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ABSTRACT It is crucial to robustly estimate the number of speakers (NoS) from the recorded audiomixtures
in a reverberant environment. Some popular time-frequency (TF) methods approach this NoS estimation
problem by assuming that only one of the speech components is active at each TF slot. However, this
condition is violated in many scenarios where the speeches are convolved with long length of room impulse
response coefficients, which causes degenerated performance of NoS estimation. To tackle this problem,
a density-based clustering strategy is proposed to estimate NoS based on a local dominance assumption
of speeches. Our method consists of several steps from clustering to classification of speakers with the
consideration of robustness. First, the leading eigenvectors are extracted from the local covariance matrices
of mixture TF components and ranked by the combination of local density and minimum distance to other
leading eigenvectors with higher density. Second, a gap-based method is employed to determine the cluster
centers from the ranked leading eigenvectors at each frequency bin. Third, a criterion based on averaged
volume of cluster centers is proposed to select reliable clustering results at some frequency bins for the
classification decision of NoS. The experiment results demonstrate that the proposed algorithm is superior
to the existing methods in various reverberation cases with noise-free condition or noise condition.

INDEX TERMS Number of speakers, speeches, reverberation, audio source separation (ASS), local
dominance, density-based clustering.

I. INTRODUCTION
Audio source separation (ASS) targets at recovering
multiple mixing speech sources recorded by multiple micro-
phones [1]–[5]. Due to the existence of echoes in a real
recording environment, the convolutive ASS is usually
employed to depict the physical mixing mechanism of mul-
tiple speech source signals, where multiple speech sources
are convolved from a sequence of delayed version of linear
mixing system model [1], [3], [6]. In general, the mixing
channels, including the system parameters such as the number
of speakers (NoS), are unknown in advance. Therefore, it is
essential to estimate NoS from a recorded mixture signals
in the convolutive ASS [7], [8]. The NoS estimation can
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be categorized as the model selection problem in machine
learning, i.e., selecting the optimal model from a set of poten-
tial models as the best representation of data set [9], [10].
Some popular methods of model selection also can be found
in the literatures of [11]–[13]. Here, the model selection of
convolutive ASS is to find the best classification of speakers
from the recorded mixtures, where multiple speech sources
are convolved from a multiple delay mixing system. In this
paper, we mainly focus on the NoS estimation problem based
on the time-frequency (TF) domain.

In the area of NoS estimation, some works resort to devel-
oping various statistical methods to estimate NoS under the
reverberant scenario. In [14], the independent component
analysis (ICA) and a scaling technique are combined to
estimate the power of speech component and noise compo-
nent in order to distinguish speeches and noises. Then the
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correlation of component envelops are calculated to estimate
the NoS. Authors in [15] exploit various time delays from
the multi-speaker signals and count the NoS estimated from
the cross-correlation of the Hilbert envelops of the linear pre-
diction residuals of the mixtures. Based on statistical model,
[16] provides a clustering method named DEMIX to exploit
a local confidence measurement for the NoS detection.
However, this method is restricted to the non-reverberant case
because the room reverberation may affect the clustering per-
formance and result in erroneous estimation of NoS. Authors
in [17] transform the NoS estimation into a sparse recovery
problem by fitting the direction of arrival histogram with
von-Mises density functions. In addition, various methods
based on deep learning on counting the NoS have emerged,
such as [18]–[21]. In [22], a new NoS estimation architecture
is provided via combining the convolutional recurrent neural
networks and adequate input features of speeches, which is
designed to improve the performance of NoS estimation from
the single channel mixtures.

