
 
 

Characterisation of Eucalyptus grandis SWEET 

and SWI/SNF proteins during symbiosis with 

Pisolithus microcarpus 

 

Christian Benedict Aguirre 

 

 

 

 

 

 

 

Masters of Research Thesis  

 

Masters of Research 

 

 

 

 

 

 

Western Sydney University  

April 2017 



 
 

Acknowledgements 

I would like to take this opportunity to thank all who had been helping me for 

the past two years. This work is deeply indebted to my supervisors Professor 

Jonathan Plett, Krista Plett, Ian Anderson and all other staff and students 

with whom I have been privileged to work with over the last two years. 

Without their guidance, critics and encouragements, I would not have 

achieved as much in plant-microbe research. 

 

I am truly thankful for the precious opportunities Dr Plett had provided me 

throughout my years at the Hawkesbury Institute for the Environment (HIE). I 

would also like to thank my thesis committee, Professor Markus Riegler, 

Professor Elise Pendall and Professor Jennifer Morrow for reviewing my 

thesis proposal and arranging time for my oral presentation. My special 

thanks also goes out to Dr Johanna Wong, Professor Jeff Powel, Professor 

Jenn Walker, Professor Suzanne Donn, Professor Barbara Drigo, Professor 

Sara Hortal Botifoll and Professor Jenn Wollemi Pine Researcher for their 

expert guidance throughout all my time at HIE.  

 

I humbly acknowledge the assistance of fellow members at HIE who had 

consistently provided me a lot of supports, encouragements and laughter. 

Special thanks to Jonathan Plett, Krista Plett and Johanna Wong who had 

given technical support and solutions for the Yeast I and II analyses, cross 

sectioning of roots, dsiRNA production and carbon capture analyses. Finally, 

special thanks to my family for all the love and support they give me. Their 

support at every stage in this master degree was very important to me.  

       AGUIRRE, Christian Benedict 



 
 

Statement of Authentication 

The work presented in this thesis is, to the best of my knowledge and belief, 

original except as acknowledged in the text. I hereby declare that I have not 

submitted this material, either in full or in part, for a degree at this or any 

other institution. All experimental work reported in this thesis was performed 

by the author, unless stated otherwise. 

 

 

AGUIRRE, Christian Benedict 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



i 
 

 

Table of contents 
 

 
  

Content   Page 

List of Tables 
 iv 

List of Figures 
 v 

List of Abbreviations 
 vii 

Abstract 
 x 

 
  

Chapter 1 Introduction 1-26 

1.1 Mutualistic and Pathogenic Microbe 
Interactions 

1 

1.1.1 Ectomycorrhizal symbiosis 1 

1.1.2 Pathogenic microbes 5 

1.1.3 Host plant 7 

1.2 Plant defences against microbes 8 

1.3 Microbe Responses: Effectors 10 

1.4 Sugar Transport in Plants 15 

1.4.1 Sugar transporters 15 

1.5 Transcriptional control and the 
SWI/SNF complex 21 

1.6 Overview of Research 25 

Chapter 2 
Characterisation of Eucalyptus 
grandis hexose transporters 
implicated in symbioses with fungi 27-62 

2.1 Introduction 27 

2.2 Materials and methods 32 

2.2.1 Plant and fungal growth conditions 32 

2.2.2 
Generation of SWEET constructs and 
mutant eucalypts, and 13C transfer 
tests 

33 

2.2.3 RNA extraction and Quantitative PCR 
analysis 

34 

2.2.4 Identification of SWEET genes in E. 
grandis and other plant species 

35 

2.2.5 Construction of the phylogenetic tree 36 

2.2.6 Yeast complementation 37 



ii 
 

2.2.7 Glucose efflux test 38 

2.2.8 GFP localisation 39 

2.3 Results 41 

2.3.1 Phylogenetic relationships of E. grandis 
SWEET-like transporters 

41 

2.3.2 SWEET gene expression in E. grandis 
tissues 

43 

2.3.3 
E. grandis roots exhibit different 
morphologies when in contact with 
different fungal lifestyles 

45 

2.3.4 
SWEET-like genes exhibit differential 
expression in E. grandis roots during 
challenge by different fungi 

47 

2.3.5 
E. grandis SWEET-like genes encodes 
STPs that localise to the plasma 
membrane of plant cells 

49 

2.3.6 E. grandis SWEET-like proteins can act 
as sugar symporters 

51 

2.3.7 
Altered expression of EgSWEET-like 
genes in E. grandis roots affects carbon 
export from E. grandis roots 

54 

2.4 Discussion 59 

Chapter 3 
Characterisation of Pisolithus albus 
effector MiSSP9.7 and its interactant, 
Eucalyptus grandis SWI3D 63-86 

3.1 Introduction 63 

3.2 Materials and methods 67 

3.2.1 MiSSP9.7-GFP production and 
absorption by eucalypt root cells 67 

3.2.2 
Yeast One- and Yeast Two-Hybrid 
analyses 68 

3.2.3 BiFC testing in E. grandis 69 

3.2.4 Construction of the phylogenetic tree 70 

3.2.5 Plant and fungal growth conditions 70 

3.2.6 RNA extraction and Real Time 
Quantitative PCR (RT-QPCR) 71 

3.2.7 Generation of SWI3D constructs and 
transgenic eucalypts 71 

3.2.8 

Preparation of double stranded 
interfering RNAs (dsiRNAs) and 
treatment of roots undergoing 
colonization by P. albus. 

73 



iii 
 

3.2.9 
Microscopy of transgenic/dsiRNA 
treated eucalypt roots and Hartig net 
measurements 

74 

3.3 Results 75 

3.3.1 MiSSP9.7-GFP encodes an effector 
protein that enters plant root cells 

75 

3.3.2 
MiSSP9.7 interacts with a chromatin 
remodelling complex (CRC) subunit of 
E. grandis 

77 

3.3.3 Phylogenetic relationships of E. grandis 
SWI3 proteins 

80 

3.3.4 
SWI3 gene expression in E. grandis 
roots over a two-week time course of 
colonization by P. albus 

82 

3.3.5 
Altered expression of MiSSP9.7 
significantly affects P. albus Hartig net 
development during colonisation 

84 

3.4 Discussion 87 

Chapter 4 Conclusion and Future Perspective 90-91 

References 
 92-108 

 

 

 

 

 

 

 

 

 

 

 

 

 



iv 
 

List of tables 

Table Title Page 

Table 1. 

Forward (F) and Reverse (R) primers used for 
overexpression of Euc.grK02694 and 
Eucgr.B00363 using 35s promoter, and 
repression of Eucgr.K02688 and 
Eucgr.L02615 using RNAi knockdown. 

58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

List of figures 

Figure 
Title Page 

Figure 1 
Representational diagram of a transverse 
cross-section of a root undergoing 
colonisation by an ECM fungus 

4 

Figure 2 Representational diagram of the intracellular 
distribution of plant sugar transporter proteins 16 

Figure 3 The subunits of Arabidopsis thaliana 
SWI/SNF complex 22 

Figure 4 Phylogenetic relationships between SWEET-
like proteins collected from different species. 42 

Figure 5 
Expression profile of 52 SWEET-like gene 
throughout different tissue in E. grandis: 
Shoot apex, stem, leaves and root. 

44 

Figure 6 Images taken of 2 weeks old and E. grandis 
under different conditions. 

46 

Figure 7 

Regulation of 52 E. grandis SWEET genes 
when E. grandis associates with: parasites 
(Phytophthora, Armillaria and S. granulatus), 
a non-Eucalyptus coloniser (F. oxysporum 
and S. luteus), or a mutualistic fungus (P. 
microcarpus strains). 

48 

Figure 8 

Localisation of SWEET-like proteins 
Eucgr.K02694, Eucgr.K02688, 
Eucgr.B00363, Eucgr.L02615-GFP fusions in 
yeast (VW4000). 

50 

Figure 9 

Transport activity of EgSWEET K02694, 
K02688, B00363, L02615 in yeast. These 
SWEET proteins complemented VW4000 S. 
cerevisiae mutants (which lacked 18 hexose 
transporter genes). 

52 

Figure 10 

Glucose export activity of heterologously 
expressed Eucgr.K02694, Eucgr.K02688, 
Eucgr.B00363, Eucgr.L02615 SWEET-like 
sugar transporter proteins in EBY.VW4000 
yeast. 

53 



vi 
 

Figure 11 
Amount of 13C obtained by different types of 
fungi when associating with wildtype E. 
grandis relative to each respective control 
over a time period of 2 weeks.  

56 

Figure 12 Amount of 13C obtained by SI-12 when 
associating with mutant eucalypt relative to 
control SI-12 over a time period of 2 weeks. 

57 

Figure 13 
Images of MiSSP9.7-GFP (i.e. Pa683008-
GFP) and Propidium Iodide (PI) stain taken 
using confocal microscopy. 

76 

Figure 14 
MiSSP9.7 (i.e. Pa683008) interacts with E. 
grandis nuclear protein SWI3D 
(Eucgr.I01260). 

78 

Figure 15 In vivo BiFC proof of the interaction between 
683008 and SWI3D.  

79 

Figure 16 Phylogenetic relationships between SWI3 
proteins collected from different species.  

81 

Figure 17 RT-QPCR of SWI3 genes in E. grandis over a 
time course of 2 weeks. 

83 

Figure 18 

Altered expression of SWI3D (A) or 
repression of MiSSP9.7 (Pa683008)by 
dsiRNA (B) and its effect on Hartig net 
development. 

85 

Figure 19 Percent mycorrhization of SWI3D (i.e. 
Eucgr.I01261) mutant eucalypts. 

86 

 

 

 

 

 

 

 

 

 

 



vii 
 

List of abbreviations 

∆d13C  Change in amount of 13C 

13C   Carbon isotope 13 

13CO2   Carbon (isotope 13) dioxide 

ABA   Abscisic acid 

AM   Arbuscular mycorrhizal 

Avr   Avirulence 

AzA   Azelaic acid 

BiFC   Bimolecular fluorescence complementation 

BR   Brassinosteroids 

BzSA   Benzoylsalicylic acid 

cDNA   Copy deoxyribonucleic acid 

CK   Cytokinins 

CO2   Carbon dioxide 

CSIRO Commonwealth Scientific and Industrial Research 

Organisation 

DA   Dehydroabietinal 

DNA   Deoxyribonucleic acid 

dsiRNA  Double stranded interfering ribonucleic acid 

ECM   Ectomycorrhizal 

ESL   ERD six-like transporters 

ET   Ethylene 

ETI   Effector-triggered immunity 

Fru   Fructose 

GA   Gibberellin 



viii 
 

GFP   Green fluorescent protein 

Glu   Glucose 

H2O2   Hydrogen peroxide 

HR   Hypersensitive response 

IAA   Indole-3-acetic acid 

INT   Inositol transporter 

JA   Jasmonic acid 

LiAC   Lithium acetate 

MiSSP  Mycorrhizal induced small secreted protein 

MMN   Modified Mylin Norkin 

MS medium  Murashige and Skoog medium 

MST   Monosaccharide transporters 

N   Nitrogen 

NLP   Nep1-like proteins 

P   Phosphorus 

PAMPs/MAMPs Pathogen/Microbe associated molecular patterns 

PBS   Phosphate-buffered saline 

PCR   Polymerase chain reaction 

PEG   Polyethylene glycol 

pGlcT   Plastidic glucose transporter 

pH   Salinity 

PI   Propidium Iodide 

PiP   Pipecolic acid 

PMT   Polyol monosaccharide transporter 

PR   Pathogenesis-related 



ix 
 

PRR   Pattern recognition receptors 

PTI/MTI  PAMP/MAMP-triggered immunity 

QPCR   Quantitative polymerase chain reaction 

RFP   Red fluorescent protein 

RNA   Ribonucleic acid 

RNAi   Ribonucleic acid interference 

ROS   Reactive oxygen species 

RT-QPCR  Real time-quantitative polymerase chain reaction 

SA   Salicyclic acid 

SAR   Systemic acquired resistance 

SDS   Sodium dodecyl sulphate 

SLs   Strigolactones 

STPs   Sugar transporter proteins 

Suc   Sucrose 

SUT   Sucrose transporters 

SWEET  Sugars Will Eventually be Exported Transported 

SWI/SNF  Switch/Sucrose Non-Fermenting 

TAL   Transcription activator-like 

TMT   Tonoplast membrane transporter 

VGT   Vacuolar glucose transporter 

WT   Wild-type 

YFP   Yellow fluorescent protein 

YIIH   Yeast two-hybrid 

YPM   Yeast extract peptone with maltose (growth medium) 

WGA-FITC  Wheat germ agglutinin-Lectin 



x 
 

Abstract 

Eucalyptus grandis, an economically important bioenergy tree, is constantly 

bombarded by different fungal lifestyles seeking to acquire photosynthetically 

fixed sugar. How the plant immune system filters beneficial fungi from 

pathogenic is poorly understood.  This thesis investigates two aspects of 

plant immunity: shuttling of sugar and interference by fungal effectors.  Plant 

sugars are known to play a dual role in plant-microbe interactions: they can 

either feed the microbe with growth-limiting carbon or they can act as fuel for 

plant secondary metabolism and, subsequently, plant defence.  In my first 

study I consider how hexose SWEET transporters respond at the 

transcriptomic level in E. grandis roots during challenge by different microbes 

covering the fungal lifestyles from pathogenic through mutualistic.  Further, I 

characterise four E. grandis SWEET proteins that share sequence homology 

to previously identified SWEET proteins and determine their cellular 

localization, their sugar transport capabilities and their role in shuttling carbon 

during plant-microbe interactions.  In the second part of my thesis, I 

investigate how a mutualistic fungus attempts to manipulate plant defences 

through the use of effector like proteins.  Specifically, I characterise the role 

of Pisolithus albus MiSSP9.7, a highly induced secreted fungal protein of 

unknown function.  I demonstrate that it interacts with a member of the 

SWI/SNF protein complex previously identified as being responsible for the 

regulation of plant hormone signalling pathways used in immune responses 

against microbes. Increased expression of SWI3D in E. grandis roots is tied 

to the colonisation process and may regulate a key aspect of plant immunity 

towards mutualistic fungi. Taken together, my work provides a better 



xi 
 

understanding of the controls used by plants to modulate plant-microbe 

interactions and the counter-measures utilized by fungi to overcome host 

immunity. 
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Chapter 1 Introduction 

1.1 Mutualistic and Pathogenic Microbe Interactions 

In their natural environment, plants are constantly confronted with many 

different types of soil-borne microbes. Microbes is a broad term that 

describes all microscopic organisms, such as bacteria, fungi, nematodes, 

oomycetes, archaea, protists, microscopic animals, and microscopic plants 

(Genetic Science Learning Center 2017).  Plant interactions with these 

microbes can be classified in three main categories: parasitic, mutualistic or 

commensal. These classifications are an oversimplification as these plant-

microbe associations are dynamic and can range from mutualistic to parasitic 

depending on the abiotic factors affecting the ecosystem (Francis and Read 

1995). Parasitic plant-microbe interactions involve microbes colonising host 

plants and hindering plant growth by feeding on plant tissues and or sugar 

storages. Thus, one organism benefits at the others expense. In contrast, 

mutualistic pant-microbe interactions involve microbes providing host plants 

with scarce nutrients (such as nitrogen (N) and phosphorus (P)) in exchange 

for (up to 30% of) the plant’s photosynthetically-derived sugars (Pellegrin et 

al. 2015). Thus, both the plant and microbe benefit from this association. 

Commensal plant-microbe interactions describe microbes who do not harm 

or benefit plants, instead commensal microbes only decompose dead plant 

matter (for example (e.g.) decomposing plant litter fall). 

