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ABSTRACT 

 

Wastewater recycling is widely practiced to solve water crises created by increasing demand 

due to rapid population growth and scarcity of resources arising from climate change. Certain 

treatment is always provided to meet the appropriate health guidelines of the recycled water. 

When water is distributed over the pipelines and tanks, microbes can regrow and deteriorate 

water quality, and hence a disinfectant, usually chlorine, is added to the water. Chlorine can 

still decay while in transport and the problem can exist. Optimal chlorine levels are therefore 

to be maintained after the treatment to ensure the water quality does not deteriorate. For such 

fundamental understanding of factors impacting chlorine residuals are needed in the recycled 

water. While there are a lot of studies on drinking water systems, there is a scarcity of 

information on recycled water chlorine stability. This work is aimed to fill the knowledge gap 

by investigating the Sydney Olympic Park Authority (SOPA) recycled water pipelines and 

pilot-scale biofilm reactor system set up at the water treatment plant to elucidate the 

fundamentals. 

 

An investigation was carried out to examine the water quality parameters that may degrade 

chlorine residuals in the recycled water distribution system of SOPA. Physicochemical 

parameters such as free chlorine, total chlorine, DOC, ammonia, nitrite, nitrate and pH were 

measured in the bulk water samples. Biofilm growth potential of two different pipe materials 

under the similar environment, especially chlorine residuals of the storage reservoir before 

supplying to the distribution system was investigated to determine the role of biofilm 

components in decaying chlorine. Three flow cell columns of bioreactors containing biofilm 

coupons of polyvinyl chloride (PVC) and high-density polyethylene (HDPE) pipes were 

continuously operated for 105 days.  

 

Results were obtained from the examination of chlorine stability in the bulk water samples 

shows organic chloramine has reduced the effectiveness of chlorination. Chlorine decay in 

the water system occurred mainly due to inorganic and organic compounds such as metals 

deposition and bacterial activities, which were supported by the results of biofilm 

development data from the pilot-scale bioreactor system. Biofilm thickness, volume, mass 

and visualized images contribute an important role on understanding the decay of chlorine 

residuals. Over 15 weeks of biofilm development, the fluctuating chlorine trend of the 
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recycled water in Sydney Olympic Park system has an adverse impact on biofilm 

constituents, bacteria cells and extracellular polymeric substance (EPS) production. As 

compared to traditional measurements, confocal laser scanning microscope (CLSM) provided 

different recording of multiple biofilm parameters with their subsequent visualization and 

quantification. In addition, discoloured water factors such as metals such as Fe, Mn 

deposition within biofilms were observed and the results illustrate that the discoloured water 

event could be related to presence of Fe and Mn in the recycled chlorinated systems.  

  

In all the samples, organic chloramine was found to be the dominant chlorine species in the 

recycled water distribution system. According to monitoring data, biofilms did not grow as 

fast as expected due to the presence of chlorine, organic chloramine, other unknown 

inhibitors and/or high flow rate. Free chlorine and slow-growing biofilms may oxidise Fe or 

Mn and influence the retention of these elements within the biofilm. Both PVC and HDPE 

had the same trend of increasing biofilm thickness as well as the biomass. HDPE pipe 

surfaces were more susceptible towards biofouling than PVC. EPS volume was usually 

higher than the bacterial cell volume in both pipe materials whereas EPS volume was higher 

in HDPE than PVC. The highest volume of EPS was approximately 4000 µm3/m2 compared 

to the highest volume of the bacterial cell about 2400 µm3/m2. The biofilm is not enough in 

the pipe materials to show the impact on decaying chlorine at concentrations range between 1 

- 3 mg/L. Organic chloramine possibly plays a critical, but an unknown, role in determining 

the growth of biofilm and dirty water complaints through release of metals.   
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CHAPTER 1 

INTRODUCTION 
 

1.1. Background 
 
Climate change and urbanization are imposing a huge stress on fresh water supplies, which 

has now become a limited resource. In a worldwide context, the World Health Organization 

(WHO) has recognised that recycled water (RW) is set to become the principal driving force 

in building a sustainable water supply solution (World Health Organization, 2006). In 

Australia, the response to this has been an active push for water conservation and the 

development of alternative water sources. This has been embraced by many individuals, 

local, state, and federal governments, with the result that significant financial and scientific 

resources have been directed to encouraging and supporting water reclamation and the 

development of RW schemes (Power, 2010).  

 

Most of the water sources are able to reclaim for a wide range of reuse purposes. For 

example, in Sydney Olympic Park Reclamation Management System (WRAMS), the RW is 

produced froma combination of stormwater and sewage. This RW is suitable for residential 

use, for instance, gardening, car washing, toilet flushing, and laundry. Furthermore, a number 

of applications for RW can be considered such as landscaping, agricultural irrigation, 

industrial use, groundwater recharge, dust suppression at construction sites and infrastructure 

such as road construction. However, there are potential health risks that are associated with 

human contact in the case of public areas under RW irrigation, and with exposure to aerosols 

generated by spray irrigation. RW is also unsuitable for human consumption because potable 

supplies could pose the highest risk to human health (Department of Health and Ageing, 

2012).  Therefore, none of the water reuse regulations recommends reclaiming wastewater 

directly for drinking purpose (Asano, 2009). 

 

Due to the strong concern about waterborne diseases caused by pathogens, viruses, bacteria, 

protozoa, RW requires physical, chemical and biological treatments at multiple levels. 

Treatment techniques for removal of pathogens are called disinfection, such as chlorination, 

ozone, ultraviolet radiation, membrane system and media filters (Power, 2010). Disinfection 
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by chemical oxidation is an effective technique to inactivate microbial pathogens. Among 

disinfectants, chlorine, chlorine dioxide and chloramine can evoke oxidation, hydrolysis and 

deamination reactions with a variety of chemical substances in bacterial cells including 

structural regions of metabolic enzymes or membrane proteins (Schwartz et al., 2003). This 

explains the early adoption of chlorination in the water distribution systems as a means of 

disinfectant for its secondary treatment. It is still widely used because it is more economical 

than other alternative disinfectants (Hammer, 2008). Based on the benefits of chlorination, 

Sydney Olympic Park Authority (SOPA) has chosen chlorine as a key step to disinfect their 

RW.  

1.2. Problem statement and significance of the research 
 
Despite chlorination, bacterial regrowth is observed when chlorine concentrations decline 

along a distribution network. As chlorine concentration gradually decreases from the 

chlorination tank inlet through the system, the “chlorine residuals” provide a minimum level 

of disinfection effectiveness. The chlorine residuals are reduced due to their reaction with 

water constituents, biofilms and sediments. Previous studies show that bacteria are able to 

overcome disinfection barriers using various survival strategies and form biofilms in the 

distribution system. Biofilms in water distribution system cause chlorine decay, slime 

growths, biofouling, scaling, corrosion, foaming and support the regrowth of opportunistic 

and pathogenic bacteria (Jjemba et al., 2010, Jungfer et al., 2013). In fact, SOPA customer 

service has recently faced complaints over their RW related to aesthetic issues like odour and 

discoloration of the water. This situation calls for a greater understanding of the microbial 

activities in RW and their role in degrading water quality. There is a growing interest in the 

water industry in understanding microbial deterioration of the treated water during storage 

and distribution.  Many studies have examined various problems of drinking water biofilms. 

However, there is little understanding of RW biofilm growth in different pipe materials and 

its impact on chlorine stability. Therefore, there is a need for an in-depth research to 

investigate biofilm formation and its impact on chlorine residuals under hydrodynamic flow 

and similar environmental conditions in the RW distribution system. 
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1.3. Research Objectives  
 
The aim of this study is to understand biofilm growth in different pipe materials and their 

impact on chlorine decay in the SOPA RW distribution system. This involves the following 

objectives: 

• Investigating the water quality parameters that degrade chlorine residuals in the 

SOPA RW distribution system.  

• Investigating the biofilm growth potential of different pipe materials under various 

chlorine residuals. 

• Determining the role of biofilm components in decaying chlorine. 

1.4. Research Approach   
 

A full-scale water distribution system is dynamic in terms of water quality and it is almost 

impossible to obtain consistent characteristics across water samples to conduct experiments 

as per the needs of the research aims. Thus, based on the research objectives to determine the 

role of biofilms a pilot-scale system was set up in the WRAMS building. The system 

contained three flow cell types of reactors (connected in series) which were operated under 

similar environmental conditions in SOPA RW distribution pipelines. The pilot-scale system 

was able to simulate a full-scale distribution system and appropriate conditions were provided 

to achieve engineered microbial activities in each reactor. The biofilms were developed on 

the surfaces of polyvinyl chloride (PVC) and high-density polyethylene (HDPE) pipes 

materials and their structures and role on decaying chlorine residuals were investigated.  The 

system was able to provide sufficient samples for the study of the mechanisms behind 

chlorine decay in more details (i.e. biofilm structure and biofilm components).  

 

This thesis consists of 6 chapters.  

Chapter 1 presents the introduction including research objectives, their significance 

and the approach employed in this study. 

Chapter 2 reviews the literatures, which include current research efforts to understand biofilm 

characteristics and chlorine decay that have been practiced for maintaining adequate chlorine 

residuals in the system. 

Chapter 3 organizes the common materials and methods employed in this research, which 

include the sampling methods, pilot-scale system setup, operation and chemical analytical 
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procedures. 

Chapter 4 reports the validation of results obtained from bulk water quality investigation, 

chlorine stability and re-chlorination.  

Chapter 5 reports biofilm development in the pilot-scale systems presented in Chapters 3.  

Chapter 6 discuss the results from Chapter 4 and Chapter 5 

Chapter 7 provides the conclusions of this study and recommendations for future study. 
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CHAPTER 2  

LITERATURE REVIEW 
 
The objective of recycling water is to provide a non-potable supply. However, the recycled 

water (RW) should be chemically and microbiologically safe. For domestic uses, RW must 

be aesthetically acceptable, free from apparent turbidity, colour and odour. Distribution 

systems represent a large part of the infrastructure of the RW industry. The vast surface of 

these systems is in contact with bulk liquid and can support the growth of microorganisms, 

which further leads to the growth of biofilms. Biofilms can have negative impacts on RW 

quality during distribution, and is considered as an unknown factor in risk assessment of RW 

consumption. Chlorination is a common practice across the world in water and wastewater 

disinfection treatment to destroy pathogens and control nuisance microorganisms, and for 

oxidation of iron and manganese removal, destruction of taste and odour compounds. Thus, 

understanding how biofilms can survive under chlorination is important to improve chlorine 

stability and possibly predict the performance of RW distribution systems, as well as to better 

assess the risks associated with RW.  

 

2.1. Recycled water, uses and risks 

 
RW is defined as a general term for water reclamation and reuse. It has been reported that 

Sydney Olympic Park Authority (SOPA) saves over 850 million liters of drinking water each 

year. Water collection includes stormwater and sewage water. Water obtained from both 

sources is treated by Water Reclamation and Management Scheme (WRAMS) at Homebush 

Bay. The stormwater and treated sewage effluent are mixed together at a different ratio 

depending on the water demand and supply. The average mixing ratio of storm water and 

treated wastewater is 30 : 70. However, this ratio may fluctuate depending upon public 

demand (SOPA, 2017).  

 

Moreover, RW can be sourced from wastewater treatment plants, agricultural industries, 

industrial wastewaters and stormwater (Environment Protection and Heritage Council, 2009). 

In some cases, on-site treated greywater from household also results in RW for non-potable 

purposes (Environment Protection and Heritage Council, 2006). 
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Australia has four RW classes (Table 2.1); A, B, C and D for non-drinking purposes which 

are distinguished by their relative E.coli count. E.coli is the bacteria that are found in the 

intestines of warm-blooded animals and the presence of which indicate faecal contamination. 

The four RW classes represent four minimum standards of biological treatment and pathogen 

reduction (EPA Victorria, 2003). Under the current management framework, treatment 

processes for Class B, C and D do not require validation. The Environmental Protection 

Agency (EPA) Victoria approves environment improvement plans for these schemes. Other 

states’ guidelines also set log reduction targets required for Class A schemes and for schemes 

intended to augment drinking water supplies (Power, 2010). Table 2.1 provides a guide to the 

classes followed by appropriate uses for each class of RW.  

 

Table 2. 1 Classes and appropriate uses of RW (source: EPA Victoria 2003). 