Several works try to introduce additional assumption
such as sparsity on the speeches in designing various
NoS estimation algorithms. A common assumption, namely,
approximately Window-Disjoint Orthogonal (WDO) [2], [3],
[23], [24] plays an important role in such NoS estimation
methods. The WDO condition assumes that only one speech
component is active while other components are silent at each
TF slot. Based on this assumption, [25] tries to cluster the
mixtures via a validation index combining compactness and
separation of cluster centers to determine the NoS. However,
the WDO assumption may not hold in practical circumstance
since a highly room reverberation may result in the inter-
nal interference problem as the mixtures are generated by
overlapping the speech components. Several works try to
solve this problem by relaxing WDO into a weaker ver-
sion, e.g., local dominance assumption [16], [26], [27]. The
local dominance assumption stems from the observation that
the spectrum of each speech component is at least locally
dominant once, i.e., one component is active while the oth-
ers are silent, in one short period of successive TF slots.
By exploiting the local dominance assumption, [28] converts
the NoS estimation problem to the rank identification of the
correlation matrix constructed from a probabilistic model,
which means additional statistical assumption is required for
this type of method. In general, the NoS estimation in a
reverberant environment is still a tricky problem, especially
when the room reverberation is high.

In this paper, we transform the estimate of NoS into
a clustering problem with the consideration of robustness.
Based on the assumption of local dominance, a combinational
NoS detector is proposed and consists of three steps. First,
the leading eigenvectors of local covariance matrices of mix-
tures (one eigenvector per covariance matrix) are extracted
and ranked based on two factors, i.e., local density and
minimum distance to other eigenvectors with higher density.
Second, the cluster centers are detected from the ranked
eigenvectors by a gap-based detector. Third, a criterion based

on the averaged volume of cluster centers is used to select
reliable clustering results in some frequency bins for the final
estimation of NoS.

The main contributions of this paper are as follows:
A1. The proposed density-based clustering exploits the

local dominance assumption by clustering the lead-
ing eigenvectors from the local covariancematrices.
It has been demonstrated that this strategy is less
sensitive to the interference of reverberation under
various NoS estimation experiments.

A2. The NoS estimation strategy has extended our pre-
vious work in [29], which is further enhanced by
combining some best clustering results in some
frequency bins. This superiority of clustering is
indicated by the averaged volume of cluster centers,
which further improves the performance of NoS
estimation.

The remainder of this paper is organized as follows. First,
the systemmodel and assumptions are discussed in Section II.
Next, the proposed algorithm of NoS estimation is pro-
vided in Section III. Experimental results are presented
in section IV. Finally, conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM DESCRIPTION
We consider the mixing speeches problem in a reverber-
ant scenario where N speech sources are recorded by M
microphones. Let x(t) = [x1(t), . . . , xM (t)]T , s(t) =
[s1(t), . . . , sN (t)]T and e(t) = [e1(t), . . . , eM (t)]T denote
the mixture signals, source signals and background noise
signals, respectively. The speeches and noises are assumed
to be uncorrelated in statistics. With the above notations,
we consider the ASS problem based on a convolutive linear
system model, i.e.,

x(t) = H ? s(t) =
L−1∑
τ=0

H(τ )s(t − τ )+ e(t), (1)

where ? is linear convolutive operator, H(τ ) ∈ RM×N is the
mixing matrix at time lag τ , L is the channel order and large L
indicates higher reverberation of the room. The elements of
H(τ ), denoted by hi,j(τ ), are the Room Impulse Response
coefficients (RIRs) from the jth source to the ith microphone.
In the short-time Fourier transformation (STFT) domain

with a window length F , the mixing process of speeches can
be approximately depicted by a multiplicative narrow-band
model [16], [25] in TF domain, i.e.,

xf ,d = Hf sf ,d + ef ,d , (2)

where xf ,d = [xf ,1d , . . . , xf ,Md ]T ∈ CM , sf ,d = [sf ,1d ,
. . . , sf ,Nd ]T ∈ CN and ef ,d = [ef ,1d , . . . , ef ,Md ]T ∈ CM are
the vectors of mixture, speech and noise signal components
at TF slot (f , d), respectively. Here, f ∈ {0, ..,F − 1} is
the frequency bin, and d ∈ {1, . . . ,D} is the time frame
index; Hf , [hf ,1, . . . ,hf ,N ] is an M × N mixing matrix
at frequency bin f , and its columns are called as steering
vectors. The objective of this paper is to estimate the number
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FIGURE 1. Illustration of local dominance assumption (N = 3). (a) f = 100, (b) f = 200, (c) f = 300.

of speakers (NoS) which is unknown in a priori by counting
the number of steering vectors from the system model (2).