 

1.1.1 Ectomycorrhizal symbiosis 

One major type of mutualistic plant-microbe interaction found in forest 

ecosystems is the relationship between soilborne ectomycorrhizal (ECM) 
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fungi and trees. This symbiosis involves the transfer of growth limiting soil 

nutrients from the fungus to the host plant and photosynthetically derived 

sugars from the host to the fungus. ECM fungi play a further role in plant 

survival as they support host adaptation to changing environmental 

conditions such as climate extremes, drought and soil pollution (Redman et 

al. 2009). ECM fungi are commonly used in nurseries to inoculate trees used 

for re-forestation because the presence of ECM fungi increases the 

establishment success of trees by enhancing tree growth (Brundrett et al. 

2005). 

 

To establish mutualistic associations with plants and begin nutrient 

exchange, ECM fungi must first form two essential ectomycorrhizal 

structures: the Hartig net (formed within the root) and fungal sheath/mantle 

(formed outside the root by surrounding the entire root tip with extrametrical 

hyphae). Upon initial contact with host roots, ECM fungi attach to the root 

surface and hyphae surrounds the outside of the root, forming the fungal 

mantle (Fig. 1). During this contact, ECM fungi secrete effectors (i.e. proteins 

and signaling molecules), metabolites and phytohormones (e.g. auxin) that 

cause physiological changes within host roots cells to allow fungal hyphae to 

penetrate into the root apoplast (i.e. spaces in between root cells) (Fig. 1). 

Within the apoplast, the extensive network of fungal hyphae form the Hartig 

net completing establishment of the mutualism. The Hartig net is the interface 

in which nutrient exchange between the fungus and plant occurs and the 

colonised root is called a mycorrhizal root tip (Smith and Read 1997). 
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Although ECM fungi are free-living they are inefficient decomposers when 

compared to saprotrophs, thus they form mutualisms with the roots of trees 

to gain access to sugars as a carbon source, improving their survivability 

(Smith and Read 2008). ECM fungi are free-living because they originate 

from saprotrophic ancestors (Hibbett et al. 2000), but have evolved multiple 

times to be mutualistic with many plants (Hibbet and Matheny 2009). 

Phylogenically, ECM fungi belong to the phyla Ascomycota and 

Basidiomycota together with saprotrophic fungi (Plett and Martin 2011, 2015). 

Ascomycota is a division of fungi that whose spores are contained in sac-like 

structures called an ascus (Plett and Martin 2011). Basidiomycota is a 

division of fungi who produce spores using a specialised spore producing 

organ (called basidium) (Plett and Martin 2011). 
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Figure 1. Representational diagram of a transverse cross-section of a root undergoing colonisation by an ECM 

fungus (adapted from Plett and Martin 2011). (A) Representation of a transverse cross-section of a plant lateral root 

before ECM fungal colonisation. (B) Initial contact between host plant root (green cells) and ECM fungal hyphae 

(brown cells). The fungus attaches to root surface and secretes effectors that cause physiological changes within 

root cells, which then allow fungal hyphae to penetrate into the root apoplast. (C) Representation of a transverse 

cross-section of a mature ectomycorrhizal root tip. At this stage of colonisation fungal hyphae has covered the entire 

root surface forming a thick fungal mantle. Other hyphae have penetrated into the apoplastic space, forming the 

Hartig net where nutrient exchange occurs. 

 



5 
 

Saprotrophic fungi produce enzymes (e.g. cellulases and hemicellulases) 

that deconstruct and hydrolyse plant cell wall materials (Plett and Martin 

2011). Biotrophic, hemi-biotrophic and nectrophic fungal pathogens (e.g. 

Armillaria and Phytophthora) produce toxins, harmful effectors and 

carbohydrate-cleaving enzymes that digest or rot plant tissues (Lo Presti et 

al. 2015). These features make it hard, if not impossible, for saprotrophic and 

pathogenic fungi to form a mutualistic relationship with plants because these 

enzymes would damage the host and elicit plant defence responses (Plett 

and Martin 2011). However, over the course of their evolution, ECM fungi 

have lost a large majority of genes encoding plant cell wall degrading 

enzymes (Martin et al. 2008). While the genomes of ECM fungi (e.g. Laccaria 

bicolor) still encode a small group of plant cell wall degrading enzymes, these 

genes are only expressed when the fungus acts as a weak decomposer in 

soil litter and is not in symbiosis with a plant (Martin et al. 2008; Plett and 

Martin 2011). The loss of plant cell wall degrading enzymes makes ECM 

fungi more dependent on utilising photosynthetically derived sugars as 

carbon source received from host plants, but in turn allows ECM fungi to 

colonise roots without threatening the integrity of the plant root cells (Plett 

and Martin 2011). 

 

1.1.2 Pathogenic microbes 

Pathogenic microbes syphon plant nutrients and or directly feed on plant 

tissues (or plant sugar storages) for their own growth and development. 

Pathogenic fungi are subdivided into three groups based on the way they 

parasitise plants, these are: necrotrophs, biotrophs and hemi-biotrophs.  
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Nectrophic pathogens (such as Phytophthora cinnamomi (Eshraghi et al. 

2011) and Armillaria luteobubalina (Coetzee et al. 2001)) actively kill host 

plant cells and feed on the contents of dead or dying tissues. In general, 

these pathogens infect plant tissues and kill host cells by secreting toxic 

metabolites, effectors and proteins, and plant cell wall degrading enzymes 

(Lo Presti et al. 2015). A. luteobubalina is the most prevalent and widespread 

Armillaria species in Australia (Kile and Watling 1981, 1983; Shearer et al. 

1997). A. luteobubalina causes root rot and wood decay in many native and 

introduced plant species (Royal Botanic Garden 2017a). P. cinnamomi is a 

widespread plant pathogen that causes death of roots in many different plant 

species (Royal Botanic Garden 2017b). 

 

In contrast to nectrophic pathogens, biotrophic pathogens establish a long-

term feeding relationship with the livings cells of their hosts, instead of killing 

host cells upon infection (Deacon 1997). In general, these fungi grow in the 

apoplastic space of host tissues and produce nutrient-absorbing structures 

called haustoria. By absorbing significant amounts of host nutrients using 

haustoria, the pathogen creates a nutrient sink at the site of infection, 

causing the host to be disadvantaged but not killed (Deacon 1997). By 

keeping the host plant alive, biotrophic pathogens gain access to a long-term 

food source. Many biotrophic pathogens (such as the rust fungi (Uromyces 

viciae-fabae) and powdery mildew (Blumeria graminis)) use turgor pressure 

and plant cell wall degrading enzymes to breach the cell wall without 
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affecting host viability, after which they develop haustoria (O’Connell and 

Panstruga 2006; Lo Presti et al. 2015). 

 

Hemi-biotrophs use both biotrophic and necrotrophic methods of acquiring 

host plant nutrients depending on the stages of their life cycle (Lee and Rose 

2010).  During initial infection, hemi-biotrophs establish a biotrophic 

relationship with the host, but as they develop, they then later kill host cells 

and feed on the contents of dead or dying tissues. Hemibiotrophic fungi such 

as Phytophthora infestans and Magnaporthe oryzae initially develop bulged 

biotrophic invasive hyphae that later change into thin necrotrophic hyphae 

(O’Connell and Panstruga 2006). 

 

1.1.3 Host plant 

Eucalyptus grandis is an important forest tree that interacts with a variety of 

microbes, including both mutualistic ECM and parasitic fungi.  E. grandis is 

the most widely planted hardwood forest tree because of its many industrial 

and environmental uses (Myburg et al. 2014). The tree’s easy maintenance, 

high adaptability and rapid growth has led to the adoption of Eucalypt 

plantations in over 100 countries worldwide (Myburg et al. 2014). Planted 

Eucalypts provide key renewable sources for the production of solid timber, 

pulp, paper, bioenergy and biomaterials, while reducing human impacts on 

native forests (Bauhus et al. 2010). Furthermore, Eucalypts provide many 

environmental services including sequestering atmospheric CO2 to reduce 

global warming, providing habitats for native Australian animals and soil, 

water and forest conservation. Eucalypts also have a large diversity and high 
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concentration of essential oils that are key ingredients in commercial 

products, as well as having medicinal and ecological functions (Myburg et al. 

2014).  

 

1.2 Plant defences against microbes 

To survive, plants must effectively defend against pathogenic microbes.  

Unlike animals, plants do not have mobile immune cells, a somatic adaptive 

immune system, or circulatory system, instead plants rely on multifaceted 

innate immune defences (Jones and Dangl 2006). The first line of defence 

against most microbes consists of physical barriers, such as the waxy cuticle 

on the surface of leaves, the cell wall and plasma membrane (Fu and Dong 

2013). Furthermore, some plants produce chemicals, such as glycosylated 

triterpenoids, saponins and reactive oxygen species (ROS), that can disrupt 

the plasma membranes of most fungal pathogens (Bednarek and Osbourn 

2009; Hemetsberger et al. 2012). Plant cells express pattern recognition 

receptors (PRRs) on their surface that recognise invariant molecular patterns 

found on invading microbes, called pathogen/microbe-associated molecular 

patterns (PAMPs/MAMPs) (Jones and Dangl 2006; Fu and Dong 2013). 

PAMPs/MAMPs are essential components found on microbes including, 

short peptides, peptidoglycans, chitin, bacterial flagellin and 

lipopolysaccharides. For example, the receptor kinase FLS2 acts as a PRR 

by detecting bacterial flagellin (Yoon et al. 2012). When PAMPs/MAMPs are 

recognised by PRRs, it leads to PAMP/MAMP-triggered immunity (PTI/MTI) 

(Boller & Felix, 2009).  
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In addition, initial pathogen attacks induce the production and transfer of 

signalling molecules (such as salicylic acid (SA), glycerol-3-phosphate (G3P), 

diterpenoid dehydroabietinal (DA), benzoylsalicylic acid (BzSA), pipecolic 

acid (Pip) and azelaic acid (AzA)) all throughout the plant (Anand et al. 2008; 

Chanda et al. 2011; Chaturvedi et al. 2012; Kamatham et al. 2016; Reimer-

Michalski and Conrath 2016; Jung et al. 2009). These molecules stimulate 

the expression of antimicrobial genes resulting in broad-spectrum resistance 

against future infections in distal, uninfected plant tissues (Conrath 2006; 

Durrant and Dong 2004; Fu and Dong 2013). This phenomenon, called 

systemic acquired resistance (SAR), is conserved throughout many plant 

species. SAR results in extended periods of resistance (ranging from several 

weeks to months) against many different types of pathogens (Gao et al. 

2015; Kuc 1987). Further, SAR establishes transgenerational immune 

memory within plants (a process referred to as priming) (Mauch-Mani and 

Mauch 2005; Luna et al. 2012; Rasmann et al. 2012; Slaughter et al. 2012). 

This immune memory enables stronger and faster defence responses 

against future pathogen attacks. Although some plant immune responses are 

associated with cell death at the site of infection, SAR promotes cell survival 

in uninfected plant tissues. However, immune responses and systemic 

synthesis of SA are known to trigger SAR. SAR can also be induced by 

invading fungi, bacteria, fungi, oomycetes and viruses (Conrath 2006; 

Durrant and Dong 2004; Fu and Dong 2013; Ryals et al. 1996).  

 

Plants produce a wide range of hormones, including salicylic acid (SA), 

jasmonic acid (JA), ethylene (ET), auxin, abscisic acid (ABA), gibberellin 
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(GA), brassinosteroids (BR), cytokinins (CK), and strigolactones (SLs) (Bari 

and Jones 2009; Gomez-Roldan et al. 2008; Umehara et al. 2008). These 

hormones play essential roles in growth, responses to biotic and abiotic 

stresses and in immune responses against pathogens (Robert-Seilaniantz et 

al. 2007; Adie et al. 2007). SA is involved in the activation of defence 

responses against biotrophic and hemi-biotrophic pathogens, and is a key 

contributor to SAR (Grant and Lamb 2006). SA levels increase in infected 

plant tissues and high levels activate PR genes, enhancing resistance to a 

wide spectrum of pathogens (Denance et al. 2013). JA and ET are generally 

involved in defence against necrotrophic pathogens and herbivorous insects 

(Bari and Jones 2009). Auxin and ABA contribute to plant play important 

roles as signaling molecules in plant defence responses (Zhang et al. 2007; 

Mauch-Mani and Mauch 2005; Navarro et al 2008;). GA and BR enhances 

resistance to biotrophic pathogens (Bari and Jones 2009). Cytokinins act as 

signaling molecules regulating plant defence responses against some 

pathogens (Bari and Jones 2009). SLs are involved in establishing resistance 

to specific bacterial and fungal pathogens (Marzec 2016). 

 

1.3 Microbe Responses: Effectors 

To overcome plant defences and establish either infection or mutualistic 

associations, microbes have evolved various mechanisms. One mechanism 

utilised by both pathogenic and mutualistic fungi is the use of small secreted 

molecules called effectors. Effectors suppress the host plant’s immune 

responses and modulates host cell physiology (Giraldo and Valent 2013; 

Plett et al. 2011, 2014a, b). Thus, pathogenic fungi secrete effectors to 
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establish infection, whereas mutualistic fungi secrete effectors to form 

mutualisms and mycorrhizal structures (e.g. Hartig net of ectomycorrhizal 

(ECM) fungi and arbuscules of arbuscular mycorrhizal (AM) fungi). Effectors 

secreted by fungi are classified as either apoplastic or cytoplasmic effectors 

(Kamoun 2006). Apoplastic effectors target surface receptors within the 

apoplast and cytoplasmic effectors directly enter inside the plant cell (Dong et 

al. 2011, Djamei et al. 2011; Park et al. 2012).  

 

Effectors can be used to avoid or suppress PTI/MTI and successfully 

establish infection. For instance, Pseudomonas syringae establishes 

infection by secreting an effector called AvrPtoB that promotes the 

degradation of FLS2 in Arabidopsis (Göhre et al. 2008). Effectors that 

supress PTI/MTI are commonly used by pathogens to infect plants, and thus 

have been termed avirulence (avr) factors. Each respective gene that 

encodes avr proteins is called an avr genes. However, it has recently been 

discovered that mutualistic microbes also produce effectors to suppress host 

immunity and form mutualistic associations (Klopphoiz et al. 2011; Plett et al. 

2011; 2014a, b). Thus, the term effectors is not specific to pathogens, but 

denotes a broad range of secreted molecules that suppress plant immune 

responses to allow either pathogens to infect plants, or allow beneficial 

microbes to colonise plants and form mutualistic associations.  

 

However, plants have evolved to recognise effectors and respond using 

intracellular immune receptors, such as resistance proteins (R proteins), that 

directly detect effectors, or indirectly detect their activity (Fu and Dong 2013). 
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Detected effectors then lead to effector triggered immunity (ETI) (Jones and 

Dangl 2006). For example, tomato plants (Lycopersicon esculentum 76R 

lines) produce an R protein called Prf, that detects the AvrPtoB effector, thus 

triggering ETI (Salmeron et al. 1996). ETI prevents further pathogen growth 

and spread, and normally causes apoptosis (programmed cell death) at the 

site of infection, a phenomenon known as the hypersensitive response (HR) 

(Caplan et al. 2008; Holliday et al. 1981). 

