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Mechanisms of Progressive Resistance
Training
Teresa Lam1,2,3* , Vita Birzniece1,3,4,5,6, Mark McLean1,3, Howard Gurney7, Amy Hayden7,8 and Birinder S. Cheema9

Abstract

Prostate cancer has the second highest incidence of all cancers amongst men worldwide. Androgen deprivation
therapy (ADT) remains a common form of treatment. However, in reducing serum testosterone to castrate levels
and rendering men hypogonadal, ADT contributes to a myriad of adverse effects which can affect prostate cancer
prognosis. Physical activity is currently recommended as synergistic medicine in prostate cancer patients to alleviate
the adverse effects of treatment. Progressive resistance training (PRT) is an anabolic exercise modality which may be
of benefit in prostate cancer patients given its potency in maintaining and positively adapting skeletal muscle.
However, currently, there is a scarcity of RCTs which have evaluated the use of isolated PRT in counteracting the
adverse effects of prostate cancer treatment. Moreover, although physical activity in general has been found to
reduce relapse rates and improve survival in prostate cancer, the precise anti-oncogenic effects of specific exercise
modalities, including PRT, have not been fully established. Thus, the overall objective of this article is to provide a
rationale for the in-depth investigation of PRT and its biological effects in men with prostate cancer on ADT. This
will be achieved by (1) summarising the metabolic effects of ADT in patients with prostate cancer and its effect on
prostate cancer progression and prognosis, (2) reviewing the existing evidence regarding the metabolic benefits of
PRT in this cohort, (3) exploring the possible oncological pathways by which PRT can affect prostate cancer
prognosis and progression and (4) outlining avenues for future research.

Keywords: Resistance training, Prostate cancer, Androgen deprivation therapy, Metabolic effects, Mitogenic
pathways

Key Points

� Androgen deprivation therapy (ADT) is associated
with adverse metabolic effects which can affect
prognosis in men with prostate cancer.

� Progressive resistance training (PRT) is an exercise
modality which can benefit both body composition
and muscle function during ADT.

� PRT may exert its positive effects on prostate cancer
prognosis through its modification of cancer
signalling pathways.

Introduction
Prostate cancer has the second highest incidence of all
cancers amongst men worldwide and is the fifth leading
cause of cancer death in men. In 2018, an estimated
1,276,106 new cases of prostate cancer was reported
worldwide, with higher prevalence in the developed
countries [1]. The mechanisms of prostate carcino-
genesis have marked heterogeneity and consist of
both genetic and environmental factors, with risk of
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the disease increasing with age and positive family
history [2]. Although androgens (including testoster-
one and dihydrotestosterone) affect proliferation and dif-
ferentiation of prostate luminal epithelium and drive
prostate cancer cell growth, there are conflicting data on
the role of endogenous testosterone in human prostate
cancer pathogenesis de novo. A pooled analysis of 18 pro-
spective studies showed no association between the risk of
prostate cancer and testosterone levels [3]. Yet, positive
associations have been found between mutations in genes
involved in the biosynthesis and degradation of testoster-
one, and higher prostate cancer risk [4, 5]. Although simi-
lar controversies occur regarding the link between obesity,
diabetes and risk of prostate cancer development [6–10],
there is now strong evidence that being overweight or
obese increases the risk of advanced prostate cancer [11].
Androgen receptor signalling strongly promotes

growth, proliferation and invasiveness of prostate can-
cer. Thus, androgen deprivation therapy (ADT), using
gonadotrophin-releasing hormone (GnRH) analogues
and/or anti-androgen agents, is a common and effective
therapy for patients with locally advanced and meta-
static prostate cancer. Long-acting GnRH analogues,
such as leuprolide, cause downregulation of the
pituitary-gonadal axis, resulting in ‘chemical castration’
due to suppression of testicular testosterone production.
ADT leads to a decline of prostate-specific antigen (PSA)
in about 90% of patients [12]. However, in rendering the
patient severely hypogonadal, ADT is associated with
significant adverse metabolic effects. Consequences of
ADT include the development of insulin resistance, re-
duced muscle and bone mineral density (BMD), increased
fat mass, sexual dysfunction and reduced quality of life
[13, 14]. Thus, there is a need for secondary treatment
methods to combat the adverse effects of ADT.
Progressive resistance training (PRT) is an anabolic