In general, the speeches are assumed to be uncorrelated and
wide-sense quasi-stationary in a short time, e.g., 40ms-80ms
[30], [31]. Let P denote the number of frames in a short time
period (namely sub-block) and let the mixture TF vectors
be divided into Q sub-blocks, where Q = bD/Pc and b·c
is round down operator. Here, P should be selected at a
proper range to the wide-sense quasi-stationarity of speeches
at each sub-block. The selection of P will be discussed in the
experimental section. Calculate the local covariance matrix
of size M ×M by

Rx
f ,q ,

1
P
(
∑
d∈�q

xf ,dxHf ,d ), q = 1, . . . ,Q, (3)

where �q defines the set of frame indices at qth sub-block,
i.e.,�q = {q(P−1)+1, .., qP} and the cardinality of�q is P;
(·)H denotes the Hermitian transpose. Assuming the speeches
are independently distributed, Rx

f ,q can be approximately
expanded as follows [32]:

Rx
f ,q =

N∑
i=1

σ 2
f ,iqhf ,ih

H
f ,i + ε

2
f ,iq, (4)

where the local variance of source and noise are
σ 2
f ,iq ,

∑
d∈�q

sf ,id s∗f ,id ,

ε2f ,iq ,
∑
d∈�q

ef ,ide∗f ,id ,
(5)

and σ 2
f ,iq � ε2f ,iq, i = 1, . . . ,N ; (·)∗ refers to complex

conjugation.
The main assumption on the system model is as follows:
A1. For each speech component si(t) at each frequency

bin f , there exists at least one sub-block indexed by
ψi ∈ {1, . . . ,Q}, such that σ 2

f ,iψi > 0 and σ 2
f ,jψi = 0

for all j 6= i, i = 1, . . . ,N .
A1 is called as the local dominance assumption which

stems from [16], [26], [27], [33]. Here, an example is
shown in FIGURE 1 (a)-(c), to illustrate the local dominance
assumption. Note that from the frames pointed out by the

text arrows, it can be seen that only the local variance of
one speech is non-zero while the other’s local variances are
zeros in the TF domain. Such features can be observed at
the majority of frequency bins. In addition, there may be
more than one active speech component in other frames,
which is not allowed in WDO. Thus, the local dominance
assumption is much weaker than the WDO condition [2], [3]
as it assumes that each speech component dominates in at
least one sub-block (called as singular sub-block) within suc-
cessive TF slots. This assumption provides a new perspective
to estimate NoS via the clustering strategy.

Under such assumption, the covariance matrix at the ith
singular sub-block has a rank-one structure, i.e.,

Rx
f ,ψi = σ

2
f ,ψihf ,ih

H
f ,i + ε

2
f ,iq,

≈ σ 2
f ,ψihf ,ih

H
f ,i, i = 1, . . . ,N . (6)

Hence, we can extract all of the leading eigenvectors from
the local covariance matrices and clustering them into various
groups, where the number of cluster centers indicates the
NoS.

III. PROPOSED CLUSTERING AND DECISION SCHEME
As shown in FIGURE 2, the proposedNoS estimation scheme
will be performed at each frequency bin, which includes five
steps as follows:

Step 1.Utilize the mixture TF components Xf , [xf ,1,
. . . , xf ,D] to calculate a sequence of local covari-
ance matrices denoted by {Rx

f ,q}
Q
q=1;

Step 2.Extract the leading eigenvectors wisely from
{Rx

f ,q}
Q
q=1 to give Yf , [yf ,1, . . . , yf ,Q];

Step 3.Cluster Yf to give scores 0f , [γf ,1, . . . , γf ,Q];
Step 4.Utilize 0f and Yf to give the number of clusters Nf

and cluster centers Cf , [cf ,1, . . . , cf ,Nf ], respec-
tively;

Step 5.Determine the final NoS by integrating the cluster-
ing results from a selected frequency bins.