 

Pathogenic fungi have evolved different lifestyles and each promote virulence 

via effectors in different ways. Biotrophic and hemibiotrophic fungal 

pathogens feed on living host cells, and secrete many effectors to suppress 

immune responses. The fungal pathogen U. maydis secretes the Pep1 

(protein essential for penetration 1) effector that accumulates in the host’s 

apoplast (Doehlemann et al. 2009). Pep1 binds and inhibits the activity of the 

plant peroxidase protein 12 (POX12) (Hemetsberger et al. 2012). POX12 

activity is essential for producing ROS (such as H2O2) that are key 

components of PTI (Jermy 2012). This suppression of PTI components 

allows U. maydis to grow and feed on host cells within the apoplast. Further, 

U. maydis also secretes the enzyme chorismate mutase (Cmu1) during 

infection to reduce the levels of chorismate within host cells. Chorismate 

serves as a precursor for the production of SA, thus virulence is enhanced.  

 

Unlike biotrophs and hemibiotrophs, nectrophic fungi feed on dead plant 

tissues and secrete effectors to induce host plant death. These include 

polyketide toxins, secondary metabolites, non-ribosomal peptide toxins and 
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necrosis-inducing proteins (Lo Presti et al. 2015; Stergiopoulos et al. 2013; 

Qutob et al. 2006). For example, the pathogen Phytophthora produces Nep1-

like proteins (NLPs) that directly cause plant cell death in many NLP sensitive 

dicotyledonous plants (Feng et al. 2014; Glazebrook 2005; Bailey et al. 

2005). Also the wheat pathogens P. tritici-repentis and S. nodorum produce 

ToxA effectors that targets host chloroplasts and binds to ToxABP1 (Lo 

Presti et al. 2015). ToxABP1 is a protein involves in thylakoid formation and 

thus ToxA-ToxABP1 binding hinders photosynthesis resulting in cell death 

(Lo Presti et al. 2015; Manning et al. 2007). 

 

Although effectors are commonly used by pathogens to induce virulence, 

beneficial microbes use their own unique effectors to form mutualistic 

associations with plants. For instance, the SP7 effector secreted by the AM 

fungus Glomus intraradices, binds with the transcription factor ERF19 in 

Medicago truncatula (Kloppholz et al. 2011). ERF19 regulates the expression 

of several defence genes in M. truncatula (Kloppholz et al. 2011). When 

constitutively expressed in roots, SP7 results in increased mycorrhization 

while decreasing the levels of defence responses within the host plant 

(Kloppholz et al. 2011). Klopphoiz (et al. 2011) further showed that 

overexpressing ERF19 within M. truncatula significantly impaired mycorrhizal 

colonisation, whereas repressing ERF19 accelerated mycorrhizal 

colonisation (Kloppholz et al. 2011). These findings indicate that the SP7 

effector modulates the activity of the ERF19 transcription factor to suppress 

PTI and allow formation of mutualistic associations. 
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Like SP7, the MiSSP7 effector of Laccaria bicolor is essential for the 

establishment of mycorrhizal root tips with Populus trichocarpa (Plett et al. 

2011). MiSSP7 is secreted upon receiving diffusible signals from P. 

trichocarpa roots (Plett et al. 2011). Repression of MiSSP7 in L. bicolor 

mutants (via RNAi knockdown) were unable to form mycorrhizal structures 

and enter into symbiosis with host plant roots (Plett et al. 2011). Plett et al. 

(2014a, b) later discovered that MiSSP7 enters the plant cell nucleus and 

interacts with PtJAZ6, a negative regulator of JA–induced gene regulation 

(Plett et al. 2014a). MiSSP7 reduces JA–induced degradation of PtJAZ6, 

resulting in the repression of JA–induced genes (Plett et al. 2014a). Most 

these repressed JA-induced genes have functions relating to cell wall 

modification (Plett et al. 2014a). Thus repression of these genes enables 

hyphal penetration into the root and formation of the Hartig net (Plett et al. 

2014a, b). Interestingly, ECM fungi secrete effectors to repress the 

expression of JA-induced genes in their host, in contrast to AM fungi and 

biotrophic pathogens that induce jasmonic acid responses during host 

colonization (Doehlemann et al. 2008, Lopez-Raez et al. 2010). Thus, ECM 

fungi are thought to have evolved unique colonisation strategies (Lo Presti et 

al. 2015). 

 

In addition, to promote virulence pathogenic microbes induce the expression 

of sugar transporter proteins (STPs) in host plants. The rice pathogen 

Xanthomonas oryzae secretes the effector PthXo1, a transcriptional 

activator-like (TAL) protein that binds directly to the OsSWEET11 promoter to 

increase its expression (Yang et al. 2006). Reducing the levels of 
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OsSWEET11 via RNA interference (or when mutations are present in the 

OsSWEET11 promoter) slows the growth of the pathogen (Yang et al. 2006).  

Further, studies in Arabidopsis have shown that bacterial and fungal 

pathogens (e.g. Golovinomyces cichoraceacam and Botrytis cinerea) induce 

the expression of host cell SWEET genes to successfully obtain sugars 

(Chen et al. 2010).  

 

1.4 Sugar Transport in Plants 

1.4.1 Sugar transporters 

In terrestrial ecosystems, plants and other photosynthetic organisms fix 

atmospheric CO2 via photosynthesis to produce sugars for energy, as well as 

the organic compounds of which they are composed of (Raven et al. 2011). 

The coordination of these photosynthetically produced sugars is essential for 

plant development, adapting to environmental stresses and cell to cell 

communication (Doidy et al. 2012). Not only do sugars provide the energy to 

drive cellular machinery, they also serve as key signalling molecules that can 

travel all throughout the plant (Rolland et al. 2006). In plants, transport of 

sugars from photosynthetic source leaves to sink organs (or sink organisms, 

e.g. associating mycorrhizal fungi) comprises several different steps 

depending on plant species and organ type (Doidy et al. 2012). Sugars 

produced in source tissues (e.g. mesophyll) are transported throughout 

plants via phloem (vascular tube-like tissues that run throughout plants) in 

conjunction with sugar transporter proteins. Currently, there are three known 

major families of sugar transporter proteins: sucrose transporters (SUTs), 
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monosaccharide transporters (MSTs) and SWEETs (Sugars Will Eventually 

be Exported Transported) (Fig. 2) (Doidy et al. 2012).  

 

Figure 2. Representational diagram of the intracellular distribution of plant sugar transporter proteins (adapted from 

Doidy et al. 2012). Three families of transporters (sucrose in the upper half and monosaccharides in the lower half) 

within the plant cell: SUTs (in red), MSTs (in blue) and SWEETs (in yellow). Most transporters that localise to the 

plasma membrane have been characterised as H+/sugar importers, although ZmSUT1 was shown to mediate active 

efflux of sucrose (Carpaneto et al. 2005, 2010). In contrast, SWEETs and SUFs function as energy-independent 

uniporters that mediate sugar influx and or efflux (Chen et al. 2010, Zhou et al. 2007). At the vacuolar membrane, 

the MST subfamilies, VGT (vacuolar glucose transporter) and TMT (tonoplast membrane transporter) act as 

sugar/H+ antiporters loading sugars into the vacuole (Schulz et al. 2011, Aluri and Buttner 2007). At the plastid two 

SUT4 and the SMT subfamily pGlcTs serve as sugar efflux pumps (Ferro et al. 2003). ESLs (ERD six-like 

transporters) are involved in energy-independent sugar efflux from the vacuole (Doidy et al. 2012). 
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Sucrose is the main form of sugar used in long distance transport, and all 

plants possess a family of SUTs (Doidy et al. 2012). There are five classes of 

SUTs: SUT1-5 (Kuhn et al. 2010; Braun and Slewinski et al. 2009). SUT1 

transporters are only found in dicot plants and are responsible for sucrose 

phloem loading (Zhang et al. 2016) and sucrose partitioning in sink organs 

(Buttner 2007). SUT2 act as sugar sensors as well as transporters (Barth et 

al. 2003). SUT 3 transporters function identically to SUT1 transporters, but 

are only found in monocot plants (Doidy et al. 2012). SUT4 regulate 

intracellular sucrose partitioning, sucrose efflux from source leaves and the 

utilisation of sucrose in lateral and terminal sink organs (Payyavula et al. 

2011; Eom et al. 2011). Finally, SUT5 is the least studied transporter, but is 

thought to play a role in sucrose phloem loading in source tissues (Zhang et 

al. 2016) 

 

In addition to long-distance transport, sugars (such as monosaccharides) are 

also distributed within cells, i.e. partitioned into different organelles 

depending on requirements, as well as between cells (Buttner 2007). For 

example, during the day many plant species temporarily store sugars in the 

form of starch in the chloroplasts of source leaves (Weise et al. 2006). At 

night, that starch is catalysed to release monosaccharides (such as glucose) 

(Weise et al. 2006; Weber et al. 2000), which is then exported from the 

chloroplast (Buttner 2007). Furthermore, in sink tissues sucrose is hydrolysed 

by invertases which yields glucose and fructose which are transported via 

sugar transporter proteins (STPs) (Fig. 2) (Doidy et al. 2012). The STPs 

responsible for monosaccharide transport are MSTs and SWEETs (Doidy et 



18 
 

al. 2012). The plant MST gene family is large, containing 53 MSTs in 

Arabidopsis, 65 in rice, 58 in Medicago truncatula, and 59 in grapevine 

(Vitrus Vinifera) (Doidy et al. 2012). Monosaccharides are further subdivided 

into several subfamilies based on their substrate specificity, these are: polyol 

monosaccharide transporter (PMT), inositol transporter (INT), vacuolar 

glucose transporter (VGT), tonoplast membrane transporter (TMT), and 

plastidic glucose transporter (pGlcT) (Doidy et al. 2012). 

 

SWEETs belong to a distinct transporter family that contain a novel structure 

consisting of a tandem repeat of three transmembrane domains connected 

by a linker-inversion transmembrane domain (Chen et al. 2010). There are 

17 SWEET genes in Arabidopsis, 21 in rice, 15 in M. truncatula and 

approximately 47 in Eucalyptus grandis (Chen et al. 2010; Eom et al. 2015). 

In Arabidopsis, SWEETs are divided into four phylogenetic clades, clade I 

(AtSWEET1-3 homologues, typically monosaccharide transporters), clade II 

(AtSWEET4-8 homologues, typically monosaccharide transporters), clade III 

(AtSWEET9-15, sucrose transporters) and clade IV (AtSWEET16, 17, 

fructose transporters) (Eom et al, 2015). Of note, SWEET clades do not 

determine which physiological process the protein is involved in, for example 

AtSWEET5, AtSWEET8 and AtSWEET13 are involved in pollen nutrition, yet 

they are found in either clades II or III (Eom et al. 2015).  

 

SWEETs play important roles in many plant processes, including nectar 

secretion, phloem loading, sugar filling in seeds, regulating pollen nutrition, 

vacuolar hexose transport, carbon reallocation in leaves during stress or 
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senescence and during plant-microbe interactions (both pathogenic and 

mutualistic) (Eom et al. 2015; Guo et al. 2014). Pathogens are known to use 

effectors to manipulate host plant SWEET expression to increase the amount 

of sugars at the site of infection (Chen et al. 2010; Streubel et al. 2013). For 

example, the rice pathogen Xanthomonas oryzae grows in the apoplasm and 

xylem of the host and secretes the transcription activator-like (TAL) effectors 

PthXo1 and AvrXa7 to induce the expression of host OsSWEET11 and 

OsSWEET14 respectively, which increases the amount of sugar released 

into the apoplasm for the pathogen to utilise (Chen et al. 2010). Mutant X. 

oryzae lacking the PthXo1 effector was less virulent and repressing the 

expression of OsSWEET11 (via RNA interference) resulted in decreases in 

pathogen growth (Chen et al. 2010). In addition, adding mutations in the 

promoter of OsSWEET11 provided protection from X. oryzae infection (Chen 

et al. 2010). Bacterial and fungal pathogens induce the expression of 

different sets of SWEETs (Chen et al. 2010). For example, the bacterial 

pathogen Pseudomonas syringae highly induces the expression of 

AtSWEET4, AtSWEET5, AtSWEET7, AtSWEET8, AtSWEET10, AtSWEET12 

and AtSWEET15 in Arabidopsis (Chen et al. 2010). However, infection with 

the fungal pathogen Golovinomyces cichoracearum induces AtSWEET12. 

Infection with a different fungal pathogen, Botrytis cinereal, induced the 

expression of AtSWEET4, AtSWEET15 and AtSWEET17 (Ferrari et al. 

2007). Interestingly almost all SWEETs targeted by pathogen effectors are 

clade III SWEETs and have been shown to export sucrose (Eom et al. 2015). 

Furthermore, in grapevine (Vinus Vinifera) the glucose transporter 

VvSWEET4 is highly induced by necrotrophic pathogens, but not biotrophic 
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pathogens (Chong et al 2014). VvSWEET4 is upregulated ROS production 

and necrotrophic pathogen virulence factors (Chong et al 2014). Additionally, 

AtSWEET4 Arabidopsis mutants were less susceptible to B. cinereal 

(necrotrophic pathogen) infection (Chong et al 2014). 

 

While the role of SWEETs in plant-pathogen interactions has been (and is 

still being) widely researched (Chen et al. 2010, 2012, 2013, 2015a, 2015b; 

Chong et al. 2014; Cohn et al. 2014; Liu et al. 2011; Perotto et al. 2014), the 

role of SWEETs in mutualistic plant-microbe interactions is mostly unknown 

(Casieri et al. 2013; Tarkka et al. 2013). An early study found that the MtN3 

SWEET in Medicago truncatula is highly upregulated after exposure to 

Rhizobium meliloti (Gamas et al, 1996). Therefore, MtN3 SWEET was 

thought to play a role in nodulation (Gamas et al. 1996), perhaps by providing 

the associating bacteria with hexoses in exchange for nitrogen thus 

stabilising the mutualism.  

 

Much of what is known about the role of SWEETs in parasitic interactions 

and plant development has been studied in Arabidopsis and rice plants 

(Chen et al. 2012; Zhou et al. 2014). Although SWEET genes have been 

identified in most sequenced plant genomes, their individual roles in plant 

development and pathogen nutrition has yet to be explored. In addition, since 

Arabidopsis cannot form mutualistic interactions with fungi, the role of each 

individual SWEET protein in mutualistic plant-microbe interactions has yet to 

be determined. 
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1.5 Transcriptional control and the SWI/SNF complex 

Extensive gene regulation occurs within plant root cells during plant-fungal 

interactions. Eucalypts can form mutualistic relationships with ECM fungi, but 

are also the target of many soil borne pathogens (e.g. Armillaria spp.). 

However very little is known about the mechanisms that control gene 

activation or repression in plants during interactions between long lived 

perennial trees and their mycorrhizal associates. Chromatin modifications are 

thought to be one way in which these gene activation or repression pathways 

are controlled. While many different nuclear protein complexes regulate this 

process, the most studied class of Chromatin Remodelling Complexes 

(CRCs) is the SWI/SNF (Switch/Sucrose Non-Fermenting) complex 

(Sarnowska et al. 2016). 

 

SWI/SNF genes were first identified in the yeast Saccharomyces cerevisiae 

(Abrams et al. 1986) and later in Arabidopsis thaliana (Brzeski et al. 1999), 

Drosophila and mammals (Mohrmann and Verrijzer 2005). The original yeast 

SWI/SNF complex consists of 12 subunits. The core of the complex is made 

up of one SWI2/SNF-2type ATPase, one SNF5, and two copies of SWI3 

subunits (Narlikar et al. 2002). This core is adequate for nucleosome sliding 

but it is normally associated with other subunits, which act as receptors for 

the SWI/SNF complex to interact with other proteins that affect chromatin 

remodelling (Phelan et al. 1999). The core subunits of yeast SWI/SNF 

complexes are similar to the SWI/SNF complex found in Arabidopsis 

thaliana. In A. thaliana there are four putative SWI/SNF-type SNF2-ATPases 

(SYD, BRM, CHR12/MINU1, CHR23/MINU2), and one SNF5 (BSH) subunit 
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(Farrona et al. 2004). Because of their sequence similarity, SYD, BRM and 

MINU1/2 are thought to have chromatin remodelling activity, but to date, only 

MINU2 has been shown to do this (Han et al. 2015). In addition, there are 

four homologs of SWI3 genes in A. thaliana (SWI3A, B, C and D) (Sarnowski 

et al. 2002). The remaining subunits of the Arabidopsis SWI/SNF are LUH, 

SWP73(A,B), ARP(4,7), GIF, BRD, GLTSCR, G248101, LFR, BCL7B (Fig. 