form of exercise that involves challenging the skeletal
muscles with unaccustomed loads through use of free
weights (e.g. barbells, dumbbells, medicine balls, sand-
bags), machine weights (e.g. leg press) and/or body
weight (e.g. push-ups, pull-ups) and impact loading/
plyometric exercises such as jumping. To facilitate con-
tinued muscular anabolic adaptation over the long-term,
training variables including intensity and volume must
be manipulated over time [15]. It is well established that
PRT can treat sarcopenia in older men and women (over
50 years) [16] and muscle wasting in some chronic dis-
eases, including patients affected with end-stage renal
disease [17] and AIDS-related muscle wasting [18]. The
myogenic effect of PRT has been associated with many
other beneficial physiological, functional and psycho-
logical adaptations across a range of healthy and chron-
ically diseased populations. The benefits are likely to
extend to patients with cancer. In fact, the Clinical

Oncology Society of Australia has recently endorsed the
use of PRT as standard practice in cancer care [19].
To date, only a few robust studies have investigated

the efficacy of PRT in patients receiving ADT for prostate
cancer and the specific biological effects of this exercise
modality are not completely understood in this cohort.
Therefore, the overall objective of this review paper is to
provide a rationale for the in-depth investigation of PRT
and its biological effects in men with prostate cancer on
ADT. This will be achieved by (1) summarising the
adverse consequences of ADT in patients with prostate
cancer and its effect on prostate cancer progression and
prognosis, (2) summarising the existing evidence regard-
ing the benefits of PRT in this cohort, (3) exploring the
possible oncological pathways by which PRT can affect
prostate cancer prognosis and progression and (4) outlin-
ing avenues for future research.

Adverse Consequences of Androgen Deprivation
Therapy and Their Potential Effects on Prostate
Cancer Progression and Prognosis
Androgens play a vital role in the regulation of body
composition, insulin and glucose sensitivity, growth fac-
tors and inflammation. Thus, the development of hypo-
gonadism following ADT is associated with multiple
adverse effects which have potential negative effects on
prostate cancer prognosis.

Body Composition
ADT is associated with a decrease in lean body mass
(LBM) and increase in fat mass (FM), resulting in sarco-
penic obesity [20]. These changes occur rapidly, starting
after just 3 months of ADT [21, 22], with the average
duration of therapy in high risk prostate cancer being 18
months [22]. After 1 year, FM has been shown to in-
crease by 7–10%, while LBM has been shown to de-
crease by 2–4% [23], ten times the annual loss occurring
in aging [24]. These changes are sustained up to 2 years
after initiating ADT [25]. Hamilton et al. found that
ADT results in accumulation of both visceral (22%) and
subcutaneous (13%) fat, with increased insulin resistance
likely arising from visceral fat accumulation [26].
The consequences of sarcopenic obesity in men with

prostate cancer are significant. Cheung et al. reported
that long-term ADT was associated with a reduction in
lower-limb muscle function. The muscle groups most
affected are those involved in generating body-weight
support and regulating gait and balance [27]. This leads
to increased frailty, with a cross-sectional study showing
that between 22 and 24% of current and past ADT users
were recurrent fallers, compared to 5% of men not on
ADT [28]. These falls were also more likely to result in
injuries including haematomas and fractures [28].
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Weight gain after a prostate cancer diagnosis is associ-
ated with poorer outcomes [29]. A higher baseline BMI
correlates with greater prostate cancer specific mortality
(PCSM) [30, 31] and obesity is associated with higher
rates of biochemical recurrence after prostatectomy for
early stage prostate cancer [32]. Furthermore, a meta-
analysis of prospective cohort studies reported a 15%
higher risk of PCSM per 5 kg/m2 increase in BMI [33].

