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Abstract

Background: For epidemiological research, cancer registry datasets often need to be augmented with additional
data. Data linkage is not feasible when there are no cases in common between data sets. We present a novel
approach to augmenting cancer registry data by imputing pre-diagnosis health behaviour and estimating its
relationship with post-diagnosis survival time.

Methods: Six measures of pre-diagnosis health behaviours (focussing on tobacco smoking, ‘at risk” alcohol
consumption, overweight and exercise) were imputed for 28,000 cancer registry data records of US oesophageal
cancers using cold deck imputation from an unrelated health behaviour dataset. Each data point was imputed
twice. This calibration allowed us to estimate the misclassification rate. We applied statistical correction for the
misclassification to estimate the relative risk of dying within 1 year of diagnosis for each of the imputed behaviour
variables. Subgroup analyses were conducted for adenocarcinoma and squamous cell carcinoma separately.

Results: Simulated survival data confirmed that accurate estimates of true relative risks could be retrieved for health
behaviours with greater than 5% prevalence, although confidence intervals were wide. Applied to real datasets, the
estimated relative risks were largely consistent with current knowledge. For example, tobacco smoking status 5
years prior to diagnosis was associated with an increased age-adjusted risk of all cause death within 1 year of
diagnosis for oesophageal squamous cell carcinoma (RR=1.99 95% Cl 1.24,3.12) but not oesophageal
adenocarcinoma RR= 161, 95% Cl 0.79,2.57).

Conclusions: We have demonstrated a novel imputation-based algorithm for augmenting cancer registry data for
epidemiological research which can be used when there are no cases in common between data sets. The
algorithm allows investigation of research questions which could not be addressed through direct data linkage.
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Background

In 2011 it was estimated that that the cost of maintain-
ing the United States’ National Program of Cancer
Registries was $US60.77 per case [1]. The estimated
number of new United States cancer cases in 1999 was
1,291,451 [2] and 1,762,450 in 2019 [3] an increase of
36% in 20 years. As in any public investment, there is al-
ways a need to maintain, and indeed increase, benefits of
cancer registries relative to costs.

The role of cancer registries has changed considerably
over time [4]. Since the 1990s, for example, the develop-
ment of specialised data linkage infrastructure has open
wide new research applications [4]. However, data link-
age may not be feasible in all circumstances. There are
still research questions which are waiting for a suitable
method of analysis.

Oesophageal cancer is the seventh most common can-
cer by site [5], has low survival [6], and caused an esti-
mated 1 in 20 cancer deaths worldwide in 2018 [5]. It has
been estimated that 71% of male and 59% of female
oesophageal cancer deaths in the US arise from modifiable
health behaviours: including smoking (50%), alcohol con-
sumption (17%) and excess body weight (27%) [7]. The
impact of pre-diagnosis health behaviour on oesophageal
cancer survival is uncertain. As survival times are short,
the carry-over effect of pre-diagnosis behaviour may be
important, and potentially impact treatment choices [8].
Further, as health behaviours in populations change over
time [9, 10], predicting the impact of behaviour on cancer
survival would assist in forecasting future disease burden
and health service requirements.

Associations between oesophageal cancer incidence
and health behaviour (including tobacco smoking, alco-
hol consumption, body mass index and physical activity)
differ by histological sub-type [11, 12] with oesophageal
squamous cell carcinoma (ESCC) and oesophageal
adenocarcinoma (EAC) usually examined separately.
Similar differences may exist for survival time [13, 14].

Nowadays, cancer survival data is generally available
through cancer registries [15], but not data on pre-
diagnosis health behaviour. Registry data needs to be
augmented with additional data collection or linkage to
external data sources. Additional data collection can be
time consuming, expensive and subject to survivor bias
[16] and data linkage needs the same individuals to be
present and identifiable in both data collections and is
less feasible for rare disease like oesophageal cancer.

When faced with missing data, researchers sometimes
use imputation [17]. Imputing data is likely to lead to
misclassification of health behaviours (such as smokers
classified as non-smokers and vice-versa). However, re-
peated observations of the same behaviour can be used
to quantify, and subsequently correct for misclassifica-
tion [18]. In this paper we investigate the possibility that,
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with large datasets and careful calibration, imputing a
completely missing variable could return valid results.
We describe and evaluate an algorithm for assessing the
relationship between pre-diagnosis health behaviours
and survival at one-year post-diagnosis for oesophageal
cancer where survival is derived from cancer registry
data and key health behaviours are fully imputed using
unrelated health survey data.

