communities that were sampled.

Influence of land use on community assembly processes. It has
been suggested that a high level of disturbance and variation in
the ability to recover from disturbance can lead to very high
levels of community turnover35,36. Sampling took place across a
variety of land-use intensities, which can be at least partly
represented by the vegetation type observed at each sampling
site (Supplementary Table 8), in that some sites experienced
substantial manipulation (arable systems, improved grasslands)
and several others are likely to have experienced some impact
(semi-natural grasslands, woodlands). When we performed null
model analysis within each category of land use (model parameter
estimates in Supplementary Tables 9 and 10), we observed that
bacterial communities demonstrated evidence of neutral
processes increasing in importance during assembly under
more intensive land use (especially arable land across all depths
and for grasslands at certain depths) while exhibited patterns
that were consistent with deterministic processes under reduced
land-use intensity (some grasslands, particularly semi-natural
grasslands, and under woodlands, moors and bogs; Fig. 4). Fungal
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Figure 1 | Community and habitat turnover with increasing geographic

distance at the scale of Scotland. Pairwise community similarities (Xd) are

based on the Sørensen index for bacteria (a) and fungi (b) while pairwise

habitat similarities (Ed) are based on Euclidean distances (c). The shaded

region represents the 95% confidence limits on the regression estimates.

Model coefficients are provided in Supplementary Table 1; individual data

points are plotted in Supplementary Fig. 1.
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communities, however, exhibited patterns suggesting that the
relative importance of neutral and niche-based assembly was
largely similar among the different levels of land use, regardless of
what soil layers the fungal communities were sampled from
(Fig. 5). The exception to this pattern is under improved
grasslands at the two most isolated soil layers, where
overdispersion was observed; this was the only signal of niche-
based assembly in fungal communities and is the likely source of
the complex patterns described above for the estimates of
dispersion (Fig. 3f). Under all other land uses, the patterns in
fungal communities were consistent with those predicted
assuming neutral assembly or a highly stochastic assembly
process.

Comparing data types for detecting deviations from neutrality.
The outcomes of null model analyses with high-throughput DNA
sequencing and fingerprinting data were qualitatively similar,
with both data types providing evidence for non-neutral
dynamics. For both data types, estimates of the central tendency
indicated that pairwise similarities among bacterial communities
were reduced compared with neutral predictions, while dis-
tributions of pairwise similarities were overdispersed compared

with neutral predictions (Supplementary Table 11). Where they
differed, however, was in the magnitude of the deviation from the
neutral expectation, with effect sizes being generally greater for
bacterial communities characterised by pyrosequencing than
when DNA fingerprints were used. This suggests that the lack of
taxonomic resolution and associated noise inherent in DNA
fingerprinting approaches may result in reduced power to detect
non-neutral dynamics when sample sizes are small or along short
environmental gradients. However, our conclusions are robust to
this issue given that DNA fingerprinting revealed non-neutral
dynamics for both bacteria and fungi, with the
primary conclusion that the nature of these dynamics was sub-
stantially different between these broad taxonomic groups,
especially with increasing dispersal limitation in deeper soil
layers.

Discussion
Various factors behind the differing contributions of environ-
mental variation and isolation during bacterial and fungal
community assembly may be at play, but all are mediated by
differences between bacteria and fungi in dispersal capacity across
the landscape and through the soil profile. The extreme
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Figure 2 | Relationships between habitat turnover and turnover of bacterial and fungal communities within neighbourhoods of 140km. Two

relationships are plotted for bacterial (a,b) and fungal (c,d) communities: the first compares mean levels of community (w) and habitat (Ed) similarity within

each neighbourhood (a,c) and the second compares the strength of community/habitat turnover through space (z) within each neighbourhood