Insulin Resistance and Diabetes Mellitus
Insulin resistance and type 2 diabetes mellitus are
known complications of ADT. Multiple prospective
studies have shown decreased insulin sensitivity during
ADT with a 25.9% increase in fasting plasma insulin
levels and 12.8% reduction in insulin sensitivity after just
3 months [34]. After 1 year of ADT, insulin resistance as
measured by HOMA-IR increased by 39% [35].
Multiple studies have also consistently reported a

significant link between ADT and subsequent diagnosis
of diabetes [36–38]. In a retrospective study of 12,191
men with prostate cancer, ADT was associated with a
60% increased risk of diabetes [39]. These changes in
glucose metabolism occur before any changes in body
composition are apparent, highlighting the direct effect
of ADT on glucose metabolism.
Higher insulin and glucose levels are associated with a

worse prostate cancer prognosis [40]. Higher c-peptide
levels (surrogate marker for endogenous insulin produc-
tion) are associated with increased risk of PCSM as well
as high-risk prostate cancer (Gleason ≥ 7) [41, 42]. Simi-
larly, a meta-analysis of 17 cohort studies showed that
pre-existing diabetes was associated with a 29% increase
in PCSM and 37% increase in all-cause mortality in
prostate cancer patients [43].

Growth Factors and IGF-Binding Proteins
There are many alterations in hormonal, metabolic and
inflammatory pathways in response to ADT that may
contribute to the development of diabetes and insulin
resistance. Insulin-like growth factor-1 (IGF-1) is a pep-
tide produced by the liver and is involved in regulation
of cell proliferation and differentiation. IGF-1 exerts
multiple effects on glucose, fat and protein metabolism.
The production of IGF-1 is stimulated by growth hor-
mone (GH) secretion from the anterior pituitary gland
which is potentiated by testosterone [44]. ADT has been
shown to have either no effect on circulating IGF-1 or a
10% increase after 6 months of combined anti-androgen
and GnRH therapy [45, 46]. Higher serum levels of IGF-
1 are associated with increased all-cause mortality and
PCSM in men with advanced prostate cancer [47]. These
detrimental effects are also seen in studies of prostate
cancer xenografts, where increased expression of IGF-1
and its receptor by prostate cancer cells results in

tumour progression to castrate resistant prostate cancer
(CRPC) [48].
The actions of the IGFs are modulated by a family of

high-affinity IGF binding proteins (IGFBPs 1–6) which
function to regulate IGF-1 and IGF-2 bioactivity [49].
IGFBP-2 is the main IGFBP produced by prostate epi-
thelial cells, and is increased in patients with prostate
cancer, correlating with tumour stage and grade [50].
Following androgen withdrawal, higher IGFBP-2 mRNA
expression promotes androgen-independent tumour
growth, and also correlates with a higher Gleason score
[51, 52]. Conversely, higher serum IGFBP-3 is associated
with a lower risk of developing advanced-stage prostate
cancer [51, 53] and studies show an increase in IGFBP-3
beginning within months of androgen withdrawal [54].
As IGFBP-3 is the principal binding protein for IGF-1,
an increase in IGFBP-3 is expected to reduce IGF-1 bio-
availability. Thus, higher circulating IGFBP-3 would be
of great advantage in cancer patients, exerting direct ef-
fects on cancer cells as well as reducing IGF bioactivity.

Lipid Profile
ADT is associated with altered lipid metabolism. After
12 months of ADT, Smith et al. [55] found a 9.0% in-
crease in total cholesterol, 11.3% increase in high-density
lipoprotein (HDL), 26.5% increase in triglycerides and
7.3% increase in low-density lipoprotein (LDL). Like
changes in body composition, these changes are rapid
and can occur as early as 3 months following initiation
of ADT [56].
Current evidence strongly suggests that lipid availability

to cancer cells, whether newly synthesized or exogenously
acquired, likely promotes prostate cancer growth and pro-
gression [57]. Elevated serum triglycerides are associated
with increased risk of prostate cancer recurrence after a
radical prostatectomy [58]. Similarly, high total cholesterol
correlates with increased risk of lymph node metastases
and high LDL levels are predictive of high Gleason scores
[59]. Furthermore, elevated lipids, along with the afore-
mentioned metabolic changes, also result in high cardio-
vascular mortality amongst prostate cancer patients
receiving ADT [60].