Methods

Data sources

Oesophageal cancer cases were extracted from the Sur-
veillance, Epidemiology, and End Results Program (SEER)
cancer registries database, which combines data from can-
cer registries in up to 13 US States covering up to 28% of
the US population [19]. Available data included patient
demographics and outcomes (including survival time).

All records of primary oesophageal cancers diagnosed
between 2006 to 2014 were downloaded using the
SEER*Stat utility [20]. After excluding 112 cases <35
years of age as atypical, the dataset contained 34,972
oesophageal cancer cases.

Health behaviour data of US residents were extracted
from the Behavioural Risk Factor Surveillance System
(BRESS) [21]. This telephone survey of the adult popula-
tion of US residents (all States) has been conducted an-
nually since 1984. All 3,018,830 records from 2001 to
2009 were included.

Given that health behaviour can change after diagnosis
[22, 23] the BRFSS health behaviour best represented
the health behaviour of oesophageal cancer cases pre-
diagnosis. We added a 5-year lag to minimise the risk of
early symptoms influencing behaviour. The initial year
was the earliest year in which BRFSS used a consistent
definition for health behaviours selected for the present
study. The end year was the most recently available
SEER cancer registry data which allowed at least 12-
months follow-up.

Outcomes, predictors and subgroups
The dichotomous outcome was all-cause mortality
within 1 year of diagnosis.

Six self-reported measures of health behaviour were
selected based on previous associations with oesophageal
cancer [11, 24] and availability in the BRFSS dataset:

e Current tobacco smoking (yes or no), defined as
daily or less than daily smoking;

e Alcohol consumption — possible binge drinking (yes
or no), defined as >5 standard drinks for males or >
4 standard drinks for females on at least one
occasion in the month prior to survey;

e Alcohol consumption — possible heavy drinking (yes
or no), defined as > 2 standard drinks per day for
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men and > 1 standard drink per day for women in
the month prior to survey;

e Physical activity (yes or no), defined as any physical
activity or exercise in the past 30 days other than for
regular job;

e Obese (yes/no), defined as body mass index >30 kg/
m?% and

e Current tobacco smoking with regular alcohol (yes
or no), defined as current tobacco smoking with =1
standard drink of alcohol per day on average in the
previous month.

Histological subgroups were defined using Inter-
national Classification of Diseases for Oncology, third
edition (ICD-O-3) with 805-808 indicating ESCC (n =
10,454) and 814-838 indicating EAC (n = 17,950).

Imputation method and covariates

The complete absence of data on health behaviour
meant that regression-based imputation and multiple
imputation could not be used [25]. Random cold deck
imputation [17] based on demographic strata was appro-
priate, as there were demographic variables in common
between the two datasets and individuals from the same
demographic group have a greater likelihood of engaging
in similar health behaviours [26].

In random cold deck imputation individuals are allo-
cated into strata according to auxiliary variables and
then, within each stratum, one ‘donor’ record is ran-
domly selected for each ‘recipient’ record. The BRFSS
health behaviour data were the donor records and the
SEER cancer registry data were the recipients. The re-
cipient record is assigned the behaviour of the donor
record. The more, and the more informative, the auxil-
iary variables the greater the chance the imputed behav-
iour will be correct.

Six auxiliary variables were used:

— Age category at diagnosis (5-year groups from 35-
39y to 75-79y then >80y);

— Gender (male; female);

— Marital status (married, including common law;
single or never married; widowed; divorced);

— Race (white; black; Asian or Pacific Islander;
American Indian or Alaska Native);

— State of residence (Alaska; California; Connecticut;
Georgia; Hawaii; lowa; Kentucky; Louisiana;
Michigan; New Jersey; New Mexico; Utah;
Washington);

— Year of diagnosis (2006 to 2014).

To produce the 5-year lag, we defined the donor re-
cords to be BRFSS health behaviour records which were
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5 years earlier and one age-group younger than the cor-
responding SEER cancer case.

There were 37,440 possible combinations of the auxil-
iary variable categories, 7397 of which occurred within
the SEER oesophageal cancer cases. Of these, 6986
(94.4%) contained at least one eligible BRFSS donor
record.