3).  

 

 

Figure 3. The subunits of Arabidopsis thaliana SWI/SNF complex (adapted from Sarnowska et al. 2016). Subunit 

names labelled with purple text represent the core subunits. Green subunits represent the homologous subunits to 

the human SWI/SNF complex and blue subunits represent Arabidopsis specific SWI/SNF subunits. Figure adapted 

from: Sarnowska, E, Gratkowska, D.M., Sacharowski, S.P., Cwiek, P, Tohge, T, Fernie, A.R., Siedlecki, J.A., Koncz, 

C, Sarnowski, T.J., (2016) The Role of SWI/SNF Chromatin Remodeling Complexes in Hormone Crosstalk, Trends 

in Plant Science, vol. 21, no. 7, pp. 594-608. 

 

In A. thaliana the SWI/SNF complex plays an important role in the regulation 

of jasmonate (JA), abscisic acid (ABA), gibberellin (GA), ethylene (ET) and 

cytokinin signalling pathways (Archacki et al. 2013; Saez et al. 2008; Walley 

et al. 2008; Efroni 2013). Studies on the SYD subunit shows it regulates the 

expression of genes within the ethylene and jasmonate pathways, thus 
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contributing to the plant’s immune response against fungal pathogens 

(Walley et al. 2008). In addition, studies have shown that the syd and brm 

mutations change the expression of genes controlled by the ABA and GA 

hormone signalling pathways (Bezhani et al. 2007). Numerous experiments 

have indicated a link between the germination of seedlings on exogenous 

sugar and ABA/ethylene activity (Gazzarrini and McCourt 2001). Gazzarrini 

and McCourt (2001) found that low sugar levels interfere with the inhibitory 

effects of ABA on germination, whereas prevention of seedling development 

post-germination by high sugar concentrations is dependent on ABA  

synthesis. 

 

A series of signalling events are involved in the interaction between fungal 

and root cells, necessary for forming functional symbiotic structure. This 

appears to be caused by activating and deactivating of genes in both fungus 

and host plant. Certain elicitors are produced by the root cells that regulate 

the expression of fungal genes to establish symbioses (Burgess et al. 1995). 

Certain genes are activated that are responsible for the development of a 

Hartig net and hyphal mantle (Salzer et al. 1997) and the deactivating of 

certain fungal genes encoding factors for host plant defence reactions. 

Certain elicitors present in ECM fungi are deactivated by chitinases of the 

root cortex without harming the fungus, thus establishing the formation of 

ectomycorrhizas (Salzer and Boller 2000). Plants must regulate their defence 

pathways (e.g. regulate hormone pathways ABA, JA, SA, auxin, CK) and 

activate sugar-related genes to form (or stabilise) mutualistic associations, 

but still defend against pathogens who attempt to avoid plant defences by 
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secreting effectors that suppress plant immunity (Lo Presti et al. 2015) or 

upregulate the transcription of sugar-related genes in order to syphon sugar 

(Chen et al. 2010). We hypothesize that the SWI/SNF complex regulates the 

expression of sugar-related genes and hormone pathways within the plant 

during these interactions. 

 

While the role of the SWI/SNF complex during plant-ECM fungal 

relationships is largely unknown, production of defence and growth hormones 

(such as auxin (IAA), ABA, JA, ET, SA and SK) are regulated by the 

SWI/SNF complex, and these hormones are also produced by ECM fungi 

(Ma et al. 2009). For example, Auxin regulates the development of embryo 

and fruit, vascular bundle and root growth (Parvaiz 2011). It is synthesized in 

the stem tip and young leaf and is then translocated to the required location. 

There are different soil microbes that are able to produce auxin. 

Ectomycorrhizal fungi produce cytokinin and indole acetic acid (IAA part of 

the auxin class of plant hormones) to stimulate host plant root growth. In 

addition, plant produce auxins and the expression of auxin genes are 

controlled by the SWI/SNF complex. 

 

Extensive gene regulation occurs within plant root cells during plant-fungal 

interactions. Eucalypts can form mutualistic relationships with ECM fungi, but 

are also the target of many soil borne pathogens (e.g. Armilarria spp.). 

However very little is known about the mechanisms that control gene 

activation or repression in plants during interactions between long lived 

perennial trees and their mycorrhizal associates. Chromatin modifications are 
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thought to be one way in which these gene activation or repression pathways 

are controlled. While many different nuclear protein complexes regulate this 

process, one of the main complexes identified is the ‘SWI/SNF’ protein 

complex. The SWI/SNF complex controls many plant hormone signalling 

pathways. The role of the SWI/SNF complex in interacting with fungal 

effectors, in perennial trees during their interaction with mycorrhizal 

associates has yet to be explored. 

 

1.6 Overview of Research 

To determine the role of SWEET proteins in plant-microbe interactions, we 

identified and categorised the SWEET-like genes of E. grandis.  Further, we 

determined if there was tissue-specific expression profiles of the identified E. 

grandis SWEET-like genes throughout seedling tissues. We also compared 

and contrasted the expression of these genes in roots when in contact with a 

pathogenic, saprotrophic and mutualistic fungi. Finally we determined the 

effects of overexpressing and repressing 4 eucalypt SWEET genes. 

 

To understand transcriptional regulation in mutualistic plant-microbe 

mutualisms, we performed qPCR over a time course of 2 weeks on four E. 

grandis SWI/SNF complex subunits (i.e. SWI3A, B, C, and D). A Pisolithus 

microcarpus MiSSP9.7 effector was found to interact with the SWI3D subunit 

using yeast two-hybrid experiments between MiSSP9.7 and nuclear proteins. 

Bimolecular fluorescence complementation (BiFC) experiments further 

proved those protein interactions. Further, we identified where MiSSP9.7 
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localises within host plant cells. Lastly, we determined whether 

overexpressing or repressing MiSSP9.7 and SWI3D affects mycorrhization. 

 

The information gleaned from this study will further our understanding about 

the controls and mechanisms involved in different types of plant-microbe 

interactions. The belowground microbes play a significant role in plants’ 

growth and health (Artursson et al. 2006; Richardson et al. 2009). One of the 

major constraints in eucalypts is soilborne pathogens. Thus, this study could 

potentially find ways to improve Eucalyptus growth and health that will result 

in economic and environmental benefits. 
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Chapter 2 Characterisation of Eucalyptus grandis 

hexose transporters implicated in symbioses with 

fungi 

 

2.1 Introduction 

Carbon, in the form of simple sugars, is essential for the development of all 

living organisms. In terrestrial ecosystems plants, animals and microbes 

interact with one another and the environment to obtain, utilize and 

eventually recycle carbon. Fixation of light energy and atmospheric carbon 

dioxide (CO2) by plant photosynthesis produce organic compounds such as 

sugars utilized by plants for maintenance and growth. Sucrose is the main 

product of photosynthesis and is transported from source to sink tissues via 

the phloem (Koch 2004). Sucrose plays a key role in many regulatory 

mechanisms, including growth and development, differential gene 

expression, stress-related responses and plant innate immunity (Gomez-

Ariza et al. 2007; Tognetti et al. 2013; Tauzin and Giardina 2014). Sucrose 

cleavage products, glucose and fructose, also act as signaling molecules. Of 

the two hexoses, glucose has been better described in relation with the 

hexokinase signaling pathway (Moore et al. 2003; Cho et al. 2009) while for 

fructose a specific pathway has been proposed involving the ABA- and 

ethylene-signaling pathway (Cho and Yoo 2011; Li et al. 2011). 
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Herbivorous animals and insects obtain energy from these plant organic 

compounds through ingestion while microbes obtain photosynthate from 

plants by three main mechanisms: parasitism, mutualism or via 

decomposition. While these mechanism classifications are an 

oversimplification, with plant-microbe associations being able to dynamically 

change from mutualism to parasitism depending on both biotic and abiotic 

factors (Francis and Read 1995; Johnson et al. 1997; Saikkonen et al. 1998; 

Jones and Smith 2004), they serve as a useful framework for understanding 

how plant immune system response differs based on the benefit of the 

microbe to the plant. Pathogenic microbes may exploit photosynthetically 

derived sugars through manipulation of host plants sugar transporter proteins 

(STPs or SWEETs) (Chen et al. 2010; Cohn et al. 2014). Chen et al. (2010) 

first identified and characterised SWEETs in Arabidopsis, highlighting the fact 

that pathogens hijack sugars by sending TAL effectors to induce expression 

of specific SWEETs. Similar to Chen et al. (2010), Cohn et al. (2014) found 

that the bacterial pathogen Xanothomonas axonopodis syphons sugar from 

cassava plants by using TAL effectors to induce MeSWEET10a. Similar to 

pathogens, virus infection can lead to increases in sugar levels within plant 

tissues, although the benefit of this to virus replication is unknown (Shalitin 

and Wold 2000). As a means to combat sugar leakage, plants interacting 

with pathogenic microbes have been found to uptake/retrieve sugars from the 

apoplast through the increased expression of specific STPs (Chen et al. 

2015b). This SWEET2 limits the amount of sugar obtained by the pathogen; 

thus restricting the pathogen’s spread and growth throughout the rest of the 

plant (Chen et al. 2015b).  
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In contrast to pathogens, beneficial microbes obtain sugars from plants by 

forming mutualistic symbioses. Plants form mutualistic symbioses to improve 

acquisition of growth limiting nutrients, and mutualistic microbes associate 

with plants to gain carbon (Smith and Read 2008). Over 80% of trees 

associate with ectomycorrhizal fungi (Pellegrin et al. 2015; Wang and Qui 

2006; Smith and Read 2008). Ectomycorrhizal fungi (e.g. Pisolithus) utilise 

hyphal networks to efficiently explore soil, acquiring nutrients (such as N and 

P) to provide to the host plant in exchange for carbon (in the form of sugars) 

(Nehls 2008; Smith and Read 2008). Therefore, this mutualistic symbiosis is 

constituted by a constant exchange in nutrients between the two partners, 

resulting in better growth for both symbionts. ECM fungi further aid plant 

survival by supporting host adaptation to changing environmental conditions 

such as climate extremes, drought and soil pollution (Redman et al. 2011; 

Kipfer et al. 2012). 

 

One aspect of sugar transport and accumulation in plant tissues during 

microbial challenge that is often overlooked is the use of certain sugars as 

substrates for the synthesis of defensive metabolites and as priming agents.  

It is thought that plants modulate their sugar pools to act either as a source of 

carbon and energy, or to use as signals and priming molecules to enhance 

defence responses (Gomez-Ariza et al. 2007). These conclusions come 

based on observations that sugars are able to regulate pattern recognition 

genes used in plant innate immunity (Jones and Dangl 2006; Mohammad et 
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al. 2012) and because increases in sucrose and myo-inositol concentrations 

are often observed under biotic stresses (Valluru and Van den Ende 2011). 

Gomez-Ariza et al. (2007) demonstrated that the external application of 

sucrose in Maize plants increased plant expression of pathogenesis-related 

(PR) genes and overall resistance to a wide range of microbial pathogens. 

Morkunas et al. (2014) showed that soluble sugars contribute to immune 

responses against pathogens by stimulating isoflavone production in plants. 

Phloem mobile oligosaccharides have also been found to induce defence 

responses within plants. These include the: 1-ketose (a fructosyl 

oligosaccharide), raffinose (a galactosyl oligosaccharide:), trehalose (a 

disaccharide of glucose) and galactinol (galactosyl-myo-inositol; Hofmann et 

al. 2015; Mohammad et al. 2012). Kim et al. 2008 showed galactinol 

activates defence genes (NtACS1, PR1a and PR1b) in response to fungal 

pathogen attacks. Trehelose, meanwhile, can partly induce resistance 

against powdery mildew (Blumeria graminis) in wheat by activation of 

phenylalanine ammonia-lyase and peroxidase genes (Reignault et al. 2001; 

Muchembled et al. 2006) while the Trehalose Phosphate Synthase11 

(TPS11) gene regulates defence responses in Arabidopsis against aphids 

(Singh et al. 2011). Therefore, sugars function as priming molecules and as 

signalling molecules, that lead to effective immune responses (Morkunas and 

Ratajczak 2014).  

 

Given the complex roles of sugars in plant-microbe interactions, it is 

important that we characterise the mechanism by which these compounds 

are transported in plant tissues during microbial challenge. Compared to 
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annual model plants (Büttner 2010; Yamada et al. 2016; Chen et al. 2010, 

2012, 2013, 2015a, 2015b), less is known about how sugar transport 

systems activated during interactions between long lived perennial trees and 

various types of fungi. The interaction between Eucalyptus grandis with 

different types of fungi (i.e. pathogenic, saprotrophic and mutualistic fungi) 

offers a good model for studying this topic as the E. grandis genome has 

been sequenced (Myburg et al. 2014), because E. grandis is a tractable 

system for genetic modification and because a number of pathogens and 

symbionts of E. grandis are culturable. The aims of this study were to identify 

the SWEET-like genes of E. grandis and characterize a number of these 

proteins that are differentially regulated during plant-microbe interaction.  
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2.2 Materials and methods 

2.2.1 Plant and fungal growth conditions 

Growth of E. grandis seedlings was performed following the methods outlined 

in Plett et al. (2014a). E. grandis seeds were obtained from the 

Commonwealth Scientific and Industrial Research Organisation (CSIRO, 

Clayton, Vic., Australia) tree seed centre (Seedlot 21068) and sterilised in 

30% hydrogen peroxide for 10 min followed by five washes with sterile water 

for 5 min each. Seeds were then transferred onto 1% agar water medium and 

allowed to germinate at 25oC with a 16/8 hour light/dark cycle.  Germinated 

seedlings were then transferred to ½ Modified Mylin Norkin (MMN) medium 

on top of a sterile cellophane membrane to prevent root growth into the 

medium. 

One oomycete eucalypt pathogen (Phytophthora cinnamomi) and 3 genera of 

fungi were used in this study: Suillus granulatus (non-Eucalyptus colonising 

ECM which acts parasitically in our experimental set-up), Fusarium 

oxysporum (non-Eucalyptus specific parasite), Suillus luteus (non-Eucalyptus 

colonising ECM), and Pisolithus microcarpus isolate SI12 (Eucalyptus 

colonising ECM). All fungal cultures used in this study were propagated 1 

month on 1x MMN before subculturing hyphae from the growing edge of the 

colony onto ½ MMN medium covered in a sterile cellophane membrane and 

grown in the dark at 25°C for 2 weeks. 

For plant colonisation experiments, plant seedlings were transferred directly 

onto each fungal colony. The contact plates were then placed in a growth 

cabinet under a 16/8 h light/dark cycle at 25°C for 2 weeks after which they 

were harvested and frozen directly in liquid nitrogen. E. grandis control plants 
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were grown axenically and treated identically for the same length of time and 

under the same conditions.   