Class E.coli Measure Appropriate Uses 

A <10 E.coli  

org/100ml 

Residential garden watering, toilet flushing, clothes washing, 

food crop irrigation, parks, gardens & sports ground irrigation, 

industrial processes  

B <100 E.coli  

org/100ml 

Urban uses with restricted public access, livestock drinking 

water, closed industrial systems, irrigation of dairy cattle 

grazing fodder  

C <1000 E.coli  

org/100ml 

Urban uses with restricted public access, cooked / processed 

human food crops, some crops not exposed directly to water 

(e.g. apples)  

D <10000 E.coli  

org/100ml 

Non-food crops, e.g. woodlots, turf, flowers  

 

 

The suitability of RW for final consumption must be assessed to ensure it meets legislative 

health requirements and/or is suitable for desired construction applications. There are 

potential health risks that are associated with a human contact in the case of public places 

irrigated with RW, and with exposure to aerosols generated by spray irrigation. A risk 

assessment should be undertaken to ensure risks are minimised and managed using a 

combination of treatment requirements, site controls or sourcing water with a higher water 

quality rating (Department of Planning Transport and Infrastructure, 2013). Figure 2.1 

provides an indication of the relevant risk associated with RW reuse based on the water 
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source and end use. 

  
Figure 2. 1: Relative risk associated with RW reuse (source: Department of Health and 

Ageing 2012).  

2.2. Water disinfection: chlorination 

 
Inactivating pathogens and other harmful microbes to protect public health is the aim of 

disinfecting reclaimed water. In particular, to bring RW up to Class A standard, a rating that 

makes it suitable for a wide range of uses, yet still unsuitable for drinking purposes, the 

treatment standard must be close to those for drinking water, which is free of coliforms and 

all pathogenic microbes. Disinfection is normally carried out in two steps. The first one is 

primary disinfection, which is carried out to inactivate harmful microbes (mainly pathogens) 

in the source water, consequently preventing their introduction into the treatment plants. 

Secondary disinfection is carried out to maintain a sufficient disinfectant residual within the 

distribution systems, protecting water against microbial intrusion and regrowth (Harrington et 

al., 2003).  

 

2.2.1. Different forms of disinfection 

 

The common disinfection agents that have been used in the water distribution systems 

include chlorine, chloramine, chlorine dioxide, ultraviolet radiation, and ozone. Among them, 

chlorine is the most extensively used as a means of disinfection because of their advantages 

over other disinfecting agents. Table 2.2 shows different forms of disinfection and their 

advantages and disadvantages. 
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Table 2. 2 Different types of disinfectants and their advantages and disadvantages (White, 

2010 and Hammer, 2008) 

Disinfectants Advantages Disadvantages 

Chlorine : 

forms of hypochlorous 

acid and/or hypochloride 

ion 

- Chlorine in these forms are 

effective for pathogens and virus 

inactivation, used in primary 

disinfection; 

- Strong oxidation for iron and 

manganese removal; 

- Low cost. 

- The power of chlorine 

decreases with increasing pH; 

- Toxic chlorinated by-products: 

such as trihalomethanes 

(THMs). 

 

Chlorine dioxide - Strong disinfection over a wide 

pH range; 

- No reaction with ammonia to 

form chloramines nor with 

humic acids to form THMs; 

- Formation of residual 

maintained in the treated water 

entering the distribution system. 

- Limited use due to formation 

of toxic chlorate and chlorite 

residuals; 

- High cost. 

Chloramines - A protective residual can be 

maintained for a longer period of 

time without rechlorination to 

control bacterial growths in the 

distribution piping network 

- Low cost 

- Less reactive than chlorine, 

used in secondary disinfection. 

 

Ozone - Effective disinfectant; 

- Strong oxidant to control taste 

and odour compounds; 

- Absence of THMs and other 

health-related by-products. 

- Ozone does not produce a 

disinfecting residual, must 

applied combined with chlorine; 

- Should be generated on the 

treatment plant site because of 

rapid decay; 

- High cost. 
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2.2.2. Chlorine chemistry 

 
There are many benefits of chlorine which have been exploited by the RW industry. For 

instance, as free chlorine is a strong oxidizing agent and effective in inactivating pathogens 

and control nuisance microorganisms, it reacts quickly with organic and inorganic 

compounds, thus the free chlorine is not persistent in the system (Haas, 2000). As an oxidant, 

it is used for iron and manganese removal, the destruction of taste and odor compounds, and 

the elimination of hydrogen sulphide. In chemical terms, chlorine combines with water 

forming hypochlorous acid, which in turn can ionize to the hypochlorite ion. Below pH 7 the 

bulk of the HOCl remains un-ionised, while above pH 8 the majority is in the form of OCl– 

(Eq. 2.1).  

Cl2 +H2O à HCl + HOCl  
!"	$	%
→←

!"	(	)
 H+ + OCl–                     (2.1) 

 

Chlorine existing in water as HOCl and OCl- is defined as free chlorine. Chlorine existing in 

chemical combination with ammonia nitrogen or organic nitrogen compounds is defined as 

combined chlorine. When RW is chlorinated, chlorine reacts readily with various nitrogenous 

compounds naturally present in the water. Inorganic chloramines may be formed when 

ammonia-N reacts with free chlorine as follows (White, 2010).  

 

HOCl + NH3 à H2O + NH2Cl (monochloramine)  (2.2) 

HOCl + NH2Cl à H2O + NHCl2 (dichloramine) (2.3) 

HOCl + NHCl2 à H2O + NCl3 (trichloramine) (2.4) 

 

These reactions involve successive chlorine substitutions. These reactions compete with each 

other and are heavily dependent on initial chlorine-to-nitrogen (Cl : N) ratio, pH, temperature 

and contact time. At low Cl : N ratio and typical water treatment conditions pH 7–9, reaction 

(2.2) will dominate (>95%) and virtually all free chlorine will be converted to 

monochloramine. Monochloramine can exist as a relatively stable form of inorganic 

combined chlorine in neutral or alkaline solutions, and is generally present as the dominant 

form in chloramination operations (Lee and Westerhoff, 2009). Upon further addition of free 

chlorine, dichloramine will proceed which is susceptible to degrade by oxidation of nitrogen 

to N2 and NO3
- and reduction of chlorine to chloride. This results in relatively rapid depletion 

of reactive chlorine residual. Inorganic mono-, di- and trichloramine contain +1-valent 
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chlorine and have been shown to demonstrate germicidal effects. Inorganic combined 

chlorine, predominantly in the form of monochloramine, is used in water treatment as a 

disinfectant. It is generally not as potent as free chlorine in terms of disinfection efficacy but 

provides a stable disinfecting residual that can be maintained over a long period of time 

during and post chlorination (Bryant et al., 1992). 

 

When chlorine is added to water containing ammonia, the residuals that develop yield a curve 

similar to that shown in Figure 2.2. The straight line from the origin is the concentration of 

chlorine applied. The curved line represents chlorine residuals, corresponding to various 

dosages, remaining after a specified contact time, such as 20 minutes. Chlorine demand at a 

given dosage is measured by the vertical distance between the applied and residual lines. This 

represents the amount of chlorine reduced in chemical reactions, and therefore, the amount 

that is no longer available. Chloramine residuals decline to a minimum value referred to as 

the breakpoint. If the addition of free chlorine is continued beyond the breakpoint, free 

chlorine residual accumulates. The breakpoint curve is unique for each water test since 

chlorine demand depends on the concentration of ammonia, presence of other reducing 

agents, the contact time between chlorine application and residual testing and other factors 

(Hammer, 2008). 

 
Figure 2. 2: Graph of typical breakpoint chlorination curve (Hammer 2008). 

 

Organic chloramines may be formed when dissolved organic nitrogen (DON), represented by 
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functional groups such as amino acids, amides and amines reacts with free chlorine (Smith, 

1967) or inorganic chloramines (Snyder and Margerum, 1982).  

 

HOCl + RNH2 (organic nitrogen) à H2O + R-NHCl (organic chloramine) (2.5) 

 

The reactions between amino acids and free chlorine are the main formations of organic 

chloramines. Reaction rates between them are 2-80 times faster than reaction rates between 

free chlorine and ammonia. Once formed, organic chloramines are relatively more stable than 

free chlorine and inorganic chloramines (Yoon and Jensen, 1993b). The distribution of 

chlorine between inorganic and organic chloramines depends mainly on the relative affinity 

of +1-valent chlorine for the inorganic and organic N-compounds, the concentration of the 

nitrogenous compounds and pH (Yoon and Jensen, 1993a). Active chlorine is transferred 

from inorganic chloramines to amino acids and peptides, and also from organic chloramines 

to ammonia (Ferriol et al., 1989, Isaac and Morris, 1983, Yoon and Jensen, 1995). The 

transfer of active chlorine between chloramines and nitrogenous compounds can either occur 

by hydrolysis of the chloramine to form free chlorine with subsequent N-chlorination or by 

direct chlorine transfer. If organic nitrogen is available in high amounts such as in RW, there 

is a very good chance to form organic chloramine. Organic nitrogen compounds may exert 

high chlorine demand and therefore reduce the concentration of free chlorine and inorganic 

chloramines, thereby diminishing their availability in disinfection. The formation of organic 

chloramines during the chlorination process also poses a problem with regard to analytical 

methods for chlorine residual determination.  

 

Disinfection of water to kill or inactivate microorganisms that cause disease in humans is the 

most common application of chlorination. The disinfecting action of chlorine results from a 

chemical reaction between HOCl and the microbial cell structure, inactivating life processes. 

Disinfection rate depends on the concentration and form of available chlorine residual, 

contact time, pH, and temperature. The practice of satisfying the demand of high chlorine in 

RW to accomplish an effective disinfection could succeed in just the opposite, producing an 

abundance of organic chloramines of no disinfecting capacity (Feng, 1966). The disinfecting 

action of combined chlorine is significantly less than that of free chlorine residuals. HOCl is 

more effective than hypochlorite ion, and the power of free chlorine residual decreases with 

increasing pH (Hammer 2008). These organic chloramines are probably the measurable 

residual chlorine of low lethal activities. In the view of the possibility that the death of a 



 

12 
	

microbe in chlorination can be caused either by diffusion of chlorine into the organism 

followed by chemical reactions of the chlorine with its metabolism system (e.g., enzyme 

system) or by lesion of the cell wall by chlorine or both, and the difficulty of transferring 

combined chlorine from one organic substance to another, an organic chloramine should not 

have significant disinfecting power. Therefore, minimum chlorine residuals and contact times 

for virus inactivation and protozoal cyst destruction are considerably greater than for bacteria. 

Consequently, treatment of wastewaters includes coagulation, filtration to physically remove 

protozoal cysts and helminth eggs and reduce the density of viruses and bacteria (Harrington 

et al., 2003). Establishing a free chlorine residual for disinfection and maintaining a residual 

in the water entering the distribution system has proven to be satisfactory for protection. This 

requires breakpoint chlorination if the wastewater contains ammonia.  

 

Sometimes combined chlorine residuals (monochloramine), rather than free chlorine residual, 

is established in the treated water entering the distribution system to maintain a protective 

residual and to control bacterial growths in the distribution piping network (Williams and 

Braun-Howland, 2003). Compared to chlorine, the advantages are that chloramines are less 

active and a residual can be maintained for a longer period of time without re-chlorination. 

For instance, a combined residual can be applied to treated water before it is pumped through 

a long pipeline to a municipal distribution system. If insufficient natural ammonia is present 

in the treated water, gaseous anhydrous ammonia is applied by feeding equipment similar to 

that used for chlorine.  

 

2.3. Instability of chlorine residuals in water distribution system  

 
RW contains a high level of organic matter, which potentially react with the disinfectants, 

and provides nutrients for microorganisms in the form of organic carbon. Owing to its higher 

nutrient content than drinking water, RW provides a highly conducive environment for 

microbes to grow within. (Jjemba et al., 2010). The depletion of chlorine or chlorine demand 

in the water phase is due to soluble oxidize inorganic compounds, soluble organic 

compounds, microbial cells, substratum and other particulates in the bulk water. These 

oxidize species compete with the biofilm for available chlorine and often reduce the 

effectiveness of chlorine for biofouling control. In other words, biofilms and inorganic 

particles (e.g. sediments, corrosion products, clays, sand, etc.) play a significant role in the 
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instability of chlorine residuals in water distribution systems (Chaves Simes and Simes, 

2013). Additionally, there are a number of abiotic agents, such as pH, temperature that may 

physically cause chlorine instability to some extent. The rate of chlorine demand determines 

the amount of chlorine available for biofouling control. Typical methods for measuring 

chlorine demand is stoichiometric quantity. 