It is worth noting that the first 4 steps are repeated from
f = 0 to f = F/2. The details of each step are provided in
the following parts.

VOLUME 7, 2019 176543
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FIGURE 2. Flow chart of proposed density-based clustering scheme.

FIGURE 3. Scatter plot of leading eigenvectors for Case (M, N) = (2, 3) based on Database A. (a) f = 100, (b) f = 200, (c) f = 300.

A. LEADING EIGENVECTOR EXTRACTION
The eigenvector decomposition (EVD) is performed for each
local covariance matrix Rx

f ,q, i.e.,

Rx
f ,q = Uf ,q3f ,qUH

f ,q. (7)

The eigenvector of Uf ,q corresponding to its largest
eigenvalue is extracted as the leading eigenvector, i.e.,
yf ,q , Uf ,q(:, 1), q = 1, . . . ,Q. Based on the assumption of
local dominance, the link between the leading eigenvectors
at the singular sub-blocks of {ψi}Ni=1 and the steering vectors
of Hf is given by

yf ,ψi =
1

‖hf ,i‖2F
hf ,i, i = 1, . . . ,N . (8)

In (8), the leading eigenvector yf ,ψi represents a rescaling ver-
sion of steering vector. If we can extract such local covariance
vectors {yf ,ψi}

N
i=1 from the set of {yf ,q}

Q
q=1, we can classify

the directions of steering vectors and count the number of
clusters. Next, a density-based clustering scheme is employed
to identify yf ,ψi from Yf , [yf ,1, . . . , yf ,Q].

B. DENSITY-BASED CLUSTERING
To begin with, we show that the density-based clustering
method [34] is suitable to estimate NoS from the lead-
ing eigenvectors. For a better observation on the distribu-
tion of leading eigenvectors, the leading eigenvectors are
transformed from Yf into a two-dimensional space while
the Euclidean distance of pair-wise leading eigenvectors.

The function ‘mdscale’ inMatlab is employed to illustrate the
distribution of leading eigenvectors aremaintained. As shown
in FIGURE 3 (a)-(c), the blue point and red point refer to
the relative spatial position of leading eigenvector and perfect
steering vector, respectively. It can be observed that there
are two factors of perfect steering vector in the scatter plot:
1) each perfect steering vector has a high local density of lead-
ing eigenvectors; 2) each perfect steering vector is far away
from other steering vectors. In fact, such characteristics can
be observed across the major part of frequency bins, which is
determined by the sparsity of speech signals and the inde-
pendence of steering vectors [27]. Specifically, the speech
signals are usually sparse and local dominant at some singular
sub-blocks. Thus, the leading eigenvectors might concentrate
nearby the perfect steering vector, i.e., higher local density of
perfect steering vector. Moreover, the distribution of perfect
steering vector is determined by the RIRs function, which is
usually assumed to be independent to all of steering vectors.
Thus, the perfect steering vector should be far away from
other steering vectors, i.e., large distance of any points with
higher density. As described in [34], the cluster centers in
a data set are: locally dense and far from other centers.
Based on these two distinct features, we try to classify the
leading eigenvectors via the density-based clustering to rank
the clusters from the data samples.

First, for each eigenvector, its local density and minimal
distance to other potential centers are computed in Yf . These
two factors are calculated separately and then integrated into
the classification decision of cluster centers. We denote a
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FIGURE 4. Illustration of density-based clustering for Case (M, N) = (2, 3), Database A. (a) Decision graph, (b) Score graph, (c) Curve of 92
f ,ln

.