 

2.2.2 Generation of SWEET constructs and mutant eucalypts, and 13C 

transfer tests 

35S:Eucgr.K02678, 35S:Eucgr.B00363, RNAi:Eucgr.L02615 and 

RNAi:Eucgr.K02688 were amplified from cDNA synthesized using KAPA HiFi 

polymerase (KAPA Biosystems) following the manufacturer’s instructions 

(see Table 1. for primers used). The amplified fragments were gel purified 

and ligated into pDONR222, PCR verified and sequence verified.  Positive 

inserts were then ligated into pH2GW7 (35S:) or to pH7GWIWG2(II) (RNAi) 

plasmids using Gateway Gene Cloning (Life Technologies) and transformed 

into Rhizobium rhizogenes (formerly known as Agrobacteria rhizogenes) 

isolate K599.  E. grandis seedlings were grown from seed to one month old 

on 1% agar media. 

 

To generate mutant roots, E. grandis seedling roots were severed from the 

stem using sterile scalpels. The remaining wounded part of the stem was 

dipped into growing colonies of mutant R. rhizogenes containing SWEET 

constructs, and grown upside down on ½ MS media for 1 week in a growth 

cabinet with a constant temperature of 25oC and a 16 hour photoperiod. To 

prevent R. rhizogenes from killing the seedlings, E. grandis stems were then 

transferred to ½ MS Timentin (conc. 150 µg/mL) media. Once per week the 

stems were transferred to new ½ MS Timentin media and grown under the 

same conditions. Mutant roots usually emerged within 1-2 weeks, but took a 
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total of 3-4 weeks to grow long enough for fungal contact. After 4 weeks of 

growth, transgenic plants were transferred onto ½ MMN media covered with 

a sterile cellophane membrane and colonies of 2-week-old Pisolithus 

microcarpus isolates (SI-12) placed on top, making direct contact with the 

roots of the plant. These contacts were left for a total of 14 days in a cabinet 

with a daytime high temperature of 30oC and low of 22 oC with a 16-hour 

photoperiod. To prepare for 13C transfer tests, on the 8th day two holes were 

burnt into the lids of each plate (using a soldering iron), and covered with 

micropore tape. On the morning 9th day all contacts were placed into a plastic 

tank (which had a rubber septum on one side and a fan for circulation on the 

inside) and the lid was sealed down using clamps so no air could escape. 

That same morning 12ml of 13CO2 gas (99% atom enrichment) was injected 

into the tank by using a syringe that penetrated through the rubber septum on 

the side of the tank, and left for 5 hours to allow for gas uptake. Afterwards, 

the lid of the tank was opened and aerated. Contacts were then placed back 

into the tank and left in the cabinet above. This 13CO2 pulse was repeated on 

the 12th day. On the 14th day extra-radical fungal hyphae harvested for 13C 

analysis. 13C labelling of eucalypts in contact with different fungal types was 

carried out identically. 

 

2.2.3 RNA extraction and Quantitative PCR analysis 

RNA was extracted from four tissue types: photosynthate source tissues 

(mature leaves), transport tissues (stem) and photosynthate sink tissues 

(shoot apex including the 2 youngest developing leaves and roots) using the 

Qiagen RNeasy Plant Kit with the RLC lysis buffer supplemented with 25 mg 
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ml-1 PEG 8000 and following the manufacturer’s instructions thereafter. The 

cDNA was synthetized using the iScript Select cDNA Synthesis Kit (BioRAD). 

The Quantitative PCR (QPCR) reactions were performed using Sensifast 

Sybr Low-ROX Mastermix (Bioline) and QPCR machine (C1000 Touch TC, 

CFX96 RTsystem (BioRAD)), where the cycle parameters were as follows: 1. 

95oC 3 mins, 2. 95oC 30 seconds, 3. 55oC 30 seconds, 4. 72oC 30 seconds 

(steps 2-4 was repeated x39), 5. Melt curve analysis. Tissue wide SWEET-

like gene expression was normalized to the expression of the housekeeping 

genes Eucgr.C00350.1 and Eucgr.K02046.1 (Plett et al. 2014a). The primers 

used in this study have been tested for their efficiency and their specificity. 

To visualize tissue wide and root-fungi SWEET-like expression profiles, we 

used two programs: ‘Cluster 3.0’ 

(http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm last accessed 

16/3/17) and ‘Java TreeView’ (http://jtreeview.sourceforge.net/ last accessed 

16/3/17). 

 

2.2.4 Identification of SWEET genes in E. grandis and other plant 

species 

Using the Phytozome database, we identified SWEET-like genes by 

examining the E. grandis 2.0 genome (Eucalyptus grandis v2.0; 

http://www.phytozome.net/ last accessed: 2/7/2016) and identifying 

sequences that share homology (based on the 3-transmembrane-helix-

domain polypeptide) to previously identified SWEETs. Sequences were 

aligned to E. grandis transcripts taken from Phytozome v9.1 and 

corresponding to the E. grandis genome v2.0 using the Phytozome database 

http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm
http://jtreeview.sourceforge.net/
http://www.phytozome.net/
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(https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Egrandis last 

accessed 16/3/17). This led to the identification of 52 genes with high 

homology (Fig. 4). The SWEET genes identified in our study were designated 

as AtSWEET1-like to AtSWEET17-like based on their homology to each 

Arabidopsis SWEET gene respectively (Fig. 4). Likewise SWEET genes in 

other species were obtained by identifying sequences in their genome that 

share homology to previously identified SWEETs, using Phytozome 

(https://phytozome.jgi.doe.gov/pz/portal.html last accessed: 16/3/17). All 

species used: Arabidopsis thaliana (At) TAIR10, Amborella trichopoda v1.0, 

Citrus clementina (Cc) v1.0, Eucalyptus grandis (Eg) v2.0, Metacargo 

truncatula (Mt) Mt4.0v1, Populus trichocarpa (Pt) v3.0.  

 

2.2.5 Construction of the phylogenetic tree  

To determine the phylogenetic relationships of E. grandis SWEET-like 

proteins, we constructed a phylogenetic tree using the online tool 

‘Phylogeny.fr’ (Dereeper et al. 2008). SWEET-like gene sequences of plants 

(Arabidopsis thaliana (26), Amborella trichopoda (9), Citrus clementina (18), 

Eucalyptus grandis (52), Medicago truncatula (25), Populus trichocarpa (28)) 

were downloaded from the Phytozome database. “One click” phylogenetic 

analysis was used, with a concatenated MUSCLE alignment adjusted by 

Gblocks. The tree was rooted with Human SWEET Transporter 1 as the 

outgroup.  

 

 

 

https://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=Org_Egrandis
https://phytozome.jgi.doe.gov/pz/portal.html
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2.2.6 Yeast complementation 

To test whether four putative eucalypt SWEET proteins (AtSWEET11, 12, 13, 

14-like [Eucgr.K02694], AtSWEET4, 5-like [Eucgr.K02688, Eucgr.B00363, 

Eucgr.L02615]) could transport sugars we performed yeast complementation 

assays. We used S. cerevisiae (strain EBY.VW4000) as a model system to 

test the sugar capabilities of these 4 putative SWEETs. EBY.VW4000 was 

chosen because the sugar transporter genes in this strain has been knocked-

out (i.e. has mutations in its sugar transporter genes), except for the genes 

that encode maltose transporters (Wieczorke et al. 1999). Therefore 

EBY.VW4000 cannot grow on media with a carbon source other than 

maltose. However, when EBY.VW4000 is transformed with the vector 

containing the putative SWEET genes, the yeast will begin to transcribe and 

express those SWEET genes. Thus growth on other types of sugar media 

will be restored if the SWEET protein product is able to transport sugars.  

 

The open reading frames (ORF) of Eucgr.K02678, Eucgr.B00363, 

Eucgr.L02615 and Eucgr.K02688 were cloned into pYES2 vector using In-

Fusion ligation kit (Clonetech) using BamH1 and HindiIII ligases, and 

transformed into E. coli (strain Top10). Constructs were selected for using 

antibiotic resistance and PCR verification followed by sequencing. These 

constructs were then transformed into Saccharomyces cerevisiae strain 

EBY.VW4000 following Easy TRAFO protocol (Gietz and Woods 2002). In 

brief, EBY.VW4000 was grown in YPM liquid media at 300C overnight with 

shaking (at 255 rpm) (i.e. pre-grown to the log phase). The next morning 

these yeast were used for transformation of four SWEET constructs (i.e. 
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Eucgr.K02678, Eucgr.B00363, Eucgr.L02615 and Eucgr.K02688 all in pYES-

GFP vector). 1.5 ml of Yeast were harvested into 1.5ml Eppendorf tubes via 

centrifugation (3000 x g for 30 seconds) and media removed, re-suspended 

in sterile water, centrifuged again and sterile water removed. The pellets 

were re-suspended while adding each of the following chemicals:  240 ml of 

PEG (50% w/v), 36 ml of LiAC (pH7), 50 µl of pre-boiled Salmon Sperm 

DNA, 29 µl of sterile water, and 5 µl of each construct (concentration 0.1 – 1 

µg of DNA). Yeast transformants were then incubated at 420C for 3 hours. 

During the 3 hour incubation, the cells were re-suspended every 15 mins by 

vigorously shaking the tube until the transformation solution looked 

homogenous. Afterwards yeast transformants were centrifuged at max speed 

for 30 seconds and resuspended in 1 ml of sterile water. Cells were then 

plated on SC media lacking uracil where maltose was the carbon source, 

incubated at 300C for 3-4 days and the resulting colonies PCR screened. 

Verified colonies were plated on media supplemented with different sugar 

sources (fructose, galactose, glucose, sucrose and maltose) at dilutions 10-1, 

10-2 and 10-3 and were incubated at 30oC for 3 days and photographed. 

Control yeast were transformed with pYES-GFP vector without SWEET gene 

inserts and treated identically for the same length of time and under the same 

conditions. 

 

2.2.7 Glucose efflux test 

Glucose efflux tests were performed following methods described in Jansen 

et al. (2002) study, with minor adjustments. Eucgr.K02678, Eucgr.B00363, 

Eucgr.L02615 and Eucgr.K02688 cloned into pYES2 vector were tested. All 
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yeast strains (i.e. S. cerevisiae mutants) used for testing glucose efflux were 

grown to the stationary phase (i.e. 3-4 days incubation at 30oC) in liquid SC 

medium lacking uracil with a maltose concentration of 7.5 grams per litre. 

Samples were then harvested by centrifugation (5,000 x g, 3 mins), media 

removed and samples weighed (to obtain wet weight). Yeast samples were 

then resuspended in five-fold liquid SC medium lacking both uracil and a 

sugar source. After 10 mins of incubation, maltose solution (100 grams per 

litre) equivalent to 1/5 of total volume was added, and samples (150 μl per 

sample) were taken at 15 min time intervals for 90 mins. Sugar 

concentrations were determined using the Sigma-Aldrich Glucose Assay Kit 

and a CLARIOstar® spectrophotometer. 

 

2.2.8 GFP localisation 

All 4 SWEET constructs were made as previously described above (see 

Materials and methods, yeast complementation). The ORF of Eucgr.K02678, 

Eucgr.B00363, Eucgr.L02615 and Eucgr.K02688 were cloned into pYES2 

vector using In-Fusion ligation kit (Clonetech) using BamH1 and HindiIII 

ligases, and transformed into E. coli (strain Top10). Constructs were selected 

for using antibiotic resistance, PCR verified and sequenced. These 

constructs were then transformed into Saccharomyces cerevisiae strain 

EBY.VW4000 following Easy TRAFO protocol (Gietz and Woods 2002). S. 

cerevisiae (strain EBY.VW4000) were transformed with each of the 4 

constructs following the quick and easy TRAFO protocol (Gietz and Woods 

2002). After 3 days, colonies were observed using confocal scanning 
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microscopy. The GFP was excited at 488nm excitation and emission 

captured between 520-540nm. 
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2.3 Results 

2.3.1 Phylogenetic relationships of E. grandis SWEET-like transporters  

A total of 52 SWEET-like genes were identified in the E. grandis genome 

using the Phytozome database (available at 

http://phytozome.jgi.doe.gov/pz/portal.html last accessed: 16/3/17) based on 

homology to Arabidopsis SWEET transporters with proven hexose transfer 

capability (Chen et al. 2010) as a template. Compared to annual plants and 

other trees genomes (A. thaliana (17 SWEETs), A. trichopoda (9), C. 

clementina (18), E. grandis (52), M. truncatula (25), P. trichocarpa (28)), a 

significantly larger number of SWEET-like genes were found in the E. grandis 

genome (52 potential SWEET-like genes; Fig. 4). This large number of 

SWEET-like genes was the result of expansions and duplications that have 

occurred within the E. grandis genome rather than the occurrence of novel 

SWEET-like gene families (Fig. 4). The genes SWEET1-14, 16 and 17 show 

expansion within the E. grandis genome (Fig. 4). These same SWEET genes 

show expansion in A. trichopoda, C. clementina, M. truncatula and P. 

trichocarpa genomes. 

 

 

 

 

 

 

 

 

http://phytozome.jgi.doe.gov/pz/portal.html
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Figure 4. Phylogenetic relationships between SWEET-like proteins collected from different species. A. 

thaliana, A. trichopoda, C. clementina, E. grandis, M. truncatula, P. trichocarpa.  The tree was rooted 

with Human SWEET Transporter 1 as outgroup.   
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2.3.2 SWEET gene expression in E. grandis tissues 

Quantitative PCR of 52 SWEET-like genes in 4 major tissue types of E. 

grandis seedlings showed a variety of expression patterns (Fig. 5B). We 

were able to identify three groupings of genes based on expression patterns 

(Fig. 5B).  Group 1 was highly expressed throughout the all tissues tested; 

with Eucgr.C01371 being the most highly expressed gene at 12 fold above 

the reference genes.  Group 2 genes expression profiles were consistently 

similar to the reference genes and Group 3 genes exhibited lower expression 

levels as compared to the reference genes with Eucgr.F01609 being the 

lowest expressed gene across all four tissues (Fig. 5B). As with Groups 1 

and 2, group 3 genes showed nearly identical expression levels in all tissues 

tested.  
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Figure 5. Expression profile of 52 SWEET-like gene throughout different 

tissue in E. grandis: Shoot apex, stem, leaves and root. (A) Image of E. 

grandis control plant grown axenically; labels show the different tissue and 

where RNA was extracted. (B) A total of 52 E. grandis SWEET-like genes 

show similar levels of expression throughout the four tissues. The heat map 

is annotated on the right-hand side, with genes grouped based on amount of 

expression: highly expressed genes (group 1), averagely expressed (group 

2), and lowly expressed (group 3). 
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2.3.3 E. grandis roots exhibit different morphologies when in contact 

with different fungal lifestyles 

The effect of different fungi and oomycetes on E. grandis root morphology 

was lifestyle dependent. In all cases roots were surrounded by fungal hyphae 

(excluding control plant which were grown axenically) (Fig. 6). S. granulatus, 

Phytophthora cinnamomi, and Armillaria luteobubalina led to hallmarks of 

parasitic interactions, i.e. discoloration of leaves (reddish appearance 

compared to controls) and blackening of roots tips. A. luteobubalina is a well-

known eucalypt pathogen that causes death of eucalypt roots (Kile 1981, 

1983) and P. cinnamomi is a common plant pathogen that causes death of 

roots in many different plant species (Royal Botanic Garden 2017a, b). S. 

granulatus is mycorrhizal on pines, however in our experimental set-up the 

fungus acted parasitically on the plant as the interaction resulted in short and 

unhealthy roots, discoloration of leaves and root death (blackened roots) 

(Fig. 6B and G), which was a similar result to P. cinnamomi and A. 

luteobubalina contacts (Fig. 6F and H). When E. grandis was grown with 

commensal fungi (i.e. Suillus luteus) plants exhibited no evidence of 

parasitism or of pathogenesis (Fig. 6C and I). E. grandis was grown in 

contact with the mutualistic ECM fungal isolates of P. microcarpus, we 

observed significant hyphal growth around the roots and successful 

colonisation of roots as denoted by shortening of lateral roots and the 

formation of a thick fungal mantle around the root surface (Fig. 6D and J).   
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Figure 6. Images taken of 2 weeks old and E. grandis under different conditions. (A) Two weeks old control E. 