Cardiovascular Disease
Cardiovascular disease (CVD) accounts for approxi-
mately a quarter of deaths amongst men with prostate
cancer [61]. ADT may indirectly contribute to develop-
ment of CVD by inducing metabolic changes that are
well-established risk factors for development of athero-
sclerosis [62]. In addition, ADT interferes with the cardi-
oprotective property of testosterone, increasing the risk
of adverse events [63]. GnRH agonist-mediated immune
activation has also been linked to CVD via fibrous cap
disruption and plaque destabilisation by activated
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circulating T cells with the capacity to express the
GnRH receptor [63]. There is clinical evidence which
suggests a positive association between ADT and CVD
[62]. A meta-analysis of six observational studies showed
that the risk of cardiovascular mortality was 17% higher
amongst those receiving ADT than those not receiving
ADT [60]. O’Farrell et al. [63] found the highest risk of
mortality in those with a history of CVD before cancer
diagnosis, and in the first 6 months of ADT. For these
reasons, the United States Food and Drug Administra-
tion has issued a warning on GnRH agonists for in-
creased risk of diabetes and certain CVDs (heart attack,
sudden cardiac death and stroke) [64].

Changes in Other Hormonal Systems, Myokines
Inflammatory Cytokines
Circulating adipokines such as adiponectin and leptin
are important regulators of insulin sensitivity. Prostate
cancer patients undergoing ADT have leptin levels
double that of those who have just undergone prostatec-
tomy and/or radiotherapy without ADT [65]. Leptin
levels increase in proportion to increase in fat mass,
especially central adiposity. Studies of leptin levels and
prostate cancer aggressiveness have produced mixed
results. While some studies show a positive association
between leptin levels and Gleason score [66, 67], others
did not find serum leptin to be a predictive biomarker
for advanced stage following radical prostatectomy [68].
Housa et al. [69] found higher adiponectin levels in lo-

cally advanced, compared to organ confined prostate
cancer, and proposed that increased serum adiponectin
levels may serve as a protective factor against tumour
progression. Conversely, other studies found a negative
association between plasma adiponectin levels and histo-
logical grade and stage [68, 70]. Levels of adiponectin
have been found to increase with ADT [71, 72]. This is a
paradoxical finding, as generally, adiponectin is charac-
terised by a strong inverse correlation with fat mass and
insulin resistance [71]. However, the increase in adipo-
nectin does not seem sufficient to counteract the adverse
effects of ADT on hyperinsulinaemia [73].
Pro-inflammatory cytokines have also been implicated

in the development of diabetes and may be modulated
by testosterone [74]. After 12 weeks of ADT, there is a
fall in interleukin 6 (IL-6) levels along with higher levels
of interleukin 1 beta (IL-1β) and interleukin-8 (IL-8)
[75]. Conversely, Maggio et al. found that 12 months of
ADT did not affect plasma cytokine levels in men with
prostate cancer [76]. Obesity is associated with a sub-
clinical inflammatory state with higher plasma concen-
trations of pro-inflammatory mediators such as IL-6,
tumour necrosis factor-alpha (TNF-α) and IL-1β [77].
Based on epidemiological studies, higher IL-6 levels are
associated with prostate cancer biochemical recurrence

[78] and poorer overall survival [79]. Increased serum
IL-6 levels are also found in patients with castrate-
resistant and metastatic prostate cancer [79, 80]. Simi-
larly, higher levels of TNF-α are associated with more
aggressive disease, prostate cancer progression, relapse
and mortality [75, 81, 82].

Effect on Bone Mineral Density
ADT is associated with a significant reduction in bone
mineral density (BMD), with more rapid bone loss com-
pared to normal aging. Post-menopausal women experi-
ence an annual average of 3% decline in BMD at the
spine [83]. Following initiation of ADT, the annual rates
of bone loss at the lumbar spine and femoral neck re-
gions have been reported as 4.6% and 3.8%, respectively
[84]. In a cross-sectional study, men with prostate cancer
treated with ADT had a 7.2–7.8% lower lumbar spine
BMD, and trends towards a lower hip BMD compared
to men not receiving ADT and healthy controls [85].
This reduction in BMD is translated into a higher frac-
ture risk. In a large cohort study of 180,000 older men,
ADT increased the relative risk of any fracture and hip
fracture by 1.4 [86], thus increasing morbidity and
mortality.