(b,d). Lines indicate the predicted relationship, solid lines indicate the relationship is significant (Po0.05), dashed lines indicate the relationship is not

significant based on type II linear regression estimated using ordinary least squares (PZ0.05). R2Z0.120 for the surface layer (layer 1) and R2r0.096 for

the deeper layers; model coefficients and individual R2-values are provided in Supplementary Table 5. Additional analyses were performed, including

site-level variables (Supplementary Table 6) and on only a subset of the most important variables (Supplementary Fig. 2, Supplementary Table 7), revealing

similar patterns in the relationships between community and habitat turnover.
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stochasticity observed for fungi in surface layers may be due to
strong antagonistic interactions that are governed primarily by
priority effects37 (that is, organisms being more abundant within
a patch due to their early arrival), but that dispersal limits the

manifestation of these antagonistic interactions uniformly in the
environment. Bacterial communities may also be subject to these
priority effects38, but the manifestation of these effects will be less
prevalent in the absence of dispersal limitation. Fungi in deeper
soil layers may participate in fewer antagonistic interactions with
other fungi. For instance, mycorrhizal fungi are more frequently
observed in mineral soil layers than saprotrophic fungi39 and,
while antagonistic interactions can occur among mycorrhizal
fungi40, there is little evidence to suggest that these are as
strong as interactions between saprotrophs that actively
produce secondary metabolites with antagonistic properities41.
Community turnover for bacteria was less predictable in deeper
soil layers and influenced to a greater extent by neutral processes.
For bacteria, passive dispersal through the soil profile is likely to
be strongly negatively associated with propagule size21, increasing
the role that dispersal limitation plays in assembly, but assembly
outcomes were still strongly deterministic.

We have focussed on two very ecologically divergent
taxonomic groups to assess the variable contributions of
deterministic and stochastic processes to community assembly,
but considerable ecological variation also exists within these taxa.
For instance, propagule sizes vary substantially within each group
and are typically within, but not exclusive to, the 5–50mm
diameter range for fungi20 and the 0.2–20mm diameter range for
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Figure 3 | Distributions of pairwise similarities between microbial communities and effect sizes relative to a null model based on neutral community

assembly. Community similarities (Xd) for bacteria (a–c) and fungi (d–f) are based on the Sørensen index. Distributions of observed community similarities

within each of the four soil layers are presented as probability densities (a,d). The mean (points) and 95% confidence interval (vertical lines) of the central

tendency (b,e) and dispersion (c,f) of observed community similarities are presented relative to 100 simulations under the null model. Here, a reduction or

increase in the central tendency is evidence of, in general, convergence upon or divergence from a common community composition, respectively.

A reduction/increase in dispersion is further evidence of convergence/divergence, with a focus on extremes of the distribution; the interquartile range

(IQR) and the interdecile range (IDR) provides estimates of dispersion in the middle 50 and 80% of the distribution, respectively.

Table 1 | Estimated parameters associated with the neutral
model of biodiversity fit at the level of Scotland for bacterial
and fungal communities described within each soil layer.

Response matrix Soil layer Theta I (median) I (IQR)

Bacteria 1 34.68 18.60 12.25
2 40.57 14.43 10.67
3 40.51 10.12 9.37
4 44.46 11.88 11.02

Fungi 1 54.79 7.71 8.74
2 36.13 2.87 4.91
3 16.49 1.10 2.59
4 17.47 0.80 2.17

I, immigration; IQR, interquartile range; theta, biodiversity.
Theta is estimated for the entire metacommunity while I is estimated for each local community;
the central tendency and dispersion of the distribution across communities is represented by the
median and IQR, respectively.
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Figure 4 | Effect sizes under different land uses relative to a null model based on neutral community assembly for bacteria sampled from four

different soil layers. Estimates are associated with the central tendency (left) and dispersion (right) parameters of pairwise community similarities.

A, arable; IG, improved grassland; SNG, semi-natural grassland; W, woodland; M, moor; B, bog. See Fig. 3 caption for details on how effect sizes were

calculated.
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Figure 5 | Effect sizes under different land uses relative to a null model based on neutral community assembly for fungi sampled from four different

soil layers. Estimates are associated with the central tendency (left) and dispersion (right) parameters of pairwise community similarities. A, arable;

IG, improved grassland; SNG, semi-natural grassland; W, woodland; M, moor; B, bog. See Fig. 3 caption for details on how effect sizes were

calculated.
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bacteria21. Similarly, variation in resilience capacity exists within
bacteria42 and fungi43 in their responses to stress and disturbance.
Focussing further within these groups, with increasing resolution
on taxa of particular ecological relevance, and utilising the
analytical approaches described here will lead to further insight
into the drivers of community assembly. Our data do not provide
this insight as they were generated using a taxonomy-
independent approach, but the use of next-generation
sequencing techniques combined with novel trait-based
approaches44–46 will aid these activities in the very near future.