To allow calibration, we randomly selected two BRFSS
donor records for each SEER case (without replace-
ment), such that each cancer case had two imputed
values for each lifestyle variable. Where donor records
were exhausted before cancer cases, the cancer case was
omitted from the analysis (see Additional file 1).

Missing data, exclusions and the final dataset
Approximately 80% of the 35,084 eligible oesophageal
cancer cases were included in the analyses. (Additional
file 2). SEER cases were excluded for missing survival
time or auxiliary variables (n = 2784, 8.0%) or failing to
find two donor records (from 4353 to 4453 (12.4 to
12.7%) varying between health behaviours). Cases with-
out two donor records were more likely to be older,
from earlier study years and California residents (Add-
itional file 3).

Only 458,780 of the BRFSS health behaviour records
matched the SEER cases on the auxiliary variables. The
number with missing health behaviour ranged from 564
(0.1%) for physical activity to 17,624 (3.9%) for obesity.
To avoid imputing a missing value into a missing value,
these records were excluded. To avoid cumulative ef-
fects, we created six separate donor datasets (each con-
taining complete cases for one of the six health
behaviours) and imputed each health behaviour
independently.

Calibrating the effectiveness of imputation

We used the paired imputed values to calibrate the im-
putation process (see Additional file 4). In brief, let p;
represent the proportion of imputed values where the
behaviour is present. If the imputation process retained
no information on behaviour, the expected proportion of
behaviour present to behaviour present matches is p? -
the agreement arising through chance alone. If the
imputation process is informative, the proportion of be-
haviour present to behaviour present matches is greater
than chance. We modelled these excess matches as p;(1
- p;) p where p is a measure of correlation [27].

We estimated p; as the proportion imputed to have
the behaviour (averaged across the two imputed values)
and estimated p using the phi coefficient (the correlation
coefficient for dichotomous variables) between the pairs
of imputed values. All analyses were conducted separ-
ately for each health behaviour.
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Statistical analysis

For each behaviour, we cross-tabulated the first set of
imputed values against 1 year survival status and calcu-
lated the relative risk of death within 1 year, RR;. The
subscript i signifies that the imputed data were used in
the calculations.

Other potential predictors of survival times were investi-
gated using log-binary regression with associated log likeli-
hood ratio statistics and area under the receiver operator
curves (Additional file 5). Age was identified as a confounder
as both post-diagnosis survival and proportion recording
each health behaviours were lower among older age groups
(Additional file 5). To adjust for this, age-adjusted relative
risks, adjRR;, were estimated using the Cochrane-Mantel-
Haenzel method [28]. Other potential demographic predic-
tors of survival were found to be of lesser impact or
confounded with age (see Additional file 5).

Beyond the demographic variables, cancer stage at diag-
nosis (coded by SEER according to the AJCC Cancer Sta-
ging Manual 6th Edition [29]) was confirmed as a stronger
predictor of survival (Additional file 5) but, occurring after
health behaviour exposure, may partially lie on the disease
pathway. That is, smokers may have more advanced dis-
ease at diagnosis due to their smoking and so correcting
for cancer stage at diagnosis may falsely attenuate the as-
sociation between pre-diagnosis smoking and survival post
diagnosis [30]. Subgroup analyses for cancer stage at diag-
nosis are provided in Additional file 8.

Non-differential misclassification errors will, barring
random error and confounding, attenuate the estimated
relative risk toward the null [31]. The mathematical rela-
tionship between the relative risk using the imputed
data, RR;, and the true relative risk for the cancer cases,
RR7, is derived in Additional file 6. In brief, if the preva-
lence of behaviour is the same between the donor re-
cords and cancer cases in each stratum, the true relative
risk can be estimated using

(RR:~1)

RR; = 1-
(RRi=1)p;( 1-p)-p

Extreme values of p; and/or p can be problematic. For
example, when p=0, RRr is negative: an impossible
value for a relative risk.

Random cold deck imputation was repeated 100 times,
separately for each of the six health behaviours. As
donor records were selected at random within strata,
each statistic varied between repetitions. Results were re-
ported as the median value from the 100 repetitions with
the associated 2.5 and 97.5 percentiles as empirical 95%
confidence intervals. We report subgroup analyses for
ESCC and EAC. Where more than 5% of the estimates
of the true relative risk RR were impossible, the imput-
ation process was labelled as ‘failed’.
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Checking the algorithm with simulated data

In the absence of a cohort showing the true relationship
between pre-diagnosis health behaviour and post-
diagnosis survival time, we used simulated data to test
the algorithm.