grandis grown in isolation. (B) E. grandis in contact with Suillus granulatus (parasite). (C) E. grandis in contact with 

Suillus leuteus (ECM non-Eucalyptus colonising). (D) E. grandis in contact with Pisolithus microcarpus (ECM 

Eucalyptus colonising). (E) Close up of control E. grandis roots grown in isolation. (F) Roots of E. grandis in contact 

with Phytophthora cinnamomi (parasite) where death of root is visible (i.e. blackening of root tips). (G) Roots of E. 

grandis in contact with S. granulatus (parasite) (H) Close up of E. grandis roots in contact with Armillaria 

luteobubalina (parasite). (I) Close up of E. grandis roots in contact with S. leuteus. (J) Close up of E. grandis roots in 

contact with P. microcarpus. 
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2.3.4 SWEET-like genes exhibit differential expression in E. grandis 

roots during challenge by different fungi 

SWEET genes in E. grandis roots showed differential regulation when 

exposed to the presence of a fungus (Fig. 7). We found 51 SWEET-like 

genes were significantly upregulated during E. grandis- P. cinnamomi 

interaction,  36 SWEET-like genes were significantly upregulated during E. 

grandis-A. luteobubalina interaction, 36 SWEET-like genes were significantly 

upregulated during E. grandis-S. granulatus interaction, 37 genes in 

E.grandis-F. oxysporum condition, 30 genes in E. grandis- S. luteus 

interaction, 30 genes in E.grandis- P. microcarpus isolate (SI-12), 40 genes 

for E.grandis-P. microcarpus isolate SI-9, 37 genes for E.grandis- P. 

microcarpus isolate R4, and 35 genes for E.grandis- P. microcarpus isolate 

R10.  Induction of a large number of SWEET-like genes did not show 

different expression profiles based on the lifestyle of the fungus interacting 

with the root system (i.e. groups 1; Fig. 7). Conversely, group 2 genes were 

found to have more varied expression that was dependent upon the identity 

or lifestyle of the fungus in contact with the plant.  Examples include 

Eucgr.B00360, Eucgr.H04550, Eucgr.H04154, Eucgr.F01371 that are highly 

expressed when in contact with the isolate of highly aggressive, incompatible 

S. granulatus as opposed to the compatible mutualist P. microcarpus isolate 

SI-12. In contrast, the genes Eucgr.K02672.1, Eucgr.F01609, Eucgr.L01489, 

Eucgr.F01371.2, Eucgr.K02673, Eucgr.L01492, Eucgr.B00360.1, 

Eucgr.H04550.1, and Eucgr.H04154.1 are specific to parasitic and non-

colonising fungal associations. 
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Figure 7. Regulation of 52 E. grandis SWEET genes when E. grandis associates 

with: parasites (Phytophthora, Armillaria and S. granulatus), a non-Eucalyptus 

coloniser (F. oxysporum and S. luteus), or a mutualistic fungus (P. microcarpus 

strains). The heat map is annotated on the right-hand side, groups formed based on 

amount of expression within the roots during these associations: highly regulated in 

all conditions (group 1) and isolate dependent expression (group 2). The position of 

Eucgr.B000363, Eucgr.L02615, Eucgr.K02694 and Eucgr.K02688 were highlighted 

using red text for the Eucgr.number. 
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2.3.5 E. grandis SWEET-like genes encodes STPs that localise to the 

plasma membrane of plant cells 

If EgSWEET-like proteins facilitate the uptake and or export of sugars 

between plant cells and the apoplast, then these proteins must localise to the 

plasma membrane of plant cells. To test this, we used S. cerevisiae 

(EBY.VW4000) as a model organism. S. cerevisiae (EBY.VW4000) was 

transformed with four SWEET constructs (Eucgr.K02694, Eucgr.K02688, 

Eucgr.B00363, Eucgr.L02615-GFP tagged genes), including a positive 

control (AtSWEET1). We examined GFP fluorescence within those cells 

using confocal microscopy (Fig. 8). As expected AtSWEET1 localised to the 

plasma membrane (Fig. 8). Interestingly, only Eucgr.K02694 localised to the 

plasma membrane, whereas the rest of the EgSWEETs localised to the 

cytoplasm (Fig. 8)
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Figure 8. Localisation of SWEET-like proteins Eucgr.K02694, Eucgr.K02688, Eucgr.B00363, Eucgr.L02615-GFP 

fusions in yeast (VW4000). AtSWEET1 was used as a positive control. Bright field and GFP fluorescence images 

were taken by confocal microscopy. Scale bar: 4μm
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2.3.6 E. grandis SWEET-like proteins can act as sugar symporters 

To determine the sugar transport capability of 4 putative E. grandis SWEET-

like proteins in vivo, we tested the ability of the 4 EgSWEET-like genes to 

complement VW4000 S. cerevisiae (Fig. 9). As explained previously, 

EBY.VW4000 cannot grow on media with a carbon source other than 

maltose. The negative control (VW4000 only) grew on maltose media and 

was unable to grow on other sugar media. All other yeast heterologously 

expressing EgSWEET genes complemented the VW4000 strain when grown 

on galactose. AtSWEET1 constructs (i.e. positive control) complemented 

VW4000 allowing growth and utilisation of all four sugar sources.  Most 

notably Eucgr.K02694 had stronger growth compared to the other SWEETs. 

Both Eucgr.L02615 and Eucgr.K02694 were able to grow on all sugar media, 

while Eucgr.B00363 and Eucgr.K02688 had weak growth on fructose, 

sucrose and glucose. Therefore, the 4 EgSWEET genes tested had different 

affinities and abilities to transport sugar.  

 

To determine if these same SWEET-like proteins were able to export 

glucose, we performed glucose efflux tests as per (Jansen et al. 2002). A 

maltose solution was added to mutant EBY.VW4000 colonies containing the 

4 EgSWEET constructs (Eucgr.K02678, Eucgr.B00363, Eucgr.L02615 and 

Eucgr.K02688 in pYES2) and extracellular glucose concentration was 

measured over a total time period of 90 mins. All EgSWEETs exhibit glucose 

exporting capabilities at varying levels (Fig. 10). Most notably Eucgr.K02694 

exhibited the highest rate of glucose export, even higher than AtSWEET1. 
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Figure 9. Transport activity of EgSWEET K02694, K02688, B00363, L02615 in yeast. These SWEET 

proteins complemented VW4000 S. cerevisiae mutants (which lacked 18 hexose transporter genes). 

Yeast VW4000 was transformed with pYES-GFP vector which each had EgSWEET gene inserts 

respectively. Ten-fold serial dilutions of the transformants were transferred to plates with minimal 

media lacking uracil and containing either (A) fructose, (B) sucrose, (C) glucose, (D) galactose or (E) 

maltose. SWEET1 was used as a positive control. VW4000 S. cerevisiae negative control was 

transformed with an empty pYES. Ten-fold serial dilutions of the transformants were transferred to 

plates with minimal media lacking uracil and containing either maltose, glucose, sucrose, fructose and 

galactose. All plates were incubated for 3 days at 30oC and then photographed. 
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Figure 10. Glucose export activity of heterologously expressed Eucgr.K02694, 

Eucgr.K02688, Eucgr.B00363, Eucgr.L02615 SWEET-like sugar transporter 

proteins in EBY.VW4000 yeast. 
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2.3.7 Altered expression of EgSWEET-like genes in E. grandis roots 

affects carbon export from E. grandis roots 

We determined whether the amount of carbon transferred from eucalypt to 

fungi differs depending on fungal lifestyle. 13CO2 carbon transfer experiments 

were performed on E. grandis replicates in contact with different fungi 

(ranging from parasitic, saprotrophic and mutualistic) over a time period of 2 

weeks (Fig. 11). Overall the amount of 13C obtained by the fungi showed little 

difference relative to control fungi that had been grown axenically, with the 

exception of P. cinnamomi. P. cinnamomi obtained large amounts of 13C 

relative to control P. cinnamomi. Apart from the eucalypt-Phytophthora 

contact, changes in 13C levels for all fungi were not statistically significant. 

However there was insufficient time to run all eucalypt-fungal controls, thus 

these are preliminary results only. 

 

We used stable isotope carbon tracing to determine whether overexpression 

or repression of EgSWEET genes affects carbon transfer from host E. 

grandis to fungal symbionts (Fig. 12). Overexpression of Eucgr.L02615 

showed little effect on carbon transfer, however overexpression of 

Eucgr.K02688 greatly increased the amount of 13C transferred from E. 

grandis roots to P. microcarpus SI-12 relative to empty-vector control (Fig. 

12). Repression of Eucgr.K02694 and Eucgr.B00363 had no significant effect 

of carbon transfer. Our results show that increased expression of certain 

EgSWEETs in the roots of E. grandis affects the amount of carbon 

transferred from the host eucalypt to the associating Pisolithus. Although no 
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changes were significant, these results suggest that the efficiency of sugar 

transport may differ between families and individual EgSWEETs. 
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Figure 11. Amount of 13C obtained by different types of fungi when associating with 

wildtype E. grandis relative to each respective control over a time period of 2 weeks. 

No changes were statistically significant. 
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Figure 12. Amount of 13C obtained by SI-12 when associating with mutant eucalypt 

relative to control SI-12 over a time period of 2 weeks. EgSWEET K02694 and 

B00363 were repressed using RNAi knockdown, whereas EgSWEET K02688 and 

L02615 were overexpressed using 35s promoter. No changes were statistically 

significant. 
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Table 1. Forward (F) and Reverse (R) primers used for overexpression of 

Eucgr.K02694 and Eucgr.B00363 using 35s promoter, and repression of 

Eucgr.K02688 and Eucgr.L02615 using RNAi knockdown. 
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2.4 Discussion 

Eucalyptus trees have provided human society with many environmental and 

economic benefits throughout the world. Like all trees, the growth and health 

of eucalypts depend upon the types of soil microbes (e.g. parasitic, 

saprotrophic and mutualistic microbes) present within the rhizosphere (i.e. 

soil area surrounding the root) (Aggangan et al. 2013). Despite society’s 

heavy reliance on these trees’ growth (e.g. for industrial and medicinal oils, 

renewable energy source, paper and pulp production, CO2 sequestration), 

little is known about the underlying controls and mechanisms used by these 

trees when interacting with soil microbes. In this study we annotated 52 E. 

grandis SWEET-like genes, we determine the tissue-specific profiles of their 

expression and compared and contrasted the expression of these genes in 

roots when in contact with a parasitic, saprotrophic and mutualistic fungi. 

 

We found that there is no tissue specificity of SWEET-like gene expression 

between the different tissues of E. grandis, with the exception of 

Eucgr.L01492 (Fig. 5B). Similar to our findings, studies on G. max found 

similar, non-specific expression of SWEET genes throughout the plants’ 

tissue (Patil et al. 2015). In contrast, one study on Arabidopsis found that 

AtSWEET11 and AtSWEET12 are specific and highly expressed in phloem 

tissue (Chen et al. 2014). However, this difference in specificity may be due 

to the greater number of SWEET genes found in E. grandis and G. max 

compared to Arabidopsis.  
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While interaction with fungi induced differential expression of SWEET-like 

genes in E. grandis, very few of these genes showed expression patterns 

specific to a particular plant-fungal combination.  It was interesting to note 

that the fewest number of significantly up-regulated SWEET-like genes were 

found in the mutualistic plant-fungal interaction and the largest number of 

significantly up-regulated SWEET-like was in the parasitic plant-fungal 

interaction. Bacterial and fungal pathogens are known to modulate the 

expression of plant SWEET genes (Chen et al. 2010; Chen et al. 2014; Liu et 

al. 2011), i.e. SWEETs are differentially expressed in root cells colonised by 

pathogenic bacteria or fungi. Previous studies on annual plants (e.g. 

Arabidopsis) found high expression of AtSWEET12, AtSWEET4, 

AtSWEET15 and AtSWEET17 during pathogen infection (Ferrari et al. 2007; 

Chen et al. 2010; Chen et al. 2014; Xuan et al. 2013). We found that the 

following genes are up-regulated only in plant-parasitic interactions: 

Eucgr.B00360 (AtSWEET4 homologue), H04550 (AtSWEET17 homologue), 

H04154, K02672 and K02673 (AtSWEET12 homologue), L01492 

(AtSWEET1 homologue ); in addition to other SWEET homologues F01371 

(AtSWEET2 homologue), L01489 (AtSWEET3 homologue), F01609 

(AtSWEET9 homologue). Other similar findings are the up-regulation of 

AtSWEET12, AtSWEET4, AtSWEET15, and AtSWEET17 homologues in E. 

grandis roots under all fungal conditions. Also studies on M. truncatula shows 

up-regulation of STP genes, containing a conserved MtN3/saliva (SWEET-

like) domain, in roots when associating with AM fungi and Rhizobia bacteria 

(Liu et al. 2011; Perotto et al. 2014). Arabidopsis AtSWEET11 and 

AtSWEET12, both have two MtN3/saliva domains, and function as sucrose 



61 
 

exporters which efflux sucrose from phloem parenchyma cells out into the 

apoplast (Chen et al. 2012). atsweet11:atsweet12 double mutants showed 

slower growth, chlorosis, and large amounts levels of sugar and starch 

accumulation in leaves relative to wild-type (WT) plants (Chen et al. 2012). 

 

With large reserves of sugars, plants are commonly targeted by microbes. 

Bacteria, fungi and oomycetes have all evolved various strategies to 

proliferate by tapping into the nutritional reserves of plants. Previous 

research showed that pathogens increase the flow of sugars (such as 

sucrose and glucose) towards the apoplast, where they grow, by 

manipulating plant plasma membrane sugar transporters (Chen et al. 2010; 

Cohn et al. 2014). However our results suggest that some SWEET proteins 

(for e.g. Eucgr.K02694) may be used by cells to uptake sugars from the 

external environment (Fig. 9). Interestingly, Eucgr.K02694 is repressed in 

mutualistic interactions (at least for P. microcarpus SI-12) but highly 

upregulated during parasitic interactions (at least for P. cinnamomi), 

suggesting that eucalypts may upregulate Eucgr.K02694 to restrict sugar 

uptake by pathogens. This result has also been described by Yamada et 

al. (2016) who found that plants retaliate to pathogen infections by 

reabsorbing the sugars inside their cells, using a select few STPs (i.e. 

STP13), which results in less sugar in the apoplast and ultimately starves 

the pathogen.  

 

Our study lays the foundation to further our understanding of the controls 

surrounding sugar transport in perennial trees during plant-microbe 
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interactions. In terms of perennial trees, the induction of SWEET-like genes 

by TAL effectors used by pathogenic, saprotrophic and mutualistic fungi has 

yet to be explored. Furthermore the effects of elevated CO2 on the 

expression of SWEET-like genes under different plant-microbe interactions, 

the efficiency of sugar transport of each SWEET-like protein and 

characterisation of these SWEET-like sugar transporter proteins still needs to 

be done. Understanding these mechanisms could prove useful for increasing 

E. grandis growth and promote stress tolerance, and this warrants further 

investigation. 
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Chapter 3 Characterisation of the Pisolithus albus 

effector MiSSP9.7 and its interactant, Eucalyptus 

grandis SWI3D 

 

3.1 Introduction 

Plants constantly interact with a wide range of soilborne microbes. Microbes 

associate with plants to obtain carbon (in the form of sugars) for their own 

growth and development. These microbes do this by either: forced syphoning 

host plant sugars (i.e. parasitic/pathogenic interactions), or by exchanging 

growth limiting nutrients (such as N and P) for the plant’s sugars (i.e. 

mutualistic interactions). Plants are constantly attacked by pathogens, but 

they commonly associate with mutualistic microbes (Partida-Martinez and 

Heil 2011; Smith and Read 1995, 1997, 2008). Over 80% of terrestrial plants 

form mutualistic associations with mycorrhizal fungi (Pellegrin et al. 2015) as 

well as associating with many different species of beneficial bacteria 

(Franche et al. 2009). Thus, plants have evolved signaling pathways and an 

adaptable immune system that is thought to distinguish and facilitate the 

establishment of microbes within roots (Jayaraman et al. 2012). Exactly how 

signaling pathways and the plant immune system distinguish between 

pathogens and mutualists is not fully understood.  