In summary, we provide direct evidence supporting the
hypothesis that the contributions of deterministic and stochastic
assembly processes vary depending on the ecological context in
which the processes are active and provide insight into the
ecological characters involved in determining these contributions.
The biogeography of soil bacteria is governed largely by habitat
turnover, even when enhancing the potential for dispersal
limitation to drive these effects. Fungal communities, on the
other hand, demonstrated much clearer potential for dispersal
limitation to influence the outcomes of community assembly via
stochastic demographics and complex outcomes of biotic
interactions. The high levels of dissimilarity observed, especially
in upper horizons, represent a significant barrier to predicting
how fungal community structure and composition are likely to
respond to global environmental change, requiring dedicated
research efforts47 but with intensive sampling at relevant spatial
scales. A focused but novel framework on the study of
interactions occurring within microbial communities, including
manipulation of the soil environment but also the development of
inoculation strategies, is necessary to take full advantage of their
contributions to key ecosystem services.

Methods
Soil sampling. The location of sites and protocols for soil sampling and profile
description are based on the National Soils Inventory of Scotland, 1978–1987, with
soil characterisation and sampling protocols given in Lilly et al.48. Sampling for the
current study was conducted in 2006–2009 as part of the resampling of the National
Soils Inventory of Scotland (NSIS2; Supplementary Fig. 3) and the design is given in
Chapman et al.28. Soil samples were collected from 183 sites across Scotland, using a
20� 20 km2 sampling grid. Each site included a central profile pit from which a full
description of soil characteristics to bedrock or 75 cm was collected and subsamples
taken in each paedological horizon. Sample numbers and major soil groups
associated with each horizon are presented in Supplementary Table 12. Field moist
soils were sieved to o4mm and visible pieces of plant material and soil animals
were removed before use. Each sample was then separated into three subsamples
and each treated in the following manner: (i) assayed for N mineralisation and
NH4

þ and NO3
� concentrations, (ii) air-dried for remaining chemical analyses and

(iii) stored at � 20 �C until DNA extractions could be performed. Methods
associated with these analyses are described below.

Microbial community analyses. DNA was extracted from B500mg of soil
samples using a modified49 protocol for the FastDNA SPIN kit for soil (Bio101,
Vista, CA, USA), as described by Yao et al.50. Variation in soil chemical and
physical properties can influence the quantity and quality of DNA extracts51;
however, our data suggest that any bias associated with variation in these soil
properties did not bias our ecological interpretations as bacterial and fungal DNA
was amplified from the same DNA extracts and demonstrated divergent
community patterns. These patterns in bacterial and fungal communities were
characterised using multiplex T-RFLP52. T-RFLP profiles were obtained from 63F
(VIC-labelled) and 1087R primers for bacteria and ITS1F (6-FAM-labelled) and
ITS4 primers for fungi (primer sequences provided in Supplementary Table 13).
The labelled PCR amplicons were checked by agarose gel electrophoresis and
purified using a charge switch kit (Invitrogen). Approximately 500 ng of cleaned-up
PCR multiplex product was digested with restriction enzyme HhaI (Promega); 2 ml
of the digested DNA was mixed with 0.3 ml of GeneScan 500 LIZ dye size standard
and 12ml of Hi-Di formamide (both Applied Biosystems, Warrington, UK).
Fragment size analysis was carried out with an ABI PRISM 3130xl genetic analyser
(Applied Biosystems). Fragment analysis was performed using fragments sized
between 35 and 550 bp. Relative abundance of terminal restriction fragments was
calculated in T-REX software53 with clustering threshold of 0.99. Fragments with
fluorescence units o50 and peaks with heights that were o2% of the total peak
height were excluded from further analysis. These bacterial and fungal terminal

restriction fragment tables are available in the Dryad Digital Repository
(http://dx.doi.org/10.5061/dryad.r3sh7).