Psychophysiological Effects
The prevalence of depression and anxiety in men with
prostate cancer across the treatment spectrum is high
[87]. In particular, men receiving ADT have clinically
significant decreased quality of life, particularly in the
physical and sexual aspects compared to controls [88].
These psychological conditions are associated with psy-
chophysiological side effects that encompass poorer
treatment outcomes and reduced survival [87, 89, 90]. In
turn, depression results in a chronically activated
hypothalamo-pituitary-adrenal axis, immune dysfunc-
tion, inflammation, oxidative stress and increased cyto-
kine production thus worsening cancer prognosis [91].

Summary
In summary, the negative systemic effects of ADT can
potentially worsen prostate cancer prognosis. In the next
section of this review, we discuss the clinical trials that
utilise PRT in the treatment of these effects in prostate
cancer.

The Benefits of PRT During ADT
PRT and Physiological Adaptations
Muscle hypertrophy induced by PRT is the product of
increased muscle fiber cross-sectional area [92] and is
accompanied by the enhancement of subcellular struc-
tures (e.g. mitochondrial morphology and density) and
increased substrate metabolism. This improvement in
the metabolic capacity of skeletal muscle underlies a
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range of beneficial adaptations that may be particularly
important to men treated with ADT.
Much of the current evidence regarding muscle adap-

tation in PRT is drawn from studies involving the elderly
population with sarcopenia, a similar cohort to those on
ADT [93]. In sarcopenia, there is a reduction in the
number of both slow-twitch type I and fast-twitch type
II muscle fibers and specific type 2 muscle fiber atrophy
[94], leading to a decline in muscle strength [95]. PRT in
this population has been shown to increase type IIa
muscle fiber cross-sectional area [94, 96]. Thus, this
physiological adaptation may improve physical function
and contribute to improved glucose metabolism due to
increased GLUT4 activity and enhanced insulin response
via skeletal muscle [97]. Furthermore, PRT also has
beneficial effects on mitochondrial function and proteos-
tasis, the loss of which is implicated in the pathophysi-
ology of muscle loss in sarcopenia [98].

PRT in the Treatment of ADT-Induced Adverse Effects
The benefits of isolated PRT in the treatment of ADT-
induced adverse effects have been shown in five random-
ized controlled trials to date [99–103]. The details of
each trial, including sample size, duration, type of inter-
vention and findings, are summarized in Tables 1 and 2.

Effect on Body Composition and Muscular Strength
PRT has been shown to be beneficial in the maintenance
of LBM during ADT. Alberga et al. [99] found that
patients randomized to the PRT group was able to main-
tain total LBM as versus the control group. Similarly,
Nilsen et al. [100] documented a site-specific increase in
LBM of the lower limb, upper limb and appendicular
region in patients receiving 16 weeks of PRT versus
control. Skeletal muscle biopsies were collected in one
trial [100]. Patients in the PRT group had a significant
increase in total muscle fiber cross-sectional area, with
the greatest effect noted in type II muscle fibers, as
versus those in the control group, who had an overall
reduction [104]. The number of myonuclei per type 1
fiber also increased in the PRT group.
There was a consistent improvement in both upper

and lower arm strength across four trials following 3 to
12 months of PRT [99–102]. Taafe et al. [102] also
reported an improvement in cardiorespiratory fitness in
the PRT group, as reflected by an increase in the 400 m
walk test.
PRT also has positive effects on FM. Alberga et al. [99]

reported that percent body fat significantly increased in
the control group versus the PRT group after 24 weeks.
Likewise, Winters-Stone et al. reported a reduction in
FM in patients undergoing PRT, as opposed to the
control group who gained fat mass [103].