 

2.3.1. Biofilm 

Figure 2.3 summarises relevant information about biofilm formation in the RW distribution 

system, its impact on disinfectant stability and the main control strategies. 
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Figure 2. 3: Flowchart displaying links between biofilms, RWDS problems and control 

strategies 

  

Biofilms in RW distribution system 
 

Main Problem in RW distribution system 

Main Control Strategies 

Definition 
Microbial communities functionally organized 
and embedded in a slime matrix of extracellular 
polymers  
Composition 
- Water 
- Microorganisms: bacteria, viruses, protozoa, 
fungi, algae, etc. 
- Organic substances excreted by attached 
microorganisms 
-Inorganic particles: corrosion products, clays, 
sand, etc. 
Structure 
Biofilms may cover the entire inner pipe surface 
or be formed by dispersal aggregates. The 
coverage degree depends on the type of 
microbes, surface properties, biofilm age, etc. 

Factors affecting the 
biofilm 
- Environmental factors: pH 
and temperature 
- Concentration of residual 
disinfectants 
- Concentration of nutrients 
- Hydrodynamic conditions: 
flow rate, design of 
network, presence of dead 
ends 
- Type of pipe materials and 
their conservation state 
- Type and diversity of 
microorganisms 
- Sediment accumulation 
(organic and inorganic) 

  

- Aesthetic problems: odour and discoloured water 
- Increase the density of microorganisms in bulk phase 
- Microbial mediated corrosion 
- Health related problems: waterborne diseases 

 

- Pre-treatment: minimizing the concentration of organic matter and nutrients 
- Chemical disinfection: maintaining disinfectant residuals through distribution system 
- Hydrodynamics: preventing water stagnation and sediment accumulation  
- Material selection: ensuring pipe materials are chemically and biologically stable   
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2.3.2. Biofilm definition 

 
Biofilms in a water distribution network can be defined as multi-species microbial 

communities that colonize the inner pipe surfaces of the system. Biofilms are heterogeneous, 

in which microorganisms can change dramatically in response to changes in their 

environment and to adapt to live on the surface (O'Toole et al., 2000). The water distribution 

network offers a very large surface area in contact with a biological fluid for the adhesion of 

biofilms. These biofilms are made of discontinuous, non-uniform arrangement of a number of 

microbial communities, around 107cells/cm2 (Abe et al., 2012). About 95% of total microbial 

cells reside inside biofilms, while only 5% are floating in the bulk phase (Wingender and 

Flemming, 2004). On the other hand, biofilms act as biological filters by mineralising 

biologically degradable material from the water and forming locally immobilized biomass. 

Moreover, biofilms may unpredictably emerge in the distribution system and may cause 

diverse problems of bacterial contamination with hygienically relevant bacteria or 

spontaneous increases in bacterial cell counts in bulk water (Schwartz et al., 2003). 

 

2.3.3. Biofilm composition 

 
Biofilms are composed of complex microbial structures functionally organised and 

characterised in a slime matrix of exopolymers, mainly proteins and polysaccharides, 

excreted by microorganisms. It is also known as extracellular polymeric substances (EPS) 

(Figure 2.4), an essential component in biofilms, which maintains the structural stability of 

the biofilm and provides protection from stressful conditions for the entrapped cells. It 

performs this with the irreversible adhesion of hydrogen bonding and dipole–dipole 

interactions between the microbes, attaching them to the surface (Abe et al., 2011, Gomes et 

al., 2014, Simões et al., 2010). In oligotrophic environments, such as drinking water, the 

synthesis of biofilm cells producing EPS is greatly affected by environmental conditions such 

as availability of nutrients, shear stress, pH and the existence of toxic substances. The 

formation of biofilm structures also depends on biotic factors, such as the type and diversity 

of microorganisms, as well as abiotic factors, namely temperature, pH, disinfectants (types 

and concentrations), nutrients concentrations, pipe materials, hydrodynamic conditions (flow 

rate and types of distribution networks) and sediment accumulation (Kim and Lee, 2010, 

Simoes et al., 2012).  
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Figure 2. 4: Images of biofilms and corrosion products in drinking water distribution systems. 

(a) Scanning electron microscopy photomicrograph of 24 h old biofilms formed by 

opportunistic Gram-negative B. cepacia, evidencing the presence of an extracellular 

polymeric matrix (615 000 magnification; bar = 2 mm). The biofilm was developed in R2A 

broth as a growth medium on polystyrene surfaces of microtiter plates. (b) Ductile iron pipe 

section from a DWDS with a biofilm and high amounts of corrosion products. This section of 

DWDS pipe was obtained as result of a pipe break in the DWDS (source: Chaves Simes & 

Simes 2013). 

 

2.3.4. Biofilm structure 
 
Based on earlier studies, biofilm formation is known to be a well-regulated developmental 

process that results in the formation of a complex community of organisms. To form these 

communities, microorganisms must integrate external and internal signals, take stock of their 

neighbours by determining their density and type and coordinate a time series of multi-

cellular behaviors that are associated with morphological changes. Multispecies biofilms 

demand the ability for interspecies communication suggesting the possibility of certain 

organisms performing specialized roles in the community (O'Toole et al., 2000). Biofilms 

often have a patchy appearance and non-uniform structure, from clumps ranging from a few 

cells to 100 *m in depth (Martiny et al., 2003, Abe et al., 2012). Biofilms have a filamentous 

and fluffy structure, thick and not very dense, and very susceptible to sloughing. Underneath 

this irregular easily detachable structure, hides the so-called basal biofilm layer, which is 

denser, more shear-resistant and with a higher content of biopolymers (Coufort et al., 2007). 

Slow growing biofilms, those formed by autotrophic bacteria, are more likely to be stable due 

to corrosion causing the biofilm to become denser and thinner (Pellicer-Nacher and Smets, 
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2014). 

 

2.3.5. Biofilm formation process 

 
The formation of biofilms in an aquatic environment takes place as a result of several 

consecutive steps including the formation of an initial conditioning layer (reversible), 

followed by irreversible adhesion of microbial cells to the conditioned surface, excretion of 

extracellular macromolecules to reinforce bacterial adhesion (steady state), and finally 

detachment which releases microorganisms into the bulk fluid (2007). Biofilm formation 

could be viewed as a successional process in structure and composition. According to 

O’Toole et al. (2000), the biofilm formation process begins with the preconditioning of the 

pipe surface by organic and inorganic macromolecules that facilitate the bacterial adhesion 

process. Thereafter, cells can absorb to the surface reversibly or irreversibly. This stochastic 

primary attachment of a number of species recruited from the bulk water population forming 

a monolayer on the surface. After adhesion, a stage of active biofilm growth occurs by cell 

replication, EPS production, the release of quorum-sensing molecules and exchange of 

substances between the biofilm and the bulk. As subsequent steps, the occurrence of biofilm 

dispersion and formation/colonization in other clean areas can take place after biofilm 

detachment from pipe walls (Codony et al., 2005). The amount of a biofilm in a given 

system, after a certain time period, depends on a dynamic biofilm formation process, which 

has been defined as the balance between bacterial attachment from the planktonic phase, 

bacterial growth within the biofilm and dynamic detachment from the surface (Stoodley et 

al., 1998). When the balance is null, the biofilm is said to have reached a steady state. The 

final amount of biofilm in that state, which can be assessed by cell counts or biomass 

determination, is directly related to its formation potential in the system (van der Kooij, 

1998). 

 

Biofilms not only support the immobilisation of bacteria by reducing the shear force on cells 

and by increasing the number of adsorption sites, but also by developing other biofilm 

colonies. A significant advantage of the biofilm mode of growth is the potential for 

dispersion via detachment. Under the direction of fluid flow, detached microorganisms travel 

to other regions to attach and promote biofilm formation on clean areas (Stewart, 2012). 

Therefore, this advantage allows a persistent bacterial population, usually resistant to 
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antimicrobial agents (Gagnon et al., 2005), while at the same time enabling the continuous 

shedding to promote bacterial spread. Steps of biofilm formation can be observed in Figure 

2.5. 

 

 
Figure 2. 5: Diagram of main steps of biofilm formation. 

(1) Preconditioning the pipe surface by macromolecules (organic and inorganic) present in 

the water; (2) Transport of planktonic cells from water to pipe surfaces; (3) Adsorption of 

cells at the pipe surface; (4) Desorption of reversibly adsorbed cells; (5) Irreversible 

adsorption of cells; (6) Production of QS molecules; (7) Transport of substrates to and within 

the biofilm; (8) Substrate metabolism by the biofilm-bound cells and transport of products 

out of the biofilm, accompanied by cell growth, replication and production of EPS; (9) 

Biofilm removal by detachment or sloughing (source: Chaves Simes & Simes 2013). 

 

Since the bacteria are initially highly dispersed within the water bulk phase and have a low 

selection pressure for attachment, a highly diverse community is initially formed.  This 

attachment (facilitation) can be followed by a secondary colonization of bacteria that benefit 

from a protective environment in the biofilm and/or feed on the remnants of other bacteria. In 

this secondary community, better resource or space competitors may exclude less competitive 

organisms (Jackson et al., 2001). Further biofilm formation may cause a reduction in 

diversity, as a single or a few superior competitors start to dominate the community. As the 

bacterial biofilm matures, more niches are created due to the formation of gradients and the 

internal recycling of resources.  
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2.4. Biofilm control strategies 

2.4.1. Nutrient limitation 

 
Attached microbes in the biofilms are able to adopt a sessile lifestyle and gain a number of 

advantages over planktonic microbes. The first advantage of EPS is turning biofilms into a 

trap to capture and concentrate nutrients, such as carbon, nitrogen, and phosphate. Allison et 

al. (Allison et al., 1998) suggested that the amount of EPS bacteria synthesis within the 

biofilm depends greatly on the availability of carbon substrates (both inside and outside the 

cell) and on the balance between carbon and other limiting nutrients. Because the microbial 

growth may depend on whether the original water is phosphorus-limited or carbon-limited, a 

reduced level of phosphorus caused an increase in carbohydrate levels in EPS (Fang et al., 

2010). The presence of excess available carbon substrate and limitations of other nutrients, 

such as nitrogen, phosphorus or potassium promotes the synthesis of EPS bacteria. On the 

contrary, as the carbon source becomes limiting, the cell may utilise more carbon to 

synthesise the cell components and produce energy instead of producing the EPS. As less 

EPS is produced, it may indicate the presence of a looser biofilm structure. As the addition of 

phosphorus to bacteria promotes higher metabolic potential but lower EPS production and 

homogeneity of biofilms, it also indicates that the biofilm growth will be promoted but 

spontaneously will be less resistant to the disinfectants (Bauman et al., 2009). This will 

promote the formation of biofilm spatial niches in response to environmental conditions and 

the activity of their neighbours to optimize nutritive resources. Under stress, the inherent 

resistance of biofilms to antimicrobials, can be mediated through very low metabolic levels 

and drastically down-regulated rates of cell division in the deeply embedded microorganisms 

(Simões et al., 2011). 

 

2.4.2. Addition of disinfectants 

 
Disinfectants have been widely used as means of controlling microbial regrowth. Yet, the 

EPS matrix also prevents the access of antibiotics to the bacterial cells (O'Toole et al., 2000). 

Chlorine can be neutralized by the organic constituents of the biofilm matrix and the 

neutralization reaction is faster when it diffuses into the biofilms (Simões et al., 2010). 

Bacteria in biofilms are often described to be more resistant against disinfection agents like 
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chlorine than planktonic microorganisms. Once trapped in biofilms, pathogens can be 

protected from disinfectants and antimicrobials through mass transfer resistance or the 

adoption of a persisting state. Several mechanisms explain that biofilms’ resistance to 

biocides or antimicrobials, is due to biofilms acting as a diffusion barrier to disinfectants 

(Chaves Simes and Simes, 2013). As EPS components interact with chlorine or chloramine, 

this reduces the concentration of these disinfectants, limiting their effectiveness and slowing 

their penetration into biofilm bacteria. For large molecules, the exopolymer matrix of 

biofilms restricts their diffusion and binds to antimicrobials. The negatively charged 

exopolysaccharides are also efficient in protecting cells from positively charged biocides by 

restricting their permeation through cell binding (Schwartz et al., 2003). Additionally, 

enzymes destroying incoming antibiotics together with the effective synergy between the 

outer membrane and multi-drug resistance pumps complete bacterial resistance mechanisms 

in biofilms (Lehtola et al., 2004).  