The first set of imputed behaviour was designated to
be the ‘true’ health behaviour of each cancer case. For
each health behaviour we separately simulated seven
survival status variables (repeated 100 times): to produce
relative risks of 0.50, 0.66, 0.80, 1.00, 1.25, 1.50 and 2.00
while maintaining the overall rate of the health behav-
iour p; and 1 year death rate (Additional file 7).

The imputed relative risks were obtained using the
second set of imputed health behaviours. As the second
set of imputed values were selected independently and
without replacement, they had a similar relationship
with the first set of simulated data as with the actual
cancer cases. The main difference is that the simulated
survival data, being based only on the behaviour of inter-
est, have no relationship with (confounding from) any
other variables. The true data were likely to display more
complex relationships.

Results

Calibrating the imputation

The estimated proportion of cancer cases with a given
health behaviour, p;, ranged from a median of 0.737 for
physical activity to 0.034 for current smoking with regu-
lar drinking (Table 1). The phi coefficients, ¢, show that
there is usually a positive correlation between the two
imputed values, albeit weak (medians between 0.008 and
0.077). This confirms that some information about
health behaviour is being conveyed through the random
cold deck imputation. The value np,(1 — p;)p, the number
of correct matches greater than would be expected
through chance, quantifies the information conveyed
through the imputation. ‘Heavy drinking’, and ‘current
smoking with regular drinking’, had the lowest preva-
lence (median of 0.05 or less), the lowest correlations be-
tween imputed observations (median less than 0.025)
and hence lowest information (medians below 20
matches beyond chance).

Analyses using simulated survival status

The simulated relative risks of survival were accurate to
two-decimal places and precise (with a maximum mar-
gin of error of 0.07) (Table 2). The relative risks ob-
tained by using the (second) imputed behaviour (RR))
were substantially attenuated toward the null differing
from 1.0 only in the second decimal place.

Estimation of the true relative risk from the imputed
relative risk failed for the two least common health be-
haviours: ‘heavy drinking’ and ‘current smoking with
regular drinking’. For the other four behaviours, the
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Table 1 The estimated proportions with each health behaviour, the phi coefficient between imputed values and the estimated

excess matches for each analysis

Behaviour N Estimated proportion with behaviour, p;

Estimated phi coefficient, o = ¢

Estimated excess matches, np;(1-p;)p

> years Median 95% Cl Median 95% Cl Median 95% Cl
before
diagnosis
Current smoking
overall 27835 0159 0.157,0.162 0.071 0.059,0.084 262.2 22013122
ESCC 8914 0.166 0.162,0.170 0.077 0.061,0.097 94.8 74.5120.7
EAC 15,726 0.157 0.153,0.159 0.066 0.052,0.081 137.0 107.4169.5
Binge drinking
Overall 27,750 0.100 0.098, 0.102 0.060 0.049,0.077 150.5 121.5192.1
ESCC 8891 0.086 0.082,0.089 0.060 0.042,0.086 422 29.861.1
EAC 15673  0.109 0.106,0.111 0.058 0.042,0079 88.6 63.6120.3
Heavy drinking
Overall 27,749 0.048 0.047,0.050 0.011 0.002,0.025 14.3 27,320
ESCC 8888 0.046 0.043,0.049 0.015 —0.002,0.036 57 -0.7,142
EAC 15,676 0.050 0.048,0.052 0.008 —-0.004,0.028 6.0 -3.0,20.8
Physical activity
Overall 27830 0737 0.734,0.740 0.034 0.026,0.046 185.1 13942474
ESCC 8912 0.716 0.709,0.721 0.036 0.016,0.056 64.7 29.6100.2
EAC 15,724 0.750 0.746,0.754 0.031 0.013,0.047 914 40.0,1384
Obese
Overall 27,796 0.257 0.254,0.261 0.030 0.020,0.042 160.2 10842268
ESCC 8898 0.262 0.255,0.268 0.045 0.024,0.061 77.0 41.4104.6
EAC 15,709  0.256 0.251,0.261 0.023 0.012,0.041 67.8 3501224