pair-wise distance matrix as 8f , whose component is calcu-
ated by

φf ,qk ,‖ yf ,q − (yHf ,qyf ,k )yf ,k ‖
2
F , q, k = 1, ..,Q, (9)

where ‖ · ‖F is Frobenius norm.
Second, the local density ρf ,q of yf ,q is computed by using

the sum of Gaussian kernel functions,

ρf ,q ,
∑
k 6=q

e
−
φf ,qk
τ2c , (10)

where τc is the bandwidth or the cutoff distance. The local
density in (10) is identical to the kernel density estimator used
frequently in statistics. For the bandwidth of the Gaussian
kernel, one use AMISE (asymptotic mean integrated squared
error) to find its optimal value [35]. However, in the proposed
algorithm, the parameter τc is empirically chosen to account
for around 6% to 8% of the distances in [34]. In our experi-
ment, it works well to calculate the local density from leading
eigenvectors of Yf .
Third, for each eigenvector yf ,q, we obtain the minimal

distance between yf ,q and other eigenvectors with higher
local density by

δf ,q = min
k

(φf ,qk ), ∀k : ρf ,k > ρf ,q (11)

as the minimal distance to other potential centers. Note that
the eigenvector with the highest local density, denoted by
yf ,q∗ , has the assigned δf ,q∗ as the largest distance in 8f .
Finally, ρf ,q and δf ,q are combined to obtain a score for
ranking the leading eigenvector of yf ,q, i.e.,

γf ,q = ρf ,q × δf ,q. (12)

The score reflects the possibility of leading eigenvector being
a cluster center, i.e., the higher the score of γf ,q is, the more
likely the leading eigenvector being a cluster center for yf ,q,
and vice versa.

C. GAP-BASED DETECTOR
Inspired by the work of [36], we utilize the scores (12) to
identify the cluster centers via a gap-based detector. The
scores are sorted in descending order as follows,

0f , [γf ,l1 , . . . , γf ,lQ ], ∀ li ∈ {1, ....,Q}, i = 1, . . . ,Q.

(13)

It is assumed that the scores of true and fake cluster centers
should satisfy that

γf ,l1 ≥ · · · ≥ γf ,lN > γf ,lN+1 = · · · = γf ,lQ = η, (14)

where η is a small value and there exists a noticeable
gap between γf ,lN and γf ,lN+1 . Based on this observation,
the number of clusters can be detected by searching the gap
in the following manner. First, the difference of neighboring
scores is caculated by

4γf ,li = γf ,li − γf ,li+1 , i = 1, . . . ,Q− 1. (15)

Second, the variance of 4γf ,ln is caculated by

ψ2
f ,ln =

1
Q− n

Q−1∑
i=n

(4γf ,li −
1

Q− n

Q−1∑
i=n

4γf ,li )
2. (16)

Third, we define the ratio of neighboring variance of ψ2
f ,ln as

follows,

92
f ,ln ,

ψ2
f ,ln+1

ψ2
f ,ln

. (17)

Then, the number of clusters at frequency bin f can be deter-
mined by

Nf = argmin
n=1,...,Q−2

92
f ,ln . (18)

When Nf is determined, we further identify the clusters by
extracting the leading eigenvectors with top Nf scores such
that Cf , [yf ,l1 , . . . , yf ,lNf ].

As an example, it can be seen in FIGURE 4 (a)-(c) that the
number of cluster centers can be automatically detected in
Case (M ,N ) = (2, 3) when f = 52. FIGURE 4 (a) provides
a decision graph of ρf ,q and δf ,q given by (10) and (11). It is
observed that three singular leading eigenvectors are distinc-
tive from other leading eigenvectors with higher ρ and δ.
FIGURE 4 (b) illustrates the score of leading eigenvector
given by (12) and it can be seen that three singular leading
eigenvectors occupy the top scores. FIGURE 4 (c) shows the
curve of 92

f ,ln given by (17) and it can be seen that the index
with the lowest value correctly indicates NoS at frequency
bin f .
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FIGURE 5. Histogram of NoS in selected frequency bins (frequency bins with top 35% of largest Vf ), RT60 = 150ms, Database A.
(a) Case (M, N) = (2, 3), (b) Case (M, N) = (3, 3), (c) Case (M, N) = (3, 4).