 

2.4.3. Hydrodynamics  

 
Hydrodynamic conditions (flow rate, velocity, retention time, and shear stress) have a vital 

role in biofilm development and in determining biofilm stability (Stewart, 2012). The flow 

rate affects biofilm development by interfering with several phenomena, namely nutrient 

transport, bacterial adhesion, biofilm growth, and detachment. When the flow velocity is low 

(i.e. <0.5 m/s), there is a high resistance to mass transfer (such as nutrients, oxygen) from the 

bulk fluid to the microorganisms embedded in biofilms, impairing sessile cell growth (Bott, 

1993). On the other hand, high flow velocity (i.e. > 0.5 m/s) causes high turbulence of the 

fluid bulk (Bott, 1993). This means that the mass transfer phenomena are enhanced, 

improving the biofilm growth. However, high velocity also causes high shear forces that can 

be responsible for higher biofilm erosion and detachment. Accordingly, it may cause a 

decrease of biofilm mass on surfaces (Lin et al., 2013, Gomes et al., 2014, Bott, 1993). A rule 

of thumb in the cooling water industry suggests that the velocity in pipes and heat exchangers 

should be greater than 1 m/s in order to reduce the extent of a biofilm growth. Velocity 

cannot be increased too much without penalty as velocity increases, the pumping energy 

increase and hence pumping cost increase (Bott, 1993). Moreover, as the bulk water flows 

through the water mains, like a transmission vehicle for nutrients, microbes, and particles to 

biofilms forming on the inner pipe surface of the distribution system. The particles are 
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transported throughout the network as colloids and suspended solids may accumulate/settle as 

loose deposits on the floor of the pipe. Any inorganic particle passing nearby (e.g. corrosion 

products, clays, sand, etc.) may also be incorporated to form the topography of biofilms (Liu 

et al., 2013). Biofilm control drinking water strategies in distribution systems are required 

including nutrient limitation, disinfectant addition and in some specific situations flushing out 

the pipes. This last action may be an effective remedy for soft deposits or sediment removal 

but relatively ineffective against biofilms due to their physical make-up and chemical 

properties (Carrière et al., 2005). 

 

2.4.4. Pipe materials 

 
Biofilms usually attach onto surfaces which are in contact with water. Therefore, biofilm 

formation commonly occurs in pipeline networks of water distribution systems. There have 

been many studies conducted on a wide range of commonly used materials and the effects of 

material on biofilm formation. It has been proven that the chemical composition of pipe 

materials strongly influence biofilm formation and adhesion. Some pipe materials, such as 

copper, iron and stainless steel are bactericidal, which reduces regrowth. Especially, copper 

exerts its toxicity by generating reactive oxygen species with copper-induced oxidative stress 

damaging the cell membrane through lipid peroxidation, leading to membrane permeability 

and cell death (Grass et al., 2011). On the other hand, some pipe materials may decay 

disinfectant residuals, leading to increased microbial regrowth. Several plastic pipes, such as 

polybutylene (PB) and polyethylene (PE)  have recently been used as cost-effective 

replacements for traditional metal plumbing, but may release biodegradable organic 

compounds and phosphorus, which can promote biofilm formation (Kim and Lee, 2010). The 

tendency for elastomeric materials, such as ethylene propylene diene monomer (EPDM), and 

plastics, such as cross-linked polyethylene (PEX), to leach potential microbial nutrients such 

as phosphorus-based compounds into the water, is theorised to be a major contributing factor 

towards the formation of biofilms. Therefore, EPDM is an unsuitable material because of its 

ability to support biofilm formation at a consistently higher level than other materials 

(Waines et al., 2011).  

 

Another important factor concerning materials is surface roughness which has a great 

influence on bacterial attachment and may vary not only between material types but also 
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between different grades of the same material. The roughness of a pipe is normally specified 

as e (mm or inches) and common values range from 0.0015 mm for PVC pipes to 3.0 mm for 

rough concrete pipes (Pipeflow, 2017). For instance, biofilm regrowth on pipes made with 

rough surfaces such as cast iron (e = 0.25 mm), concrete-lined cast iron (e = 0.30 mm), and 

galvanized steel (e = 0.15 mm) or stainless steel (SS) (e = 0.05 mm) was greater than that on 

smooth surface PVC pipe (Yu et al., 2010, Lin et al., 2013) supporting its suitability as 

plumbing material (Lin et al., 2013, Kim and Lee, 2010). In addition, SS is an alloy metal, 

depending on their corrosive- resistant layer, may be corroded under environmental 

conditions. SS corrosion certainly contributes to the bacterial regrowth in water distribution 

systems. Conversely, biofilms can also promote corrosion in metals (Teng et al., 2008). It is 

clear that pipe material properties and the disinfection treatment are two technical parameters 

which control biofilm quality.    

 

2.5. Discoloured water events 

 

Discoloured water events are a persistent cause for customer dissatisfaction in the Sydney 

Olympic Park RW industry. The build-up of Fe and Mn in distribution systems is considered 

to be a prime cause for discoloured water events (Slaats et al., 2003). Soluble Fe and Mn in 

natural waters often exist in their divalent ferrous and manganous forms (Deborde and Von 

Gunten, 2008). These forms of Fe and Mn tend to result in a metallic astringent or medicinal 

taste, discolouration, growth of biofilm, high chlorine and dissolved oxygen (DO) demand 

and hydraulic issues due to post deposition (Schock et al., 2008). Removal of soluble Fe and 

Mn from source waters is mainly achieved using oxidation, such as chlorine, ozone or 

permanganate and filtration processes (Wong, 1984). However, the corrosion of aging pipes 

in the SOPA distribution system will continue to introduce Fe into the bulk water and cause 

corrosion, thus challenging water utilities to continue to manage their discoloured water 

events. 

 

The movement of oxidised forms of Fe and Mn through distribution systems is largely 

facilitated by the natural organic matter (NOM) content in water. Inorganic matter such as 

iron (Fe (III)) and manganese (Mn (IV)) ions complex with NOM and these metal–NOM 

complexes have increased solubility and mobility (Heitz and Mackenzie, 2006). NOM not 

only increases the solubility of metals, but also facilitates precipitation through its adsorptive 
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properties to solid surfaces (Amirbahman and Olson, 1993). Furthermore, metal–NOM 

complexes can be assimilated or sequestered into biofilms and coagulate to form precipitates 

that settle as sediments. NOM promotes biofilm growth and contributes towards formation of 

disinfection by-products and facilitates the accumulation of metals on pipe wall surfaces.  

 

Although current pre-treatment processes remove a large proportion of NOM, distribution 

systems continue to have biofilm growth, even in the presence of chlorine residuals. These 

biofilms may enhance the accumulation of Fe, Mn, Al oxides, silica, calcium carbonate and 

other inorganic debris in areas beyond the bulk water phase. With spontaneous dislodgement 

of these accumulations into the bulk water, cloudy, brown, orange, red or black coloured 

water may reach the consumer. Besides biofilms oxidising Fe or Mn and expediting the 

retention of these elements within the distribution network, biofilms also contribute to water 

discolouration by enhancing the abiotic release of Fe from within corrosive scales or as 

particulates that discolour the water in suspension (Cerrato et al., 2010).  

 

2.6. Types of reactors used for biofilm study in water distribution system 

 

As the study of biofilms in real water distribution systems is difficult, several devices have 

been developed for the task. These devices allow for biofilm formation under controlled 

conditions of physical (flow velocity, shear stress, temperature, type of pipe material, etc.), 

chemical (type and amount of disinfectant and residuals, organic and inorganic particles, 

ions, etc.) and biological (composition of microbial community, type of microorganism and 

characteristics) parameters, ensuring that the operational conditions are as similar as possible 

to real water distribution system conditions in order to achieve results that can be applied to 

real scenarios (Gomes et al., 2014). There are two groups of reactors including bench top 

laboratorial devices and in situ reactors. The bench top laboratorial appliances were 

developed as water distribution system models to autonomously study biofilms in the 

laboratory, allowing different conditions to be tested with tap water or the appropriate 

medium or enriched water. The in situ devices were developed to study and monitor biofilms 

in pilot and real water distribution system. They are usually placed as a by-pass or directly 

connected to a water distribution system. Some bench top laboratorial appliances, namely 

Annular, Probella and flow cells reactors (Figure 2.6) have been used as in situ devices as 

well (Wilks and Keevil, 2003).  
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Figure 2. 6 Figures of commonly used biofilm reactors, cross-sectional view, (a) annular 

reactor, (b) propeller reactor and (c) flow cell reactor (source: Gomes, Simoes & Simoes 

2014).  

 
Every type of in situ reactors has its advantages and limitations based on design and the 

purpose of biofilm study. Generally, most of them are useful for the study of different 

materials simultaneously, easy to control environmental conditions, non-invasive biofilm 

formation and similar to operational conditions of the real water distribution system. 

Nevertheless, the surface coupons to grow biofilms must be flat, therefore, lack of sufficient 

sampling surface area is the common limitation of all in situ reactors. Sometimes periodical 

sampling coupons may change flow patterns around the boundary of the coupons which 

cause non-uniform biofilm formation and difficult to control sheer stress. The changes in 

water flow may be minimized by other advanced or modified devices (Gomes et al., 2014).    
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2.7. The measurement of biofilm growth 

 

The biofilm studies require many appropriate methods to quantify biofilm formation and to 

provide information on its characteristics, particularly for the resident population. Biofilms 

can be quantified through the increase of biological activity or by the number of cells (Liu et 

al., 2013). Apart from the quantification of cell numbers, it is also important to obtain 

information on other biofilm constituents, particularly the EPS. Most of these methods 

require the biofilm detaching from the surfaces of pipe materials and dispersing to an 

adequate solution. It is necessary to use some physical approaches such as vortex and 

ultrasonication to achieve an efficient biofilm dispersion in the selected solution. Some 

microscopic methods, namely atomic force microscopy (AFM), scanning electron 

microscopy and confocal laser scanning microscopy (CLSM), which allow a direct and non-

destructive analysis of biofilm. These methods can be advantageous since the possibility of 

biofilm loss in detachment process does not exist, but also allow the study of the entire 

biofilm structure (Abe et al., 2012, Fang et al., 2010, Jungfer et al., 2013, Lin et al., 2013, 

Mathieu et al., 2014). However, even if the direct microscopic analysis of coupon surfaces is 

important to provide information on the biofilm structure, these methods cannot determine all 

relevant aspects involving the biofilm formation process. Therefore, the combination of 

information from different methods will provide a more detailed picture on biofilm 

development and composition.  

 

Cell enumeration, such as heterotrophic plate count (HPC) is the mostly used method to 

evaluate biofilm cell numbers through the enumeration of cultivable cells. The metabolic 

active, viable or total cells are able to accessed through microscopic analysis with fluorescent 

stain products including acridine orange, DAPI, SYTO 9 and propidium iodide (Gomes et al., 

2014). EPS quantification methods are usually based on the analysis of carbohydrates and 

proteins. The reliability of the analysis is strongly dependent on the extraction methods used 

to separate the EPS from the biofilm cells. The EPS protein dye product and modified 

phenol-sulfuric acid method for total carbohydrates are the most common EPS quantification 

techniques (Fang et al., 2010). The study of EPS as a major component of biofilms has long 

been neglected in biofilm research. The reason may be the difficulty of analysing the large 

variety of EPS polymers, especially in environmental biofilms (Staudt et al., 2003). 

Polysaccharides may represent a major fraction of EPS, as a result, fluorescently labelled 
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lectins have been suggested as suitable probes for staining EPS in biofilms (Neu et al., 2001). 

Table 2.2 summarises the quantification methods of biofilms in water distribution system. 
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Table 2. 3 Quantification methods of biofilms in water distribution system  

Biofilm 
quantification  

Advantages and disadvantages 
Analysis  Methods and Products References  

EPS 
quantification 

Indirect measurement of biofilm 
quantity: specific biofilm constituent 

Damage biofilm structure 

Total EPS Lectin Triticum vulgaris TRITC Neu et al., 2005 

Total carbohydrates modified Phenol-Sulfuric acid 
method Fang et al., 2009 

Proteins Protein dye Chandi and Angels, 2001 

Cell 
enumeration 

Indirect measurement of biofilm 
quantity: Microbial activity within 
biofilm 

Heterotrophic plate count 
(HPC) R2A agar Manuel, Nunes and Melo, 

2007 

Total cell count (TCC) 4’,6-diamidino-2-phenylindole 
(DAPI); Acridine orange Park, Choi and Hu, 2012 

Actively respiring cells CTC 5-Cyano-2.3-ditolyl 
Tetrazolium Chloride Jungfer et al., 2013 

Living and dead bacteria 
cells 

BacLight: SYTO9-green and 
propidium iodide (PI)-red 
fluorescent nucleic acid stains  

Gomes, Simoes and 
Simoes, 2013 

Viable cells  Adenosine triphosphate (ATP) Liu et al., 2013 

CLSM 
Direct measurement of biofilm quantity 

No biofilm structure damage 
Biofilm thickness, volume, 
3D structure  

Fluorescent nucleic acid stains: 
SYTO60, SYTO9 and labelled 
lectins  

Fang, Hu and Ong, 2010 

Gravimetric 
measurements 

Direct measurement of biofilm quantity 

Damage biofilm structure 
Biofilm thickness, biomass, 
mean biofilm density  Stautd et al., 2004 



28 
	

CHAPTER 3 

MATERIALS AND METHODS 

3.1.Project framework 
 

 

Explain the observations and 
reporting the result 

 

Biofilm quantification   
 

Monitoring the behaviour of 
the bioreactors 

 

Problem identification 
 

Designing and operating the 
lab-scale bioreactor by 
simulating real scenario  

 

Ø Compare with theoretical values with 
experimental observations 

Ø Reporting the findings 
 

Ø Biofilm sampling 
Ø Cell enumeration 
Ø EPS quantification 
Ø Microscopic analysis – confocal bio-imaging 

Ø Monitor chlorine stability and DOC 
Ø Determine biodegradable organic carbon 

(BDOC) 
Ø Determine elements of biofilm 

 

Ø Setup on-site bioreactors by simulating actual 
scenarios of RW distribution system  

Ø Grow biofilm on PVC and HDPE coupons 
inserted inside the reactors 
 

Ø Investigate the RW pipelines by sampling and 
analysing physical and chemical parameters  

Ø Identify problem based on water quality of the 
samples collected at Sydney Olympic Park 
WRAMS 

Ø Research objectives 
 

Ø Study the previous research 
Ø Identify industrial application in this field 

 

Literature review 
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3.2. Water quality investigation  

3.2.1. Sydney Olympic Park WRAMS 

 
SOPA is leading the way in urban water cycle management by integrating water supply, 

sewage, RW, and stormwater with a range of activities, services, functions and technologies. 