Current smoking with regular drinking

Overall 27,735 0034 0.033,0.035 0.022
ESCC 8883 0.031 0.029,0033 0.024
EAC 15670  0.035 0.034,0.037 0.021

0.009,0.038 19.8 8.0,34.2
—0.000,0.049 6.2 -00,135
0.004,0.042 11.5 21224

p; proportion of imputed values where the health behaviour is present

0 = ¢ the correlation between the pairs of imputed values (calculated as the phi coefficient)
np;(1-p;)p= the excess number of correct matches greater than would be expected through chance alone

Median median of 100 repetitions of the imputation algorithm,

95% Cl = empirical 95% confidence interval created from the 2.5 and 97.5 percentiles obtained from 100 repetitions of the imputation algorithm,
N number of SEER oesophageal cancer cases receiving data from two donor records from the BRFSS health behaviour datasets

ESCC oesophageal squamous cell carcinoma,
EAC oesophageal adenocarcinoma

median of the estimated true relative risk was accurate
to one, and often two, decimal places. However, the con-
fidence intervals were wide and few excluded no
association.

Analyses using true survival status

When imputing the health behaviours onto SEER cancer
cases, the median imputed relative risks (RR;) are attenu-
ated to close to 1.0 (Table 3). Less expectedly, most of
the median risks are less than 1.0; suggesting that most
behaviours were associated with a lower rate of death
within one year of diagnosis. Many of the age-adjusted

imputed relative risks had the opposite direction of asso-
ciation confirming the potential for confounding by age.
Current tobacco smoking 5 years prior to diagnosis was
detrimental to one-year survival after diagnosis following
adjustment for age, particularly in ESCC where the esti-
mated relative risk was 2.0 (95%CI 1.24, 3.12). For ESCC,
the median relative risk for binge drinking 5 years prior
to diagnosis was 1.52 although the range of possible rela-
tive risks was wide (95% CI 0.44,2.75). Similar results
were seen for obesity (ESCC estimated RR 1.73, 95%CI
0.83,4.17). Physical activity 5-years prior to diagnosis
was protective for survival with median estimated
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Table 2 Result of simulation-based testing of whether or not the imputation can be used to predict relative risk
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Target RR Simulated data RR Imputed RR (RR) Impossible Result (RRy < 0) Estimated true RR (RRy)
Median 95% Cl Median 95% Cl Frequency Median 95% CIP
Current smoking
RR=0.5 0.501 0475,0521 0.964 0.934,0993° 0 0519 0.163,0.904°
RR=0.66 0.660 0.635,0.683 0973 0.944,0999° 0 0.638 0.300,0.985°
RR=0.80 0.799 0.771,0.823 0.983 0.952,1.017 0 0.753 0.375,1.226
RR=1.00 1.001 0.976,1.026 0.997 0.967,1.027 0 0.957 0.577,1.444
RR=1.25 1.249 1.220,1.287 1.017 0.989,1.048 0 1.254 0.856,1.793
RR=1.50 1.499 1.465,1.528 1.032 1.005,1.059° 0 1.486 1.069,1.947°
RR=2.00 2.000 1.974,2.034 1.064 1.034,1.092° 0 2.047 1.542,2.532°
Binge drinking
RR=05 0.501 0474,0.526 0.967 0.940,0.996" 0 0478 0.087,0.927°
RR=0.66 0.659 0.624,0.692 0976 0.945,1.015 1 0.629 0.173,1.316
RR=0.80 0.798 0.758,0.830 0.988 0.959,1.025 0 0.805 0.341,1.448
RR=1.00 0.997 0.963,1.033 0.999 0.971,1.032 0 0.981 0.518,1.492
RR=1.25 1.245 1.213,1.278 1.016 0.984,1.054 0 1.271 0.739,2.029
RR=150 1499 1463,1.534 1.030 0.990,1.068 0 1517 0.831,2.246
RR=2.00 1.999 1.978,2.028 1.058 1.021,1.093° 0 2014 1.352,2.717°
Heavy Drinking
RR=05 0.500 0.450,0.548 0.995 0.945,1.046 40 failed failed
RR=0.66 0.661 0.606,0.697 0.995 0.946,1.046 34 failed failed
RR=0.80 0.799 0.746,0.847 0.997 0.944,1.053 43 failed failed
RR=1.00 0.997 0.949,1.045 0.998 0.940,1.041 32 failed failed
RR=1.25 1.251 1.210,1.300 1.003 0.959,1.053 22 failed failed
RR=1.50 1497 1.459,1.535 1.012 0.956,1.059 24 failed failed
RR=2.00 Not possible Not possible
Physical activity
RR=05 0.500 0.491,0.509 0974 0.951,0997° 0 0.504 0.319,0901°
RR=0.66 0.659 0.645,0671 0.983 0.959,1.006 0 0632 0.367,1.231
RR=0.80 0.800 0.782,0.818 0.993 0.971,1.017 0 0.833 0.449,1.907
RR=1.00 1.002 0.976,1.022 1.001 0.978,1.021 0 1.025 0.488,2.092
RR=1.25 1.250 1.219,1.276 1.006 0.977,1.030 0 1.206 0.541,2.961
RR=1.50 1499 1.455,1.549 1.013 0.987,1.037 2 1514 0.722,4.078
RR=2.00 2.003 1.939,2.083 1.021 1.002,1.047% 3 2127 1.055,10.987°
Obese
RR=0.5 0499 0485,0.517 0.983 0.960,1.008 1 0.550 0.028,1.322
RR=0.66 0.660 0.634,0.680 0.989 0.962,1.016 2 0.665 0.114,1.772
RR=0.80 0.802 0.777,0.823 0.995 0.967,1.015 1 0.846 0.316,1.676
RR=1.00 1.002 0.981,1.024 0.999 0.980,1.024 0 0.962 0461,2.067
RR=1.25 1.250 12221274 1.009 0.989,1.030 0 1.335 0.601,2.300
RR=150 1.500 1468,1.534 1014 0.987,1.039 0 1440 0.606,2.796
RR=2.00 2.002 1.961,2.041 1.025 0.997,1.044 0 1.995 0.886,3.234
Current smoking with regular drinking
RR=05 0.504 0.441,0.550 0.988 0.931,1.034 37 failed failed
RR=0.66 0.660 0.600,0.713 0.997 0.932,1.066 31 failed failed
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Table 2 Result of simulation-based testing of whether or not the imputation can be used to predict relative risk (Continued)