D. FINAL NOS DECISION
It is worth noting that the energy of speech TF components is
usually strong in certain frequency bins, e.g., lower frequency
bins, while the energy is relative weak in other frequency
bins. Hence, in the final NoS decision, it is necessary to select
reliable results from some frequency bins. It is observed that
the distribution of cluster centers can substantially impact the
performance of gap-based detection. For example, if the clus-
ter centers are far from each other, the gap between the true
cluster centers and fake ones is much more apparent, which
also means that the energy of speech components are more
concentrated at this frequency bin. Based on this observation,
we define the following confidence measurement [37],

Vf =
det|CfCH

f |

Nf
, (19)

where det|·| refers the determinant operation. Vf can be inter-
preted as the average volume of cluster centers of Cf . The
larger the Vf is, the further apart the centers, and therefore the
more reliable NoS decision. By using the measurement Vf ,
we select a preset portion of frequency bins (e.g. 35%) with
the highest confidence and the most frequent estimate of NoS
in these frequency bins is the final NoS.

FIGURE 5 (a)-(c) illustrate an example in terms of the
histograms of estimated number of clusters in selected fre-
quency bins (top 35% with highest Vf ) for Case (M ,N ) =
(2, 3), (3, 3), (3, 4), respectively. We see that the index corre-
sponding to the highest rate of occurrence corresponds to the
correct NoS in all cases. The proposed confidence measure-
ment of NoS provides an effective evaluation to enhance the
performance of NoS estimation. This criterion enforces the
final NoS decision performance based on the reliable cluster-
ing results from those frequency bins with higher averaged
volume. Finally, the implementation of NoS estimation is
concluded in Algorithm 1.

IV. EXPERIMENT RESULTS
A. EXPERIMENT SETTINGS
We briefly introduce the experiment settings used for the pro-
posed algorithm. First, two public databases are introduced as
follows.

Algorithm 1 Implementation of NoS Estimation
1: Input: Xf = [xf ,1, . . . , xf ,D], f = 0, . . . ,F/2, d =

1, . . . ,D.
2: for f = 0 to F/2 do
3: for q = 1 to Q do
4: Calculate R̂x

f ,q by (3).
5: Calculate yf ,q by (7).
6: end for
7: Calculate similarity matrix 8f by (9).
8: for q = 1 to Q do
9: Calculate ρf ,q by (10).
10: Calculate δf ,q by (11).
11: Calculate γf ,q by (12).
12: end for
13: Calculate

a
γf ,li by (15).

14: Calculate ψ2
f ,ln by (16).

15: Calculate 92
f ,ln by (17).

16: Calculate Nf by (18).
17: Calculate Vf by (19).
18: end for
19: Output: Select most frequent occurrence of {Nf }

F/2
f=0 from

a preset portion (e.g. 35%) of top {Vf }
F/2
f=0 as the final

decision of N̂ .

• Database A is a public benchmark audio database pro-
vided in [38], where the pure speeches are recorded
from a number of female and male speakers with a
sampling rate Fs = 16 kHz. In this database, there
are 16 clean speeches independently recorded by 8 male
speakers and 8 female speakers. The duration of each
speech signal is set as 20 seconds. The room size is set
as 4.45m×3.55m×2.5m. The location of microphones
are (2m, 2.5m, 1.155m), (2m, 2.55m, 1.155m) and
(2m, 2.6m, 1.155m), respectively. The location of
speakers are (3.2m, 2.0m, 1.6m), (3.2m, 2.4m, 1.6m),
(3.2m, 2.8m, 1.6m) and (3.2m, 3.2m, 1.6m), respec-
tively. The artificial function [39] are utilized to sim-
ulate Room Impulse Response coefficients RIRs) by
setting various parameter of RT60, e.g., 100ms, 150ms,
200ms, 250ms, respectively. (RT60 is defined as the

176546 VOLUME 7, 2019
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FIGURE 6. Illustration of Database A. (a) RIRs from the first speaker to the first microphone (200ms), (b) Speeches, (c) Mixtures.

transmission time of signal decay by 60 dB, which
is crucial to reflect the reverberation of the room.)
These clean speeches are convolved with the generated
RIRs to give mixtures by (1). The RIRs function, three
clean speeches and two-channel mixtures are illustrated
in FIGURE 6 (a)-(c), respectively. Three typical cases
with various speakers and microphones are tested in
this database, i.e., Case (M ,N ) = (2, 3), (3, 3) and
(3, 4), respectively. In each case, N speeches are com-
pletely selected from either 8 male speakers or 8 female
speakers. All combination of speeches, i.e., 2CN

8 , are
tested for each case.