While there is considerable debate regarding the use of community
fingerprinting methods for analyses of microbial communities, these approaches
can perform just as well as deep sequencing when investigating ecological patterns
in microbial communities at multiple scales54. To compare the outcomes of null
model analysis using fingerprinting data to those obtained through deep
sequencing, we obtained a bacterial community matrix for the topsoil layer at 108
sites based on the output of 454 pyrosequencing of bacterial 16S rRNA.
Pyrosequencing was performed on a Roche GS FLX System using a Titanium kit. A
466-bp fragment of 16S rRNA gene was amplified using the modified primers
PRK341F and PRK806R (primer sequences provided in Supplementary Table 13).
Barcode, linker primer and reverse primer sequences were removed from the raw
sequence reads using the ‘split_libraries.py’ script while setting minimum sequence
length of 200 and minimum quality score of 20. The ‘Acacia’ algorithm was used
with default options to remove pyrosequencing noise55. Potential chimeras were
removed using the UCHIME chimera detection (denovo mode) utility of the
USEARCH v6.0.307 tool56. Similar sequences were binned into operational
taxonomic units (OTUs) using the ‘UCLUST’ method (minimum pairwise identity
of 97%). The OTU-sample matrix was obtained by using ‘Quantitative Insights
Into Microbial Ecology’ (QIIME v 1.6.0) software package57. These data represent a
subset of a larger data set that is currently being prepared for publication; the data
used here are provided as Supplementary Data 1.

Habitat characterisation. All the soil and environmental properties were obtained
from the NSIS2 database. The database is in the process of being made publicly
available by the James Hutton Institute via The Scottish Soils Database & Website
project; the data used here are provided in Supplementary Data 2. Only chemical
and physical characteristics that were measured on individual soil samples were
included in the estimation of habitat turnover, including 51 soil properties (pH,
organic C, total N and P, soil C/N ratio, moisture, NH4

þ and NO3
� concentrations,

soil N mineralisation, soil loss-on-ignition; sand, silt, clay; oxalate extractable P, Fe
and Al, Mn; aqua regia-extracted elements namely Ag, As, Ba, Cd, Co, Cr, Cu, Hg,
Mo, Ni, Pb, Pt, Se, Sr, Zn, Al, B, Ca, Fe, K, Mg, Mn, Na, P, S, Ti; exchangeable Na,
K, Ca, Mg, Mn, Fe, Al and H). Descriptions of the methods used to obtain these
data are described in Chapman et al.28 and Yao et al.50 Although additional data
were collected from each of the sites (including altitude, slope, drainage,
temperature, precipitation and maximum rooting depth)58, we chose to only focus
on variables that were measured on individual soil samples (that is, from each
horizon at each site) for the analyses in the main manuscript. Our analyses of these
additional data demonstrated that this decision had very little effect on the
estimation of habitat turnover and no effect on the inferences made from the
relationship between habitat and community turnover (Supplementary Tables 5
and 6).

Estimation of spatial dependence. In order to characterise the spatial depen-
dence of bacteria, fungi and environmental habitat, the first five principal com-
ponents of respective depth layers were modelled via a geostatistical approach.
Spatially correlated random effect terms were modelled via spherical models except
for PC 5 of the layer 1 of environmental data, which was modelled via exponential
model59. Estimation of spatially correlated random effect terms were carried out
using restricted maximum likelihood estimation algorithm. More details on
estimation of spatially correlated random effect terms using restricted maximum
likelihood estimation algorithm is given by Lark et al.60. Once the spatial model
parameters were estimated, spatial dependence was calculated as a ratio between
nugget variance and sill variance and expressed as a percentage. Nugget/sill ratio
explains the proportion of spatially unstructured variation in relation to the total
variation and lower values indicate strong spatial dependence while higher values
indicate low spatial dependence. Cambardella et al.61 reported that nugget/sill
ratioo25% indicate a strong spatial dependence (structure), while 25 to 75% and
475% indicate moderate and weak spatial dependence respectively. Model fitting
was carried out using geoR62 package in R statistical programming language63.