Target RR Simulated data RR Imputed RR (RR) Impossible Result (RRy < 0) Estimated true RR (RRy)
Median 95% Cl Median 95% Cl Frequency Median 95% CIP
RR=0.80 0.797 0.744,0.863 0.991 0.928,1.052 34 failed failed
RR=1.00 0.996 0.943,1.049 1.001 0.940,1.059 25 failed failed
RR=125 1.250 1.183,1.298 1.009 0.954,1.059 16 failed failed
RR=1.50 1497 1.454,1.545 1.000 0.958,1.065 19 failed failed
RR=2.00 Not possible Not possible

Target RR - the relative risk we attempted to achieve in the simulated data

Simulated data RR - the relative risk which was actually achieved between the first imputed value and the simulated one-year survival status
Imputed RR (RR)) - the relative risk calculated using the second imputed data point as the imputed behaviour

Impossible result - instances where the estimated true relative risk was impossible (a negative value)

Estimated True RR (RRy) - the estimated true relative risk derived from the imputed relative risk and calibration parameters p; and p

Median median of 100 repetitions of the imputation algorithm,

95% Cl = empirical 95% confidence interval created from the 2.5 and 97.5 percentiles obtained from 100 repetitions of the imputation algorithm,
?95% confidence intervals exclude no association (i.e. exclude relative risk equals 1)

b excludes impossible result

relative risks of approximately 0.50 (95%CI 0.31, 1.03)
for oesophageal cancer overall.

Estimates of the relative risks could not be retrieved
for the less common behaviours ‘heavy drinking’ and
‘current smoking with regular drinking’. The one relative
risk which was retrieved - a median RR of 3.35 for
current smoking with regular drinking in all oesophageal
cancer - was accompanied by wide uncertainty (95% CI
0.77,11.84).

Subgroup analyses on cancer stage at diagnosis
(Additional file 8), suggests that pre-diagnosis health
behaviours have stronger relationships with one-year
survival in those who are not metastatic at diagnosis.