Insulin Resistance and Type 2 Diabetes
The effect of PRT in men on ADT has not been exten-
sively evaluated. Only one trial by Winters-Stone et al.
[103] reported a reduction in serum insulin and IGF-1
levels in the PRT group compared to an increase in both
biomarkers in the control group.

Bone Mineral Density
Only two trials investigated bone mineral density (BMD)
changes following 16 [100] and 52 [105] weeks of PRT.
No differences in BMD outcomes were noted except
preservation of BMD at the L4 site in patients in the
PRT group versus the control group [105]. Bone turn-
over markers including osteocalcin and urinary deoxy-
pyridinoline did not change [105].

Psychological Effects
Physical exercise is recognised as a powerful modula-
tor of neuroplasticity and immune response with
immunosurveillance-enhancing properties [106]. Health-
related quality of life (HRQOL) was assessed in three stud-
ies [100–102]. Segal et al. [101] reported an improvement
in HRQOL following PRT while no differences were
found by Nilsen et al. [100]. Taafe et al. [102] found
improvement in fatigue and vitality after 6 and 12 months
of PRT.

Summary
In summary, PRT is beneficial in the treatment of ADT-
induced adverse effects, with positive effects on body
composition, muscle strength and cardiorespiratory fit-
ness and QOL. However, there is currently inconclusive
evidence establishing the relationship between PRT and
prostate cancer progression and recurrence.

The Effect of PRT on Cancer Growth Pathways
In a prospective cohort study following over 2000 men
with prostate cancer, it was found that men who were
physically active lived significantly longer. Three or more
hours per week of vigorous exercise was associated with
a 61% decreased risk of dying from prostate cancer
[107]. Although this association does not necessarily in-
dicate causation, it has led to interest in exploring mech-
anisms by which exercise might favourably influence the
biology of cancer cell growth. While it is known that
exercise can lower the risk of developing cancer, and is
associated with lower relapse rates and increased
survival, its precise anti-cancer effects have not been
fully established [89]. In the above, the important role of
PRT in the treatment of the adverse effects of ADT was
discussed. The next section provides a summary of
current literature regarding the potential benefits PRT
has on oncogenic pathways in prostate cancer. As there
is currently a paucity of studies in this area, we also
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incorporate evidence derived from studies of other path-
ologies and cancer types. This is outlined in Fig. 1.

Metabolic Effects
Muscle tissue produces many factors that are associated
with cancer progression and metastatic potential. When
muscle contraction occurs during exercise, adenosine
triphosphate (ATP) is consumed for energy derivation,
reducing the adenosine monophosphate (ATP/AMP) ra-
tio. This results in cellular activation of the liver kinase
B1- (LKB1-) adenosine monophosphate-activated protein
kinase (AMPK) pathway. AMPK inhibits the mammalian
target of rapamycin (mTOR) protein, which has been im-
plicated in prostate cancer progression [108]. Powerful
muscle contraction results in potent stimulation of AMPK
[109] which also results in translocation of the GLUT-4
membrane transporter in myocytes [110], leading to
glucose influx and lowering of serum glucose levels, which
has a favourable impact on prostate cancer prognosis
[111]. Stimulation of AMPK also suppresses tumour
growth, uptake of glucose and aerobic glycolysis of
tumour cells, known as the Warburg effect [112].
Both insulin and IGF-1 regulate cell proliferation, dif-

ferentiation, survival and apoptosis. These molecules
bind to their tyrosine kinase receptors and activate
several signalling pathways including phosphoinositide
3-kinase (PI3K)/protein kinase B (AKT)/mTOR resulting
in inhibition of apoptosis and promotion of cell growth
and angiogenesis [113]. The principal binding protein of
IGF-1, IGFBP-3, can reduce IGF-1 bioactivity further
inhibiting cancer growth [114]. IGFBPs not only modu-
late the bioavailability and signalling of IGFs but also