 

To form intimate symbioses with plants, fungi must first overcome or 

manipulate their hosts’ immune system. The plant innate immune system 

consists of physical barriers (such as the plant cell wall and waxy cuticle 
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layer protecting the epidermis of plant organs) and chemical defence 

mechanisms (such as the hypersensitive cell death response (HR)). To deal 

with host immune responses, pathogenic microbes have evolved a plethora 

of mechanisms to detoxify host metabolites, hijack host sugar transporters, 

hide their presence from host immune receptors or to kill host tissues (Lo 

Presti et al. 2015; Chen et al. 2010; Yang et al. 2006; Brown and Tellier 

2011; Schmidt and Panstruga 2011; Ciuffetti et al. 1997).  

 

Another means by which microbes, in particular pathogenic fungi, directly 

manipulate host immunity is through the production of small secreted 

proteins called effectors. Effectors broadly describe secreted proteins that 

either: kill the host plant (in necrotrophic and hemibiotrophic fungi), 

manipulate host cell physiology or suppress the host’s immune response (de 

Jonge et al. 2011; Rafiqi et al. 2012; Stassen et al. 2011; Bozkurt et al. 2012; 

Chuma et al. 2011; Angot et al. 2006; Giraldo et al. 2013a, 2013b; Okmen et 

al. 2014; Stergiopoulos et al. 2009, 2013; Zuccaro et al. 2014). For example, 

necrotrophic fungi (e.g. wheat pathogens Stagonospora nodorum and 

Pyrenophora tritici-repentis) produce nectrophic effectors, such as secondary 

metabolites, toxic polyketides and non-ribosomal peptides, to kill host plant 

cells (Horbach et al. 2011; Qutob et al. 2006; Stergiopoulos et al. 2009, 2013; 

Oliver et al. 2012). Other pathogens initially secrete effectors that suppress 

host immune response and allow the pathogen to thrive and eventually kill 

the host. This is seen in the plant pathogen Magnaporthe oryzae which 

secretes SLp1 and AvrPiz-t effectors which suppresses chitin-activated 

pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and 
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cytoplasmic plant immunity (Lo Presti et al. 2015). In addition, some small 

RNAs have been described as pathogen effectors. B. cinerea produce small 

RNAs that disrupt A. thaliana RNA interference machinery by binding to 

AtARGONAUTE1 which selectively silences immunity related genes that are 

complementary to these small RNAs (Weiberg et al. 2013, 2014).  

 

While effectors have been studied extensively in plant pathogens, mutualistic 

fungi also use effectors to suppress the host’s immune response to form 

mycorrhizal associations and structures (e.g. Hartig net and arbuscules). 

Ectomycorrhizal (ECM) fungi secrete many different effectors (Pellegrin et al. 

2015), called Mycorrhizae induced Small Secreted Proteins (MiSSPs), which 

are thought to play a key role for establishing plant-ECM mutualisms (Plett 

and Martin 2015; Plett et al. 2017). The ECM fungus L. bicolor produces the 

effector MiSSP7 that interacts with the jasmonic acid co-receptor PtJAZ6 (a 

negative regulator of jasmonic acid-induced gene transcription) (Plett et al. 

2011, 2014a, b). This interaction results in the suppression of jasmonic acid-

induced genes, allowing L. bicolor to develop the apoplastic Hartig net and 

establish symbiosis (Plett et al. 2014a, b). In compatible Suillus-plant 

pairings, SSP genes were found to be significantly upregulated when 

compared to controls (Liao et al. 2016). Similarly, to ECM fungi, the use of 

effectors to establish mutualisms have been identified in arbuscular 

mycorrhizal (AM) fungi. Rhizofagus irregularis (formerly Glomus intaradices) 

secretes the SP7 effector that targets the pathogenesis-related transcription 

factor ERF19 in the plant nucleus, which temporarily suppresses the plants 

immune response (Klopphoiz et al. 2011). ERF19 is highly upregulated 
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during infection by the fungal pathogen Colletotrichum trifolii, but only 

temporarily during AM colonisation (Klopphoiz et al. 2011). Taken together, 

these findings suggest that effectors are essential components for the 

establishment of plant-fungal mutualisms. 

 

The recent release of new ECM fungal genomes has highlighted the 

presence of dozens more effector like proteins encoded by a range of 

mycorrhizal fungi (Kohler et al. 2015).  One of these fungi, Pisolithus albus, is 

of special interest to Australia as it makes up a critical component of forest 

biota through its symbiotic interaction with the roots of eucalypt trees. The 

aims of this study were to characterise one of the effector-like genes of the 

closely related Pisolithus albus, called PaMiSSP9.7 (homologous to 

Pismi.63008) and the potential role it plays during host-fungal interaction. We 

show that it interacts with SWI3D, a subunit of the SWI/SNF complex 

implicated in the transcriptional regulation of sugar and hormone related 

genes. 
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3.2 Materials and methods 

3.2.1 MiSSP9.7-GFP production and absorption by eucalypt root cells 

The open reading frame for PaMiSSP9.7 was amplified from cDNA 

synthesized using iScript (BioRad) following the manufacturer’s instructions.  

The amplified fragments were gel purified and ligated into a pET22(b)-GFP 

plasmid using In-Fusion clonase (Clontech), and plasmids transformed in 

Escherichia coli (strain BL21) where PaMiSSP9.7 was expressed. 

PaMiSSP9.7 protein expression and purification was performed following 

methods described by Shen et al. (2009) using GE Healthcare His SpinTrap 

columns. The eluted protein was purified via dialysis using 1x phosphate 

buffered saline (PBS pH 7.4) and running on SDS-Page gel to validate the 

purity of PaMiSSP9.7. 

 

To test the up-take of PaMiSSP9.7 into E. grandis root cells, roots of E. 

grandis seedlings were submerged into a MiSSP9.7-GFP solution, and 

incubated in a growth chamber at 25oC with light for 4 hours. Negative 

controls were made by submerging roots in either pure GFP without 

MiSSP9.7 diluted in PBS or in only PBS solution, and treated identically from 

there onwards. Roots treated with MiSSP9.7-GFP or GFP alone were then 

rinsed in PBS, severed from the stem of the seedling, fixed in 4% 

paraformaldehyde and left at 4oC overnight.  Afterwards, roots were washed 

with new PBS and then stained with 1% propidium iodide for 10 mins. Roots 

were then examined under a Leica SP6 confocal microscope. 
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3.2.2 Yeast One- and Yeast Two-Hybrid analyses 

Yeast I and II hybrid screens were carried out as per Plett et al. (2011). 

PaMiSSP9.7 was amplified from cDNA synthesized using iScript (BioRad) 

following the manufacturer’s instructions.  The amplified fragments were gel 

purified and ligated into pDONR222 and PCR and sequence verified.  

Positive inserts were then ligated into pDEST22 plasmids using Gateway 

Gene Cloning (Life Technologies) and transformed into S. cerevisiae strain 

MAV203 using a library scale transformation procedure as per the ProQuest 

yeast two-hybrid system protocol (ProQuest catalog number PQ10001-01 

and PQ10002-01).  One yeast II hybrid analysis was performed and plated 

on selective medium (-L-W-H + 25 mM 3-amino-triazol) which tests for 

putative interacting protein(s). A further test of protein-protein interaction was 

performed using a β-Gal activity assay as described by Walout and Vidal 

(2001).  After the blue colour was developed for 24 hours at 37oCelsius, 

photos were taken of each colony using a Zeiss stereomicroscope with 

attached colour camera. 

 

For Yeast I Hybrid assay, bait sequences were constructed by cloning 

MiSSP9.7 into pDEST32 plasmid in frame with Gal4-DBD and transformed 

into MaV103 cells (mating type a). Self-activation tests for the DBD bait strain 

were then performed using the interaction controls described above (Yeast I 

and II analyses done by J. Plett). 
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3.2.3 BiFC testing in E. grandis 

SWI3D (i.e. Eucgr.I01261) and MiSSP9.7 (i.e. Pa683008) genes used in 

BiFC cloning were inserted directly into the N-labelled version of the pBiBCt-

2in1 vector using GATEWAY cloning techniques (Grefen and Blatt, 2012). 

Firstly, SWI3D and MiSSP9.7 were amplified from E. grandis cDNA via PCR 

and inserted into pDONR221 using BP ligation. These vectors with inserts 

were then transformed into E. coli for cloning. E. coli colonies containing the 

correct vector and insert were identified by growing transformants on LB 

media supplemented with appropriate antibiotics and then PCR screening 

colonies to verify colonies containing the correct gene insert based on size. 

Verified E. coli colonies were grown at 37oC overnight and purified using 

Zippy plasmid purification kit (Zymo). Purified SWI3D and MiSSP9.7 genes in 

pDONR221 were then ligated into the N-labelled version of the pBiBCt-2in1 

vector using LR ligase. The pBiBCt-2in1 vector produced a red fluorescent 

protein (RFP) signal that enabled identification of successfully transformed 

cells based on the presence of RFP. Genes inserts were sequence verified 

and the final construct was transformed into Agrobacterium 

tumefaciense clone GV3101. One positive colony was grown overnight at 

28oC in LB supplemented with appropriate antibiotics and then used for 

transformation.  After 48 hours, leaf discs were excised and observed using 

confocal scanning microscopy.  The settings used to observe the yellow 

fluorescent protein (YFP) was 20% argon power to excite at 488nm excitation 

followed by emission capture between 520-540nm. For red fluorescent 

protein (RFP) internal transformation control, we excited the samples at 

561nm followed by emission capture between 580-650 nm. 
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3.2.4 Construction of the phylogenetic tree  

To determine the phylogenetic relationships of E. grandis SWI3 proteins, we 

constructed a phylogenetic tree using the online tool ‘Phylogeny.fr’ (Dereeper 

et al. 2008). SWI3 gene sequences of plants (Arabidopsis thaliana (4), Citrus 

clementina (4), Eucalyptus grandis (4), Medicago truncatula (4), Populus 

trichocarpa (6)) were downloaded from the Phytozome database. “One click” 

phylogenetic analysis was used, with a concatenated MUSCLE alignment 

adjusted by Gblocks. The tree was rooted with Yeast SWI3 as the outgroup. 

 

3.2.5 Plant and fungal growth conditions 

Growth of E. grandis seedlings was performed similarly to chapter 2, 

following the methods outlined in Plett et al. (2014a). E. grandis seeds 

obtained from the Commonwealth Scientific and Industrial Research 

Organisation (CSIRO, Clayton, Vic., Australia) tree seed centre (Seedlot 

21068) were sterilised in 30% hydrogen peroxide for 10 mins followed by 5 

washes with sterile water for 5 mins each. Seeds were then transferred onto 

1% agar water medium and allowed to germinate at 25oC with a 16/8 hour 

light/dark cycle.  Once germinated, seedlings were transferred to ½ Modified 

Mylin Norkin (MMN) medium on top of a sterile cellophane membrane to 

prevent root growth into the medium. Pisolithus albus cultures used in this 

study were propagated at least 4 weeks on 1x MMN before subculturing the 

outer growing hyphae onto ½ MMN medium covered in a sterile cellophane 

membrane and grown under a 16/8 h light/dark cycle at 25°C for 2 weeks.  
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All plant colonisation experiments were carried out by placing eucalypt 

seedlings directly onto each fungal colony. The contact plates were grouped 

and labelled as 0 hour (pre-symbiosis contact), 24 hour contacts, 48 hour 

contacts and 2 week contacts (at least 3 replicates per time group), then all 

placed in a growth cabinet under a 16/8 h light/dark cycle at 25°C. Eucalypt 

roots were harvested and frozen directly in liquid nitrogen at each respective 

time period (i.e. 0 hour, 24 hour, 48 hour and 2 week contact periods).  

 

3.2.6 RNA extraction and Real Time Quantitative PCR (RT-QPCR) 

RNA extraction was performed on all contact groups (minimum of 3 

replicates per group) using the RNeasy Mini Kit (Qiagen) following the 

manufacturer’s instructions. A total of 1 μg of RNA for each sample was used 

to synthesize cDNA using the iScript cDNA synthesis kit (Bio-Rad) following 

the manufacturer’s instructions. This cDNA was used as a template for RT-

QPCR using the Bio-Line SensifastTM reaction mix and the Bio Rad CFX96 

Touch Real-Time PCR Detection System. The reference genes 

Eucgr.C00350.1 and Eucgr.K02046.1, were utilized to normalize the results. 

 

3.2.7 Generation of SWI3D constructs and transgenic eucalypts 

Generation of EgSWI3D (i.e. Eucgr.I01261) constructs was performed 

following methods described in chapter 2. 35S:EgSWI3D and 

RNAi:EgSWI3D were amplified from cDNA synthesized using iScript 

(BioRad) following the manufacturer’s instructions. The amplified DNA 

fragments were gel purified, ligated into pDONR222 and PCR verified.  

Positive inserts were then ligated into pH2GW7 (35S:) or pH7GWIWG2(II) 
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(RNAi) vectors using Gateway Gene Cloning (Life Technologies) forming the 

SWI3D constructs. These SWI3D constructs were then transformed into 

Rhizobia rhizogenes (formerly known as Agrobacteria rhizogenes) isolate 

K599.  E. grandis seedlings were grown from seed to one month old on 1% 

agar media. These seedlings were used to generate transgenic roots that 

either overexpressed or repressed Eucgr.I01261. 

 

To generate mutant roots, E. grandis seedling roots were cut and removed 

from the stem using sterile scalpels. The remaining wounded part of the stem 

was dipped into growing colonies of mutant R. rhizogenes containing SWI3D, 

and grown upside down on ½ MS media for 1 week in a growth cabinet with 

a constant temperature of 25oC and a 16 hour photoperiod. To prevent death 

of seedlings by R. rhizogenes, E. grandis stems were then transferred to ½ 

MS Timentin (conc. 150 µg/mL) media. Once per week the stems were 

transferred to new ½ MS Timentin media and grown under the same 

conditions. Mutant roots became visible usually within 1-2 weeks, but took a 

total of 3-4 weeks to grow long enough for fungal contact. After 4 weeks of 

growth, transgenic eucalypts were transferred onto ½ MMN media on top a 

sterile cellophane membrane and colonies of 2-week-old Pisolithus albus 

isolates (SI-12) placed on top, making direct contact with the roots. These 

contacts were left for 2 weeks at 25oC with a 16/8 hour light/dark cycle.  
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3.2.8 Preparation of double stranded interfering RNAs (dsiRNAs) and 

treatment of roots undergoing colonization by P. albus 

Using the method of Wang et al. (2016), we targeted Pisalb.683008 for 

inhibition of translation using double stranded interfering RNA (dsiRNA).  In 

short, Pisalb.683008 and LbMiSSP7 (used as a negative control) were PCR 

amplified using pairs of gene-specific primers modified to include T7 

promoter sequences. The resulted PCR products with T7 promoter flanking 

at both ends were then purified and used as templates for in 

vitro transcription following manufacturer’s instructions of the Riboprobe in 

vitro Transcription Systems (Promega). The synthesized dsiRNAs were then 

purified with RNA PowerClean Pro Cleanup Kit (Mo Bio) and eluted in 

nuclease-free water (dsiRNA production done by J. Wong). 