Discussion
This study shows that an entirely missing variable can
be imputed and return accurate estimates of relative
risks. Nearly all correlation coefficients were positive, in-
dicating that the imputation conveyed some information
about health behaviour, although confidence intervals
were wide. However, for the less common behaviours
(heavy drinking and current smoking with regular drink-
ing), no interpretable information could be retrieved.
The choice of health behaviour variables was re-
stricted to measures available through the BRFSS
health survey. However, the results are consistent
with the literature. We found that tobacco smoking 5
years prior to diagnosis was associated with increased
risk of death 1 year after diagnosis in ESCC (RR =
1.99, 95% CI 1.24,3.12) and, with less certainty, EAC
(RR=1.61, 95% CI 0.79,2.57). Recent meta analyses
estimated hazard ratios (HRs) of 1.41 (95% CI 1.22,
1.64) and 1.41 (95% CI 0.96,2.09) for current smoking
relative to never smoked in mainly ESCC populations
[32, 33] and 1.19 (95% CI 1.04,1.36) for ever smoking
compared to never smoked in ESCC [24] with no

evidence of association between smoking and survival
in EAC [24, 33]. The unadjusted protective effects of
smoking has also been reported [34, 35] as has the
change in the direction of the association following
age adjustment [35].

A previous meta-analysis found that ever drinking
alcohol had a detrimental association with survival in
ESCC (HR 1.36, 95% CI 1.15, 1.61) but not in EAC
(HR=1.08 95% CI 0.85, 1.37) [24]. More recent re-
sults from China (HR=1.58, 95% CI 1.21,2.07 [36,
37], HR=145 95% CI 1.13,1.87 [37]) and Japan
(HR=2.37 95% CI 1.24,4.53 [38]) also support the
detrimental impact of pre-diagnosis alcohol con-
sumption on survival in ESCC. We could not esti-
mate the association between heavy drinking and
survival. However, for binge drinking five years prior
to diagnosis, the median relative risk was 1.52 in
ESCC, although the confidence interval (95% CI 0.44,
2.75) allows no association.

Previous studies have reported that pre-diagnosis
smoking with regular alcohol consumption produced a
disproportionately high risk to post-diagnosis survival in
ESCC (HR 3.84, 95% CI 2.02,7.32 [13]). We observed a
similar association (RR =3.25, 95% CI 0.77,11.84) with
wider confidence intervals.

In relation to obesity, a recent North American study
[39] found self-reported obesity was associated with
lower survival times in EAC compared to normal weight
(HR 1.77, 95% CI 1.25, 2.51) and a 27 year follow-up of
29,446 participants in China [40] found higher body
mass index protective of death from ESCC (HR =0.97
per unit increase, 95% CI 0.95,0.99). We found, in con-
trast, that obesity 5 years pre-diagnosis may be detri-
mental to one-year post diagnosis survival for ESCC
(median RR =1.73) although confidence intervals were
wide (95% CI 0.83,4.17).
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Table 3 Estimated relative risks of 1-year survival derived from imputed pre-diagnosis behaviours for SEER oesophageal cancer

cases, 2006-2014; unadjusted and age adjusted

Imputed RR (RR)

Impossible Result

Estimated True RR

Age-adjusted

Impossible Result

Age-adjusted

(RR; < 0) (RR7) Imputed RR (adjRR; < 0) Estimated True RR
(adjRR) (adjRRy)
Median 95% Cl Frequency Median 95% Cl Median 95% Cl Frequency Median 95% Cl
Current smoking
All 0986  0.954,1.009 0 0.806 0.380,1.130  1.051 1.014, 0 1.794 1.2152357°
1.078
1025  0981,1.067 0 1349 07332142 1064 1016, 0 1990  1.2403.117
ESCC 111 ?
EAC 0959  0914,1.000 5 0478  0039,1.003 1038 0985, 0 1613 0.785,22.571
e b 1.085
Binge drinking
All 0933 0.900,0964 49 failed  failed 0997 0961, 1 0.951 0.445,1.539
1032 b
0998  0936,1.059 4 0991 01671995 1033 0968, 0 1.515 04402754
ESCC b 1101
EAC 0914 08630961 72 failed  failed 0989 0935, 3 0818  0.181,1.890
° 1.046 b
Heavy drinking
All 0.981 0.932,1.028 61 failed  failed 1.010  0.963, 23 failed  failed
1.060
0995  0912,1.066 48 failed  failed 1012 0929, 36 failed  failed
ESCC 1.088
EAC 0974  0907,1.039 66 failed  failed 1.011 0.938, 35 failed  failed
1.077
Physical activity
All 0954 09340978 0 0319  0.1650564 0974 0956, 0 0507 0.307,1.030
a @ 1.001
0959 09250991 2 0.345 0.073,0811 0971 0933, 1 0452 0.102,1.071°
ESCC ab 1.003
EAC 0957 0.929,0986 1 0311 0.109,0675 0984  0.954, 0 0.627 0.285,2.180
e ok 1013
Obese
All 0969 09460993 24 failed  failed 1.008 0983, 0 1262 0.559,2.931
é 1.036
1.000 09681039 0 1.004 01342378 1.027 0.992, 0 1733 0.834,4.167
ESCC 1.068
EAC 0949 09170987 76 failed  failed 099  0.960, 8 failed  failed
? 1.035
Current smoking with regular drinking
All 0.987 0.930,1.058 40 failed  failed 1.044  0.986, 2 3254 0.771,11.843
1120 b
1.044  0946,1.146 12 failed  failed 1076 0973, 11 failed  failed
ESCC 1.180
EAC 0963  0861,1.052 60 failed  failed 1.032 09719, 13 failed  failed
1123