SOPA’s integrated water cycle system plays a major role in protecting the local waterways 

and helping to maintain a supply of drinking water for Sydney through water conservation, 

waste minimisation, and pollution control. It is one of the most effective and comprehensive 

water recycling systems in the southern hemisphere and provides a model for future 

sustainability on one of the driest continents on Earth.  

 
Figure 3. 1: Flow diagram of water processing at WRAMS facility (source: SOPA 2017). 

 
Newington residential estate has a dual water (drinking and recycled) supply system. 

Drinking water is supplied by Sydney Water whilst RW is supplied by WRAMS.  Figure 3.1 

displays how all sewage types from Sydney Olympic Park and Newington residential estate is 

treated at the Water Reclamation Plant (WRP) using a biological process at a rate of 2.2 

ML/day. The treated sewage water is then transferred to Water Treatment Plant (WTP) for 

further treatment. Alternatively, stormwater and runoff from roofs, roads, and pavements are 

collected to be recycled. Pollutant traps collect large debris before the water travels 

downstream to ponds and wetlands where it is stored. At the WTP, so-called WRAMS 

building (Figure 3.2), stormwater from the Brickpit reservoir and treated sewage water from 

WRP is combined in a 30 : 70 ratio before undergoing final processing using two further 

treatment methods that remove nutrients and pollutants. Firstly, water passes through a 
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continuous microfiltration system to remove all particles larger than 0.2 µm (including 

viruses and bacteria), and secondly, through reverse osmosis to reduce salinity. The RW is 

then retained in a storage reservoir of 8 ML capacity for 2 to 3 days, before being distributed 

into local households for gardening, laundry and toilet flushing. More information about 

Sydney Olympic Park RW can be found at www.sydneyolympicpark.com.au.  

 

 
Figure 3. 2: WRAMS building – WTP (source: SOPA 2017) 

 

3.2.2. Investigation of water pipelines in Sydney Olympic Park 

 
An investigation was carried out to examine the water quality parameters responsible for the 

degradation of chlorine residuals in the SOPA system. In this investigation, carbon-free 

glassware was used to avoid organic matter contamination as well as to minimise chlorine 

demand. They were prepared with thorough washing with detergent, rinsing with several 

times with MilliQ water, and then oven dried at 40 oC for 6 h. The plastic containers and caps 

were subjected to a similar procedure except that they were air-dried instead of being oven-
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dried. Water samples were collected in container (15L) and then stored below 4 oC. Water 

samples were collected from the site with the cooperation and supervision of Sydney 

Olympic Park Authority from 6 locations: (1) stormwater, (2) inlet to chlorine contact tank 

(ICC), (3) outlet of chlorine contact tank (OCC), (4) outlet to storage reservoir (OSR), (5) 

Midpoint of distribution system (DS-midpoint), (6) End point of distribution system (DS-

endpoint) (Figure 3.3). On 19/05/2016 and within 10 days from 15/08/2016 to 25/08/2016, 

these sources of water were collected daily and analysed to monitor their chlorine stability.  

 

 
(5) OSR collecting at WTP  

 

 
(1) DS_midpoint collecting at WRP           (2) ICC collecting at WTP 

 

 

 

 

 

 

 
 
Figure 3. 3: Photographs of water sample collection points and equipment. 

3.2.3. Physical and chemical analyses 

pH and free chlorine were measured via onsite instrumentation. Water samples were 

transported at room temperature to the environmental laboratory of Western Sydney 

University where all other physical and chemical parameters were analysed within 6 h from 
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the time of collection. All samples were filtered through 0.45 µm membrane filters (Millipore 

MF) and stored in carbon-free glass vials. Dissolved organic carbon (DOC) contents were 

analysed with a TOC-L instrument (Shimadzu, Japan). Ammonia nitrogen (NH4-N), nitrite 

(NO2) and nitrate (NO3) were measured by Gallery (Thermo Scientific). Residual free 

chlorine and total chlorine were analysed using the DPD colorimetric method with a DPD 

Test and Tube kit (HACH 2800).  

 

3.2.3.1.  Chlorine decay profiles 

To understand chlorine stability in the bulk water samples, it is very important to carry out 

chlorine decay profiles for all water sources. In particular, water samples were collected as 

raw water before chlorination, known as ICC and stormwater, which were then subjected to 

chlorination for chlorine decay profile. Because RW has been known for high demand of 

chlorine, and thus, two doses of total chlorine (3 and 5 mg/L) were added to the samples to 

determine chlorine demand which were lower than the actual dosage ( ³ 6 mg/L) at the 

treatment plant. Similar chlorine dosages were also used in previous study (M Acharya et al., 

2016) to understand bacterial community structure in the reclaimed water. The samples were 

stored in the incubator to maintain a constant temperature (25 oC). This test was carried out 

until total chlorine residuals dropped below the detection limit (< 0.1 mg/L). The same ICC 

samples were continued re-chlorination with only one repeated dosing of chlorine (3.0 mg/L). 

Other water sources were collected as disinfected water after chlorination, such as OCC, 

OSR, DS-midpoint and DS-endpoint, where initial chlorine decay was observed until total 

chlorine residuals dropped below the detection limit (<0.1 mg/L) and then subjected to re-

chlorination with a single dose of chlorine (3 mg/L).     

 

3.2.3.2.  Biodegradable dissolved organic carbon (BDOC) test 

The most common parameter for BDOC quantification is the measurement of DOC 

concentration in the bacteria containing water. The difference between the initial DOC and 

the final DOC during the incubation period is classified as the BDOC. The amount of 

biodegradable organic matter content can be used as a measure of bacterial growth. 

Biological activated carbon (BAC) was used as bacterial inoculums for 4 different water 

samples collected from ICC, OSR, DS-midpoint and DS-endpoint during the study period. 

The control of each sample had the BAC sterilised by heat-treatment at 70 oC for 2 hours. All 

samples and controls were individually stored in 500 ml glass bottles and were incubated 
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over 60 days. Samples were collected every week and filtered through 0.45 µm membrane 

filter prior to DOC analysis by TOC-L (Shimadzu, Japan). 

 

3.3. Biofilm monitoring setup and experiment 

3.3.1. Flow cell bioreactors 

 
The selection of flow cell reactors among many different devices is evaluated based on its 

advantages in accordance with the aims of this study and to obtain reproducible results. The 

most important points worth noting are how flow conditions in flow cell systems mimic real 

distribution systems and are easy to control under different environmental conditions (Gomes 

et al., 2014). Flow cell reactors were used to monitor biofilm development and response to 

different disinfection control treatments as well as testing the influence pipe materials and 

hydrodynamic conditions on biofilm formation. 

 

 
Figure 3. 4: Photos and diagram of experimental setup flow cell system 
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In this experiment, each flow cell reactor consists of a glass tube segment (800 mm length 

and 20 mm inner diameter), which has one inlet near the enclosed bottom and one outlet near 

the opened top. PVC and HDPE materials were cut to rectangular flat surfaces, average 

coupons size 14 mm x 10 mm, were washed with 70% ethanol and MilliQ water 3 times and 

oven dried for removal of bacteria. Both PVC and HDPE coupons were connected neatly 

together and each glass column was able to comprise a maximum of 72 coupons. Three flow 

cell columns were connected as shown in Figure 3.4 and were incubated in a dark chamber 

throughout the experiment. These flow cell bioreactors were installed in the glasshouse of 

WTP at Sydney Olympic Park, at the outlet of the storage reservoir. The reactors were fed 

directly by the main stream under various chlorine residuals over time. The flow cell reactors 

were used as a by-pass, therefore, temperature, pH, turbidity and conductivity in the reactors 

were similar as in the storage reservoir. Specifically, the water flow was set up at the 

minimum rate of 0.08 L min-1 and the maximum rate of 0.28 L min-1 by an adjustable valve 

or a peristaltic pump. The Reynold’s number, which reflects flow characteristics was 

calculated using Eq. 3.1 

!" = $∗&'(∗)
*     (3.1) 

where, Re = Reynold’s number 

+ = water density, kg/m3 

,-. = average water velocity, m/s 

D = pipe diameter, m 

/ = dynamic viscosity, N.s/ m2 

 

3.3.2. Biofilm sampling and reactor monitoring 
 

Biofilms were grown in the flow cell reactors for 105 days, from 14/11/2016 to 24/02/2017. 

Biofilms were sampled over 15 weeks at week 2, 4, 7, 10, 13 and 15 with sampling intervals 

of every 2 to 3 weeks. PVC coupons were taken from the bottom up, whilst HDPE coupons 

were taken from the top down. Water flow was unaffected by the sampling process as the 

coupons were removed without disturbing other biofilm coupons. Biofilm samples were 

handled with care at all times to avoid environmental contamination and to assure water 

retention within the inserted coupons in the reactors. Each PVC and HDPE coupon with 

attached biofilm was stored separately in MilliQ water containing centrifugal tube (15 ml) 

and preserved at 4 oC.  



 

35 
	

Bioreactor monitoring was a significant part of sampling and involved in many parameters 

that impacted on biofilm formation. From 5 different points of the reactors: inlet of the 

reactor, column 1, column 2, column 3 and outlet of the reactor, water samples were taken to 

monitor free chlorine, total chlorine, DOC at the times of biofilms sampling. Flow rate was 

also measured at each sampling. Regular reactor monitoring not only helped to understand 

the development on biofilm growth, but also compared the chlorine data between automatic 

records of the main system and the reactor monitoring records.  

 

3.3.3. Biofilm analysis 
 
Biofilm quantification includes: 

ü Fe and Mn analysis 

ü EPS production analysis as total carbohydrates content 

ü Biomass and biofilm thickness: using gravimetric measurement 

ü Biofilm thickness and biofilm volume: using CLSM 

ü EPS volume and bacterial cell volume: using CLSM and IMARIS 

ü Chlorine decay with biofilms 

 

3.3.3.1. Metals (Fe and Mn) analysis 

Besides biofilm-induced chlorine decay analysis, each coupon that was collected from the 

bioreactor was assigned a different method to quantify the biofilm composition. Biofilms 

were removed from the pipe material coupons for metal analysis. Ultrasonic (Unisonics 220, 

Australia) and vortex mixers (Ratek, VM1) were used to detach the biofilms from the 

PVC/HDPE coupons.  Each biofilm coupon was individually pooled into a 10 ml 3% HNO3 

solution, which was sonicated for 2 hours and vortexed for 15 minutes. Subsequently 10ml of 

the suspended biofilm HNO3 medium was decanted into new test tubes to analyse Fe and Mn 

concentration. Confocal laser scanning microscopy (CLSM) tests of the biofilm coupon 

showed that the longer time exposed to ultra-sonication, the more firmly attached biofilms 

could be eventually detached from the surfaces. Fe and Mn analysis were analysed by 

Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES) Agilent 700 Series 

(Agilent Technologies Inc. Malaysia), using wavelength calibration parameters of Fe 238.204 

nm and Mn 257.610 nm.  