Estimation of community and habitat turnover. We used the approach described
in Ranjard et al.29, with some modifications, to estimate the strength of community
and habitat turnover across the whole of Scotland and to investigate the
relationship between community and habitat turnover at spatial scales for which
autocorrelation was observed. Briefly, pairwise bacterial and fungal community
similarities were calculated based on the Sørensen index, using the labdsv
package64 in R63, while habitat similarities were calculated from the Euclidean
distance between sites (‘dist’ function in R) based on edaphic properties using the
formula

Ed ¼ 1� Eucd=Eucmaxð Þ; ð1Þ

where Eucd is the Euclidean distance function and Eucmax is the maximum distance
between sites in the matrix. The slope of the distance decay relationship for
bacterial and fungal communities was estimated using weighted linear regression
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and according to the formula

wd ¼ � 2zð Þ log10 dð Þþ b; ð2Þ

where wd represents the Sørensen index, z represents the turnover rate among
communities, d represents the distance between sites in metres, and b represents
the intercept of the relationship. The slope of the distance decay relationship for
habitat was estimated by substituting wd for Ed in this formula. This procedure was
performed across the entire data set and then repeated for each individual sampling
point using a neighbourhood of 140 km to estimate (i) the relationship between
mean community and habitat similarity and (ii) the relationship between zhabitat
and zbacteria or zfungi. Within each neighbourhood, we used the lmodel2 package65

in R to perform type II linear regression (ordinary least squares) since all
parameters were estimated with errors.

To ensure that these observations were not due to the inclusion of
environmental variables of little importance to microbial community composition,
masking an existing relationship, we also repeated these analyses using the ten most
important environmental predictors of bacterial or fungal community composition
(separately, following forward selection of variables during constrained analyses of
principal coordinates; Supplementary Fig. 2) while providing estimates of variance
explained by each of these ten predictors using permutational multivariate analysis
of variance (Supplementary Table 14); these analyses were conducted using the
vegan package66 in R63. The results (Supplementary Table 7) were largely
consistent with the outcomes of the analyses with the full environmental matrix
(Supplementary Table 5).

Null model analysis of microbial communities. We employed a null model
approach utilising the neutral model of metacommunity and local community
dynamics developed by Hubbell3. Parameters of the neutral model were estimated
from the community data for bacteria and fungi after generating customised PARI/
GP input files based on the example files provided by Etienne31. Parameters were
initially estimated separately for bacteria and fungal communities and for each soil
layer (that is, eight independent metacommunities), and then again after further
separating these communities into groups representing each category of land use
(that is, 48 independent metacommunities). We then used these parameter
estimates to generate PARI/GP input files to simulate 1,000 communities of equal
size under the assumption of neutral assembly, using the algorithm of Etienne30.
Output files were imported into R63 to calculate pairwise similarities (Sørensen
index29) among all communities within each simulation to generate distributions
of the central tendency (median) and dispersion (interquartile range, interdecile
range) of calculated similarities across all simulations, as well as confidence
intervals for these estimates32,33. Effect sizes and their confidence intervals
represent the difference between the estimate (median, interquartile range or
interdecile range) from the distribution of observed pairwise similarities and the
mean value of that same estimate from the simulated distributions; confidence
intervals were generated using the estimate from the 2.5th and 97.5th percentile
of the simulated distribtions32,33. R scripts for generating PARI/GP input files,
reading output files, and estimating effect sizes are available at
https://bitbucket.org/jrpowell/neutralnullmodels_r2gp.

For null model analysis within land-use categories, we used vegetation
classifications aggregated into six major vegetation types: arable, improved
grassland, semi-natural grassland, woodland, moorland and bog. Vegetation type is
only a rough proxy for land-use intensity, as there are more intensive aspects of
land use that were not accounted for in the available data (for example, historical
fertiliser use and grazing). However, by analysing the data within these broader
categories we are able to generate more robust comparisons of the distribution of
community similarities and neutral predictions than if we were to do so for many
categories with few samples collected within each. A summary of the sample
numbers among these vegetation types and soil layers is provided in
Supplementary Table 8, while a summary of sample numbers associated with major
soil groups within each vegetation class and soil layer is provided in Supplementary
Table 12.

To compare the outcomes of null model analysis using fingerprinting data to
those obtained through deep sequencing, we then applied the null model approach
to the OTU-sample matrix derived from 454 pyrosequencing data and to the OTU-
sample matrix derived from the T-RFLP data obtained from these same samples.
These analyses were performed across all samples and then again for samples
within each vegetation type (except for woodlands since there was only one sample
in this class).
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