have independent actions on cell growth and survival
[49]. In-vitro studies have shown IGFBP-3 to inhibit pro-
liferation, adhesion, invasion and metastasis of prostate
cancer, independent of IGF-1 [115, 116]. IGFBP-3 is also
a potent inhibitor of MAPK signalling, which is impli-
cated in the development of castrate-resistant prostate
cancer [117]. Higher serum IGFBP-3 is associated with a
lower risk of developing advanced-stage prostate cancer
[53]. However, while PRT has been shown to reduce
plasma IGF-1 [103] and increase IGFBP-3 [114] levels in
prostate cancer, current epidemiological studies in
cancer populations show significant heterogeneity in the
response of the systemic IGF axis to exercise [118]. This
discrepancy may be attributed to baseline concentrations
of the IGF ligands, as Nishida et al. [119] showed that
participants with elevated baseline IGF-1 experienced
the greatest decrease in response to exercise. Further-
more, there are current limitations in oncological
research regarding the exercise response of autocrine, as
compared to systemic IGF-1 [118]. In older adults with
rheumatoid arthritis, PRT increased total lean and
appendicular muscle mass, which was associated with in-
creases in muscular IGF-1 and IGFBP-3 with no changes
in systemic levels [120]. Thus, more studies are required
on the specific tissue response of the IGF-1 axis to PRT
in prostate cancer.

Chronic Inflammation and Antioxidant Pathways
It is known that chronic inflammation in prostate cancer
is associated with prostate cancer progression and
poorer overall survival [81]. Stimulation of muscle con-
traction during PRT releases myokines that lower

Fig. 1 The potential inhibitory effects of resistance training on the prostate cancer growth pathway
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systemic inflammation [121], with 4–8 weeks of PRT re-
ducing serum IL-6 and TNFα in prostate cancer patients
[122]. While IL-6 derived from macrophages and adipo-
cytes has pro-inflammatory effects [121], muscle-derived
IL-6 can counteract TNF-α, which as previously dis-
cussed, is associated with significantly worse outcomes
in men with prostate cancer [81]. Muscle-derived IL-6
acts as an energy sensor, and improves overall metabolic
function by increasing insulin-stimulated glucose uptake
and whole-body fatty acid oxidation [121]. Thus, modu-
lation of systemic inflammation may represent one of
the pathways in which PRT may inhibit prostate cancer
progression.
Skeletal muscle is a major source of reactive oxygen

species (ROS) which are balanced by antioxidant en-
zymes such as catalase, glutathione peroxidase and
glutathione reductase [123]. ROS increase oxidative
stress on DNA, which can contribute to the initiation
and progression of prostate cancer [124]. In healthy
young men, resistance exercise performed regularly for 6
weeks decreased oxidative stress and increased glutathi-
one levels [125]. Prostate cancer patients who partici-
pated in vigorous activity had greater expression of the
nuclear factor erythroid 2-related factor 2 (Nrf-2) in
their normal prostate tissue compared to those who
were more sedentary. The Nrf-2 protein stimulates the
production of anti-oxidant enzymes, and studies in mice
show that loss of Nrf-2 correlates with increased ROS
and DNA damage leading to neoplastic transformation
of normal prostate tissue [126].

Adipokines and Myokines
Leptin is an adipokine which is a key regulator of appe-
tite control and body weight. It also has a role in energy
homeostasis, insulin secretion, angiogenesis and modula-
tion of innate and adaptive immune responses [127].
High circulating levels of leptin enhance growth of pros-
tate cancer cells in vitro [128] and PRT has been found
to significantly reduce serum leptin levels in obese men
[129]. Resistin is an adipokine known to upregulate pro-
inflammatory cytokines [130], and induce prostate can-
cer cell proliferation [131] while adiponectin has anti-
inflammatory properties [132]. PRT has been found to
reduce serum resistin levels in post-menopausal women
[133] while increasing serum adiponectin in obese young
men [134], but has not been extensively studied in the
cancer population.
Irisin is a myokine generated in the presence of

exercise-induced upregulation of peroxisome proliferator-
activated receptor gamma coactivator-1-alpha (PGC-1α).
It has a role in the regulation of energy metabolism,
browning of white adipocytes and improving insulin sensi-
tivity [135]. Irisin has been shown to significantly reduce
cancer cell proliferation, migration and viability in