3.3.3.2.  Measurement of total carbohydrate quantity 
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Modified phenol-sulfuric method (Nielsen, 2010) was used to measure total carbohydrate 

concentrations in the biofilm sample with a glucose standard. Each detached biofilm sample 

was stored in 2ml Milliq water. A solution of 0.05 ml 80% phenol and 5ml concentrated 

H2SO4 was immediately added to the samples to improve mixing and vortex. Samples were 

allowed to stand for 10 minutes to react and were then cooled to room temperature in a water 

bath for 15 minutes. The concentrated H2SO4 breaks down polysaccharides to 

monosaccharides and then dehydrates it finally to furfural. These compounds then react with 

phenol to produce a yellow-gold colour, which can be colourimetrically detected using a Cary 

60 UV-Vis recording spectroscope (Agilent Technologies, Malaysia). The absorbance at 490 

nm was measured and total carbohydrate concentrations were obtained by comparing with a 

standard curve. The total carbohydrate quantity was expressed by the total carbohydrate 

concentrations divided by the surface area of PVC/HDPE coupon.   

 

3.3.3.3.  Gravimetric measurements for biofilm quantification 

Gravimetric measurement is the traditional method to determine biofilm thickness and 

biomass. Firstly, biofilm coupons collected from the bioreactor, were drained for 5 minutes in 

a vertical position and weighed for X (g). Secondly, wet biofilm coupons were oven-dried for 

24 h at 65oC, then weighed for Y (g). Thirdly, dried biofilms were pooled in MilliQ water and 

were detached by ultrasonication and vortexing, oven-dried for another 24 h at 65oC, then 

weighed for Z (g). Finally, biofilm wet mass (mWF) was calculated from the weight difference 

between X and Z; and biofilm dry mass (mDF) was calculated from weight difference between 

Y and Z as detailed somewhere else (Staudt et al., 2004).  

 
X à oven-dried for 24hr à Y àremoved biofilms, oven-dried for another 24hr à Z 

Biofilm wet mass, mWF = X – Z; biofilm dry mass, mDF = Y – Z 

Figure 3. 5: Gravimetric concept for quantifying biofilm 
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Biofilm thickness was calculated using Eq. 3.2  

01 = 234
$34.64

   (3.2) 

Where, LF = biofilm thickness, cm converted to /7 

mWF = biofilm wet mass, 8 

 ρWF = the wet density of the biofilm (ρWF = 1g/cm3) 

AF = the surface area of the coupon, cm2 

 

The biomass was calculated by Eq. 3.3 

91 = 2:4
64

  (3.3) 

Where, MF = biomass, g/cm2 

mWF = biofilm wet mass, 8 

AF = the surface area of the coupon, m2 

 

The mean biofilm density was estimated by Eq. 3.4 

+1 = 2:4
;34
<34

  (3.4) 

Where, +1= the mean biofilm density, g/cm3 

mDF = biofilm dry mass, /8 

mWF = biofilm wet mas, /8 

 ρWF = the wet density of the biofilm (ρWF = 1g/cm3) 

 

3.3.3.4. Confocal laser scanning microscopy (CLSM) and digital image analysis IMARIS 

The instrument used was an upright multi-channel confocal laser scanning microscope TCS-

SP (Leica5, Heidelberg, Germany) equipped with: 

• Software v2.00  

• Lasers (Ar, Kr, He/Ne)  

• Lens 50x dry 

• Laser excitation: 488 nm (EPS) and 633 nm (bacteria cells) 

• Laser emission signals: green channel 498-600 nm and red channel 640-750 nm  

Staining products are: 

• SYTO60 red fluorescent nucleic acid stain (Molecular Probes Inc., USA) 

• Lectin from Triticum vulgaris EPS stain (Sigma Chemicals, USA) 
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First, biofilm sample was stained with a droplet of lectin at a concentration of 0.1 mg/ml as at 

23oC for 15 minutes. Second, the sample was washed gently with MilliQ water three times, 

before it was counterstained with a droplet of SYTO60 as at 23oC for 5 minutes. The stock 

solution of  SYTO60 was used at a dilution of 1:1000 in MilliQ water. Finally, the sample 

was washed gently with MilliQ water several times before bring visualized by the CLSM. By 

employing a range of CLSM-based imaging techniques in associated with IMARIS – digital 

image analysis v6.02 (Bitplane, Zurich, Switzerland), biofilm thickness, volume, biomass and 

three-dimensional structure were quantified.  

 

3.3.3.5.  Chlorine decay with biofilm profiles 

Chlorine decay tests were carried out using the biofilm coupons collected from each column 

and the same source of water that was fed to the bioreactor. Control samples were made of 

clean PVC/HDPE coupons without biofilms and the same water source. From week 2 to 

week 10, a fixed dose of chlorine (3 mg/L) was added to all samples. However, the chlorine 

dose was reduced to 1.5 mg/ L and 1 mg/L on week 13 and week 15, respectively. A change 

in water source to MilliQ water was applied in order to limit chlorine demand from bulk 

water. All samples were stored in the incubator to maintain a constant temperature (25oC).  

Chlorine decay was carried out till total chlorine residuals of the samples dropped below the 

detection limit (<0.1 mg/L) using a colorimetric spectrophotometer (HACH DR 2800).  
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CHAPTER 4 

RESULTS – PART I 
 

WATER QUALITY PARAMETERS AND CHORINE DECAY OF THE BULK WATER 

SAMPLES FROM SOPA 

 

One of the aims of this study was to understand the stability of chlorine residuals in the bulk 

RW. Samples were collected continuously for 10 days from WTP and distribution system 

from six locations of the system which are stormwater, ICC, OCC, OSR and two different 

locations of the distribution pipelines. Chemical parameters in the bulk water samples 

including free chlorine, total chlorine, DOC, ammonia, nitrite, nitrate and pH were analysed 

and detailed in Table 4.1. To understand chlorine stability in the bulk water samples, two 

doses of chlorine (3.3 and 5.1 mg/L) were added to the samples and stored in the incubator to 

maintain a constant temperature (25oC). This test was carried out until total chlorine residuals 

of the samples have dropped close to detection limit (<0.1 mg/L). 

 

4.1. Chemical parameters   

 

The average chemical parameters and standard deviations measured in the bulk water 

samples are presented in Table 4.1. 

Table 4. 1 The average chemical parameters in the bulk water samples collected over 10 days 

from 15/08/2016 to 25/08/2016. 

Sampling  
locations  

Free 
chlorine 

Total 
chlorine 

DOC Ammonia Nitrite Nitrate pH DO 

mg/L           mg-N/L                                          mg/L 
Storm water   9.2 0.074 0.40 0.54 7.40 7.45 
ICC   8.33±1.22 0.096±0.04 0.02 1.60±0.29 

 
7.50 7.42 

OCC 2.35±1.06 4.20 5.28±0.84 
 

0.054±0.015 
 

0 2.00±0.24 7.48 7.68 

OSR 0.38±0.22 
 

0.54 5.15±0.43 
 

0.066±0.011 0 1.93±0.07 7.83 8.08 

DS-midpoint 0.26±0.23 0.12 5.12±1.28 0.031 0 0.66 7.55 8.36 
DS-endpoint  0.12±0.06 0.03 5.11±1.44 0.032 0 0.64 7.52 8.45 
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A significant drop in free chlorine residuals (from 2.35 to 0.38 mg/L) was noted between 

OCC and OSR. Free chlorine residuals at OSR (inlet to the distribution system) were 0.38 

mg/L which dropped to 0.26 mg/L at DS-midpoint and continuously dropped to 0.12 mg/L at 

DS-endpoint (Table 4.1). This chlorine profile was an average of the samples collected over 

10 days. Similarly, DOC was observed to be decreased around 3 mg/L from ICC to OCC 

which is due to the dilution taking place in the chlorine contact tank (Table 4.1). In order to 

reduce the salinity and to meet distribution demand, the SOPA combines stormwater : ICC 

water at a ratio of 30 : 70. This may cause DOC to be reduced by the same ratio for samples 

after combination. In fact, Table 4.1 shows a reduction in DOC concentration between ICC 

and OCC, approximately 3 mg/L, equivalent to 30% of DOC in stormwater. Also, DOC 

decreased from ICC to DS-endpoint (Table 4.1) which could be due to the microbial 

activities and /or oxidation of DOC by chlorine. Nitrogen was found mostly in the oxidised 

(nitrate) form in the bulk water samples. The absence of nitrite (< 0.02 mg N/L), the presence 

of high levels of nitrate and low concentrations of ammonia-N prove that complete 

nitrification had occurred before the water was chlorinated (Table 4.1). The pH was stable at 

approximately range pH7.4 – pH7.8 (Table 4.1). Similarly, DO was steady in the bulk water 

samples which ranges between 7.42 and 8.45 mg/L.  

 

4.2. BDOC 

 
The quantity of BDOC which measures the potential growth of bacteria in the system was 

determined. This experiment was carried out with 4 water samples and 4 controls collected 

from ICC, OSR, DS-midpoint and DS-endpoint. All of them were in the condition of free of 

chlorine. Physical adsorption of DOC takes place in the control sample over time because 

they contained no bacteria. BDOC is the difference in the amount of DOC between the 

samples and the controls. BDOC did not witness a significant variation among the water 

samples. Approximately 1 mg/L BDOC in DS-midpoint and DS-endpoint samples shows that 

there is a great potential of regrowth of bacteria in the distribution system in the absence of/ 

or low disinfectant residuals (Figure 4.1).  
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Figure 4. 1: BDOC and DOC for samples collected on 06/12/2016 

4.3. Chlorine stability in the bulk water samples: 

 

Chlorine decay in the bulk water samples during the course of experiment with two chlorine 

doses (3 and 5 mg/L) is depicted in Figures 4.2 and 4.3. A rapid total chlorine reduction 

within 3 hours and after that it slowed down, which was noted in the storm water and ICC for 

both doses of chlorine as they were collected prior to chlorination. The most stable total 

chlorine was noted in the water sample collected from the OSR (inlet to the distribution 

system) as it was collected after chlorination at the plant. Similar observations were noted in 

the samples collected from the distribution system which displayed greater chlorine stability 

in the DS-midpoint sample as opposed to DS-endpoint sample. At the time of collection, 

OCC had the highest measured chlorine residual (Table 4.1) which could have facilitated 

stable total chlorine residuals in the tested samples. However, less stable total chlorine was 

noted in the OCC water sample compared to other samples (DS-midpoint, DS-endpoint and 

OSR) (Figures 4.2 and 4.3). The varying chlorine decay rates might be proportional to the 

initial chlorine dose and cannot be explained by the simple first order decay. Such models 

have been developed to explain chlorine decay in drinking water and reclaimed water (Jabari 

Kohpaei and Sathasivan, 2011, Funamizu et al., 2004).  
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Figure 4. 2: Total chlorine residuals in the recycled bulk water samples after dosing initial 

total chlorine residuals of 3.3 mg/L 

 

 
Figure 4. 3: Total chlorine residuals in the recycled bulk water samples after dosing initial 

total chlorine residuals of 5.1 mg/L 
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4.4. Chlorine stability in the mixture of stormwater and recycled water:  

 
 

 
Figure 4. 4: Total chlorine residuals in the mixed water samples after dosing initial total 

chlorine residuals of 3.3 mg/L 

 

 
Figure 4. 5: Total chlorine residuals in the mixed water samples after dosing initial total 

chlorine residuals of 5.1 mg/L 
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Chlorine decay in the mixture of storm water and recycled water ICC during the course of 

experiment with two chlorine doses (3 and 5 mg/L) is depicted in Figures 4.4 and 4.5. The 

SOPA combines stormwater : ICC at a 30 : 70 which may fluctuate depending upon public 

demand. To replicate this supply, chlorine decay tests were carried out at two ratios. The 

stormwater: ICC mixing ratios used in this study were 40 : 60 and 20 : 80. Mixing of 

stormwater and ICC did not make any change to chlorine stability for both doses of the initial 

chlorine (Figures 4.4 and 4.5).  However, this observation was based on a one-time sampling 

and the results could vary depending on stormwater and RW quality parameters such as pH, 

DOC, ammonia and nitrite. The varying chlorine decay rates might be proportional to the 

initial chlorine dose and cannot be explained by a simple first order decay model. Proper 

models have been developed to explain chlorine decay characteristics in drinking water and 

reclaimed water (Jabari Kohpaei and Sathasivan, 2011, Funamizu et al., 2004). 

 

4.5. Chlorine stability by re-chlorination   
 
In this experiment, the same total chlorine doses of 3 mg/L were used for all samples, 

whether initial- or re-chlorination. ICC water sample was unchlorinated at the time of 

collection. A rapid reduction in both total chlorine and free chlorine was noted at the initial 

chlorination stage of ICC water sample (Figure 4.6 a). Dissolved organic nitrogen (DON) 

compounds in untreated ICC sample might exert high chlorine demand and therefore reduced 

the concentration of free chlorine. The gap between free chlorine concentration and total 

chlorine concentration represents organic chloramine which is formed by reactions between 

DON and free chlorine. Although more stable chlorine was noted in re-chlorinated ICC, the 

organic chloramine still remained constant as the initial chlorination (Figure 4.6 a). The 

organic chloramine has poor germicidal properties, which makes their formation undesirable 

during chlorination and reduces the disinfection efficacy of chlorination process (Fisher et al., 

2011). 