• Database B is a data collection recorded by a group
of speeches involving various background noises [40].
In this database, the clean speeches are selected from 3
male speakers and 3 female speakers. In addition,
various real noises, e.g., subway car noise, cafeteria
noise and square noise, are provided. The speeches
and noises are separately recorded via omni-directional
microphones spaced by 8.6cm. The RIRs with RT60 is
set as 200ms. The speeches and noises are recorded
with a sampling rate Fs = 16 kHz, and the duration
of recorded mixtures is truncated to 10 seconds. The
mixtures include two separated parts, i.e., one is the
convolved speeches and the other is the recorded real
noises. These two parts are added in a linear superposi-
tion as described in (1). Two cases with various speak-
ers and microphones are tested in these experiments,
i.e., Case (M ,N ) = (2, 3) and Case (M ,N ) = (4, 3).
As illustrated in FIGURE 7 (a), the microphone arrays
are located in a line with identical length of 8.6cm.
InCase (M ,N ) = (2, 3), microphones of No. 1 and 2 are
employed to record the mixtures. In Case (M ,N ) =
(4, 3), all microphones are employed to record the mix-
tures. Three type of background noises of subway car,
cafeteria and square are illustrated in FIGURE 7 (b)-(d),
respectively. In order to make the database large
enough, we have 40 mixture files by combining various
locations, sources, microphones and speech samples.
Particularly, in the scenarios of cafeteria and square,
we have 2 locations × 2 type of speeches × 2 type

of microphones × 2 samples = 16 mixtures; in the
scenario of subway, we have 1 location×2 speeches×2
microphones× 2 samples = 8 mixtures.

Overall, database A and B provide the NoS estimation
experiments under noise-free condition and noise condition.
In addition, the Signal-to-Noise Ratio (SNR) is introduced to
evaluate the level of noises as follows,

SNR = 10log10
‖H ? s(t)‖2F
‖e(t)‖2F

(dB). (20)

Second, the implementation settings of the proposed algo-
rithm are given as follows. The window function is selected
as Hanning window, the length of STFT is fixed at 2048 and
the STFT frame shift is set as 128 samples (8ms). Suppose
the duration time of recorded mixtures is 10 seconds, then
the number of frames D is calculated as 1234. The number
of frames P at each sub-block is set as 9, then the number of
local covariance matrices Q is calculated as 137. In this case,
the time duration of each sub-block is 73 ms, which is at the
range of 40ms-80ms of wide-sense quasi-stationary assump-
tion [30], [31]. All the experiments are carried out by a Mac-
Book Air laptop equipped with Intel Core i5, CPU 1.8 GHz
and macOS 10.13.6 system, and the programs are coded by
MatlabR2018b. The code of proposed algorithm can be found
in the following website: https://staff.scem.uws.edu.au/
~yiguo/code/sourcenumber.zip.

Third, two state-of-the-art methods are employed as a fair
comparison of proposed algorithm, i.e., DEMIX and Simplex
analysis based method [16], [28]. The proposed algorithm
and DEMIX can be categorized as clustering based method
while the simplex analysis based method is a rank detection
method from a constructed correlation matrix. The set up of
these two baseline methods are similar to the proposed algo-
rithm. It is worh noting that, in the Simplex based analysis
method, the threshold of selecting the rank of constructed
correlation matrix is set empirically as recommended in [28].

B. NOS ESTIMATION RESULTS UNDER
NOISE-FREE CONDITION
In this experiment, various NoS estimation tasks are
tackled based on database A. First, the final NoS decision
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FIGURE 7. Illustration of Database B. (a) Setting of microphone arrays, (b) Subway car noises,
(c) Cafeteria noises, (d) Square noises.