Imputed RR (RR)) - the relative risk calculated using the imputed behaviour
Impossible result — instances where the estimated true relative risk was impossible (a negative value)

Estimated True RR (RR;) - the estimated true relative risk derived from the imputed relative risk and calibration parameters p; and p

Median median of 100 repetitions of the imputation algorithm,
95% Cl = empirical 95% confidence interval created from the 2.5 and 97.5 percentiles obtained from 100 repetitions of the imputation algorithm,

@ 95% confidence intervals exclude no association (i.e. exclude relative risk equals 1)

P excludes impossible result
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One benefit of the algorithm is that it does not add
any additional information about individuals to the can-
cer registry data and so, unlike direct data linkage, does
not exacerbate the issues of confidentiality and data se-
curity. (The imputed behaviours are only slightly more
likely to be correct than an uninformed guess.) The algo-
rithm also provides protection against biases. Data were
obtained from the SEER cancer registries which are cen-
suses with good population coverage. Many sampling
and non-response biases in the BRFSS health behaviour
data [41] are eliminated when using a census as the ref-
erence. However, we used rigid matching criteria and
failed to match 20% of cases. Further investigation of the
trade-off between exact matching and biases arising
from failure to match is required.

As with direct data linkage, our investigations were lim-
ited to available health behaviour measures, rather than all
clinically important risk factors. Potentially important
health behaviours such as diet [11, 42] and hot beverages
[42] were unavailable. The number and variety of auxiliary
variables available for matching donor to recipient records
was also limited. Our only investigation of clustering in
health behaviours [43] was for the combination of current
smoking and regular alcohol consumption.

The results display considerable uncertainty with few
instances where the empirical confidence intervals ex-
cluded the null. The width of the confidence intervals is
sensitive to n, p; and p. Larger n can be achieved by
looking at more common cancers, and/or combining
data from more cancer registries and/or more years. The
proportion with the health behaviour, p;, can be adjusted
through inclusion and exclusion criteria (but will impact
on n). Larger p requires more informative auxiliary vari-
ables for the imputation.

We do not have access to any true gold standard for
validity testing. A gold standard would be an
oesophageal cancer dataset where behaviour was mea-
sured 5 years prior to diagnosis.

Conclusion
In this paper we have demonstrated a novel imputation-
based algorithm for augmenting cancer registry data for
epidemiological research and established its face-validity.
The algorithm adds information obtained from an exter-
nal data set with (presumed) no cases in common, to the
cancer registry data via demographic variables in com-
mon. The algorithm is subject to much higher random
error than direct data linkage (depending on how inform-
ative the demographic variables are), and requires larger
sample sizes to compensate. However, it does avoid the
aggravation of confidentiality issues (and associated data
security costs) arising from direct data linkage.

We believe this algorithm is likely to allow, at least
preliminary, investigations of a range of research
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questions which cannot be addressed through direct data
linkage; due to insufficient individuals in common, insuf-
ficient matching variables and/or costs associated with
data confidentiality and security. By increasing the range
of research question which can be addressed with cancer
registry data, the algorithm further augments the bene-
fits of cancer registries.
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