    

Water samples OCC and OSR, which were chlorinated by SOPA at the time of collection, 

were observed until total chlorine reached below the detection limit (< 0.1 mg/L). These were 

considered as initial chlorination profiles of OCC and OSR (Figures 4.6 b and c). The 

difference between total chlorine and free chlorine concentrations for both sampling 

locations, OCC (Figure 4.6 b) and ICC (Figure 4.6 a) were nearly the same which 
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demonstrates the formation of equal concentrations of organic chloramines in both locations. 

However, less stable chlorine and reduction in organic chloramines were noted for both OCC 

and OSR water samples in re-chlorination stage in comparison with their initial chlorination 

ones (Figures 4.6 b and c). Moreover, re-chlorinated OCC and OSR demonstrate greater 

chlorine stability than re-chlorinated ICC. This varying rate of chlorine could not be 

explained by simple first-order decay. Besides decay rate being proportional to initial 

chlorine dose, the rate could also be dependent upon the presence of 2 or more groups of 

chlorine-demanding components, which react with chlorine differently in their reactivity 

(Jegatheesan et al., 2004). Water retention time in the OSR tank is between 2 to 3 days, the 

re-chlorination profiles have shown that both free chlorine and total chlorine become stable in 

the OSR tank (Figure 4.6 c), thereby enabling the distribution system to maintain chlorine 

residuals after the re-chlorination.   

 
(a)  

 
 
(b) 
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(c) 

 
Figure 4. 6: Initial chlorination and re-chlorination of water samples after dosing total 

chlorine residuals of 3 mg/L: (a) ICC, (b) OCC and (c) OSR 

 
In short, the bulk water samples collected over 10 days show a significant drop in free 

chlorine residuals in the system of SOPA. A rapid total chlorine reduction was noted in the 

stormwater and ICC as they were collected prior to chlorination. More stable total chlorine 

was noted in the water sample collected after chlorination, with an order of chlorine stability 
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as follows, OSR, DS-midpoint, DS-endpoint and OCC. Mixing of stormwater and ICC did 

not make any change to the chlorine stability. Similarly, DOC was decreased around 3 mg/L 

from the inlet to the outlet of the system which is due to the dilution taking place in the 

chlorine contact tank in order to reduce the salinity and to meet distribution demand. BDOC 

did not display any observable variation between the water samples. Approximately 1 mg/L 

BDOC in DS-midpoint and DS-endpoint samples shows that there is a great potential of 

regrowth of bacteria in the distribution system in the absence of/ or low disinfectant residuals. 

Inorganic nitrogen was found mostly in nitrate form in the bulk water samples. The absence 

of nitrite and the presence of high levels of nitrate and low concentrations of ammonia-N 

prove that complete nitrification had occurred before the sample was chlorinated. The pH was 

stable around pH 7.5±0.1.  

 

DON compounds in untreated ICC sample might exert high chlorine demand and therefore 

reduce the concentration of free chlorine and inorganic combined chlorine. Although more 

stable chlorine was noted in re-chlorinated ICC, the organic chloramine still remained at the 

same level. The organic chloramines were also found in water samples OCC and OSR which 

were chlorinated by SOPA at the time of collection. However, reductions in organic 

chloramines were noted for both re-chlorinated OCC and OSR. The organic chloramines 

have poor germicidal properties, which makes their formation undesirable during chlorination 

and reduces the disinfection efficacy of the chlorination process. Finally, re-chlorinated OCC 

and OSR demonstrate greater chlorine stability than re-chlorinated ICC due to low organic 

chloramines. 
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CHAPTER 5 

RESULTS – PART II 
 

BIOFILM DEVELOPMENT IN THE PILOT-SCALE FLOW CELL REACTORS 

 

The aim of this study was to understand biofilm growth on selective pipe materials and the 

impact of biofilm on chlorine decay in the RW distribution system. In order to investigate 

biofilm development, the flow cell reactors system containing PVC and HDPE coupons were 

installed and operated on the field at the outlet of the storage reservoir at WTP over 15 weeks 

exposed to similar chlorinated environmental conditions of the storage reservoir. The role of 

biofilm components in decaying chlorine were determined by periodically monitoring (water 

flow rates, chlorine residuals, DOC), sampling (biofilm coupons) and analysing a number of 

biofilm parameters (total carbohydrates, EPS, bacterial cells, metals, thickness and volume of 

biofilm). There were five different locations of the reactor system that were considered in this 

study, namely inlet, column 1, column 2, column 3 and outlet. Both online and onsite data of 

free chlorine residuals were compared. Biofilms coupons were analysed using gravimetric 

measurements for biofilm thickness and biomass. The assessment of biofilm structure and 

volume was carried out using CLSM. The results of biofilm development in the pilot-scale 

reactors are presented as follows.  

 

5.1. Monitoring bioreactors 

 
5.1.1. Details of chlorine residuals  

Biofilms were grown from 15/11/2016 to 28/02/2017 (105 days or 15 weeks). There were 6 

samplings at week 2, 4, 7, 10. 13 and 15. Free chlorine concentration monitoring using the 

online probe at the OSR of WTP over the operation time of the biofilm reactor setup is 

detailed in Figure 5.1. Both free chlorine and total chlorine were monitored on the site at each 

sampling. The level of free chlorine from both online and onsite monitoring appears 

correlated to each other (<0.5 mg/L) (Figures 5.1 and 5.2). Monitoring data shows total 

chlorine concentrations at all times were greater than free chlorine due to a part of free 

chlorine may react with organic matter to form organic chloramines.  At the time of biofilm 

sampling, the different chlorine concentration between the inlet and outlet was the amount of 

chlorine consumed by the biofilms resident in each column bioreactor (Figure 5.2). 
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Performing linear regressions on the data for free chlorine concentration levels and the inlet/ 

outlet chlorine concentration differences with week of sampling as a random effect shows no 

significant relationship between the two variables (F=0.6741, df = 1.5, p=0.449). 

 

 
Figure 5. 1: Online chlorine concentration during biofilm sampling (source: SOPA 2017) 

*start: the day when the reactor was installed and operated 
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Figure 5. 2: Onsite monitoring of chlorine residuals concentration  

 
5.1.2. Operational details of the biofilm reactors  

 
From the beginning of reactor setup, flow rate monitoring at the outlet of the reactors shows 

that the flow rate was likely to increase and cause an overflow in the reactors at week 4. A 

significant decrease in flow rate was observed due to valve installation for adjusting the flow 

at the inlet of the reactors. However, the flow rate tended to rise in spite of adjusting the valve 

each sampling time. However, the laminar flow (Re < 2300) were maintained in biofilm 

reactor (Table 5.1) during the study period. Flow rate and the characteristics of the flow in 
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each column reactor were calculated using the following formulae of retention time, velocity 

and Reynold’s number. 

 

Water retention time (s), t = =>  

Water velocity (m/s), v = >6  

Reynold’s number , !" = $∗&∗)
*      

Dynamic viscosity, / = 1.002 x 10-3 N.s/ m2  
 

Where Q is flow rate (m3/s), + is water density (~1000 kg/m3), V is glass column 

volume (m3) and A is glass column area (m2).  

 

Table 5. 1 Monitor flow rate, retention time, velocity and Reynold’s number in each reactor 

Sampling date Reactor setup 
Q Q t v 

Re 
L/min m3/s s m/s 

15/11/2016 start 0.15 2.50 x10-6 88 0.008 16 

28/11/2016 week 2 0.20 3.33 x10-6 66 0.011 21 

13/12/2016 week 4 0.30 5.00 x10-6 44 0.016 32 

03/1/2017 week 7 0.21 3.50 x10-6 63 0.011 22 

24/1/2017 week 10 0.08 1.33 x10-6 165 0.004 8 

14/2/2017 week 13 0.15 2.50 x10-6 88 0.008 16 

28/2/2017 week 15 0.15 2.50 x10-6 88 0.008 16 

 

5.1.3. Details of the DOC levels 

DOC level was also monitored in each column reactor, as well as at the inlet and outlet of the 

reactor. There was no significant difference in DOC (p>0.1) among reactor columns 

throughout the time of reactor operation, changes in DOC concentrations were due to the 

change in the inlet water quality over the period of 15 weeks. At the time of sampling 

biofilms, the difference in DOC concentrations between the inlet and outlet of the reactor 

system could arise from the instrumental error while monitoring the DOC or such difference 
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was potentially equivalent to the amount of DOC consumed by the biofilms resided within 

each column (Figure 5.3).   

 

Figure 5. 3: Monitoring DOC during sampling biofilms 

 

5.2.Metal deposition on biofilm 

 

 
Figure 5. 4: Fe and Mn deposition on biofilms 
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Fe and Mn deposition on biofilms grown in RW bioreactors reached up to 100 µg/cm3 for 

Fe and 20 µg/cm3 for Mn deposits (Figure 5.4). Mn deposits appeared to have lower 

concentrations than Fe deposits on the same volume of biofilm. Fe deposits on PVC 

biofilms varied more dramatically than those on HDPE biofilms. As an oxidant, free 

chlorine oxidise Fe and Mn from bulk water thus lower the metal concentration in bulk 

water. Moreover, bacteria also possibly oxidise Fe and Mn, therefore, Fe and Mn deposit 

on PVC/HDPE biofilms did not increase (Ginige et al., 2011, Ginige et al., 2017). Since 

week 10 biofilm structures were well-built and Mn deposition on biofilms started to 

increase, however, the complex biofilm structures in the bioreactor were likely to 

facilitate the bacterial oxidation and reduction of Mn (Figure 5.4). Generally, biofilms 

may oxidise Fe or Mn and improve the retention of these elements within the bioreactors. 

On a larger scale, biofilms may also contribute to water discolouration by enhancing the 

abiotic release of Fe from within corrosion products into the distribution system (Ginige 

et al., 2017, Ginige et al., 2011).  

 

5.3. Total carbohydrates on biofilm 

 

 
Figure 5. 5: Total carbohydrate content on biofilms 
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Quantification of biofilm growth was carried out based on total carbohydrate content on 

biofilm coupon area. Total carbohydrate contents on both PVC and HDPE biofilms were 

likely to increase over 15 weeks when the biofilm coupons were exposed to chlorine 

treatment (free chlorine <0.5 mg/L). Under chlorinated environments, young biofilms 

from week 2 to 4 did not show differences in total carbohydrate concentration in each 

column reactor. Biofilms in reactor column 3 always produced higher amounts of total 

carbohydrates than other columns, regardless of the application of chlorine or pipe 

material (Figure 5.5). Pipe materials of column 3 had exposed to low chlorine residuals 

than other two columns which could be the result in the increase of total carbohydrate. In 

general, total carbohydrate content has proven that biofilms in reactors were ongoing 

growth process. 

 

5.4. Biofilm thickness and biomass by gravimetric measurements 
 

 
Figure 5. 6: Biofilm thickness and biomass by gravimetric measurements 

 

Biofilms in each reactor column were analysed by gravimetry method, a traditional 

measurement method to quantify biofilm thickness and biomass. The results showed that 

biofilm formation potential of pipes differs depending on the materials used. The 

susceptibility of the tested materials to colonise bacteria and biofilm formation was 

HDPE > PVC. This research finding also corroborates with many other previous studies 
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on HDPE and PVC material-biofilm (Rożej et al., 2015, Kim and Lee, 2010). At the first 

glance, both PVC and HDPE had the same trend of biofilm thickness as well as biomass, 

but differed slightly between the columns. HDPE biofilm thickness increased 

considerably over 15 weeks in all three columns, while PVC biofilm thickness was 

expected to increase similarly with HDPE but its actual trend shows only a slight increase 

(Figure 5.6). There was an unexpected incident of overflow on week 15 which might have 

led to biofilm detachment and a combined loss of biomass. Either PVC or HDPE biofilm 

showed a fluctuation in biomass (Figure 5.6), which was calculated via biofilm dry mass 

measurements. The biomass data might not be measured accurately to some extent, which 

is greatly influenced by the success of dry biofilm detachment from PVC and HDPE 

surfaces. 