 

Two-month old E. grandis seedlings were put into contact with 12-d-old P. 

albus isolate SI12. For each plant treated, four spots of fungal mycelia in 

close contact with lateral roots of E. grandis seedlings were dosed with 2 µl 

of purified dsiRNAs (5 ng/µl) every second day for two weeks. Plants were 

either treated with dsiRNA Pisalb.683008 (to knock down production of 

Pisalb.683008 during colonization) or with dsiRNA LbMiSSP7 (a negative 

control). DsiRNAs targeting MiSSP7, an unrelated MiSSP gene originated 

from Laccaria bicolor (Martin et al., 2008) was determined to be a proper 

negative control of the experiment as BLAST results against the E. 

grandis and P. albus genomes using the gene sequence of MiSSP7 found no 

sequence similarity to protein-coding regions of either genomes. After two 
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weeks of treatment, percent root colonization was assessed and samples 

were taken for microscopy and performed RNA extraction. 

 

3.2.9 Microscopy of transgenic/dsiRNA treated eucalypt roots and 

Hartig net measurements 

Transgenic or dsiRNA treated E. grandis-P. albus contacts described above 

were assessed for percent mycorrhization before severing the roots from 

stems, where they were fixed in 4% paraformaldehyde and left at 4oC 

overnight. Roots were then embedded in 6% agarose and mycorrhizal root 

tips were sectioned on a Campden Instruments vibratome into 30μm cross 

sections.  Cross sections were stained with 1% propidium iodide for 10 mins, 

washed with PBS and stained again with WGA-FITC and rinsed in PBS 

(Embedding and cross sectioning done by K. Plett). Roots were then 

examined under a Leica SP6 confocal microscope and photos taken. Hartig 

net depths were calculated using ImageJ software. Controls were fixed, 

stained and examined identically to the test samples. 
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3.3 Results 

3.3.1 MiSSP9.7 encodes an effector protein that enters plant root cells 

We tested the up-take of Pa683008-GFP (MiSSP9.7-GFP) by E. grandis 

roots in the absence of P. albus. We observed fluorescence within the 

nucleus of host cells, indicating MiSSP9.7-GFP localised to the nucleus (Fig. 

13B). The merge of the two signals with bright-field confirms this. The 

negative control (i.e. GFP with no attached protein) was not visibly taken up 

into host cells under our experimental conditions (Fig. 13F).  Since PI 

localised to the nucleus and the GFP signal co-localized with the PI signal 

(Fig. 13E), we can conclude that the MiSSP9.7 enters the nucleus. 
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Figure 13. Images of MiSSP9.7-GFP (i.e. Pa683008-GFP) and Propidium Iodide (PI) stain taken using confocal 

microscopy. The first panel shows auto-fluorescence (Fig. 13A) and the nucleus (N) is shown in each panel. PI (blue 

fluorescence) (Fig. 13B) and MiSSP9.7-GFP (green fluorescence) (Fig. 13C) co-localised within the nucleus of cells 

(Fig. 13E). Negative controls show GFP only without any attached protein (Fig. 13F), PI only (Fig. 13G) and a 

merge of the two negative control images (Fig. 1H). GFP alone (i.e. without any attached protein) was not able to 

enter into root cells (Fig. 13F, H). 
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3.3.2 MiSSP9.7 interacts with a chromatin remodelling complex (CRC) 

subunit of E. grandis 

Because the MiSSP9.7 localises to the nucleus in host plant cells, we 

determined if there were any nuclear proteins of E. grandis that interact with 

this effector (Fig. 14). Using a yeast II hybrid we determined that MiSSP9.7 

interacts with SWI3D (Eucgr.I01261), a subunit of the SWI/SNF CRC. This 

interaction was compared to three controls: a strong positive interaction 

(Krev1/RalGDS-wt), a weak positive interaction (Krev1/RalGDS-m1) and two 

proteins that do not interact (Krev1/RalGDS-m2). Yeast colonies under 3AT 

selection and X-Gal tests showed that MiSSP7.9: Eucgr.I01261 closely 

resembled a weak positive interaction (Fig. 14).  

 

This interaction was further confirmed using Bi-Fluorescent Complementation 

(BiFC) (Fig. 15). Nicotiana benthamiana leaf cells were transformed with 

pBiFCt-2in1-NN (containing MiSSP9.7 and SWI3D) in which positive 

transformants are identified by constitutive expression of red fluorescent 

protein (RFP) (Fig. 15 third pane from left). Examination of these cells using 

confocal microscopy showed a strong YFP signal, showing that 683008 and 

SWI3D interacted causing the two halves of YFP to join and fluoresce (Fig. 

15). A merge of the two signals with bright-field shows that the interaction is 

occurring in the nucleus of the cell (right most pane).  
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Figure 14. MiSSP9.7 (i.e. Pa683008) interacts with E. grandis nuclear protein 

SWI3D (Eucgr.I01260). The interaction is compared to three control interactions 

where Krev1/RalGDS-wt is a strong positive interaction, Krev1/RalGDS-m1 is a 

weak interacting pair, and Krev1/RalGDS-m2 are two proteins that show no 

detectable interaction. 
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Figure 15. In vivo BiFC proof of the interaction between 683008 and SWI3D. N. 

benthamiana leaf cells transformed with vector containing both genes, where 

transformed cells are denoted by constitutive expression of RFP (third panel), 

interaction between 683008 and SWI3D is shown by the reconstitution of the YFP 

signal (second panel) and the merge of the two signals with bright-field (right most 

panel).  
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3.3.3 Phylogenetic relationships of E. grandis SWI3 proteins 

A total of 4 SWI3 genes were identified in the E. grandis genome using the 

Phytozome database (available at http://phytozome.jgi.doe.gov/pz/portal.html 

last accessed: 28/3/17) based on homology to Arabidopsis SWI3 subunits, 

which have been proven form part of the SWI/SNF complex (Sarnowska et 

al. 2016), as a template, in addition to keyword searches (Fig. 16). Similar 

numbers of SWI3 genes were found to be encoded by the E. grandis genome 

when compared to annual plants and other trees genomes (Eucalyptus 

grandis (4), Arabidopsis thaliana (4), Citrus clementina (4), Medicago 

truncatula (4), Populus trichocarpa (6)) (Fig. 16).  
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Figure 16. Phylogenetic relationships between SWI3 proteins collected from 

different species. A. thaliana, C. clementina, E. grandis, M. truncatula, P. 

trichocarpa.  The tree was rooted with S. cerevisiae Yeast SWI3 subunit as the 

outgroup. 
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3.3.4 SWI3 gene expression in E. grandis roots over a two-week time 

course of colonization by P. albus 

Since all four SWI3 subunits play a role in the SWI/SNF complex, we 

determined the gene expression of all four eucalypt SWI3 genes (SWI3A, B, 

C and D) using quantitative PCR (QPCR), during pre- and post-colonisation 

of E. grandis roots by P. albus over a 2 week time period. The time points 

were 24 hour in-direct contact (i.e. pre-symbiosis signaling), 24 hour direct 

contact, 48 hour direct contact and 2 week colonized root tissues. We found 

that SWI3D was significantly upregulated in roots during pre-symbiosis 

signaling and 48 hours after contact (Fig. 17). SWI3A was significantly up-

regulated during pre-symbiotic signaling and then later was significantly 

repressed.  SWI3B was significantly repressed at during the early stages of 

physical interaction between E. grandis and P. albus.  SWI3C transcription 

was not significantly altered. 
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Figure 17. RT-QPCR of SWI3 genes in E. grandis over a time course of 2 weeks. 

Black bars indicate 24 hour pre-symbiotic contact, light grey bars represent 

expression at 24 hours post physical contact between E. grandis roots and P. albus; 

dark grey bars are expression values after 48 hours of direct contact and white bars 

are expression values in mature mycorrhizal root tips.  All values are reported as 

fold change from gene expression levels in axenically grown E. grandis roots.  + SE; 

* indicate statistically significant findings (p value < 0.05). 
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3.3.5 Altered expression of MiSSP9.7 significantly affects P. albus 

Hartig net development during colonisation 

 We transgenically altered the expression of SWI3D in the roots of E. grandis, 

but this had little effect on Hartig net development (Fig. 18A). The percentage 

of mycorrhizal roots formed were lower in SWI3D overexpressed mutants 

compared to wildtype eucalypts and SWI3D repressed mutants (Fig. 19). 

However, wildtype and SWI3D repressed values were not statistically 

significant.  

 

We repressed the expression of MiSSP9.7 in P. albus (using dsiRNA) when 

in contact with E. grandis and found that Hartig net depth significantly 

increased compared to the control eucalypt-P. albus contacts (treated with 

LbMiSSP7 dsiRNA; Fig. 18B). This result suggests repression of MISSP9.7 

may be beneficial to mycorrhization during eucalypt-Pisolithus symbioses. 
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Figure 18. Altered expression of SWI3D (A) or repression of MiSSP9.7 (Pa683008) by dsiRNA (B) and 

its effect on Hartig net development. * indicates statistically significant findings (p value < 0.05). 
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Figure 19. Percent mycorrhization of SWI3D (i.e. Eucgr.I01261) transgenic 

eucalypts. Eucgr.I01261 was overexpressed (using 35s promoter) in 3 E. grandis 

replicates and repressed (using RNAi knockdown) in another 3 replicates. 

Percentage of mycorrhized roots were counted after 2 weeks of contact with 

Pisolithus albus cultures. Wild type control eucalypts were treated identically to the 

mutants, except for altering SWI3D expression. * indicates statistically significant 

findings (p value < 0.05). 
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3.4 Discussion 

Plants are constantly confronted by a range of different soil microbes (in 

particular parasitic and mutualistic microbes) present within the rhizosphere. 

Plants must associate with mutualistic fungi to improve their survivability, 

while defending against pathogens. The mechanisms used by plants to do 

this is still currently being researched (Rey et al. 2015; Plett et al. 2015). 

Effectors are signaling molecules secreted by fungi that are used to 

communicate to plants (Lo Presti et al. 2015; Kloppholz et al. 2011; Plett et 

al. 2011, 2014a, 2014b, 2015). Plants in turn, respond in many different ways 

depending on the types of effectors secreted. Indeed, plants respond 

differently to effectors secreted by parasitic fungi, compared to plants 

responding to effectors secreted by mutualistic fungi (Lo Presti et al. 2015; 

Rafiqi et al. 2012; Plett et al. 2011, 2014a, 2014b, 2015; Klopphoiz et al. 

2011). Our research describes how the MiSSP9.7 effector modulates ECM-

plant fungal interactions and formation of mycorrhizal structures. We 

determined that MiSSP9.7 enters host root cells and localizes to the nucleus. 

We further show that MiSSP9.7 interacts with a CRC subunit (SWI3D) and 

we characterise the expression of SWI3 genes in eucalypt roots in contact 

with P. albus. Finally, we show that differential expression of either SWI3D or 

MiSSP9.7 can alter the outcome of mycorrhization. 

 

The SWI/SNF complex has been characterized in other plant systems where 

it directly regulates multiple plant hormone pathways, including auxin (IAA), 

Abscisic Acid (ABA), Jasmonic Acid (JA), Ethylene (ET), Salicylic acid (SA) 

and cytokinins (Sarnowska et al. 2016). Plants hormones such as SA, JA, 
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and ethylene (ET) play major roles in regulating plant defence responses. SA 

is involved in the reaction against biotrophic and hemi-biotrophic pathogens, 

while JA and ET are associated with defence against necrotrophic pathogens 

and herbivorous insects. Increased (SA) accumulation and signaling repress 

biotrophic pathogens but encourage the colonization of plant tissues by ECM 

fungi (Plett et al. 2014a, b; Tschaplinski et al. 2014; Lebeis et al. 2015). 

Therefore, P. albus may be able to indirectly modulate host immune 

responses by using certain effectors that bind to essential DNA regulating 

complexes, such as the SWI/SNF CRC.  

 

We found that there is no difference in Hartig net formation when 

transgenically over-expressing or repressing SWI3D in E. grandis roots (Fig. 

18). Overexpression of SWI3D, however, lowers the percentage of root tips 

colonized.  Reduced expression of MiSSP9.7 however caused significant 

increases in the Hartig net root penetration depth into host root cells (Fig. 

18). This result is counter-intuitive as all previously characterized mutualistic 

effectors (Plett et al. 2011; Kloppholz et al. 2011; Plett et al. 2014a, b) have 

been found to repress host immunity and increase Hartig net formation. 

These results would suggest that mycorrhizal fungi also encode effector 

proteins that curb the colonization success of the fungus.  This may be a 

mechanism by which the ECM fungus is able to remain non-pathogenic and 

still benefit the host.  This result, however, will require further experimentation 

to substantiate. 
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This study provides further insight for understanding the controls used during 

plant-fungal interactions. Our results suggest that pre-symbiotic signaling 

ECM fungi, such as Pisolithus, release effectors from hyphae that bind to 

nuclear proteins within plant root cells, which then regulate transcription 

Understanding this mechanism could prove useful for increasing E. grandis 

colonisation by beneficial microbes and prevent disease and deserves further 

investigation. 
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Chapter 4 Conclusion and Future Perspective 

In this study, we identified and categorised 52 SWEET-like genes of E. 

grandis. We further determined that there was no tissue-specific expression 

profiles of the identified E. grandis SWEET-like genes throughout seedling 

tissues. Additionally, we also characterised the expression of these genes in 

roots when in contact with pathogenic, saprotrophic and mutualistic fungi. We 

identified 9 eucalypt SWEET-like genes that were only upregulated in plant-

parasitic interactions. Finally, we characterised further 4 SWEET-like 

proteins.  

 

This study expanded our understanding of the role of SWEETs in plant-

microbe interactions. In contrast with previous SWEET studies, this study 

determined the role of SWEETs in a large, long-lived perennial tree species 

(i.e. eucalypts) that has the largest number of SWEET genes known to date. 

Previous studies have only studied SWEETs in small annual plants, such as 

Arabidopsis, rice and legumes. While other studies have provided evidence 

for SWEET involvements in parasitic plant-microbe interactions, the role of 

SWEETs in mutualistic plant-microbe interactions was largely unknown. This 

study revealed that only a few SWEET genes were upregulated in mutualistic 

plant-microbe interactions compared to parasitic plant-microbe interactions.  

 

In addition to eucalypt SWEET characterisation, we also characterised 

MiSSP9.7 and the SWI3D subunit of the eucalypt SWI/SNF complex. We 

identified that MiSSP9.7 localises within the nucleus of host plant cells. We 

determined that the MiSSP9.7 effector interacts with the eucalypt SWI3D 
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subunit belonging to the SWI/SNF CRC complex. We further performed 

qPCR over a time course of 2 weeks on four E. grandis SWI/SNF complex 

subunits (i.e. SWI3A, B, C, and D). Lastly, we found that repressing 

MiSSP9.7 significantly affects Hartig net penetration depth during 

mycorrhization. Although a number of studies have shown that the SWI/SNF 

complex plays a role in plant defence and plant-microbe interactions, to our 

knowledge no other study has determined the role of SWI3 subunits in plant-

microbe interactions, let alone mutualistic plant-microbe interactions. 

Moreover, to our knowledge no other study has determined the role the 

MiSSP9.7 effector during plant-microbe interactions. This study expanded 

our understanding of the effectors ECM fungi use to communicate with 

plants, as well as transcriptional regulation in mutualistic plant-microbe 

interactions. 
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