TABLE 1. Running time (Sec.) of provided algorithms under Database A.

performance is tested by varying the percentage of selected
frequency bins from 0% to 100%. FIGURE8. (a)-(c) illustrate
the percentage of correct NoS estimation along with the
percentage of selected frequency bins in Case (M ,N ) =
(2, 3), (3, 3) and (3, 4), respectively. It can be observed that
the proposed algorithm achieves the best NoS estimation
accuracy when retaining top 20% to 50% frequency bins with
the largest Vf ’s, and this range is our recommendation for the
final NoS decision. The reason is that the speech components
concentrate only on some frequencie bins where the local
dominance assumption holds and cluster centers are far apart,
while in other frequency bins, the local dominance assump-
tion breaks down and the speech components are entangled
with each other, generatingmany fake cluster centers. In addi-
tion, FIGURE 8 (a) and (b) show that increasing the number
of microphones can substantially improve the performance of
NoS estimation when N is fixed.

The running time of the proposed algorithm, DEMIX and
Simplex based method are listed in Table 1. It can be seen
that the complexity of these algorithms are not very high
from the perspective of running time. The results of aver-
aged accuracy of NoS estimation are listed in Table 2 with

various RT60 for Case (M ,N ) = (2, 3), (3, 3) and (3, 4),
respectively. It is quite clear that the accuracy of NoS esti-
mation of all algorithms decreases when RT60 increases in
all cases. DEMIX does not work well in all cases, especially
when the NoS is greater than the number of microphones.
Simplex analysis based method achieves better results in
all test cases comparing to DEMIX. The NoS estimation
performance of the proposed algorithm is consistently better
than that of other methods, especially when RT60 is high.
Table 2 shows the robustness of the proposed algorithm in
a high reverberant environment.

C. NOS ESTIMATION RESULTS UNDER
VARIOUS NOISE CONDITION
In this experiment, a more challenge task of NoS estimation
with consideration of various noises are tackled based on
database B. As shown in the third row of Table 3, the SNR
level of subway car noise and square noise are similar while
cafeteria noise is relatively lower. In this case, the top 50%
frequency bins with the largest Vf ’s are retained to strengthen
the performance of NoS estimation. The results of averaged
accuracy of NoS estimation are listed in Table 3 with various
noise condition. It is obvious that the NoS estimation accu-
racy of all algorithms deteriorate slightly comparing to the
noise-free condition in the experiment A. Moreover, increas-
ing the number of microphones can substantially improve the
NoS estimation performance comparing to Case (M ,N ) =
(2, 3) and (4, 3). DEMIX and Simplex analysis based method
achieve better results in the cases of cafeteria noise and square
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FIGURE 8. Precision of NoS estimation comparing to the percentage of selected frequency bins. (a) Case (M, N) = (2, 3),
(b) Case (M, N) = (3, 3), (c) Case (M, N) = (3, 4).

TABLE 2. Percentage (%) of correct estimation of NoS under Database A.

TABLE 3. Percentage (%) of correct estimation of NoS under Database B.

noise while the NoS performance are not well under the case
of Subway car noise. On the contrary, the NoS estimation
performance of the proposed algorithm is less sensitive to the
interference of noises, especially when the number of micro-
phones increases to 4. It is worth noting that the proposed
algorithm correctly identifies the NoS at each test, which
shows the robustness of the proposed algorithm in a noisy
environment.

V. CONCLUSION
A new NoS detector in reverberant environment has been
proposed in this paper. Based on the local dominance assump-
tion, the NoS estimation is transformed into a density-based
clustering problem by exploiting the leading eigenvectors
from the local covariance matrices of mixtures in TF domain.
A frequency bins selection procedure is also proposed to
improve the final NoS estimation so that the most reliable
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NoS estimation results are retained from the frequencie bins
where the local dominance assumption holds. The experiment
results demonstrate the superiority of the proposed algorithm
to the state-of-the-art methods in various cases. In the future,
we will extend the study of NoS estimation in TF domain
from a linear narrowband system to a convolutive narrowband
system, which is more suitable to depict a highly reverberant
scenario [41].
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