 

5.5. Compared biofilm thickness between gravimetric measurements and 

CLSM quantification 

 
Figure 5. 7: Comparison of biofilm thickness obtained by CLSM and calculated by 
gravimetric measurement 

 

The structure of microbial biofilms is closely linked to their function. In the present study, 

biofilm development was determined by both gravimetry and CLSM. Comparison of the 

two techniques confirms their validity. Biofilm thickness was calculated from the wet 
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biomass of the biofilm. Gravimetric data showed that 3-month-old biofilm thickness 

reached up to 25µm on PVC and 50µm on HDPE. By employing CLSM, biofilm 

thickness was averaged from 3D images of three locations on each coupon sample.  3-

month-old biofilm depth ranged from 20 µm on PVC to 25 µm on HDPE surfaces. In 

each bio-reactor column, both methods showed the same trend in biofilm thickness, but 

did not exactly fit. The data from CLSM and gravimetric measurements of PVC biofilms 

showed far more correlation than that of HDPE biofilms. The samples from different 

reactors show very similar biofilm thickness because slow-growing biofilms were not 

subject to frequent sloughing (Figure 5.7).  

 

5.6. Biofilm volume by CLSM quantification  
 

 
Figure 5. 8: EPS volume and cell volume of biofilms quantified by CLSM and IMARIS 

 

CLSM allows for distinction between different biofilm constituents, such as cells and 

polymers. Quantification of CLSM data showed that the EPS volume was usually higher 

than the bacterial cell volume in most biofilms. This may be due to the intrinsic properties 

of cells and polymers and the growth rate of the bacteria. Under proper conditions, the 
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bacteria reproduce at a fast rate without producing much EPS. Slow-growing bacteria or 

bacteria growing under hostile environmental conditions may produce more EPS due to 

unbalanced growth conditions and as a protection against negative environmental factor. 

In this research, bacteria exposed to fluctuated chlorine and therefore biofilms were 

developed at a slow-growing pace, EPS volume was larger than cell volume, and HDPE 

EPS more developed in volume than PVC EPS (Figure 5.8). 

 

5.7.Biofilm morphology 

 
Figure 5.9 shows how biofilm morphology develops between weeks 2, 4, 7, 10, 13 and 

15. There was only EPS in both materials in week 2 with no visible bacterial cells. 

Biofilm growth was found to increase from week 4, with isolated pockets of bacteria 

within the EPS on PVC, but HDPE surfaces still only contained EPS. The bacterial 

colonies can be seen to have successfully established themselves by week 7 with the 

number of cell growth and division forming a continuous structure that can be described 

as the establishment of the biofilm. To form these communities, microorganisms must 

integrate external and internal signals, take stock of their neighbours by determining their 

density and type and coordinate a time series of multi-cellular behaviors that are 

associated with morphological changes. The green fluorescence visualises non-bacterial 

polysaccharides of biofilm EPS and the red fluorescence visualises bacterial cells that 

make up the biofilm. As the biofilm develops a lower magnification is more suited to 

display this spread of the film with large patches of bacteria being interspersed by EPS 

and other polysaccharides on the surface. Both materials displayed a similar rate of 

biofilm development following week 7 with both materials developing a similar 

complexity by the final imaging time point. Whilst the biofilms were not completely 

uniform, images were taken of areas that were most representative of the whole biofilm. 



 

58 
	

 
 

Figure 5. 9 Images from CLSM (green channel: EPS; red channel: cells) of biofilms developed on PVC/HDPE 
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5.8. Chlorine decay with biofilms 
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Figure 5. 10: Total chlorine decay profiles with biofilms on PVC and HDPE
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Figure 5. 11: Free chlorine decay profiles with biofilms on PVC and HDPE
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Chlorine decay profiles showed no major differences between each column reactor until the 

15-week period of biofilm development (Figures 5.10 and 5.11). Since the sample coupons 

contained very low amounts of biofilm which may not be enough to impact on decaying 

chlorine at concentrations up to 3 mg/L. Although a control strategy was taken into account 

by changing the water source from RW to MilliQ water, the chlorine decay profiles of week 

13 and week 15 were not significant different, which proves that the biofilm is not enough in 

the pipe materials to show the impact on chlorine decay.   

 

In summary, during 15 weeks operation time of the biofilm reactor, the levels of free chlorine 

from both online and onsite monitoring were low (<0.5 mg/L), which may be due to free 

chlorine reacting with organic matter to form organic chloramines.  At the time of biofilm 

sampling, the difference in chlorine concentration between the inlet and outlet was the 

amount of chlorine consumed by the biofilms resident in each column bioreactor. Unstable 

flow rates posed an adverse effect on free chlorine residuals in the reactors. There was not 

much significant difference in DOC among reactor columns. Throughout the time of reactor 

operation changes in DOC concentrations were due to the change in the inlet water quality.  

 

Free chlorine and biofilms may oxidise Fe or Mn and influence the retention of these 

elements within the biofilm. Total carbohydrate content has proven that biofilms in reactors 

were ongoing processes. Both PVC and HDPE had the same trend of increasing biofilm 

thickness as well as biomass, but differed slightly between the columns. Gravimetric 

measurement and CLSM showed the same trend in biofilm thickness, but did not exactly fit. 

The data from CLSM and gravimetric measurements of PVC biofilms showed far more 

correlation than that of HDPE biofilms. The samples from different reactors show very 

similar biofilm thickness because slow-growing biofilms were not subject to frequent 

sloughing. Biofilm depth ranged from 20 µm on PVC to 25 µm on HDPE surfaces. EPS 

volume was usually higher than the bacterial cell volume and HDPE EPS more developed in 

volume than PVC EPS, which was confirmed by the developed biofilm morphology over 15 

weeks. Since the sample coupons contained very low amounts of biofilm which may not be 

enough to impact on decaying chlorine at concentrations up to 3 mg/L. The chlorine decay 

profiles did not show any significant different, which proves that the biofilm is not enough in 

the pipe materials to show the impact on chlorine decay.   
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CHAPTER 6 

DISCUSSION 
 
 

RW contains a high level of organic matter, which potentially reacts with chlorine, and 

provides nutrients for microorganisms in the form of organic carbon. RW provides a highly 

conducive environment for microbes to grow within the system. Free chlorine is a strong 

oxidizing agent and effective in inactivating pathogens and control nuisance microorganisms, 

it reacts quickly with organic and inorganic compounds, thus the free chlorine is not 

persistent in the system. The organic chloramines have poor germicidal properties, which 

makes their formation undesirable during chlorination and reduces the disinfection efficacy 

of chlorination process. Presence of higher chlorine demand in RW caused the chlorine levels 

to drop quickly, paving way for the regrowth of bacteria. Once free chlorine residuals have 

been declined below the detection limit (< 0.1 mg/L), there is a great potential for the 

bacterial regrowth as indicated in several literatures. This varying rate of chlorine could not 

be explained by simple first-order decay. Besides decay rate being proportional to initial 

chlorine dose, the rate could also be dependent upon the presence of two or more groups of 

chlorine-demanding components, which react with chlorine differently in their reactivity.  

 

One of the chlorine-demanding groups is inorganic particles like metal deposition (Fe and 

Mn) in biofilms. However, the Fe and Mn could have been oxidised on the first chlorination 

in the chlorine contact tank leaving oxidised form to travel to biofilms, until chlorine is 

reduced to lower level. Once the chlorine is reduced to lower level, it is possible the Fe and 

Mn can be released back to the water, which may cause dirty water incidents. In the RW 

supply system, it frequently experiences the lower free chlorine concentration paving the way 

for continuous release of metals from the biofilms/sediments. When the system is operated on 

a diurnal cycle, the chlorine concentration remains high in the water during day time (high 

demand period) and remains low in the night. This can cause build up/release of metals. Most 

probably, only consistent higher level chlorine can help reduce this from occurring. To test 

theory samples have to be drawn early in the morning before water demand increases and 

during daytime to check the Fe/Mn content in the water. 
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EPS in biofilms is another component which plays a significant role in decaying chlorine 

residuals. EPS volume was usually higher than the bacterial cell volume in this study. Total 

carbohydrate content measured until week 15 has shown that biofilms growth in reactors was 

an ongoing process especially in recycled wastewater distribution system. Both PVC and 

HDPE had the same increasing trend of biofilm thickness as well as biomass, and HDPE EPS 

was higher in volume than PVC EPS. Slow-growing biofilms were not subjected to frequent 

sloughing and biofilm depth ranged from 20 µm on PVC to 25 µm on HDPE surfaces. Over 

15-week development, biofilms was still not enough to impact on decaying chlorine at 

concentrations when different range of chlorine concentrations (1 to 3 mg/L) were used to 

test.  

 

It is suspected that organic chloramine formation in the treated water entering into the 

distribution system which may reduce the effectiveness of the chlorination to control bacterial 

growth in the distribution piping network. Organic chloramines are less effective than 

inorganic chloramine (especially monochloramine). Cell volume, as measured by CLSM has 

consistently increased with retention time within the reactor and with the age. Although cell 

enumeration such as total cell count could be measured through microscopic analysis with 

fluorescent stains, this has not been carried out.  Other EPS quantification methods are 

usually based on the analysis of total carbohydrates and proteins. This study focused on EPS 

carbohydrate quantification but excluded EPS proteins. It has been suggested that protein 

content which may impact chlorine decay, should be included in EPS quantification in further 

studies. 

 

In drinking water supply system, biofilm is usually grown to full size within three weeks with 

free chlorine concentrations below 0.7 mg/L. However, in the RW supply system, the biofilm 

has not reached the highest level even after 15 weeks indicating the possible role of some 

inhibitors for the growth of biofilm. One possible reason can be pointed out to organic 

chloramine. Given a poor understanding of the role of organic chloramine on biofilm growth 

it is essential that a study is undertaken. 
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CHAPTER 7 

CONCLUSION 

 

To understand the stability of chlorine residuals in the bulk RW, physiochemical parameters 

(free chlorine, total chlorine, DOC, ammonia, nitrite, nitrate and pH) were analysed and 

chlorine decay profiles were carried out. The bulk water samples collected over 10 days show 

a significant drop in chlorine residuals along the system of SOPA. Mixing of stormwater and 

ICC did not make any change to the chlorine stability. DOC was decreased in the system 

which is due to the dilution taking place in order to reduce the salinity and to meet 

distribution demand. Approximately 1 mg/L BDOC shows that there is a great potential of 

regrowth of bacteria in the distribution system in the absence of/ or low disinfectant residuals. 

Inorganic nitrogen was found mostly in nitrate form, while DON compounds in the bulk 

water might exert high chlorine demand and therefore reduce the concentration of free 

chlorine and inorganic combined chlorine. Although more stable chlorine was noted in re-

chlorinated ICC, the organic chloramine still remained at the same level. The organic 

chloramines were also found in OCC and OSR water which led to less chlorine stability in re-

chlorinated OCC and OSR. The organic chloramines have poor germicidal properties, which 

makes their formation undesirable during chlorination and reduces the disinfection efficacy 

of the chlorination process. However, their role in inhibiting biofilm is not known. 

Nevertheless, re-chlorinated OCC and OSR demonstrate greater chlorine stability than re-

chlorinated ICC due to low organic chloramines. 

 

The purpose of this study was to address the contribution of pipe wall biofilms on selective 

pipe materials to chlorine decay in the RW distribution system. This study addressed the 

contribution of pipe wall biofilms to chlorine decay. The flow cell reactors were installed in 

the WRAMS building to investigate biofilm growth on PVC and HDPE and the role of 

biofilms on chlorine decay in SOPA distribution system.  Biofilms were examined by a range 

of quantitative methods such as iron and manganese deposition, total carbohydrates, biofilm 

thickness, biomass and biofilm volume. The findings of the biofilms can be summarised as 

follows.  
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• Organic chloramine was the dominant chlorine species within the RW distribution 

system. 

• According to monitoring data biofilms did not grow as fast as expected due to the 

presence of chlorine, organic chloramine, other unknown inhibitors and/or high flow 

rate.  

• Free chlorine and slow-growing biofilms may oxidise Fe or Mn and influence the 

retention of these elements within the biofilm.  

• Both PVC and HDPE had the same trend of increasing biofilm thickness as well as 

biomass.  

• HDPE pipe surfaces were more susceptible towards biofouling than PVC because of 

some drawbacks to the use of HDPE pipe, for example, HDPE are susceptible to 

oxidative degradation when exposed to water disinfectants and are also susceptible to 

permeation in contaminated soils, even when contaminant concentrations are low.  

• EPS volume was usually higher than the bacterial cell volume and HDPE EPS more 

developed in volume than PVC EPS, which was confirmed by the developed biofilm 

morphology over 15 weeks.  

• The biofilm is not enough in the pipe materials to show the impact on decaying 

chlorine at concentrations range between 1 to 3 mg/L.  

• Organic chloramine possibly plays a critical, but an unknown, role in determining the 

growth of biofilm and dirty water complaints through release of metals.  
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