malignant cancer cell lines without affecting non-
malignant cells. Specifically, irisin has cytotoxic effects on
prostate cancer cells [136]. It has been suggested that en-
durance training can increase circulating irisin levels in
human subjects [137]. Similarly, Zhao et al. [138] found
that 12 weeks of PRT significantly increased serum irisin
in older adults. Another potential pathway may involve
decorin, which is a proteoglycan and a myokine, stimu-
lated by resistance training [139]. Recent discoveries show
that decorin reduces cancer growth and dissemination
[140]. In prostate cancer cell models, decorin prevents an-
drogen receptor nuclear translocation and inhibits the
production of PSA [141]. In an animal model, systemic
administration of decorin significantly reduced prostate
cancer bone metastasis [142]. Thus, myokines released
during muscle contraction may have a direct effect redu-
cing cancer growth and spread.

Neurotrophic Pathway
Brain-derived neurotrophic factor (BDNF) is a member
of the neurotrophin family of growth factors which sup-
ports differentiation, maturation and survival of neurons
in the nervous system and a reduction in BDNF is impli-
cated in the development of depression [143]. BDNF is
also secreted by prostate cancer cells and has mitogenic
effects on the prostatic epithelium [144]. A 12-week re-
sistance training program in older male subjects was
found to increase circulating plasma BDNF levels which
returned to baseline after de-training [145]. Thus, the
BDNF signalling pathway may represent one of the mo-
dalities by which resistance exercise inhibits prostate
cancer cell growth.

Epigenetic Effects
Exercise has epigenetic effects on the phenotypic expres-
sion of various genes involved in cancer [89]. In men
with low risk prostate cancer, cell cycling and DNA
repair pathways were upregulated in those who partici-
pated in ≥ 3 h/week of vigorous activity compared to
those who did not [146]. MicroRNAs (MiRNA) are
small, endogenous non-coding RNA which can modify
protein expression through cleavage of specific target
mRNAs or through inhibition of their translation. In
prostate cancer, the presence of oncogenic miRNAs such
as miR-21 is predictive of cancer recurrence following
radical prostatectomy [147], and serum levels of miR-21
have been found to decrease immediately after resistance
exercise in healthy young men [148]. Dimauro et al.
[149] found that 12 weeks of moderate intensity,
explosive-type resistance training in an elderly cohort
counteracts shortening of telomeres, which are nucleo-
tides at the end of chromosomes that protect their
integrity. Telomere shortening is one of the earliest
molecular genomic events in prostate tumorigenesis and
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can generate genomic instability [150]. In men with early
prostate cancer, those who followed a comprehensive
lifestyle program, including regular exercise, had in-
creases in telomere length after 5 years [151].

Future Research Directions and Conclusion
To conclude, as the population ages and the number of
prostate cancer diagnoses increases across the popula-
tion, we are likely to encounter more of the deleterious
effects of ADT. There is now an endorsement by various
oncological societies to incorporate the use of physical
activity as synergistic medicine during prostate cancer
treatment. PRT is an exercise modality that has been
shown to be of benefit in the maintenance of body com-
position and muscle function during ADT, although it is
important to note that current evidence exhibits major
heterogeneity within and between studies in terms of
patient characteristics and type of PRT intervention.
Despite compelling evidence for the application of PRT
as standard of care in patients with prostate cancer,
there is still paucity in the literature regarding its use in
this population. This includes its benefits on specific
muscle groups, and its impact on physiological end-
points such as glucose and insulin metabolism, bone
turnover and the adipokines, myokines and inflamma-
tory cytokines affected during ADT, thus providing
scope for future research.
Furthermore, this review summarises the current body

of evidence on the potential signalling pathways modi-
fied either directly or indirectly by PRT, and its positive
effects on cancer growth and progression. As many of
these pathways are also implicated in the development
and progression of prostate cancer, more clinical studies
are required in this area to obtain a better understanding
of the mechanisms of benefit of PRT.
In summary, PRT is an exercise modality with great

potential in the treatment of ADT-induced adverse
effects. However, more research is required regarding its
impact on the physiological and biochemical pathways
involved in prostate cancer progression.
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